85 research outputs found

    Elliptical monogenic representation of color images and local frequency analysis

    No full text
    International audienceWe define a new color extension for the monogenic representation of images by using an elliptical tri-valued oscillation model jointly with the vector structure tensor formalism. The proposed method provides a rich local colorimetric and geometric analysis, in particular a color phase concept, which can be computed by a numerically stable algorithm. This representation is finally used to estimate the local frequency of color images

    Elliptical Monogenic Wavelets for the analysis and processing of color images

    No full text
    International audienceThis paper studies and gives new algorithms for image processing based on monogenic wavelets. Existing greyscale monogenic filterbanks are reviewed and we reveal a lack of discussion about the synthesis part. The monogenic synthesis is therefore defined from the idea of wavelet modulation, and an innovative filterbank is constructed by using the Radon transform. The color extension is then investigated. First, the elliptical Fourier atom model is proposed to generalize theanalytic signal representation for vector-valued signals. Then a color Riesz-transform is defined so as to construct color elliptical monogenic wavelets. Our Radon-based monogenic filterbank can be easily extended to color according to this definition. The proposed wavelet representation provides efficient analysis of local features in terms of shape and color, thanks to the concepts of amplitude, phase, orientation, and ellipse parameters. The synthesis from local features is deeply studied. We conclude the article by defining the color local frequency, proposing an estimation algorithm

    A unique polar representation of the hyperanalytic signal

    Full text link
    The hyperanalytic signal is the straight forward generalization of the classical analytic signal. It is defined by a complexification of two canonical complex signals, which can be considered as an inverse operation of the Cayley-Dickson form of the quaternion. Inspired by the polar form of an analytic signal where the real instantaneous envelope and phase can be determined, this paper presents a novel method to generate a polar representation of the hyperanalytic signal, in which the continuously complex envelope and phase can be uniquely defined. Comparing to other existing methods, the proposed polar representation does not have sign ambiguity between the envelope and the phase, which makes the definition of the instantaneous complex frequency possible.Comment: 2014 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP

    A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification.

    Get PDF
    Quantitative Trait Loci (QTL) mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum) and its more distant interfertile relatives typically follow a near isogenic line (NIL) design, such as the S. pennellii Introgression Line (IL) population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii This so-called Backcrossed Inbred Line (BIL) population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping

    High Performance Video Stream Analytics System for Object Detection and Classification

    Get PDF
    Due to the recent advances in cameras, cell phones and camcorders, particularly the resolution at which they can record an image/video, large amounts of data are generated daily. This video data is often so large that manually inspecting it for object detection and classification can be time consuming and error prone, thereby it requires automated analysis to extract useful information and meta-data. The automated analysis from video streams also comes with numerous challenges such as blur content and variation in illumination conditions and poses. We investigate an automated video analytics system in this thesis which takes into account the characteristics from both shallow and deep learning domains. We propose fusion of features from spatial frequency domain to perform highly accurate blur and illumination invariant object classification using deep learning networks. We also propose the tuning of hyper-parameters associated with the deep learning network through a mathematical model. The mathematical model used to support hyper-parameter tuning improved the performance of the proposed system during training. The outcomes of various hyper-parameters on system's performance are compared. The parameters that contribute towards the most optimal performance are selected for the video object classification. The proposed video analytics system has been demonstrated to process a large number of video streams and the underlying infrastructure is able to scale based on the number and size of the video stream(s) being processed. The extensive experimentation on publicly available image and video datasets reveal that the proposed system is significantly more accurate and scalable and can be used as a general purpose video analytics system.N/

    2016 IMSAloquium, Student Investigation Showcase

    Get PDF
    Welcome to the twenty-eighth year of the Student Inquiry and Research Program (SIR)! This is a program that is as old as IMSA. The SIR program represents our unending dedication to enabling our students to learn what it is to be an innovator and to make contributions to what is known on Earth.https://digitalcommons.imsa.edu/archives_sir/1026/thumbnail.jp

    Visualization and Analysis of Flow Fields based on Clifford Convolution

    Get PDF
    Vector fields from flow visualization often containmillions of data values. It is obvious that a direct inspection of the data by the user is tedious. Therefore, an automated approach for the preselection of features is essential for a complete analysis of nontrivial flow fields. This thesis deals with automated detection, analysis, and visualization of flow features in vector fields based on techniques transfered from image processing. This work is build on rotation invariant template matching with Clifford convolution as developed in the diploma thesis of the author. A detailed analysis of the possibilities of this approach is done, and further techniques and algorithms up to a complete segmentation of vector fields are developed in the process. One of the major contributions thereby is the definition of a Clifford Fourier transform in 2D and 3D, and the proof of a corresponding convolution theorem for the Clifford convolution as well as other major theorems. This Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vectorvalued filters, as well as an acceleration of the convolution computation as a fast transform exists. The depth and precision of flow field analysis based on template matching and Clifford convolution is studied in detail for a specific application, which are flow fields measured in the wake of a helicopter rotor. Determining the features and their parameters in this data is an important step for a better understanding of the observed flow. Specific techniques dealing with subpixel accuracy and the parameters to be determined are developed on the way. To regard the flow as a superposition of simpler features is a necessity for this application as close vortices influence each other. Convolution is a linear system, so it is suited for this kind of analysis. The suitability of other flow analysis and visualization methods for this task is studied here as well. The knowledge and techniques developed for this work are brought together in the end to compute and visualize feature based segmentations of flow fields. The resulting visualizations display important structures of the flow and highlight the interesting features. Thus, a major step towards robust and automatic detection, analysis and visualization of flow fields is taken

    Local Geometric Transformations in Image Analysis

    Get PDF
    The characterization of images by geometric features facilitates the precise analysis of the structures found in biological micrographs such as cells, proteins, or tissues. In this thesis, we study image representations that are adapted to local geometric transformations such as rotation, translation, and scaling, with a special emphasis on wavelet representations. In the first part of the thesis, our main interest is in the analysis of directional patterns and the estimation of their location and orientation. We explore steerable representations that correspond to the notion of rotation. Contrarily to classical pattern matching techniques, they have no need for an a priori discretization of the angle and for matching the filter to the image at each discretized direction. Instead, it is sufficient to apply the filtering only once. Then, the rotated filter for any arbitrary angle can be determined by a systematic and linear transformation of the initial filter. We derive the Cramér-Rao bounds for steerable filters. They allow us to select the best harmonics for the design of steerable detectors and to identify their optimal radial profile. We propose several ways to construct optimal representations and to build powerful and effective detector schemes; in particular, junctions of coinciding branches with local orientations. The basic idea of local transformability and the general principles that we utilize to design steerable wavelets can be applied to other geometric transformations. Accordingly, in the second part, we extend our framework to other transformation groups, with a particular interest in scaling. To construct representations in tune with a notion of local scale, we identify the possible solutions for scalable functions and give specific criteria for their applicability to wavelet schemes. Finally, we propose discrete wavelet frames that approximate a continuous wavelet transform. Based on these results, we present a novel wavelet-based image-analysis software that provides a fast and automatic detection of circular patterns, combined with a precise estimation of their size

    Object Recognition

    Get PDF
    Vision-based object recognition tasks are very familiar in our everyday activities, such as driving our car in the correct lane. We do these tasks effortlessly in real-time. In the last decades, with the advancement of computer technology, researchers and application developers are trying to mimic the human's capability of visually recognising. Such capability will allow machine to free human from boring or dangerous jobs
    • …
    corecore