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Abstract

Vector fields from flow visualization often contain milliongdata values. It is ob-
vious that a direct inspection of the data by the user is tedi®herefore, an auto-
mated approach for the preselection of features is estmtaacomplete analysis
of nontrivial flow fields. This thesis deals with automatetedéon, analysis, and
visualization of flow features in vector fields based on tégphes transfered from
image processing. This work is build on rotation invari@mhplate matching with
Clifford convolution as developed in the diploma thesisha aiuthor. A detailed
analysis of the possibilities of this approach is done, amthér techniques and
algorithms up to a complete segmentation of vector fieldsdaxeloped in the
process.

One of the major contributions thereby is the definition ofldéf@d Fourier
transform in 2D and 3D, and the proof of a corresponding clutiom theorem
for the Clifford convolution as well as other major theoremkis Clifford Fourier
transform allows a frequency analysis of vector fields amdoshavior of vector-
valued filters, as well as an acceleration of the convolutmmputation as a fast
transform exists.

The depth and precision of flow field analysis based on tempteatching
and Clifford convolution is studied in detail for a specifggpdication, which are
flow fields measured in the wake of a helicopter rotor. Detemmgj the features
and their parameters in this data is an important step fortteroenderstanding
of the observed flow. Specific techniques dealing with sulipiccuracy and
the parameters to be determined are developed on the wayegéodrthe flow
as a superposition of simpler features is a necessity ferapplication as close
vortices influence each other. Convolution is a linear sys#® it is suited for this
kind of analysis. The suitability of other flow analysis angualization methods
for this task is studied here as well.

The knowledge and techniques developed for this work aneghitogether in
the end to compute and visualize feature based segmergtatidlow fields. The
resulting visualizations display important structuresha flow and highlight the
interesting features. Thus, a major step towards robustatamatic detection,
analysis and visualization of flow fields is taken.
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Chapter 1

Introduction

"One of the most interesting aspects of the world is thatntlea considered to be
made up of patterns.” (Norbert Wiener)

Visualization and analysis of vector fields from flow simidas and measure-
ments is an important step in engineering processes, ermgdue design phase
of airplanes, cars, trains, and combustion chambers. Afgpede in these vi-
sualizations play features, which are often defined as "pim&ma, structures or
objects in a data set, that are of interest for a certain relsea engineering prob-
lem” [73]. It is not possible to give a list of all features oterest in a flow field
as these differ from application to application and sma#irages of one feature
lead to a variety of new features. Nevertheless, most feattain be categorized
into a few groups like vortices and other swirling flows, sha@ves, shear flow
and boundary layers, reversed flow, saddle points, separatid attachment lines
or surfaces, areas with convergent or divergent behavidrregions with laminar
flow.

Most flow simulations and measurements want to study ovstraiCture and
specific features, i.e. patterns of streamlines with canspis behavior. Flow
visualization intends to help the user to find and analyztufea and structures.
Direct visualization methods like hedgehogs do not alway®al the features.
Streamline based methods may lead to missing featureses$pecially without
knowing the right starting points. Texture based methdkks line integral con-
volution [13] do a quite good job in 2D, but a convincing sautin 3D is still
missing. Topology [18,44,79,81,94,96, 97], on the otherdhas directed to the
overall structure since not all features are easily comatkid it. Furthermore, the
presentation of 3D topology produces visibility problemsother, quite differ-
ent, approach for the visualization is to use informatiguaiization methods like
brushing for interactive exploration of the data sets [22].
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A huge amount of data is generated nowadays by flow simuktod mea-
surements. The resulting vector fields often contain nmiiof data values, but
even for small datasets with only thousands of values, dimepection by the user
is tedious and features are missed easily. Therefore, maoynated feature de-
tection methods have been developed in the last years 24.g12,57,73,77,90].
Streamlines can then be used in a second step to study thedsatarlier at-
tempts usually try to give an analytic model of a feature ama@te an algorithm
for feature detection from there. Besides the limitatiohthe models, most ap-
proaches have severe robustness problems.

Image processing and computer vision are mature fields avel fraduced
methods for analysis, feature extraction and derivativemaation [51,52]. Con-
volution based approaches are robust in terms of white ra@sause of the in-
herent averaging present in the convolution method. Furtbee, many image
processing methods allow precise analysis of accuracygerations including
sampling, interpolation and smoothing. Noise is also blytenodeled and dealt
with. Therefore, it is sensible to apply these methods teordields.

In her diploma thesis [23], the author has developed Ctiffoonvolution,
which is a transfer of convolution to vector fields with thdpef Clifford al-
gebra. Clifford convolution has some nice properties asities the convolu-
tion of scalar, vector and spinor fields. Furthermore, ai@tanvariant template
matching method based on geometric properties of this dotiwn was devel-
oped. These algorithms have been fundamental work on whishdissertation
thesis is build.

Inimage processing, the convolution and Fourier transfogperators are close-
ly related by the convolution theorem. One major contrimubf this thesis is the
extension of the Fourier transform to include general elemef Clifford Alge-
bra, which are called multivectors and include scalars autiors. The resulting
convolution and derivative theorems extend those appdiédakthe Fourier trans-
form on scalar fields while still remaining reasonably sieapThe Clifford Fourier
transform allows a frequency analysis of vector fields amdothavior of vector-
valued filters. In frequency space, vectors are transformedyeneral multivec-
tors of the Clifford Algebra. Many basic vector-valued patis such as source,
sink, saddle points and potential vortices can be deschlgeaifew multivectors
in frequency space. Furthermore, the existence of fastitgus for the computa-
tion of the Clifford Fourier transform together with the oesponding convolution
theorem allow an acceleration of the computation of thef@lif convolution.

Vector-valued templates are linear and shift invarianefdit The linearity
property is also known as the superposition principal, anelaknown property
in signal and image processing. In flow field visualizatioowbver, this percep-
tion has been neglected. In some applications [100], theisig®t interested as
much in the actual flow behavior as in an approximation of thenommena us-
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ing simpler features models. Then, superposition effeate o be taken into
account in order to analyze these features and computeptiigimeters. This is
inherently done by using template matching. One questidnctwis examined
in this thesis, is how other basic flow analysis and visuibratechniques cope
with superposition phenomena.

One application and test for feature analysis based oro@litfonvolution are
three-component particle image velocimetry (3-C PIV) mieaments within the
wake of a helicopter rotor from the HART Il test. These Pl\ages are quite a
challenge as the noise due to the measurement method améhénent turbulence
of the flow can not be distinguished. Furthermore, featureotien hidden by a
flow-through component, which is influenced by vortices dreteéfore not easy to
determine. Several image processing methods based onlgbompintegration,
bisection, and the orientation tensor, are investigatethis thesis in order to
determine parameters of vortices given by a cut of the vestieith the image
plane. Position, size, direction and velocity at the cotBuscan be determined
quite robust and precise with the presented methods, forcamracy of edge-
length as well as subpixel accuracy. The methods are alpgrdent of any mean
flow and robust in terms of noise, which is both important foe evaluation of
the HART Il PIV images. Thus, this application serves alsaagxample and
instruction for flow feature analysis based on template magc

Finally, the gained knowledge and techniques are brougiether in an algo-
rithm for automatic computation of a feature-based segatiemt of 2D, 3D, and
time dependent vector fields. The template matching allowsrefied approach
for the detection of different features, and the segmentati based on the fea-
tures themselves. Another advantage is that feature modetsby engineers can
be coded into the templates and thus automatic determmattibe model param-
eters is possible within this framework as well. Severallehges of designing
the algorithm like misclassification and superpositioreetf§ are presented and
discussed. The visualizations of the segmentations gldagict the structures of
the flow data as the features are displayed in conjunctiom @ach other. Thus,
even highly turbulent data can be studied easily.

Structure of this Thesis

Chapter 1: In this chapterintroduction and overview of the topics discussed in
this thesis are given. Furthermore, the structure of thesithis described and the
publications, which arose during the work on this thesis,earumerated.

Chapter 2: This chapter gives an introductionflow field visualization. Central
definitions concerning flow fields and their discretizatioa given there. Flow
visualization is closely connected to feature detectioner&fore direct flow vi-
sualization techniques are presented as well as commardedéfinitions and
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feature detection for subsequent visualization.

Chapter 3: Signal and image processinfundamentals are discussed in the third
chapter. This includes the definitions of signals and syste&specially the class
of linear and shift invariant systems, which also play anontgnt role in this
thesis. Discretization issues are discussed in this chagtevell as the Fourier
transform and Gabor filters. Techniques for feature deie@nd segmentation of
images are presented, including approaches for rotatidseale invariant match-
ing.

Chapter 4: Clifford algebra is a geometric algebra. Once understood, it pro-
vides an intuitive access to vector fields as well as a unifadtion for scalar,
vector and spinor data. This thesis is based on Clifford cluton which makes
extensive use of the properties of this algebra, thereforeteoduction is given in
Chapter 4. Differing definitions of Clifford algebras arsdissed there as well.
Chapter 5: Several definitions of convolution of vector fields haverbéeevel-
oped so farClifford convolution being one of them. Their advantages and dis-
advantages are discussed in Chapter 5. Furthermore, tatoroinvariant tem-
plate matching techniques based on two different convatudiefinitions, based
on scalar product and Clifford multiplication of two vedpare explained.
Chapter 6: There are a fewlata setswhich are repeatedly used to demonstrate
technigues and results in this thesis. For a more structapptbach, all data sets
are presented and explained in detail in this chapter. Tingleges and vortex
definitions used in this thesis are introduced there, too.

Chapter 7: Convolution and Fourier transform are closely connectethb con-
volution theorem. By transferring convolution into Cliftbalgebra, the question
of an appropriate Fourier transform arose. In Chapter 7fiaitlen of a Clifford
Fourier transform for Clifford algebra for 2D and 3D is given and major theo-
rems including the convolution theorems are stated andegroVhis led also to
the definition ofClifford Gabor filters , which can be interpreted as a Clifford
Fourier transform localized by a Gabor filter. Furthermayejcal vector valued
flow patterns are analyzed in frequency domain in this cliapte

Chapter 8: This chapter is a collection of several issues and tecksigoncern-
ing the application of template matching based on Cliffoothvolution to flow
fields. So far, Clifford convolution was only defined on umifogrids. As many
flow fields are defined omregular grids and eversurfaces the template match-
ing technique had to be transfered to these kinds of gridsothfer topic is the
perception of a flow field as auperposition of several, possibly simpler flow
fields, and the response of basic flow analysis and visuaiztgchniques to this
phenomena. The application of vector-valued template mragdofeature anal-
ysisis described in detail for the example of a specific applcatiAll acquired
knowledge is then brought together in an algorithm for aueabasedegmen-
tation of flow fields.
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Notation

notation| meaning
p scalar
v vector
v normalized vector
S spinor
A multivector
T matrix
t time value
X position inR"
f() continuous function or signal
f]] discrete function or signal
f{} | system
Z{} | Fourier transform
p(x) | scalar field
v(x) | vector field
s(x) | spinor field
A(X) | multivector field
[ imaginary number
e unit
n dimension
N quantity

14



Chapter 2

Flow Field Visualization

A lot of flow data sets are generated nowadays, either by aiioual or by mea-
surement. The application ranges from evaluation of thatfligiality of aircraft
and helicopters, to evaluating the drag of moving carsksand trains, the mix-
ing of gases and efficiency of combustion chambers, the acvrofelosed com-
partments with regards to the air condition, and many more.

Over the years, many flow visualization methods have beeelojeed. Often
they are variants of a few basic techniques: glyphs, partrelcing, visualization
of derived quantities, and feature detection with subseiquisualization of the
results. In this chapter, an introduction to flow fields anelitivisualization is
given which concentrates on basic approaches. For an exengrview of flow
visualization, the reader is referred to surveys [40, 7R, 73

2.1 Flow Fields

In all practicable applications, vector fields describiruy\flare given in 2 or 3 di-
mensions. Sometimes the vector field will be given on an@ayicurved surface,
therefore the definition of vector fields needs to be done bitrary manifolds:

Definition 2.1.1 Let TM be a tangent bundle, that is a collection of all tangent

along with their position, and letxM be the tangent space associated with the

pointx. Let M be a smooth m-manifold with boundary andcNM be a smooth
n-dimensional sub-manifold with boundary. Let IR be an open interval of real
numbers. Then the map

V.NxI —-TM

with
v(X,t) € TxM

15
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is calledtime-dependent vector field If
VINXI —-=TNCTM,
thenv is calledtangential time-dependent vector field

In the following, only tangential vector fields will be of grest. Most of the time
the vector field will be given in Euclidean space. Then, tHenden of tangential
vector fields can be simplified:

Definition 2.1.2 Let Q € R" be an Euclidean space and letd R be an open
interval of real numbers. Then the map

V:QOxl —R"
(X,1) — v(x,t)

is atangential time-dependent vector field

Vector fields which are time-independent are usually cadteddy. In the follow-
ing, vector fields will always denote a steady vector fieldsof indicated other-
wise. Integral curves and vector fields are closely intategl as vector fields can
describe the derivatives of curves, e.g. curves of the fgihrticles released into
a flow:

Definition 2.1.3 Let M be a smooth manifold with boundary, let TM be a tangent
bundle. LeD € J C | C R be open intervals of real numbers, andvetM x | —
TM be continuous. Letg € M. A pathline for v with initial condition Xp is a
Cl-map
a.:J—M
CY(O) = Xo
a'(t)y=v(a(t),t)vted

An Ct-map with initial condition ¥ and
a't)=v(at),T)ted el
is calledstreamline.

Pathlines follow a particle over time, and streamlines ategral curves within a
fixed timestep. Another important type of curves are stiaaklwhich are gained
by constantly releasing particles into the flow and thenn@gka snapshot of all
particles at once. For steady, time-independent vectaisfighthlines, streamlines
and streaklines are the same.

In some applications, the magnitude of the velocity is netglé and only the
directions are of interest.
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Definition 2.1.4 Letv be a vector field. Then the fieldgiven by

\“/(x){ Vo IV #0

0 else

is called thenormalized vector field.

Note that this definition is in contrast to the usual defimtxd normalizing, where
the range of values is projected onto a scaled range.

2.1.1 Streamlines and Velocity

In this subsection, the relation of the velocity magnitutie flow to the resulting

streamlines is analyzed. Streamlines are independent ekfbcity magnitude of

the flow so far as changing the velocity magnitude corresptmd reparametriza-
tion of the streamline:

Theorem 2.1.5Let D C R" be an open domain and: D — R" a vector field
satisfying the Lipschitz condition. Let:Z { ze D | v(z) = 0 } be the set of
critical pointsand R .= {xe D | Vze Z: |[x—2z > ¢ } the domain without the
critical points and theire-neighborhood. Letv be the vector field without the
critical points and theire-neighborhood, andv the corresponding normalized
vector field:

For Xxo € Dg and | = (0,tmay) let a : 1 — D¢ be the well-defined streamline wf
throughxg with maximal length, that is

a(0) = Xa
Jda
S = wa).

Define the following mapping for reparametrization whichkes use of the arc
length:

HES) I(t):/ot|w(a(r))|dr.

This function is strictly monotonic and therefore invelgibThen the streamline
a, a reparametrization ofr using this mapping, is the well-defined streamline of
W through starting poinko:

= (1(0),! (tmax) = (1)
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&:0 —Dg, s— a(lfl(s))

Proof:
a(0) = @((0)=a(0)=xo
0a Ja .
Wiy = %a%»
_ W(a(l—l(sma.i(t)
ot
— -1 1
= Wl O maaTey
i 1
= (a<s))|w(a(s))‘
= Wa(s))

This means that the streamlineswfare the same as the streamlinesiofthe
normalized field.

2.1.2 Grid Types

In practice, flow fields are gained by simulations or measeremTherefore the
data is not continuous but discrete. In this section, theetyithg structures of
discrete data are defined. First of all, the term simplextr®duced:

Definition 2.1.6 Let M C R" be a finite set. Lefxo, ..,x; } C M be r+ 1 geomet-
rically independent points. Then

r r
S={xeR"x=Y Axj, Aj=1,2;>0,j=0,.,r}
&

is ar-simplex over M of the vertices{xo, .., X }.

Note that a 0-simplex is a point, a 1-simplex a line, a 2-ser@ plane, and a
3-simplex a volume. These simplices can be brought togétiferm cells:

Definition 2.1.7 Let M C R" be a finite set. A finite union
r
c=Us
j=0

of g-simplices Sover P is called ag-cell over Pif the following properties are
satisfied:
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1. Cis simply connected.

2. The intersection of any two g-simplices of C is a k-simpfe& with k< q,
or empty.

3. There exists a g-dimensional affine subspadg"ofontaining the cell C.

Often used cell types are quads and triangles in 2D, and ctéieshedrons and
hexahedrons in 3D, though many more cell types can occuridAga collection
of points together with neighborhood information codedeatisc

Definition 2.1.8 Let {Cy,..,C;} be a set of g-cells with @NC, =S, S is a k-
simplex with k< g, m=# n. Then

is calledgrid.
Various grid types are distinguished (Figure 2.1):

Definition 2.1.9 Letx; € R", j =0,..,k be the positions at which flow information
is given. If no neighborhood information of the data poirgtgjiven, the data is
called scattered data When the data points are given as nodes of a grid, and
no other information about a structure of the grid can be give grid is called
unstructured grid. When

Xj = X(K,..,kn), kne N, m=1,..,n,

it is calledcurvilinear grid . A curvilinear grid with

(STANIY
Xj :X(k]_,..,kn):XO—i— :
knAmkn
is calledrectilinear grid , and if
ky

Xj :X(kla"7kn):X0+A )
Kn

the grid is auniform grid .

Within the cells of a grid, data values are gained by usingdininterpolation.
Thus, continuous vector fields are approximated.
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Figure 2.1:Top left: A uniform grid. Top right: A curvilinear grid.Bottom left:
A rectilinear grid.Bottom right: An unstructured triangle grid.

2.2 Derived Quantities

A vector field has many derived quantities like vorticityyeligence and many
more. These are often used for direct visualization of thetorefield as well as
for feature detection. Therefore, some of the derived \whre presented here.
The Jacobian or gradient of a vector field is the source of no&tlyese values.

Definition 2.2.1 Let {ey,..,e,} be a basis of R Let p be a scalar field. The
partial derivative of p with respect t@; is g—epj, j =1,..,n. Thegradient of p is
the vector of its partial derivatives

Iap ﬂ)T

grad |O=D|o:(ﬁ,..,6qu

The gradient of a vector field= (vi,...v;)) T is calledJacobianand is defined as

€, 06,
Ov=1| : ..
€, 06,

The vorticity or curl is defined as the local circulation otation of a vector field:
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Definition 2.2.2 Letv be a vector field and lek be the cross product. Then the
vorticity or curl ofvis defined as

curlv=0xv

Thedivergenceis defined as
n 0\/.
divv=0O.v=§
ivv=[0-v Z e

=1""
Helicity is defined as the cosine between velocity and vibytic
Definition 2.2.3 Letv be a vector field andv its vorticity. Thehelicity of v at x
is given by

(VOOW(X)
VO [[[w(x) ]

Another quantity of 3D vector fields which is often used fortea detection is
A2. Before it can be defined, the decomposition of a matrix itgeigenvalues
and eigenvectors has to be introduced.

Definition 2.2.4 Let T be a complex-valuedxin matrix. Aneigenvalueof T is a
scalarA € C which solves the equation®= Ax. x is the corresponding non-zero
eigenvectorof T.

Note that the eigenvectors and eigenvalues of of a Jacohdaceie the direction
of tangential curves of the flow.

Definition 2.2.5 Let v be a vector field inR® and J= Ov the velocity gradient

tensor. Let S= # be the symmetric part of J and 1@t= % be the antisym-
metric part. S is also called deformation or rate of strainger, andQ is called
spin tensor. Let the eigenvalues 6f-SQ? be ordered by magnitude. Thea is
the middle eigenvalue.

2.3 Direct Flow Visualization Techniques

A basic example of direct visualization are glyphs serviadazal flow probes.
Most of the time, arrows are used as glyphs. The resultingalization is called
a hedgehog:

Definition 2.3.1 Let (x) = v(x, T) be a vector field. A set of local flow probes
is calledhedgehogif the local flow probes are arrows with directi V&g\l and
magnitude proportional t¢v(x)]||.



CHAPTER 2. FLOW FIELD VISUALIZATION 22

A disadvantage of glyphs, especially in 3D, is visual cluttAnother possible
visualization of vector fields is particle tracing, thathe tdisplay of streamlines,
pathlines and streaklines. The lines better representdahencity of the flow.
In the following, mostly streamlines are mentioned. Plgdime streamlines can
be a difficult problem between visually missing featuresaose of clutter and
occlusion, and missing features because of not placing equade streamline.
One solution is to detect the features first and use the sdfsuktreamline placing.
There also exist some other approaches trying to give a mpverview of the
streamlines. One of these methods is line integral conaolut

Definition 2.3.2 Letv be a vector field ifR?. Let p be a scalar field iflR? defined

over the same region as the vector field. Let the values of pimpated as white
noise. Then the image computed by locally smoothing p altvegralines of v is
called aline integral convolution (LIC) image [13].

Another approach is to compute and visualize the topologhefllow, that is a
segmentation based on streamline start and end regiorswbhks well because
streamlines can not cross each other.

Definition 2.3.3 Letv: B C R" — R" be a vector field. Lep € B be a position
within the vector field. Letys(t) be the streamline of(x) throughp. Then

A(cp) = {x € B|3(t)n = 0" C Rty — —oo, limp_Cp(tn) = X}
is thea limit set of ¢gp and
Q(cp) = {x € B|3(t)n = 0" C R, ty — o, limn_.Cp(tn) = X}
is thew limit set of ¢p. Let MC B. The sets
Ba(M) = {p € BJA(cp) =M}

and

Bw(M) = {p € B|Q(cp) =M}
are calleda basin and w basin of M, respectively. A segmentation of B into
simply connected components of intersectiong and w basins is calledlow
topology.

For 2D linear vector fields, the computation of the flow toggican also be done
via critical points and separatrices:

Definition 2.3.4 Letv be a vector field. A positior with ||v(x)|| = 0is called a
critical point .
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Figure 2.2: Examples of basic visualization techniquesafab data set. Shown
is a section of the OMO06 data set (Section 6:B)p left: Hedgehog.Top right :
Hedgehog, all arrows drawn with same lengtiliddle left: Color-coding of
vorticity. Middle right : LIC. Bottom left: StreamlinesBottom right: Topology
with sources (green), saddles (red) and separatricekjblac

These critical points can be classified according to thens@jae decomposition
(Definition 2.2.4) of their Jacobian (Definition 2.2.1) indinks (@ limit sets),
sources @ limit sets), and saddles. Starting streamlines at the sadidldirection
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of the eigenvectors yields the so calleelparatriceswhich divide the flow into
regions of same flow behavior with respect to start and ensbmegA closed
orbit is a streamline with initial conditionc(0) = xo and a parameter # 0 with

c(a) = Xo. The set of all critical points and orbits together with tleparatrices
produce the topology of the vector field [44].

Directly visualizing derived scalar values of the flow likagmitude of vortic-
ity is easily done in 2D using color-coding. In 3D, there &xigo basic possibil-
ities: Volume rendering, that is a 2D projection of the 3Dagand visualization
of isosurfaces.

Definition 2.3.5 Let p be a scalar field, and € R. The set of all values with
p(X) = a is calledisosurface or isolinein 2D, of p at valuen.

For volume rendering, the choice of the transfer functiohjolw assigns color
and opacity to former scalar values, plays an importantfaoléhe quality of the
images.

2.4 Feature Detection in Flow Fields

A huge amount of data is generated nowadays by flow simuktod measure-
ments. The resulting vector fields often contain millionslata values, but even
for small datasets with only thousands of values, diregtecton by the user is te-
dious and features are missed easily. Therefore, many atedrfeature detection
methods have been developed in the last years to assistedhe us

Pagendarm and Walter [67] and Walsum et al. [101] were thetérshape
the term "features” for flow fields. A feature is simply a regiof interest in the
dataset. It can be extracted using a feature criterion atialu function. This
function can be a logical combination of several scalarsioéds using boolean
algebra. Often, and especially on vector-valued flow fiellds,feature criterion
does not evaluates the data itself but scalar functionsetetin the data.

2.4.1 Feature Definitions

Most feature detection methods follow an analytic model theth employ a suit-
able algorithm, however, when features are not well defittedlimitations of the
model introduce problems. One example for a feature defmitihich can not be
defined precisely is one of the most important classes ofifeatin flow fields:
swirling flows or vortices. They are often described as algswgimotion around a
central region. However, this description is not preciseugih for an implemen-
tation of a feature detection algorithm. Therefore, oventears, several different
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Figure 2.3: Examples of basic visualization techniquesaf8D data set. Shown
is the velocity magnitude of a gas furnace chamber (Secti®h dop: Volume
rendering.Bottom: Isosurfaces with isovalue 10 (blue) and 20 (red).

algorithms have been proposed which all describe part optlemomenon "vor-
tex”. Some examples are the maximum of vorticity (Definit®B.2) and helicity
(Definition 2.2.3) as well as the isosurface Af (Definition 2.2.5) of zero (or
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of a slightly negative) value [53]. Another algorithm forrex detection is the
method of Sujudi and Haimes [90], which makes use of the ifieason of local
flow similar to flow topology:

Definition 2.4.1 Let v be a vector field ana a position within the vector field.
Let J be the Jacobian (Definition 2.2.1) of the velocity. Cotaghe eigenvalue
decomposition (Definition 2.2.4) of J. When two of the thigerevalues are com-
plex and the investigated vector is one of the eigenvedtoes/ector is classified
as belonging to a vortex core according to thartex core detection algorithm
of Sujudi and Haimes[90].

The parallel-vectors operator as introduced by Roth [7@]m&aused for unifying
the notations of the different definitions. Other vortexecdetection algorithms
are based on classifying the streamlines, e.g. using thdimgrangle which is
a measure of the change of direction of streamline segmentgsed on label-
ing the vectors belonging to one cell. With so many differemttex definitions

assumed by the different algorithms, it is quite obvioug #weme kind of verifi-

cation of the results has to take place which has to be lefigauser. However,
the user can be aided by highlighting potential vortex graad combining the
results with direct visualizations of the flow.

Another example for model based feature extraction is diketavright [57],
for separation and attachment line detection. These lines svhere the flow at-
taches itself to or separates from a surface. Kenwrightsgiwe algorithms again
based on eigenvector analysis of the velocity gradienbreiosextract separation
and attachment lines.

Note that for most of the definitions mentioned here, deikeathave to be
computed. These are sensitive to the presence of noiseh) warcmake smooth-
ing necessary. This robustness is especially importanhwdealing with mea-
sured as opposed to simulation data.

Image processing and computer vision are mature fields avel praduced
methods for analysis, feature extraction and derivativemaation [51,52]. Con-
volution based approaches are robust in terms of white ra@sause of the in-
herent averaging present in the convolution method. They @low an intuitive
definition of features. Furthermore, many image processiethods allow precise
analysis of accuracy for operations including samplinggripolation and smooth-
ing. Noise is also suitably modeled and dealt with. Theeefdris sensible to
apply these methods to vector fields. The convolution ofmerdtas already been
extended to vector fields which has lead to the creation @éépamatching algo-
rithms for vector fields. These algorithms will be discusse@hapter 5, as soon
as the prerequisites have been defined and explained.
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2.4.2 Galilean Invariant Features

The notion of Galilean invariance can play an important fotdeature detection:

Definition 2.4.2 The principle stating that the fundamental laws in physies a
the same for every inertial frame of reference is calalilean invariance. This
also implies that lengths and times are unaffected by a ohahgelocity, e.g. the
velocity of the observer. A property or feature is called i@ah invariant if it is
unaffected by the speed and direction of a moving observer.

Features which are not Galilean invariant will thus chandgk the frame of refer-
ence, and may not be detected at all under the wrong circasegaExamples for
Galilean invariant features are vorticity, derivativesl aa. Streamlines, however,
are not Galilean invariant, which can be seen e.g. in Figute Zhus, feature
detection and visualization based on streamlines is hidébendent on the frame
of reference. Different vortices, for example, may appeatisappear when sub-
tracting or adding different constant flows [99].

Regarding for example a Galilean invariant vortex detectome method could
be to compute the average and remove it from the vector field.tH& vortices,
though having zero average, can add to the average of theviitalal as they are
often assumed to be spread out infinitely (Section 6.1.1)camyg a part of the
vortex, not having zero average, might be within the data®ats, removing the
average will change the results of a latter analysis of tha.da

Another approach of Galilean invariant feature detect®toidivide the flow
field into three fields containing the divergence, rotatind harmonic parts using
the Helmholtz-Hodge decomposition theorem [69, 70, 93]:

Definition 2.4.3 For a vector fieldv, there exists a uniqgue decomposition into two
potentials dr and a vector fieldh with

v=0Od+0Oxr+h,

0d being normal to the boundary, and x r being tangential to the boundary.
This decomposition is callddelmholtz-Hodge decomposition

Note thatr is a scalar field in 2D, and a vector-valued field in 3D.

Lemma 2.4.4 (Od and x r are vector fields with the following properties:
curl Od =curlgradd=0
divOxr=divcurlr=0

Thus,[Id is acurl-free and[ x r adivergence-freevector field.h is aharmonic
vector field as both curl and divergence vanish. Thus

divv=divOd+divO xr+divh=divdd
curl v=curl Od+curl Oxr+curlh=curl Oxd
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Features can then be detected as extremal points of theyeivar and ro-
tational field, or using feature detection methods in thelltegy vector fields.
However, it is not quite clear how analysis and visualizatieethods are effected
by this decomposition (Figure 2.4). Furthermore, the ohoitthe boundary can
greatly influence the results.

A better choice of a decomposition to aid in the detectionalil&an invariant
features is the so called localized flow [109]. There, thenoawy induced flow
is removed to get a region-specific or localized flow which @il@an invariant
itself:

Definition 2.4.5 Letv: Q ¢ R" — R" be a vector field. Then thegion-specific
flow vr is defined by the following properties:

VR-Nn=00n0dQ

divv=divvr

curl v=curl vg

This means that the flow through the boundary of the regi@cifip field is zero.
Vorticity and divergence, and thus the local features ofahginal flow, are pre-
served in the region-specific flow and can be visualized awagly (Figure 2.4).
The region-specific flow thus is independent of superposedtaat and homoge-
nous flows and represents a basis with non-changing topdtmgfelds with
different superposed constant or homogenous flows. Congpthie boundary-
induced flow is a Neumann-Laplace problem and can thus be&¢09]. The
region specific flow is then obtained by removing the boundadyced flow from
the original vector field.
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Figure 2.4: Comparison of different fields obtained from hnger data set with

a Karman vortex streeflop left: Streamlines in the original flow. Only sinuous
structures of the lines give hints on the vorticé®p right: Four vortices re-
vealed by removing the average flodliddle left: Potential flow induced by the
boundary. Middle right : Subtracting the potential flow reveals all six vortices.
Bottom left: Rotational free component as computed by the Helmholtdgdo
decomposition.Bottom right: The divergence free component as computed by
the Helmholtz-Hodge decomposition shows two vortices,@melat a rather sur-
prising position. The results of the Helmholtz-Hodge deposition are difficult

to interpret.



Chapter 3

Signal and Image Processing

A signal can be defined as transmitted energy that is usesht@ganformation —
it is a message. Signal processing therefore is the art pfagisg, transforming
and manipulating signals and thus the information theycéirbegan with analog
circuits and the study of continuous signals. Discreteagbecame interesting
with the invention of digital circuits. The first digital cuits were quite slow,
but they were also quite versatile. Thus they were often émedpproximating
analog circuits. The development of the fast Fourier tramsf(Section 3.4) was
a milestone for the development of digital circuits as ityided an enormous
acceleration of the computation as well as an understanafitige importance
of time-discrete signals. A lot of new filters which could rime implemented
analogous were now available.

Image processing started as a consequent transfer of gigrtassing, which
had mostly been one-dimensional, to two dimensions andtthirmages. The
signals, however, remained real and complex. In this chagignal and image
processing are introduced as far as they are later tradsfenesctor-valued sig-
nals — vector fields. Most of the information on signal and gegrocessing
presented here can be found in textbooks by e.g. Oppenheihjé#], Jain [52],
and Jahne [51].

3.1 Signals

In the following, continuous signals or functions will baudted as well as dis-
crete sequences. To distinguish these two types of sigoafginuous signals
are always indicated by parenthesis, thaf {s) : R — C is a continuous sig-
nal. Discrete sequences, on the other hand, are notategl lusiokets, and thus

f[t] : [0,..,N—1] Cc N — C denotes a discrete signal. If no constraint is set on the

function, the continuous form is chosen. A complex signalloa split up into its

30
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real part and its imaginary part:

Definition 3.1.1 Let f(t) : R — C be a signal. Let f(t) be thereal part and f(t)
be theimaginary part of the signal ft) = f,(t) +ifi(t). Let f*(t) denote the
complex conjugatesignal, that is f(t) = f(t) —ifi(t).

Lemma 3.1.2 Let f(t) : R — C be a signal. Then
fr(t) = 3(F(O) + (1))
and f(t):%(f(t)—f*(t)).
Another split-up of a signal can now be done according to/tsraetry properties:

Definition 3.1.3 Let f(t) : R — C be a signal. If {t) = f*(—t), the signal is
conjugate symmetricand denoted withgft). If f(t) = —f*(—t), the signal is
conjugate antisymmetricand denoted withft). If f(t) is real and conjugate
symmetric, it is calle@ven and if f(t) is real and conjugate antisymmetric, is is
calledodd.

Lemma 3.1.4 Let f(t) : R — C be a signal. Then (t) = fe(t) + fo(t) with

fe(t) = 3(f(t) + (1))
and  §(t) = 3(F(t)— F*(-t)).

NIF Nl

3.2 LSI Filter

A system is a function that transforms one signal into anothe important class
of systems, or filters, are linear, shift invariant filtersaalot of systems can be
described by them, and the rest can be approximated quite Weeé linearity
and shift invariance of these systems lead to many othereptiep which are
advantageous for signal processing.

Definition 3.2.1 Let f;, f2 : R — C be two complex signals, let;, a; € C and let
T be a system or filter. T is calldohear if

T{o1fi+axf} = a1 T{f1} +aT{f,}

The linearity of a system is also known as the superpositimtiple as the results
of applying the system to two superposed signals equalsifrergosed results of
the single signals.



CHAPTER 3. SIGNAL AND IMAGE PROCESSING 32

Definition 3.2.2 Let f; : R — C be asignaland let T be a system. Let R — C
be a second signal withyft) = f1(t —tg) Vt,to € R. T is calledtime-invariant
or shift-invariant if

T{f2}(t) =T{f1}(t—to)

Definition 3.2.3 A system which is linear and shift invariant is calledirzear,
shift invariant (LSI) system or filter.

A signal with a special role in signal processing is the inspud, which is an
impulse with width zero and amplitude. This signal is often used as basis for
the space of signalt.

Definition 3.2.4 4 : R — C is the signal defined by
o t=0
o(t) = { 0 else
and foranysignal tR — C,te R
£(t) :/ F(K)S(t — k)dk
R

Definition 3.2.5 Let T be a LSl filter and let& R. Then h R — C with h(t) =
T{d(t)} is calledpulse responseof T.

Convolution and correlation are two basic and often usedations:

Definition 3.2.6 Let f;, fo : R — C be continuous signals and lekte R. Con-
volution of f; and % is defined as

(fur )0 = [ a9 Ta(t—K)dlk
Spatialcorrelation of f; and b is defined as

(f1x f2)(t) = /R F1(K) fa(t + K)dk

Thus, a correlation is a convolution with a signal that hasnbeeflected at its
center:

Theorem 3.2.7 Let f;, f2 : R — C be two signals. Lef; : R — C be defined by
f1(t) = f1(—t). Then _
f]_* f2 = f1>l< f2.
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Proof:
(f1xf)(t) = /flkfzt—i—kdk

_ /fl K) fa(t + K)dk

:/Rfl ) fa(t — K )dK

= (f1xf)(1)

Theorem 3.2.8 Convolution is a commutative operation:

(fox f2)(t) = (2 f1)(t)

Proof:

(s F)(t) = /Rfl(k)fg(t—k)dk

One reason for the usefulness of LSI filters is the fact they ttan be described
by a convolution with their pulse response:

Theorem 3.2.9Let f: R — C be a signal and let T be a LSI filter with pulse
response h. Then

T{f}(t) = /R F(k)h(t — K)dk

Proof:
T{H(t) = T{/f K)dk}
- /f JT{3(t—k)}dk
R
_ /f(k)h(t—
R

Transferring these definitions and theorems to spacial 2D3&nhsignals or im-
ages instead of time-dependent signals is straightforw@ahcerning a transfer
to discrete data, the basic definitions and most importdigrdnces can be found
in Section 3.4.
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3.3 Fourier Transform

The description of a signal as a weighted sum of shifted mgigls plays an
important role in signal processing. In the last sectiompuiees were used as basis
functions. The domain thus described is also called timeadormnin this section,
the description as a sum of complex exponentials and sidsigsiintroduced.
These basis functions are special as the complex expolsemtegaeigenfunctions
of LSI systems and thus the system answer to a sinusoid isiaa@dawith same
frequency. The domain defined by the complex exponentialalisd frequency
or Fourier domain as the Fourier transform is the basis foamsfrom time to
frequency domain and back again.

Definition 3.3.1 For a continuous signal f R — C, theFourier transform of f
is defined as

F{F}(u) = /R f(t)el 2t gt

provided the integral exists. Theverse Fourier transform is defined as
FH () = / £(t)e2mut |
R

Note thati with i2 = —1 is the imaginary unit of the complex numbers. The
Fourier transform is sometimes defined using the keehdl). Note that this is
mainly due to the difference of defining frequency in radipas second (rad/s),
or in Herz (Hz) as Hz = 2mrad/s. However, the symmetry of the transform is
thus destroyed. A discussion of the existence/otan be found in Bracewell [7].
In general¥ exists if

/|f(t)|e(2mt”)dt <.
R

This is not always true even though the integral%fmay exists nonetheless.
Note that the complex exponential of the Fourier kernel dan lae written as the
sum of sine and cosine according to Euler’s formula:

Theorem 3.3.2 (Euler’'s Formula)

X = cogx) +isin(x) Vx € R

Now the property of complex exponentials as eigenfunctahisSI systems is
shown:

Theorem 3.3.3Let T be a LS| system with pulse respongg.het f(t) = e(27itu)
be a signal. Then .
T{f}(t) = F{h}(ue™
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and é2™Y) is an eigenfunction of T with eigenval@{h} (u).
Proof: Using the commutativity of the convolution yields

T{}(t) = /Re(zmk“)h(t—k)dk
_ / &2 (=KW ) dk
R
_ /e(2nitu)e(—2m'ku)h(k>dk
R
_ e(2n1'tu)/ h(k)el =27k g
R

= 2.7 {hy(u

In the following, central theorems of the Fourier transfare introduced. First
of all, the Fourier transform is linear:

Theorem 3.3.4 (Linearity)Let f;, fo: R — C be two signals, and letq, a, € R.
The Fourier transform is linear:

Flaifi+azfo} = a1. 7 {f1} + o027 { f2}
Proof:
Flafi+asfy) = /R (anfa(t) + apfp)el =2t
— / f1(t)el -2 dt 4 / fo(t)el 2T gt
= 01;{f1}+029{f2} ’

Time and frequency shifts of a signal are modeled by a midapbn with a com-
plex exponential:

Theorem 3.3.5 (Time and frequency shifts)et f: R — C be a signal and k
R. Then the Fourier transform of a time-shift is

F{f(t—k)}=e "2 Z(f(t)}
an the frequency-shift in Fourier domain is given by

F{e 72 £1(u) = Z{f}(u—kK)
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Proof:
F{tt-K}u) =
727'11'(|+k)u)d|

I
T
@

_ e(ZTTik)/ f(l)e(fZTIilu)dl
R
= &ZZ{f()} ()
The proof for the frequency shift is analogous.

Theorem 3.3.6 (Plancherel’'s theorem).et f;, f> : R — C be two signals, and
forc=a-+ib € Clet c" = a—ib denote the complex conjugate of c. Then

/ f(t)f (t)dt = / F {1} (U).F {2} (u)du
R R

Parseval’'s theorem, which follows directly out of Plandtertheorem, states that
the energy of a signal is equal in both time and frequency doma

Theorem 3.3.7 (Parseval’s theorem)

E(T}= [ 10)%dt= [ | F{FHW]Pdu=E{F{1}}

The convolution theorem is one of the most important thegrensignal pro-
cessing. It states that a convolution of two signals in timedin is equal to a
multiplication of the signals in frequency domain:

Theorem 3.3.8 (Convolution theorem) et f;, f> : R — C be two signals. Then
F{f1x fo} = F{f1}.7 {12}
Proof:
Fl{fix ) (U) — / (F15 £2) (1) €2t it
_ / / K) f(t — K)dK)el -2t

_ / / 27‘[iku)dké72r[itu)dt
_ / —2riku) dk/ f2 27'Iitu)dt

= Z{f }( )7 {f2}(u)
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Thus, the Fourier transform of the pulse response of a sysafien contem-
plated.

Definition 3.3.9 Let h: R — C be the pulse response of a system T. The Fourier
transform.# {h} of h is calledfrequency response

The following derivation theorem is only valid for signaiswhich are bounded
with lim;_, 1 f (t) = 0. This is the case for all physically significant signals.

Theorem 3.3.10 (Derivative theorem) et f: R — C be a signal with
limi_ 410 f(t) =0. Then

F{t}(u) = 2muZ{f}(u)
and Z{fW}(u) = (2mu)"Z{f}(u).

Proof: Using integration by parts yields

F{U) = /R £/ (t)el~2itu)gy

— [f(t)el"2muW=omiy / £ (t)el -2t gy
R

— _2mu / £ (t)el -2t gy
= —2Mu;{f}(u)
Iteration yields the formula for the n-th derivative.
The Fourier transform also has several symmetry properties

Theorem 3.3.11Let f(t) : R — C be a signal. Then

F{tHu) = FH{f}(-u)
F{fitu) = Fe{f}(u)
F{ifitu) = Fo{f}(u)
F{fet(u) = F{f}(u)
F{fo}(u) = [jFo{f}(u)

Let f(t) : R — R be areal signal. Then

F{Hu) = FH{t}(-u)
F{tHu) = FA{f}(-u)
Fi{f ) = —F{f}(-u)
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Proof:
F{F)U) = /f*(t)e(zmt“)dt
R

= [ (et
= FHI}H-u

The rest follows directly from this property, the definisoof real, imaginary,
conjugate symmetric, conjugate antisymmetric, and thealitty of the Fourier
transform.

3.4 Discrete Signals and the FFT

In the former sections, only continuous signals have begarded. As digital
signals and systems play an important role nowadays, tleegdadressed in this
section.

Definition 3.4.1 A sequence of numberstff t € Z, —o <t < o, fitj € C is
called atime-discrete signal A time-discrete signal[f] with ft] € Q C C where
Q is a finite set of numbers, is calledlascrete signal.

Let f(t) : R — C be a continuous signal. A time-discrete sigl is usually
gained by periodic sampling df(t): f[t] = f(tT), T € R. A discrete signal is
then gained by quantizing the valuesfdt]. Both operations together describe an
analog-to-digital converter, or digitizer.

Definition 3.4.2 ¢ : Z — C is the signal defined by

1 t=0
5[t]:{ 0 else

Thus for or any time-discrete signél Z — C

£[t] = % F[K 8]t — K]

k=—o0

The results from Section 3.2 can be transfered directlyne4discrete and dis-
crete signals. The convolution of discrete signals, fomgxa, is defined as fol-
lows:
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Definition 3.4.3 Let f;, f2: [0,..,N—1] — C be discrete signals and letit € IR.
Convolution of f; and % is defined as

N-1
(fixfR)ft] = > falkf2lt —K].
=

However, the Fourier transform of discrete signals has sspeeial peculiarities.

Definition 3.4.4 For a time-discrete signal fZ — C, thediscrete time Fourier
transform (DTFT) of f is defined as

{f} Z f —2ritu)

t=—o0

provided the limit of the sequence exists. Tverse DTFT is defined as

— _ ! (2mitu)
7 1{f}[u]_/t_0f(t)e2 dt.

For a finite time-discrete signal f[O,N — 1] ¢ IN — C, the discrete Fourier
transform (DFT) is defined as

F{THY] %f

and the inverse transform as

2rntu

F{H 1N§1f

It is important to note that the discrete Fourier transforfina éime-discrete sig-
nal is always a periodic continuous signal with period 1. réfme the inverse
transform only needs to be evaluatedOnl).

Theorem 3.4.5The DTFT spectrum is periodic with peridd
Proof: Lett € [O,m] C IN.

(27t (u+1))
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When a signal is sampled and quantized, information losallysaccurs. For

band-limited signals, a threshold for the sampling freqyeran be determined.
Above this threshold, a perfect reconstruction of the diggpossible provided
the sampling frequency is still known.

Theorem 3.4.6 (Nyquist-Shannon sampling theoremlet f(t) : R — C be a
band-limited signal with maximal frequencyak When a time-discrete signal
flt] : Z — C is computed by sampling(tf) with period T= fis and the sampling
frequency { fulfills

fS Z 2fmax7

then perfect reconstruction of(tf) out of the signal ft] and the known sampling
frequency {is possible.

Proof: The Fourier transform of a band-limited signal with maxinfiequency
fmax has a finite width oRfnhax When the sampling frequency is larger than
2fmax the periodic repetitions of the Fourier transform do noedap and the
original signal can be reconstructed using an ideal low-$#@ker which only lets
frequencies if— fmax fmay pass. Further details can be found in the literature
[66].

A DFT of lengthN = 2™ can be computed as the sum of two DFTs of Ier%th

Theorem 3.4.7 Let f: [0,..,N—1] — C be a discrete signal and let N 2™, Let
feven fodd: [0 N/2—1] — C be the two signals with®®t] = f[2t] and f°49t] =
f[2t+1]. Then

F{EYu) = F{ e u] + (R Z{ foddy )
and o
FHI) = Z L e ] + el T Z L oy ]
Proof:
F{f = %f e

N/2-1 ni(2t)u) N/2-1 e ( 2ni(2t+l)u>

:%f N +%f2t+1 N

N/2-1 N/2-1

- 3t ) o)

N/2-1

_ ; feverm e(

= F{reen ]+ (W) Z{ toddy )

oty oniuy V21

) o(Fm) oddry o £
+e t; foddit]e
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The proof for the inverse Fourier transform is analog.

Definition 3.4.8 The algorithm for computing the DFT recursively based on-The
orem 3.4.7 is callediast Fourier transform (FFT) [16].

Note that DTFT and DFT are only defined for (time-)discretmals with equidis-
tant spacing of the supporting points of the signals here.AHT is further limited
as it needs equidistant spacinghf= 2™ supporting points here. Fast DFT algo-
rithms for other decompositions ®f exist, too. Discretizations of the Fourier
transform for signals with irregular spacings also exist] aven fast algorithms
for their computation. Further information can be foundis,[88].

Let f[t] : [0,..,N—1] — C andht] : [0,..,M — 1] — C be two discrete signals
with N > M. The FFT reduces the complexity of the computation of the DFT
of f[t] from O(N?) to O(Nlog(N)). The computation of a convolution dft]
andh[t] has complexityD(NM). Computing the convolution in frequency domain
via convolution theorem and FFT’s reduces the cogDtbllog(N)). Thus, the
computation of the convolution via frequency domain isdasbr M > log(N).

3.5 Gabor Filter

Due to the uncertainty principle, a signal can either beroglly localized in time
domain or in frequency domain. Examples are the impuds&gich are opti-
mally localized in time domain but spread out infinitely irdguency domain, and
the sinusoids which are optimally localized in frequencyndm and spread out
infinitely in time domain.

Theorem 3.5.1Let f: R — C be a signal and Ef) = [ f(t)dt its mean value.
LetAt = \/2nE((f —E(f))2) andAu= /2nE((F{f} —E(Z{f}))?). At and
Au measure the variances, normalized witBr, of the signal f and its Fourier
transform.% { f }. Theuncertainty principle is given by the relation

1
AtAU> —.
1=3
Thus, resolution in frequency domain has to be halved to geble resolution in
time domain and vice versa. The Gabor filter is the only fuorctwhich achieves
the equalityAtAu = 1/2 as it is the modulation product of a complex sinusoid
with an impulse of the form of a probability or Gaussian fuoic]35].

—t2
Definition 3.5.2 TheGaussian functionis defined as @) = ﬁe(&ﬂ)
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Definition 3.5.3 Let g: R — R be a Gaussian filter with variance. The pulse
response hR — C of theGabor filter is defined as

h(t) = g(t) = e,
The frequency response is
Z{h}(u) = e 2\,

The Gabor transformation thus defined can also be underasad-ourier trans-
form localized by the Gaussian window function, as spegiaé tof a short-time
Fourier transform. Note that, in 2D and 3D, sometimes Gansswith elliptical
instead of circular shape are used.

The Gabor filters form a complete non-orthogonal basisf IR — C is a
finite-dimensional function, it can be expressed by a weidistum of appropri-
ately shifted Gabor functions:

Definition 3.5.4 TheGabor expansionof a function f: R — C is defined as
f(t) =Y 3 Bug(t —t)eit-0
Z Z r,u r

The sequences of shifts and modulation frequencies u, have constant spacings
X and U satisfying XU= 1. Together, they form th@abor lattice.

An example of a Gabor lattice in 2D can be found in Figure 3.heWthe density
of positionst; and frequencies is equal to or higher than that given by the sam-
pling theorem, the Gabor expansion scheme is exact. Thg&pcan be exactly
reconstructed from the expansion coefficigfits though it is a complex process
as the basis is non-orthogonal. A good and often used appatidn [6, 65] is
given by:

Br,u%/f(t)g(t—tr)e(Zm(ttr)udt.

Whenf (x) is approximately band limited, e.d(x) has been sampled, a finite
number of expansion coefficients can adequately reprdseiportant frequen-
cies of the function. More important is the localization peaty, that is a large
coefficientf; , corresponds to the dominant frequencies in the spatiatityoof
tr. The Gabor expansion can be generalized using other wimgpfunctions
than the Gaussian, but then the optimal localization in frettpuency and spatial
domain is lost.

Gabor filters are often used for wavelet transformationse difference be-
tween a Gabor expansion and a Gabor wavelet transform ishtbatoefficients
of the Gabor expansion are computed using an equally sizaddza and for the
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Figure 3.1: The Gabor latticé.eft: Original grid (green), coarser spatial resolu-
tion of the Gabor lattice (black) and the Gaussians aduretfay the orange and
blue circles.Right: At every grid node of the coarser spatial grid of the Gabor
lattice (black), a short time FT is computed. The underlygnigl of the Gabor
coefficients in frequency domain is drawn in blue. The coapsdial grid and the
local grids in frequency domain together form the Gaboidatt

wavelet transform, the size of the Gaussian is directly priognal to the wave-
length of the frequency to be computed. The advantage of #welet approach
is that the Gaussian is optimally scaled in proportion toftequency to be de-
scribed.

An interesting observation is the fact that simple cellsha human visual
cortex, that is in the first steps of human visual informatwacessing, can be
modeled as Gabor filters [65]. Thus, it is only consequetdiaise Gabor filters
in image processing. Applications of Gabor filters and wetgeko far include
frequency-space analysis for resampling [106], segmientaf texture [6,9, 32],
image registration and motion estimation [64] and objecogaition in general,
e.g. the recognition of faces [39, 60, 64].

3.6 Segmentation of Images

The step from 1D signals with time as variable to 2D signalspacial domain is
straightforward, the signals are evaluated for each dirnans

Definition 3.6.1 Let Xj = [0,..,my] C N, G=[0,..,mg] CIN, m,,mg € N, j =
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1,..,k. An elemenk = (Xg,..,Xn) € X1 X .. x X is called apixel (or voxel for
k= 3). Adiscrete scalar field [g] : X3 x .. x Xx — G is called agrayscale image
A discrete scalar fielgh[x] : X1 x .. x X, — G* with k. > 1 € N is called acolor
image The number kof color channels is usually 3 or 4.

Note that there are several conventions for choosing thar splace. RGB splits
the color into red, green and blue parts. HSV, on the othed harbased on hue,
saturation and brightness value. YUV was developed to attit o grayscale
television while keeping downward compatibility and hag tuminance channel
corresponding to the grayscale image, and two chrominanaenels. CMYK
is based on cyan, magenta, yellow, and black, and is moséyg & printer.
Note that a color from one color space may not have a correlgpme in another
space, though most colors can be converted. Due to theatiffes in defining the
color space, no unifying approach for extending algoritlongrayscale images
to color has been developed.

RGB color images can be converted into grayscale image$fe&ianagnitude
of their color vector. Otherwise, each color channel canXaerened separately,
and the results be interpreted according to the color spaehwvas used. It is
important to note that though the color channels form vecttiey have not much
in common with vectors that describe directions. Therefdgerithms for color
images are not necessarily transferable to vector fielas fimwv visualization. In
the following, only 2D and 3D grayscale images are discussed

3.6.1 Feature Detection and Segmentation

A central issue in image processing and machine vision tsifealetection. Seg-
mentation itself is the process of partitioning the image multiple regions ac-
cording to some criterion. Both have always been centralessn image pro-
cessing, therefore a huge amount of different approachegitable nowadays.
In this chapter, the most basic ideas are introduced andstied to give a short
overview of the approaches and the challenges they met.

Whenever the amplitude, here grayscale values, suffigiehtiracterizes the
features, amplitude thresholding is useful:

Definition 3.6.2 Let px| be a discrete grayscale imagé&mplitude threshold-
ing is the process of segmenting an image based on a given thdeshxy classi-
fying every pixek according to its value ] as gx] < o or p[x] > a.

The choice of the threshold, however, is often a difficultpeon as it greatly
influences the result of the segmentation (Figure 3.2). \tfurther information
about the information displayed in the images, the thresbah only be guessed.
When the edge between feature and background is symmabgimedian of their
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grayscale values is the correct threshold. Here, analygstsechistogram of the
gray values is helpful in choosing the threshold. Note tha¢rvamplitude values
of feature and background overlap, only a partial segmiemntet possible, or none
at all.

This way, the image can be binarized by thresholding, ankl pixel is labeled
as belonging to the object or not. Thus, pixels or areas aggghfrom the main
object can still belong to the same object. This is often esiréd, as an object is
inherently characterized by connectivity. Further preaagcan amend this. The
binarized image can be used e.g. for component labelingrerthe connectivity
of pixels with their neighbors is examined in order to assfgnpixel to objects.

Another classical approach for segmentation in image giog is based on
edge detection. An edge in a discrete image can be definetl@sso

Definition 3.6.3 Let px] be an image. An pixed belongs to aredgeif the differ-
ence of the grayvalues of neigbouring pixels is large in oinectlon, and small
in the orthogonal directions.

Thus, edges can be described as extrema of the magnitude gfadient. This
approach leads to the approximation of edge-detectioratqarby discrete dif-
ferentials. To improve the performance, the Sobel oper&i@ased on the first
derivative, smoothes the image along one direction whilepating the deriva-
tive into the other. Another description of edges is a zeossing of the sec-
ond derivative. However, not every zero-crossing dessrédoe edge, and many
zero-crossings are only due to noise. Only those zerodagssvith a signifi-
cant extrema on either side are due to edges. The operat@utiog the second
derivative is called Laplace operator. Note that both finst second derivative are
sensitive to noise (Figure 3.2). Smoothing of the objecf, by using Gaussian
filters (Definition 3.5.2), can be necessary. Furthermdrmesholding has to be
applied after edge detection to filter the results and disresignificant informa-
tion. Then the edges of objects have to be combined to forrhdhadaries of the
objects. This can be done e.g. by contour following or edgang.

Region growing is computed by dividing the image into regiohsame gray
levels. Adjacent regions which are similar with respecti® ¢ray value are then
merged until neighboring regions are sufficiently diffdreFhis can also be com-
puted the other way round by splitting algorithm. Theseardiased approaches,
also called clustering algorithms, are less sensitive rimseof noise. However,
they can be quite complex. Furthermore, the merging ortsgitriteria is not
easy to choose and it greatly influences the results.

Pattern matching has been used for segmentation of imagesliasThere,
similarity to templates from a given list is computed at alkfions in the image
via a correlation (Definition 3.2.6). Positions with a sifigant local maxima of
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Segment

Segment Segment

Se gment B A

Figure 3.2: Segmentation based on thresholding and edgets. The values
are distributed between 0 (black) and 255 (whit&pp: Original image. Bina-
rization based onLeft row top two images. Thresholding (value 80 and 180)
depends on the chosen threshoRight row top: The median of the two max-
ima of the color distribution is often chosen as threshoktdéhvalue 133)Left

row bottom two images Edge detection using the gradient and the Sobel opera-
tor. Right row bottom: Binarization using thresholding of edge detection result
(gradient operator). Edge detection algorithms are deedid noise, therefore
their results are not convincing for this example.

the similarity values have a high probability of being thatee of the feature to be
found. The size of the feature is assumed to be the size ad aotlee template.

The correlation has to be computed at every point of the gd at the border
of the image, the correlation would need values outsiderttage. This problem
of boundary values is usually solved using one of the follmpapproaches:
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1. Using zero values. Thus, artificial edges at the bordecraated.

2. Extrapolation. At the simplest case, one can take theegatithe boundary.
All extrapolations lay too much stress on the border values.

3. Cyclic convolution. The results depend on the chosenlaspindow as
most images are not periodic as assumed here.

4. Windowing. The values are gradually reduced to zero rreabbundary.
Some values at the border are lost but otherwise this is tikemped ap-
proach in image processing.

Another problem of template matching using correlationhsasing the right
threshold for determining significant similarity. One tatfue to obtain sharper
local maxima of the similarity values are symmetric phashrmatching filters,

which are introduced in Section 3.6.2. Other challenges@taion and scale
invariant similarity measures. These can be approximatesimg templates with
different sizes and directions. However, this is compatatlly expensive. For
scale invariant matching, use of the scale space and nmdtiagpproaches can
be made (Section 3.6.3). For rotation invariant matchihg,drientation tensor
in Section 3.6.4 can be used to determine the major directidhe structure.

Template and structure in the field can thus be aligned forimmabsimilarity.

3.6.2 Symmetric Phase-Only Matched Filter

A distinct disadvantage of template matching based on theletion is that the
similarity depends more on the energy structure of the intiagie the spatial struc-
tures. Therefore, template matching often provides a psorichination between
objects of different shapes but similar energy contenttHemmore, the shape of
the filter output around the maximum is broad. This can becarmpmblem for
the detection of local maxima, especially in the presenceoige. Phase-only
matching solves these problems as the phase preservesitlobation and is
insensitive to the object energy.

Definition 3.6.4 A filter h(x) : R" — C is called aphase-only matched filter
if the phase of its pulse response is equal to the spectradelod the function
f(x) : R"— C to be analyzed.

A further improvement can be achieved by extracting the ghasboth functions,
and matching them [14]:

Definition 3.6.5 Let f,h: R" — C be two functions. Let gR" — C be a filter

defined b
efined by q(x)zgl{ Z(0 Fih }(X)
IZLEHHIZ{hH S
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Then dx) is the result oBymmetric phase-only matched filtering(SPOMF) of
f(x) and h(x).

3.6.3 Scale Space

In Section 3.5, the uncertainty principle was introducedchistates that a fea-
ture can only be localized well in either time (or spatialjon, or in frequency
domain. The idea of Gabor filters was to get both informatibthe involved
frequencies and the spatial resolution. The frequencietgoinformation about
the size of a feature. Thus, a range of frequencies is altdcakcale, and divid-
ing the occurring frequencies into different scales is thgidbfor a scale space, in
which the frequencies are subsequently removed accorditigeir scale. This is
analogous to a diffusion process.

Definition 3.6.6 Let px] be an image. Let,s;,s; € [0,mg] with §, < 5. Then
q[X,s| is ascale spacdf

qx,0] = px],
lalx,sf] = [lalx.s]ll;

and all local extrema in [x, sp] are local extrema in x, 1] and of the same type.

Thus, the information im[x, 5 is reduced with growing. This is achieved using
smoothing filters. As the smoothing process should also dep@ndent of the
scales at which it is started, the Gaussian filter (Definition 3.52he only LSI
filter satisfying both criteria as well as isotropy and horeiogjty [63].

A disadvantage of the scale space is the additional scakerdiion and thus an
extensive increase in computational time and storage sgdus leads to multi-
grid approaches for discrete grids, the best known beingsdnessian pyramid
created by subsequently smoothing with the Gaussian fitigreducing the size
of the grid as far as possible while still satisfying the Nigqtheorem (Theorem
3.4.6). The Gaussian pyramid can then be used for templatéhimg on each of
its grids, and combining the results of different scalesiltesn a scale-invariant
similarity measure. Sometimes it it also interesting toestigate the Laplace-
Pyramid, which is the opposite of the Gaussian pyramid astbenation which
is lost between two subsequent grids of the Gaussian pyrigma@mputed.

3.6.4 Rotation Invariant Matching

Rotation invariant matching is a difficult problem. The omgneral solution
known is to generate many templates with the object of istexated into dif-
ferent directions, match with all of them, and use the maksmailarity. This is
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obviously computationally expensive. When a feature iatrohally symmetric,
it is obvious that the similarity to this feature will be rtitan invariant, too. For
other features, different approaches have to be found.

Let a feature be describable by a simple function, that is'atfan that varies
only in one direction. Basic examples for such features dgee and lines. If
the neighborhood of a point can be modeled by a simple fumctigit is the case
within such features, local orientation, symmetries andvature can be deter-
mined by a so called orientation tensor [36]. This orieotatensor is based on
an outer product of the response of quadrature filters to etitm Quadrature
filters are filters with a zero transfer function in one haline of the frequency
domain. The normal of this plane is called the orientatiothefquadrature filter.
Note that the real part of the quadrature filter correspoadsline detector and
the complex part to an edge detector. Furthermore the matgdf the filter re-

sponse is proportional to the square of the angle betweeditéetions of filter
and image.

Definition 3.6.7 Let p(x) : R" — R be a scalar field. Leth: R" — R,ke N
be a quadrature filter with directiony, and theny be evenly distributed over a
half-sphere. Let | be the identity tensor, tet € R andx € R". Then the tensor

N-1
To(X) = «h v — Bl
() j; 1P+ hi) (X) | (amkny — B1)

is calledorientation tensor. a,3, N and the template directiong depend on
the dimension. A possible distribution of the filter direas is [36]:

2D: N=3,a=4/3,andf3 =1/3. Leta=0.5and b= \/7§ Then the directions
Nk, k=1,2,3,aren; = (1,0)", n, = (a,b)T andnz = (—a,b)T

3D: N=6, a =5/4andB =1/4. Leta=2, b= (1++/5), and c= (10+
2\/5)~2. Then the directionsy, k= 1,..,6, are
n; =c(a,0,b)™, n, =c(—a,0,b)T,
nz=c(b,a,0)", ng=c(b,—a,0)T,
ns =c(0,b,a)", ng = c(0,b,—a)T

Note that these directions in 2D correspond to the x-axeteot0, 60° and 120,
which are also the axes of a hectahedron. In 3D, the directiorrespond to the
axes of a icosahedron.

Theorem 3.6.8Let px) : R2 — R be a 3D scalar field. Letr R® — R,k e
IN be a quadrature filter with directiony. Let T(Xj) be the orientation tensor
generated by (xj) and h at positionx;.
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1. Letthe neighborhood af have one unique orientatiognlLet s be the sim-
ilarity of the frequencies of field and filter. Thep(Xj) has the eigenvalues
A =%, Ao = A3 = 0and the eigenvectone=n.

2. Let the neighborhood ofj consist of a linear combination of two unique
orientations R, and ry,. Let 5, s, be the similarity of the two frequencies of
the field and the one frequency of the filter. Thg{x{l) has the eigenvalues
A3 =0and

M- ﬁﬁi\/ (552) - isisiseio

If ng, and ry, are orthogonal, this simplifies td; = s, A2 = 5, and the
eigenvectors arese= ng, and & = Ng,.

3. Let the neighborhood ofj consist of a linear combination of three unique
orientations. Then{x;) has three non-zero eigenvalues.

For other dimensions of the scalar field, the properties aadogous. The proof
can be found in the literature [36,41]. This orientatiorst@rcan also be combined
with arbitrary templates and used for determining a rotatrvariant similarity
as well as the orientation of the structure in the field as lasghe template is
describable by a simple function. For other templates, aplyroximations can
be computed and the error may be high. Further discussidm&ipostponed to
Section 5.2, where the orientation tensor is applied to tatapnatching of vector
fields.



Chapter 4
Clifford Algebra

Clifford algebra extends the classical description of El&znn-space — which
is a realn-dimensional vector space with scalar product — to a reataty EI-
ements of this algebra are called multivectors and includéass, vectors, and
other elements. The vectors describing flow are usually 2BDgrand therefore
the main focus in this thesis is on Clifford algebras in théiseensions. Here, a
special Clifford algebra which is also called geometricehlg is used because of
its useful geometric properties. Using Clifford algebra lize following advan-
tages:

e It provides a unifying notation for scalars, vectors, anshgps. Complex
numbers, which play an integral part of many signal procgssbncepts
and methods, can be integrated as well.

e When working with multidimensional signals and includingctor fields,
many different mathematical approaches for representiaggtements are
used, and the operations on them are mixed as well. Clifflyelaa pro-
vides a unification for the operators, too.

e When rotations are described by means of matrix algebra,uke is often
not intuitive. Rotation angle and axis of a 3D rotation do netessarily
show up in their corresponding matrix. A more intuitive dgstoon of ro-
tations are spinors, which are contained in Clifford algelfin 3D, spinors
are also called quaternions.)

e The basis elements can be interpreted as points, vectarsegland vol-
umes. Operations on these basis elements have geometesmondences
as well, which aids in the understanding of and thinking iff@id Algebra.

o For the definition of a correlation of vector fields, a mulgakion of vectors
had to be defined or chosen. Clifford algebra provides a piigétion with

51
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useful geometric properties.

In this chapter, Clifford algebra is explained as far asitriportant for the under-
standing of this thesis. Clifford algebra in 2D and 3D aredduced in Section
4.1 and 4.2 respectively. A short elaboration of Clifforgedira in nD, as well
as some Clifford calculus including the definition of intalgand derivative, can
be found in Section 4.3. As some of the related work is baseckloer, slightly
different definitions of Clifford and other algebras, thakgebras and the relation-
ship to the Clifford algebra used in this thesis can be foum8ection 4.4. The
material of this chapter is mainly taken from [46,47,79].

4.1 Clifford Algebrain 2D

The 2D Euclidean vector spa&? is spanned by two orthonormal vectaxsand
e:

Definition 4.1.1 Let E® be theR-vector space generated by the basiseg with
the Euclidearinner product

(,)V:E2=R
(a,b) — (a,b) =a-b=ab; +abh
fora=a;e; +axe; and b= be; + boey

which is distributive and associative, and identical to stalar product.

Note that(e,ej) = &; which yields the orthogonality. Furthermore, the inner
product is grade reducing as it maps fr&hinto R and thus reduces vectors to a
scalar.

Definition 4.1.2 Let \b be theR-vector space with basigl,e;,e;,e; Aex}. The
bilinear outer product A is defined as

A Vo — Vo,
(A,B)HA/\B

given by
aNA=daA VaelR
and aAb=—-bAa VabeE2cCVW..

The outer product is also called wedge or Grassmann prodddeads out oE2,
The basis elemerd; A e can be interpreted as the oriented area spanned by the
two unit vectorse; ande,. For arbitrary vectors, b,c € E?2 ¢ Vb, we getara =0



CHAPTER 4. CLIFFORD ALGEBRA 53

andaAbAc=0. Note that the wedge product can increase, decrease otamain
the grade of an elemeAte V,.

The inner and outer products can be unified to the so calleshgeiz product.
With this geometric product, the Clifford algeb@ is defined:

Definition 4.1.3 Let E2 be as before. Th€lifford or geometric algebraG, is
the real 4-dimensional vector space with ba§ise;, e, e;e} and the bilinear,
associativegeometric product

GzXGz—>Gz,
(A,B) — AB

given by
le, =6y, le; = ey,
eer=1  ee=1
and e e = —ee.

The geometric product can also be defined by a multiplicatdnhe stating the
multiplication rules for each pair of basis elements (Tablb.

1 €1 e e
1 1 €1 € e
€1 €1 1 €€
€ e -ee 1 -—e

€12 | ©16 —& e -1

Table 4.1: Multiplication table of the basis elements3f Note that multiplica-
tion is not commutative. The left factors are indicated by first column and the
right factors by the first row.

Since Clifford algebra might be considered complicatede iethe derivation of
the multiplication of two arbitrary elements, B € G,. Let

A=a+ae;+ae+aze e

and
B = bo -+ bie; + boey + bseren.
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Then the geometric produéiB can be computed as follows:

AB = ayB+a;eB+axeB+azeeB
= agbp +agbie; + aghoer + aghzerer
+azeibp +ajerbie; +ajerbre; + ajerbse e
+axe2bp + azerhi ey + axerhrer + axerhser e
+age &b + azereby e + azerexhrer + aze ehzer &
= agbp+ ajb; +axby —aghs
+(aghy + a1bg — agbs + azby)e;
+(aghz +axbp + a1bs — aghs )&
+(aghs +agbp +aiby — azbr)erer

An arbitrary elemenA = o + a;e; + axex + fere € Gy is called multivec-
tor and consist of a scalar, a vectora = a;e; + ax&, and a so called bivector
Beie;. The bivector basis elemepte, corresponds t@; A e € Vo and can be
interpreted as the oriented area spanned by the two uningsgtande, (Figure
4.1). Note that the orientation of the area is the geometativation for using a
non-commutative product.

In G, the bivector is also called pseudoscalar. It is often deshbyi, ori;
when indicating that the pseudoscalaiGfis meant. Multiplication of a vector
awith i corresponds to a counterclockwise rotation of the vectaa bight angle
(Figure 4.1). Note thaf = (e;e)? = —1. Thus, the spinors, = {a +iB|a,p €
R} C G, form a group. Each spinor can be regarded as a represermétarom-
bined rotation and dilation, ands the generator of the rotations. Furthermore,
S is isomorphic to the complex numbets which are fundamental for many
signal processing concepts and algorithins.G, corresponds to the imaginary
uniti € C. Thus we also get the following lemma which is later neededHe
definition of a Fourier transform of multivectors:

Lemma 4.1.4 ell¥) = cogqy) +isin(y) Yy € R, and thus a spinor.

Partitioning the basis elements @b into vector and spinor basis elements
yields a separation which is closed under multiplicatiothvai bivector or a com-
plete spinor (Table 4.1). It is understandable as the mitaif a vector will again
yield a vector, and combining two rotations will result in eanrotation. This
separation is also given by the definition of dual pairs:

Definition 4.1.5 Thedual of A is defined asA. The dual of a scalar is a bivector,
and the dual of a vector is another vector. Teheal pairs of the basis elements
are _
— i

1
and g
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Figure 4.1:Left: The two unit vectors and the bivector in the Clifford Algabr
Go. Right: Multiplication with i corresponds to a multiplication by a right angle.

Note that the dual pairs are only given as basis elementgaste dual ofe
isie; = e and the dual o& is —e;. Remember thatcorresponds to a counter-

clockwise rotation by a right angle.
The elements o6, can also be sorted by grade (Table 4.2). A multiveétor

in G, will often be written as the sum of its elements of differerddag,
A=a-+a+if
with a, B € R,a € E? andi = eje.

name | grade| dimension| basis elements

scalar 0 1 1
vector 1 2 €,e
bivector| 2 1 &

Table 4.2: The elements @&, sorted by grade.

Definition 4.1.6 Thegrade projectors (-)i : Go — Gy are the maps
<A>0 =4a, <A>1 =a, <A>2 — IB
forA=oa+a+ip.

Now we can come back to the relation of the geometric produttimner and
outer product. With the canonic vector space isomorphism

P:G; -V,
(1) =1,0(e) =e1,D(e2) = e, D(e182) =1 A ey,
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A and(-) can be transported int8,. For two vectorsa,b € E? C G, we get

ab = (ae1+axep)(bier +boey)
= b€ +ajhrerer + agbyerey + axhnes
= by +aghy + (a1hy — )&
= (a,b)+anhb.

This motivates the following definitions:

Definition 4.1.7 Leta,b € E2 C G,. Theinner product (a,b) is defined by

1

(a,b) = (ab)p = >

(ab+ ba).
Theouter product aA b is defined by
aAb= (ab)y = %(ab— ba).

The inner product can be extended to a scalar product ofweatbtirs. For this, an
operation similar to conjugation il is defined:

Definition 4.1.8 LetA = a +a+iB € G,. Then thaeversion A™ is defined by
At =a+a-ip

Definition 4.1.9 LetA=a +a+i3,B=y+c+id € Gy. Thescalar product
(A, B) is defined by

(A,B) =ay+(ac)+Bd=(ABT) e RC G,
Definition 4.1.10 Themagnitude of A € G, is
A=+ (AA)

For a vectom € Gy, the magnituddal| = ++/(a,a) is the usual Euclidean length.

The geometric product of two vectoesandb is a spinor and describes the
rotation and dilation which is necessary to transfarnmto b. This geometric
interpretation of the geometric product, or the inner antoproducts, can now
be specified:

Lemma 4.1.11Leta b € E? C G,, andw be the angle betweenandb. Then

(ab)o = (a,b) = ||al|||b]| cosw
and (ab), =anb=||al||b||sincw,
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Furthermore, every non-zero vector @» has an inverse, and thus division of
vectors can be computed in the Clifford algeta

Lemma 4.1.12 Leta € E?\{0}. Then there exist an inverse! = ﬁa
Proof: ||a] > 0for ac E?\{0}. Therefore & Ha”ae E?and
1 1
——aa= (a, @) +ana=—- <a a=1
lall™ " Jall 2l

Non-zero spinors also have inverse elements:

Lemma4.1.13LetA = a +iB € S C G,. Then there exist an inverse 1 =

1 At
A
TTATl

This was expected as spinors describe rotation and dilasiod the inverse of

a spinor reverses the rotation and dilation. Note that r@ryitmultivectorsA <
G,\{0} do not always have inverse elements.

4.2 Clifford Algebrain 3D

In the 3-dimensional Euclidean vector sp&ewith basis{e;, e, e3}, the vectors
can not only span oriented areas but also volumes. This é&ctedl in the Clifford
or geometric algebr&s:

Definition 4.2.1 Let E® be the 3-dimensional Euclidean vector space with the ba-
sis{e;,e,e3}. TheClifford or geometric algebraGs is the real 8-dimensional

vector space with basifl, e1, e, €3, €16, 263, 6361, €160€63} and the bilinear, as-
sociativegeometric product

GgXG3—>G3,
(A,B) — AB
given by
le; = e, ]=1,2,3,
ejej = 1, ]=1,2,3,
and ejex = —e&ej, j, k=123, j#Kk.

An arbitrary multivectoA € Gz consists of a scalar, a vectora= a;e; +axe; +
aszes, a bivectorb = bieyes + boese; + bsejey, and a trivectoBe;exes. The unit
bivectors correspond to three oriented areas orthogormadb other, and the unit
trivectore;exes corresponds to the unit volume (Figure 4.2).

In Gg, the trivectore; eye; is also called pseudoscalar. It is denoted,lmy iz when
indicating that the pseudoscalar®# is meant. The trivectdris commutative to
every arbitrary multivectoA € Gz (Table 4.3). Thedodge-duality states that the
trivector converts vectors into bivectors and vice versa:
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Figure 4.2:Left: The three unit vectors i®3. Middle: The three unit bivectors

in G3 representing areasight: The unit trivector inG3 representing the unit
volume.

Lemma 4.2.2 (Hodge-duality)

€162 = 81626363 = i€3
€23 =€
€361 = 1€
Thus, an arbitrary multivectgk € Gz can be written as
A=a-+a+i(b+p)

with a,B € R, a,b € E3, andi = e;e06e3.
Definition 4.2.3 Thedual of a multivectorA is defined as-Ai. Thus, the dual

of a scalar is a trivector, and the dual of a vector is a bivecimalog to the
Hodge-duality.

1 €1 € €3 €2€3 €361 €162 €1663

1 1 €1 € €3 €2€3 €361 €162 €1663
€1 €1 1 €162 —€361 €163 —€3 € €2€3
€ € —€1€ 1 €263 €3 —€e1ee3 —6 €361
€3 €3 €€ —€63 1 —€ €1 €1€263 €&
€2€3 €263 €1663 —€3 €2 -1 —€1€2 €3€1 —€1
€361 €3€1 €3 €163 —€ €162 -1 —6€6 —&
€162 €1€2 —€ €1 €1€263 —€36; €2€3 -1 —€3
€1€2€3 | €1€263 €263 €3€1 €1€2 —€1 —€ —€3 -1

Table 4.3: Multiplication table of the basis element$zaf Note that multiplica-
tion is not commutative. The left factors are indicated by first column and the
right factors by the first row.
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Note that(eye)? = —1, (e263)% = —1, (e3e1)? = —1 and(erex63)2 = —1 (Table
4.3). S3={a +ib} c Gz is the group of the quaternions, an extension of the
complex numbers which is often used to describe rotatiordwich is a special
group of spinors.

Now there are several possibilities of choosing an isomerpho the complex
numbers. Often the trivector is chosen for the complag already indicated by
naming iti. C3 = {a +if} is isomorph to the complex numbets Any of the
sets{a + bjiej},j = 1,2,3 based on the scalar and a unit bivector would also
be isomorph to the complex numbers. However, in this thé&schoice of the
trivector as imaginary number is advantageous as the mg@lbmplex numbers
are commutative to every multivector @y (Table 4.3).

Lemma 4.2.4 For every scalaly
el = cogy) +isin(y)
and for every multivectof € G3
AV = ellvp,

Proof: _
Ae(l y)

Acoqy) + Aisin(y)
cogy)A+isin(y)A
ellVA.

Again, inner and outer product of two vectors can be defindde dross prod-
uct, which corresponds to the normal vector of the area sghby two vectors
whereas the outer product corresponds to the orientedtast(Figure 4.3), can
also be defined in the Clifford algeb@s:

Definition 4.2.5 Thegrade projectors (-)i : Gz — Gz are the maps
<A>0 =4a, <A>1 =q, <A>2 = |b7 <A>3 = IB

forA=a+a+i(b+p).

name grade| dimension| basis elements
scalar 0 1 1

vector 1 3 €1,6, 63
bivector 2 3 €€3,€6361,616
trivector| 3 1 1663

Table 4.4: The elements &3 sorted by grade.



CHAPTER 4. CLIFFORD ALGEBRA 60
axh

Figure 4.3: The cross product gives the normal vector of tha apanned by the
two vectorsa and b, whereas the outer product afandb corresponds to the
oriented area itself.

Definition 4.2.6 Leta,b € E3 C Gz. Theinner product (a,b) is defined by

1

(a.b) = (ablo =5

(ab+ba).
Theouter product aA b is defined by
1
anb=(ab), = é(ab— ba).

Thecross producta x b is defined as

axb=—i(anb)

Definition 4.2.7 LetA = a +a+i(b+ ) € Gz. Then theeversionA* is defined

by
AT =a+a—i(b+p)

Scalar product and magnitude are defined based on this imvensd analogous
to G,. Again every non-zero vector and spinor has an inverse eleme

Lemma 4.2.8 Clifford multiplication of two vectors, b € E3 ¢ G results in
ab= (a,b) +aAb,
Furthermoreabis a spinor or quaternion and has the properties

(ab)o = (a,b) = [ a| |b] cosw
and |[(ab)z| = |anb] = [all[|b]|sinc.

wherew is the angle betweeaandb and the bivectofab), corresponds to the
area spanned bg andb, and thus the plane where the angle is measured.
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4.3 Clifford Algebra and Calculus in nD

Now that Clifford algebra and its elements have been inttedwand analyzed in
2D and 3D, a brief extension to arbitrary dimension is givéame Clifford cal-
culus including the definitions of integral and derivatisesituated in this chapter,
too.

Definition 4.3.1 For the n-dimensional Euclidean vector spac@ With basis
{e1,..,en}, the2"-dimensionalClifford or geometric algebraGy is defined as
a direct sumya V1 & ... &V, with the basis elements from the following table

space, name |grad| dimension basiselements
Vo scalars 0 8 =1 1
A1 vectors 1 2 =n e1,..,6n
\2) bivectors | 2 < 2 ) eje, ] <k
V3 trivectors | 3 ( 2 ) ejed, | <k<l

Vk | k—vectors| k < E ) €j,€j,---€j, J1 < ... < Jk€1,..,Nn
n .
Vh | n—vectors| n ( n ) =1 €1..64 = Ip

together with the associative, bilinegeometric product

GnXGn—>Gn,
(A,B) — AB
given by
lej = e, je{1,..,n},
ee = 1, je{l,.,n},
and ejex = —e&egj, j,ke{l,..,n}, j#k.

Definition 4.3.2 An arbitrary element of Gis called multivector. An element
A € Vi which can be written as A ae;,ej,...6j,, o € R is calledk-blade.

Definition 4.3.3 The canonic projectior-)i : Gn — Gp, A +— (A)k is calledk-
projector.
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The squared pseudoscalaris not always -1, e.gif1 = 1. The formula for cal-

culating the square of an arbitrary pseudoscalé is (—1)2""1. Thus the set
{a +inB} is not always isomorph to the complex numbers. The defintifcthe
reversion has to be adjusted as well:

Definition 4.3.4 Let A € G, be a multivector. Then theversion A" is defined
by
(A= (— KD Ay,

Inner and outer product of two vectors, and scalar produtiaagnitude of mul-
tivectors are defined analog @y. Now let F be a multivector-valued function
(field) of a vector variable defined on some region of the Euclidean spate(If
the function is only scalar or vector valued, it will be cdllgcalar or vector field,
respectively.)

Definition 4.3.5 TheRiemann integral of a multivector-valued functiof is de-

fined as
k
F(x)|dx| = lim F(xjej)|Ax;]| .
/E” |ij|—>0a; e

k— o0

The quantityjdx| is used to make the integral grade preserving sitxde a vector
within Clifford algebra. Thus, the integral can be dis@etl into sums using
quadrature formulas.

Definition 4.3.6 Thedirectional derivative of F in directionr is

i [FOCERND) = F()]

with he RR.

Definition 4.3.7 Thevector derivative [ is defined as
n 7}
U= g+
jzl 0X;
Note thatll is vector valued, and computation of the derivative can newldne
using the geometric product:

Definition 4.3.8 The (completeflerivative of F from the left is

n
Z eJFeJ
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whereFg, (x) are the directional derivatives. The derivative from thghtiis
n
F(x)O= 3 Fe/(x)ej.
=1

In contrast to the Jacobian (Definition 2.2.1), which is armathe derivative here
is spinor-valued. In flow analysis and visualization, curtlaivergence (Defini-
tion 2.2.2) are often used. They can also be computed withifod algebra:

Definition 4.3.9 Curl anddivergenceof a 2D or 3D vector-valued functidrcan
be computed as

curlf:DAf:M
and divf:(D,f):M.

This curl operator gives the bivector describing the plahstmngest rotation
whereas the classical curl operator results in the correlipg normal vector.

4.4 Other Clifford Algebras

In some of the related work concerning the definition of a Fsuransform within
Clifford algebra, different definitions of Clifford algedbrare used [8, 9, 34]. Let
e1,...e, be an orthogonal basis &". The used Clifford algebras mostly differ in
the definition of the square of the unit vectors Whicbﬁ& +1, j=1,..,n. These
definitions can be integrated into one algebra:

Definition 4.4.1 Let(p,q), p+g = n be a non-degenerate quadratic form of sig-
nature for E', andey, .., &, be an orthogonal basis of E The basis elements of the
Clifford algebra E, q are constructed analog to{zand the associative, bilinear
multiplication is defined by the rules

leg = e, j=1..,n,

ejej = 1, i=1.,p,

ee = —1, j=p+1,..,m,
and ejex = —e&gj, j,k=1,..nj#Kk.

The Clifford algebraG, which is used in this thesis correspond<s, and an-
other often used Clifford algebra ks p.

A big disadvantage of Clifford algebras when ignoring thergetric interpre-
tation is the non-commutativity of the multiplication. Sdguent problems have
led to the definition and use of hypercomplex algebras wharkiphcation is
commutative, e.g. the algebirCA, [9]:
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Definition 4.4.2 Letey, .., e, be n symbols obeying

le; = e, j=1..,n,
eJeJ = _17 J = 17"7 p7
and eje = &g¢j, j,k=1..nj#Kk.

Creation of the2" basis elements out @&, .., &, is analog to G. These basis
elements, and the product defined by the multiplicationsralleove, define the
hypercomplex algebra HGA



Chapter 5

Template Matching of Vector Fields

The use of scalar LSl filters on vector fields is unproblentfatithe most part, as
convolution can be defined using the multiplication of a weetith a scalar:

Definition 5.0.3 Letf : R" — R" be a vector field and hR" — R be a scalar-
valued filter. Therronvolution of f and h is defined as:

(h+f)(x) :/ h(x )f(x =X )dx.

Rn
The definition of a convolution of two vector fields, howevsmore challenging.
In this chapter, several approaches to this problem aredated and discussed.

Note that for template matching, the correlation is of ietiand not the con-
volution. However, every correlation can be computed by @mvotution with a
suitably adjusted filter or template. The use of convoluiimstead of the cor-
relation is due to the convolution theorem (Theorem 3.31R) the analysis and
acceleration thus possible. Therefore, mostly the comnolus regarded in the
following sections. Keep in mind that the correlation canajs be defined anal-
ogously.

The similarity measure should be independent of the doadif the structure
within the vector field and the template. Otherwise, one bastate the template
many times and compute the similarities for all the rotatdglates. In a last
step, it would be necessary to compute the maximum sinyilarit take the cor-
responding direction as the direction of the structure.sTlefining convolution
and correlation for vector-valued fields is only the begngniand a rotation invari-
ant template matching algorithm based on these definitiaagdnfollow. In this
chapter, several approaches for both tasks are introdusediacussed in detail
as they will provide a starting point for this thesis. Espélgithe Clifford convo-
lution (Section 5.4), which was developed in the masterishafsthe author [23]
along with a rotation invariant template matching alganit{Section 5.5), will be
important later on.

65



CHAPTER 5. TEMPLATE MATCHING OF VECTOR FIELDS 66

5.1 Separate Matching of Component Fields

The first idea regarding image processing on vector fieldssgply treat a vec-
tor field as several scalar fields. Thus, convolution and iEotnansformation of
the separated scalar components of the vector can be campldeever, a vector
represents more information than its separated compopemtsie. Furthermore,
the scalar fields of the components are not independent amsbtdprovide in-
sight into the vector as a whole. Granlund and Knutson [36§Ehavestigated
this approach in 2D for optical flow fields as well as vectordgetiescribing the
local orientation of textures. The latter fields were congpuising the orientation
tensor (Definition 3.6.7). Sudden changes in the featureowelescriptor fields
describe texture borders which can thus be extracted.

5.2 Template Matching using the Inner Product

Another approach of transferring convolution to vectordgemakes use of the
generalized inner product of pertinent vectors. This apgnas first described by
Heiberg et al. [41,42].

Definition 5.2.1 Letf : R" — R" be a vector field andh : R" — R" be a filter.
Then thevector convolution x is defined as:

(hf)(X) :/Rn<h(x’),f(x—x’))dx’,

The inner product of normalized vectors provides an appmnakon to the cosine
of the angle between the direction of patterns present ivéleeor field and the
direction of the filters. Thus, the vector convolution of enf#ate and the field
results in a similarity measure which is approximately rdijpnal to the cosine
of the angle of the structures in field and template. Due tdiffierence of rotating
one vector in contrast to rotating the complete template,similarity may be
much smaller, an example can be found in Figure 5.1.

The disadvantage of this approach is that a unifying nataticluding the
convolution of scalar fields, or a scalar and a vector fielshospossible within
this framework. Furthermore, Heiberg et al. [41, 42] do rmnfulate or use a
Fourier transform in their method. However, the use of tredasd-ourier kernel
for a Fourier transform is possible. This will transform leawmordinate of the
vector field separately as in Section 5.1.

Definition 5.2.2 For a continuous signdi: R" — C", thevector Fourier trans-
form of f is defined as

F{f}Hu) = Rnf(x)e(_zmxvu”dx
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Due to the separate transformation of the coordinates, aidle theorems from
Section 3.3 can be proven analogously. Because of the ailtgeof the inner
product, the convolution theorem (Theorem 3.3.8) can agsprbved.

Theorem 5.2.3 Letf,,f, : R" — C" be two signals. Then
F{fixfa} = (F{f1}, 7 {f2})
Proof:
Flfrfu = /]R (Fy %) ()2 XU gy
= [ (] tfa(k)talx k) kel -2 XU
R /R
_ / (1 (K), / £ (x — k)&= 2XU) gy i
R R
= [ (k.7 {f2}<u>e<—2’“'<k“>>>dk
= ([ f0ge 2K a F{) (w)
= (F{f}(u), F{f2}(u))

Again, note that the result of the inner product of two vest@nd thus of the
vector convolution too, is a scalar and not a vector. Thus,véttor domain in
which the computation was done has to be left. Thereforeifging approach for
these computations would be preferable as a mathematisal tom the analysis
and application of these methods.

Figure 5.1: Rotation of the template leads to similaritiagcmsmaller than the
expected value, here -0.63 instead of -1 for a correlationgh the rotation angle
of the vector field is 180
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5.3 Rotation Invariant Matching with the Orienta-
tion Tensor

Heiberg et al. [41, 42] also propose a rotation invariantgiete matching algo-
rithm based on the orientation tensor (Definition 3.6.7)\al@ate the filter re-
sponses of a few rotated templates to the vector field. Thaidhm is introduced
in this section in detail, an overview can be found in Table 5.

First of all, the vector field is normalized. Note that temelanatching of
the normalized vector field corresponds to matching of theastlines as they
are independent of the velocity (Theorem 2.1.5). Then thmplates are defined.
Heiberg et al. [41, 42] state that their algorithm works ofdy axis-symmetric
patterns. Lethy, denote one axis-symmetric, vector-valued template. The si
of the patterns should be limited, therefore the templateshvaultiplied with a
rotational symmetric weighting function:

Definition 5.3.1 Let r,rmax € R. Define the rotational symmetric weighting func-
tion w with respect to the radius r as

w:R—R
1 IIr]| < rmax
[— _ lIrl[=rmax
e o |r]|=rmax

I'max controls the size of the patterns aodnfluences the drop-off of the values.
Note that for small templates, omitting this step makes gaicant difference
in the resulting similarity values.

The magnitude of the response of the original quadratusr filsed in the
orientation tensor is proportional to the square of theabgtween the directions
of filter and function. This is the motivation for scaling theagnitude of the
vectors in the template again, this time setting the enefglgeotemplate to one.
Thus, the templates used for the matching are

h(x) = yw(r)hp(x)

with
Efh) = | (h(0.h(x))dx=1
Each of the templates is now rotated to yield the directioespponses neces-
sary for the orientation tensor (Definition 3.6.7). In 2Dt filter directionsy,
which correspond to their symmetry axis, are necessarjpécomputation of the
orientation tensor. A possible filter distributibp can be computed by taking the
template itself as well as rotated copies with rotation esgif 60 and 120. In
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3D, six filtershy evenly distributed over a half-sphere are necessary, tineula
for the filter directions), can be found in Section 3.6.4.

Now, the orientation tensdi, of the template similarities can be computed at
every position of the vector field

N—-1
To() = Y [l(v+h) (x)[|(aneng — BI)
1;) k KNk

Then, an eigenvalue decompositionTgfis computed. When template and local
structure in the field are equal up to a rotation, the largggnealue should be
one, and the corresponding eigenvector gives the direaticare the template has
to be rotated. Otherwise, the largest eigenvalue givesithigasity of the two
structures, and the other eigenvalues can be non-zero.

As the algorithm is based on convolution, it is robust in tewhnoise. Note
that the smoothing effect of the convolution grows with thee ©f the templates.
One disadvantage of the algorithm is that it works only fasaymmetric pat-
terns. This in itself is not a big disadvantage in flow viszation as features are
usually abstracted, and the basic patterns are quite sitdpleever, even for axis-
symmetric patterns, the algorithm does not always resugatisfying similarity
values. This is due to the more complex nature of vector field®mparison to
scalar fields. A pattern like the one in Figure 5.1 is axis4setric, however, ro-
tating it disadvantageously, especially in a directionaosered by the half sphere
of the filter directions, yields unsatisfying results. Hoistexample, the rotation
invariant similarity computed using the orientation tensas 43%. Note that the
similarities can be much smaller than that, e.g. a similapiate where the diver-
gent part was doubled and the template than rotated W80result in a rotation
invariant similarity of 02%, which is no significant similarity at all. The error is
largest in the hemisphere not covered by the filter direstiso the best way to
redeem this is to compute the algorithm a second time for ltee flirections in
the other hemisphere.

Another solution, and an acceleration when matching witbtat different
templates, is to break down the templates into simpler pegtenatch these and
combine the resulting similarities. The pattern of Figurg, ®.9. was computed
by adding a constant flow to a pure divergence from a line (€igu2). How-
ever, the directions with maximal similarity have to be taketo account when
combining the single similarities. The convolution is Bmeso the the results of
the single convolutions can be combined quite well. But thentation tensor,
and thus also the similarity value computed via the oriématensor, is not lin-
ear (Theorem 3.6.8). Thus the rotation invariant simikesitan not be combined
quite as simple. Because of the square of the filter respamigsdefinition of the
orientation tensor, this algorithm does not distinguistiggas which are gained
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1. Normalize the vector field
2. Choose the template to be matched

3. Limit the size of the patterns in the template with a
rotational symmetric weighting function

4. Scale the template until its energy is one
5. Rotate the template into each of the needed directions
6. For each grid node of the field:

(a) Compute vector correlation with all templates

(b) Compute the orientation tensor with the similarity
values

(c) Compute eigenvalue decomposition of the orientation
tensor

(d) The largest eigenvalue gives the rotation invariant
similarity

Table 5.1: Outline of the rotation invariant matching algon using the orienta-
tion tensor as proposed by Heiberg et al. [41,42], and sctiewofahe 2D case.

by multiplying every vector in the template with -1. Thusyeliging and converg-
ing patterns can not be distinguished, as well as pure &fttad and right-handed
rotations. Examples of these patterns can be found in $e6tio
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Figure 5.2: Computing a pattern by adding a constant flow atideagence from
aline.

5.4 Clifford Convolution

As Clifford algebra provides a unifying notation for the riplication of vectors
and scalars, as well as valuable geometric properties abthdt of the multipli-
cation of two vectors, a convolution of vector fields basedtfiord algebra was
defined [23, 24].

Definition 5.4.1 LetF be a multivector-valued field artd a multivector-valued
filter. ThenClifford convolution based on the geometric product is defined as

(H# F)(x) = RnH(x’)F(x—x’)

ax’

and analog

(Fx H)(X) = F(x—x" )H(X")

RI"I

Since Clifford multiplication is not commutative, appltean of the filter from the
left and from the right is distinguished. Clifford convalut is an extension of
the convolution of scalar fields, and of the convolution otalar with a vector.
However, it is also an extension of the vector convolutiofindel by Heiberg et
al. [41,42] as

ax’

(h*vf)(x):/ (h(x'), F(x—x"))dx’

Rn
and thus
(hxsf)(x) = ((h=*T))o= ((f*rh))o

for vector fieldsh, f.

The spatial Clifford correlation is defined analogous to @iéord convolu-
tion. It is a Clifford convolution with a filter whose positis have been reflected
about its center (Theorem 3.2.7). Another idea for an opebatsed on the convo-
lution could be to mirror not only the positions of the filténst the multivectors as
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well. This needs special treatment for the different graddélse multivector since
the scalar part stays the same and the vector part has to aeedegurthermore,
the relation to the convolution becomes more difficult, and inot motivated

from the well-established signal processing theory. Thhis,approach was not
pursued further.

The result of the vector convolution based on the inner pcbdéitwo vec-
tors is valuable as a directed similarity value, therefoie also used within the
Clifford algebra framework. However, the Clifford convialn provides more in-
formation about the geometric relation of template andaefield. Remember
that in Clifford algebra, the geometric product of two vesta, b, with anglew
betweera andb, results in the spinor

ab = (ab)+anb
= (ab)+i(axb).

(Lemma4.1.11 and 4.2.8) and, with respect to the dimensherfollowing prop-
erties are true:

1. (2D)
(ab)o = (a,b) = |al|[|b||cosw
and (ab)y,=aAb=|lal||b|lsinw

2. (3D)
(ab)o = (a,b) = [|a]| |[b]| cosw
and [|(ab)z|| = [laAb|| = ||a]|[|b] sinc,

Clifford multiplication can be regarded as a correlationagboint in the vector
field with a 1x 1 template. Thus, Clifford correlation with larger templstis
an averaging of the geometric relations of the single vect@he direction of a
structure in the field at positioncan thus be computed out of correlation with a
suitable template when the direction of the template is kmow

Theorem 5.4.2Let m=2,3. Letf,h: R™ c Gy, — R be two vector fields. Let
x € R™ denote a position in the vector field. L@t denote the angle between the
templateh and the structure in the fielflat pointx. Then correlation of the two
fields atx results in:

1. (2D)

N
>
>
—

S~—

—~
X

~

o
Q

Yy COStx
((hxf)(X))2 =~ ysinwx
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2. (3D)
((h«H)(x))o ~ ycosax
[{(hxf)(x))2ll ~ ysinax
((hxf)(x))2 is the normal vector of the plane af

Note thaty is given by the magnitudes of the velocities of field and taeta@nd
can be determined directly.

Due to annihilation effects (Figure 5.3), Clifford correten of two equal but
rotated patterns can result in a wrong estimation of theiostangle between the
two patterns. However, this effect can be avoided, and thengéric properties of
the geometric product are used for rotation invariant tetepnatching (Section
5.5).

C T TR
T
IR R R I SO

Figure 5.3: Correlation of the templateft) and a rotated copyn{iddle) results
in a zero multivector as the approximations for the angleshaiate each other

(right).

5.4.1 Vector Derivation using Convolution

Inimage processing, itis well known that the derivativeragien is a convolution.
The vector derivative as described in Section 4.3 can be discretized using many
different approaches. One example are central differeridas is discussed now

in relation to convolution and correlation, to show thatotresponds to a con-
volution with a vector valued template. Discretizing theidgive using central
differences yields

f(x-i—se,)—f(x se,)
2h

'MQ

Z e,fe,
:1
Whenf is defined on a uniform 2D grid, the values of the grid nodesoéiien
written asf(x) = fmn, andh=1. Thus

e1fmiin—efm—in+efmnr1 —efmn-1
2h '

of =



CHAPTER 5. TEMPLATE MATCHING OF VECTOR FIELDS 74

Now the templates for the derivative operation using cémlifferences can be
computed. They are shown in Fig. 5.4 for convolution in 2D 8bdand corre-
lation in 2D. Curl and divergence can also be extracted otih@fresults of the
computation of the derivative using Clifford convolutiddgfinition 4.3.9):

divf = ((Oxf))o

curl f = ((Oxf))2

Thus, the divergence is the scalar part and the curl the toiwgart of the result

of the derivative computation. The connection betweenveévie and divergence
becomes clear when looking at the central difference direvéemplates as they
depict divergence of local flow for correlation and conviot respectively (Fig-

ure 5.4). The connection between curl and derivative orrdesmce can also be
understood when interpreting a unit bivector as a rotatio803, and applying

this transformation to every vector of a divergence patierane plane (Figure
5.5). Note that in 3D, the bivector is vector-valued and githe rotation axis.

Figure 5.4: Central difference derivative templatesft: Template for 2D con-
volution. Middle: Template for 2D correlatiorRight: Template for 3D convolu-
tion.

5.5 Template Matching with Clifford Convolution

As discussed in Section 5.4, the angle between the direxctibthe template and
the structure in the field can be computed by a Clifford catieh. A basic idea
for a rotation invariant matching algorithm would thus beatate the template
into this direction, and compute one vector correlationtifigrsimilarity.

As annihilation effects the approximation of the directidns not enough to
compute only one Clifford correlation for stable resultshu$, additional tem-
plates with different directions have to be used [23, 24].0&5ble template dis-
tribution, which results in a stable, rotation invarianttaiang algorithm, is:
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Figure 5.5: Rotating every vector of a 2D divergent pattéroua the unit bivector
i, or 90, results in a rotational patterrLeft: 2D divergent patternMiddle:
Rotating every vectoRRight: 2D rotational pattern.

1. 2D:a=0.5andb = \/7§
ny= (17 O)T
n, = (—a,b)T, that isn; rotated 120 counterclockwise.

n, = (—a,—b)T, that isn; rotated 240 counterclockwise.

2. 3D: The directions of the principal axes of the coordirsytetem are used:

ng = (17O7O>T’ ) (_170,0)1-’
N3 = <07 17 O)Tl Ng = (07_17 O)Ty
ns=(0,0,1)T, ng = (0,0,-1)T,

The algorithm also works with other directions and other hars of directions.
As usual, one can trade precision for computational spedt t&mplates are
rotated in the desired direction using Clifford algebra hneélar interpolation.

For an easier computation of the angles unhindered by thaitoags of the
vectors, both vector fields are normalized. Then, coreatith each rotated
template is computed. Now, the approximatiarig(x) of the direction of the
structure in the field at given by the correlations with the different templates are
computed. Out of these directions, a single directioix) has to be determined.
In 2D, the template response with the smallest angle to thetste can be used
directly. In 3D, the direction is computed analog to the catafion of a center of
gravity. Only the directions’y calculated out of the template responéesf)(x)
with scalar part(h+f)(x))o > 0 are used, as they point into the right hemisphere.
These directions are weighted with the scalar part of thikar fresponse. The
resulting vector is normalized and gives the directionof the structure. For
patterns which are rotational symmetric for all rotatioredtions, this approach
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can fail as all filter responses will result in the same sintijavalue. This has
to be considered in the implementation, simple queries@wmeg the similarity
values can detect this case. For these structures, anyialirés correct, so the
original direction of the template can be chosen.

In a last step, the template is rotated into the computedtitirg and another
vector correlation is computed as the final similarity valNete that for this last
vector correlation, field and template need not be norm@lizéis is an advantage
in comparison to the approach using the result of the otiemtaensor directly.
For some applications, it is even necessary that the fieldtisarmalized for the
matching. This will be discussed extensively in Sectionahd 8.3. A summery
of the complete algorithm for rotation invariant matchirapde found in Table
5.2.

55.1 Acceleration

Besides the obvious acceleration of this algorithm vialpgization, there is an-
other computation that can speed up this algorithm. Theiootaf the template
at every node of the grid is computational expensive. Tleeethe directions of
the template for the final scalar correlation are discrdte®d all rotated templates
are computed only once. The template with the directionedb® the direction
of the structure is taken for the scalar correlation at thisap The direction of the
template and the,; are computed, and saved with the rotated template. In 2D, the
template can be chosen by the angle between the directiothamnector(1,0)".

In 3D, it is not easy to distribute the directions evenly otlee sphere. A
subdivision algorithm on the sphere starting with an oafiatve gives an approxi-
mation. The octahedron is used to support the search foetrest direction later
on. Each triangle of the octahedron is divided into 4 newgias and the vertices
are normalized. With three subdivision steps, one gets #88ttbns (Table 5.3).
Then, there are 45 directions in each octant. For the cortipataf the nearest
template, the right octant has to be identified. Then theasgabduct of the di-
rection of the structure and all directions in the octanbisiputed. The template
with the direction resulting in the biggest scalar prodsathosen. As there are
only a few points in each octant, a more complex search paterot necessary.

Note that the algorithm for rotation invariant matchingasrgutationally still
more expensive than the approach with the inner productl@drientation ten-
sor. The amount of correlations is only one more, but the eadgatpnal cost of
the geometric product of two vectors is higher than that efiimer product of the
vectors. Furthermore, the computation of the inner prodaistbe sped up using a
FFT and the convolution theorem for the vector convolutieor. Clifford algebra,
a Fourier transform was developed in this thesis and is desmliin Section 7.
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1. Convert the vectors from field and template into
multivectors

2. Rotate template to get the filter set

3. For each grid node of the field:

(a) Compute Clifford correlation with all templates and
the normalized field

(b) Compute the direction n’ of the structure
(c) Rotate the template into the direction n’

(d) Compute a scalar correlation of the rotated template
and the field for the similarity value

Table 5.2: Outline of the rotational invariant pattern nmatg using Clifford con-
volution, and schematic for the 2D case.

step| # points| # triangles
0 6 8
1 18 32
2 66 128
3 258 512

Table 5.3: The number of points, or directions, gained bydsuding an octahe-
dron on a sphere.



Chapter 6

Data Sets and Templates

6.1 Vector-Valued Templates

Many interesting features in flow fields can be describedeqnttitively by vector-
valued templates. Basic examples of these features arngorotnd swirl, con-
verging and diverging patterns, shear flow and saddle p(higsires 6.1 and 6.2).
Note that a feature model is often a simplification and abstma of the real flow.
Furthermore, as already mentioned in Section 5.3, contpligaatterns can often
be modeled as a superposition of simpler features (Fig@e B. lot of 3D pat-
terns are just repetitions of 2D patterns along a line. Nudéa pure convergence
to, or divergence from a point, as well as the rotation pafite2D, are rotationally
symmetric. This means that the similarity gained by oneorecbrrelation with
them is already a rotation invariant measure. Another itgmdissue in flow anal-
ysis and visualization is the concept of Galilean invareggnehich is the principle
stating that the fundamental laws of physics are the samkimeatial frames of
reference. That means that a moving observer will see the sana stationary
observer, or one with another velocity. For feature detectGalilean invariance
of a feature definition can be important e.g. when a large flmough component
hides features. This will be investigated further in Set8a2.

Galilean invariance of the similarity of a template and abiteairy data set can
be determined quite easily:

Theorem 6.1.1 Letv[x] denote the velocities of a discrete template. Let N be the

number of positions; in the template. Let the similarity s be obtained by a vector
correlation of this template and an arbitrary data set. Tlsar Galilean invariant
if, and only if, the average velocity
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satisfies/; = 0.

Note that all templates in Figures 6.1 and 6.2 satigfy- 0 and are thus Galilean
invariant.

Figure 6.1: A basic 2d template set. Grid (blue), LIC, anddsdubgs (black).
Top: Clockwise and counter-clockwise rotatioMiddle: Convergence and di-
vergence Bottom left: Shear flow.Bottom middle: Convergence lineBottom
right: Saddle. Note that clockwise and counterclockwise paitean be con-
verted into each other by negating the vectors, as well asgiwce and conver-
gence patterns.
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Figure 6.2: A basic 3d template set. Grid (blue), LIC of tharreurface, hedge-
hogs (black) and some streamlines (refp left: Rotation.Top right: Conver-
gence.Bottom left: Saddle.Bottom right: Shear flow. Note that counterclock-
wise and divergence patterns can be found with these teespdatwell.
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6.1.1 Vortex Models

To detect vortices with the use of a correlation, a vectdunac template describ-
ing the vortex can be used. A basic approach for a rotatiometov-valued tem-
plate is shown in Figures 6.1 and 6.2. An improved approathssale the mag-
nitude of the vectors of the rotational pattern accordinggpime vortex model like
Rankine [76], Scully [84] or Vatistas [102]. These vortexants are explained
in this section. Note that when matching with a normalizedphkate, the magni-
tude information coded in these vortex models is lost, anara ptational pattern
remains (Figure 6.3). Furthermore, note that all of thesgexanodels are rota-
tionally symmetric and Galilean invariant.

’
i

Figure 6.3:Left: A Rankine vortex withrc = 2. Right: A normalized rotational
pattern.

One of the often-used vortex models is the Rankine vortek [f@ssumes a
solid-body rotation within the vortex core and an exporamtrop-off outside:

Definition 6.1.2 Let f(x) denote a pure, circular rotation aroungy. Letr=
|IX — Xo|| denote the radial distance of a positiarto the rotation centekp. Let

rc be the vortex core radius and le¢ be the magnitude of the circumferential
velocity at . Then theRankine vortex [76] is given by the magnitude of the
velocity \r) = ||f(r)|| with

Vel 1 <r¢
V(Ir) = .
() { % r>re

Note that the first derivative of the functiorr) is discontinuous irr¢, which
is not true for a real vortex. The Rankine vortex is a spe@skcof the Vatistas
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vortex [102], where an additional parameltecan be used to control the transition
between the solid body rotation and the exponential dréFadgure 6.4):

Definition 6.1.3 Let f(x) denote a pure, circular rotation aroungy. Letr=

|IXx —Xo|| denote the radial distance of a positigro the rotation centexgp. Let r;

be the vortex core radius and letbe the magnitude of the circumferential velocity
atre. Let Ne R. Then thévatistas vortex[102] is given by the magnitude of the
velocity \r) = ||f(r)|| with

_ o1/N,2 Vef
V(I’) —2/ re (rgN+r2N)l/N'

Note that 3/Nr2 is a scaling factor to obtaiwm(r¢) = vc. ForN = 1, the Vatistas
vortex equals another vortex model called the Scully vojddy, and forN = oo,
the Rankine model [76] is obtained.

For an arbitrary vortex within a data set, the engineers wadetermine cer-
tain parameters of these vortex models to quantify the flovadrtant parameters
are not only the vortex core centeg, the vortex core radiug;, the circumfer-
ential velocity at the vortex core radiwg, but also the circumferential velocity
distribution, the overall vorticity within the vortex cqrand, in 3D, the maximal
axial velocity and the axial velocity distribution. Sometlbése parameters can be
coded directly into the templates, and thus be determiniad tsmplate matching
as will be shown in Section 8.3.
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Vatistas: N=1
Rankine: E.-
solid body i
rotation i
......................................................................................................................................
s I
H Rankine:
{i exponential
: drop off

Vatistas: N=2

Figure 6.4: A cut through a vortex. Circumferential velgaiistribution (grey
arrows) as given by the Vatistas vortex modellfb& 1 (red),N = 2 (green), and
by the Rankine vortex as a special case of the Vatistas vaiteXN = « (blue).



CHAPTER 6. DATA SETS AND TEMPLATES 84

6.2 Swirling Jets Entering Fluid at Rest

In this section, several CFD simulations describing a vosreakdown are intro-
duced. Vortex breakdown can be found in flows ranging fromados, wing tip
vortices, pipe flows to swirling jets. Here, the turbulentriing jets each enter a
fluid at rest. The simulation considers a cylinder, and aglant along the axis
of the cylinder is used as a domain. The domain is discretzed 124x 101
respectively a 25% 159 rectilinear grid with smaller rectangles towards this ax
of the cylinder for the OM06 and OMO08 data sets (Figure 6.5%6a6)d Since a
lot of small and large scale vortices are present in the floskserete numerical
simulation (DNS) using a higher order finite difference suokds used to solve
the incompressible Navier-Stokes equations.

Figure 6.5: OMO06: A swirling jet entering a fluid at restTop left: Velocity
magnitude from zero (blue) to 7.4 (redjp right: Topology.Bottom: LIC and
color coding of vorticity from high negative values (clodke rotation, blue) to
high positive values (counter-clockwise rotation, redgft: The velocity of the
vectors is high when the swirling jet enters the fluid at ré&sght: Normalizing
the data set and then computing vorticity reveals more ofithestructures.
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Figure 6.6:0MO08: A swirling jet entering a fluid at resfTop: Color-coding of
the velocity using a logarithmic scale from zero (blue) to72%ed).Middle: LIC
and color coding of vorticity from high negative values @Hwise rotation, blue)
to high positive values (counter-clockwise rotation, re@ihe black areas of the
LIC display areas where the velocity is zero. Again the dataxsas normalized
to reveal more of the flow structureBottom: Topology of the data set.

For computational issues, resampling of the OMO06 data setitoform 128«
128 rectilinear grid was done. This data set is referred ©M86(%). Note that
the magnitude of the inflow dominates the data set and a lbedEatures present
in the data can only be found when using streamline-basexdagipes like LIC
and topology. For these data sets, the shear flow generatdgk bgflow of the
swirling jet is the most prominent feature. The vortex bagakn results in some
vortices and many layers of flow with different directiongaa divided by shear
flow. The resulting structures are quite complex.

Another example of a swirling jet from CFD simulations aré inesteps of
an unsteady vector field. Again, the simulation considerdiader, and a planar
cut along the axis of the cylinder is used as a domain reguitira 141x 251
structured grid (Figure 6.7). This time-dependent datéssedlled VTOP. Again,
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the swirling jet enters a fluid at rest. This time, only onef lndlithe symmetry
plane is used. In the different timesteps of this flow the gatien, detaching, and
general path of vortices can be studied.

Figure 6.7:VTOP: A swirling jet entering a fluid at rest. Here: 6 out of 125 time
steps. From top left to bottom right: Timestep 1, 25, 50, T8 and 125. Color-
coding of the velocity from zero (blue) to maximal value viiitkhe corresponding
time step (red). Only the left half of the data set is dispthge the right half has

only zero values.
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6.3 Gas Furnace Chamber

An interesting flow data set is a gas furnace chamber as ited i heating a
house. The simulation solves compressible Navier-Stofaatens using a tur-
bulent model applied on an irregular grid consisting of M4 8trahedra with
32440 vertices. For template matching, the data was alson@ed onto a uni-
form grid with dimensions 126& 65 x 57. In Figure 6.8, the swirling gas enters
the chamber in the center of the left face while the air erftera 9 openings on
the top and 9 openings on the bottom, so that the combusties falace in the
center area of the chamber. The products of the combustwe e chamber on
the right. The flow is highly turbulent and exhibits a lot offdient scale vortices.
This is desirable, as the combustion will be more efficieptlinger gas and air
mix.

Figure 6.8: A gas furnace chamber. Color-coding of the \laf the boundary
to show the inflow areas. Streamlines (red) started at theahopbottom gas
inflow. The gas leaves the chamber in the rear. Streamlines)(beeded by the
results of matching with a % 5 x 5 rotational template (threshold 0.5) to display
vortices in the front half of the chamber.
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6.4 Deltawing

The delta wing is a vortex break down study. Ideally, tworstr,dubular vortices
form above the wing along with secondary and tertiary vegjeach with oppo-
site rotation direction to the former vortex. The two welfrfeed vortices on top
of the delta wing are necessary for the generation of thedliftl thus the ability
of the airplane to fly. However, in certain circumstances liw velocities and a
high angle of attack, the vortices can burst. This dradyicatluces the lift which
leads to dangerous flight conditions. The pressure, whielxested on the wing
by the vortex burst, can be so high it can lead to structunaladge and destroy the
wing. Therefore these vortices and their breakdown areedu@igures 6.9 and
6.10). This data set is a steady simulation with an angletatktof 25 degrees.
The grid consists of 1.8 million unstructured points formé3 million cells. For
demonstration purposes and acceleration of the compntatithe Clifford con-
volution, resampling of the area around the wing to a unifgrid of dimensions
66 x 47 x 24 was done (Figure 6.10, top left). The new grid has the |defer
corner at (0,-0.25,-0.1) and the upper right corner at @25, 0.15).

Figure 6.9: The 3D delta wing data set. This is a study of wobieak down.
The pressure on the surface is color coded. The results afgbethm of Sujudi-
Haimes basically depict two vortices, though secondarytartéhry vortices can
be seen as well. Some streamlines are drawn to enhance taestardling of the

flow.
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Figure 6.10: The 3D delta wing data set. The pressure on ttiacguis color
coded. The results of the algorithm of Sujudi-Haimes wetergd by segment
length and depict the two major vorticeSop left: The boundary of the resam-
pled grid. Note that the wing itself vanishes in the resaihplata set. As the
vortical structures above the wing are of interest, thisdasdisadvantage here.
Top right : Isosurface (value: 5000) of the vorticity of original datt. Thus, the
shear flow at the boundary of the wing is displayed as vigdttom left: Isosur-
face (value: 30) of the similarity of the resampled dataset3x 3 x 3 rotational
template.Bottom right: The data set was normalized before the template match-
ing, enhancing the visualization of the vortical structuirethe rear of the wing.
Isosurface (value: 0.4) of the similarity.

The shear stress vector field defined on the wing is studiecesTherefore
the surface of the delta wing was extracted, and flatteneétta glanar 2D data
set (Figure 6.11). This flattened delta wing is defined on egular grid with
25800 grid points and 49898 cells. In this data set, the séiparand attachment
lines are of interest (Figure 6.4) [57,95]. They are a resiulhe vortex systems
above the wing, as these press the flow onto the surface aitdififagain.
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Figure 6.11: The flattened surface of the delta wing with tladl shear stress
vectors. LIC and results of pattern matching with & 5 divergence template.
Adaptive color coding of the results. Red corresponds th kignilarity and con-
vergence, and blue to high negative similarity values amdrgence. The separa-
tion and attachment behavior of the flow is clearly depicted
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6.5 ICE

This data set describes the flow around an ICE train (Figur2)6noving with a
speed of 250 km/h. The wind comes directly from one side batidihe speed of
the train, the angle of attack is 15 degrees. The wind hit¢GRetrain front and
left, and then rolls up on the right side of the train formiegeral vortices. These
vortices are closely connected to the air flow attaching tbssparating from the
surface of the train.

A section plane through three of these vortices with dimamsblx 51 was
computed (Figure 6.13), and used as an example of a simpleitvonly a few
features. The front wagon of the ICE train was extracted auadyaed separately
(Figure 6.14). It consists of 26532 positions and 52758 gudar cells. It is used
to demonstrate template matching on arbitrary surfacegi(®e3.1.2).

Figure 6.12: Vortices generated by an ICE train. A streafasarstarted in front
of the train clearly depicts the roll-up of vortices besitles train. At the border
of the train, abrupt separation of the flow can be seen. Figowetesy of Gerik
Scheuermann.



CHAPTER 6. DATA SETS AND TEMPLATES 92

Figure 6.13: A section plane through the vortices alongtiddrain.Left: LIC,
topology, and color coding of vorticity of the normalizedaaet.Right: Color-
coding of the magnitude of the velocity from zero (blue) tgthvalues (red), and
topology. Note that the vortices are within an area of lovoegl magnitudes.

F’ERSPEET%[UE

Figure 6.14: The front wagon of the ICE train. Color-codiriglee magnitude of
the velocity at the surface from zero (dark blue) to maximdark red).
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6.6 HARTII

In 2001, a major international cooperative research pragvas conducted to in-
vestigate the physics of blade pressure, noise radiati@hyirations caused by
the wake of helicopter rotors [10, 100]. Concurrently, a poshensive experi-
mental database for code development and validation hasdeerated. There
are three major sources for blade pressure fluctuationse raoid vibrations — the
superposition of flight speed and blade rotation, the aerantyc interference be-
tween the rotor and the main body of the helicopter, and tHeewartices of the
rotor hitting other blades. This research program conaéggron the latter phe-
nomena. It is called HART II for Higher-harmonic-controll€) Aeroacoustics
Rotor Test Il and it is a follow up on the HART program of 199HHC describes
the process of influencing the blade pitch angle, 3,4 or 5dipe revolution, to
reduce noise and vibration.) The German DLR, the French ONHfe Nether-
lands DNW, the US Army Aeroflightdynamics (AFDD) and NASA Igdey all
take part in the cooperation.

- \\

Figure 6.15: PIV measurement positions in the wake of a dpler rotor. The
red blade is at the rear position, and the wind comes front.rigigure courtesy
of DLR Braunschweig.
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6.6.1 The Test

The HART Il test was conducted in the open-jet, anechoicsiasion of the Large
Low-speed Facility (LLF) of the DNW. The set-up for the PIV aserements is
shown in Figure 6.16. The rotor is a 40-percent, dynamicatigt Mach-scaled
model of the Bo105 main rotor and operated counter clockwilsen looking
from above. The model is 4m in diameter and has four hingddstes with a
precone of 2.5 at the hub. For the HART 1l test, the rotor was operated at a
nominal rpm of 1041, thrust coefficie@tr=0.0044, hover tip speed of 218m/s,
and an advance ratio of 0.15, for a range of rotor angles andittons with and
without HHC. More detailed information can be found in thtedature [10, 100].

6.6.2 3-C PIV Measurements

The rotor wake was measured on both the advancing and etresadles of the
rotor using 3-component particle image velocimetry (3@)H#3, 75]. The mea-
surement locations (cut planes) are shown in Figure 6.1% rbtor azimuthal
orientations were used in order to keep the blade from ietiexd with the mea-
surements. There were approximately 50 locations on edelo$ithe advancing
and retreating sides for the baseline and two HHC conditibBassome locations
on the advancing side, PIV measurements were made for $&xatit shaft angles
to get more precise information about various flight condisi from steep climb
to steep descent. At every PIV measurement location, 1Q@8riteneous vector
fields were obtained, not to get time-dependent behavibtplayverage the results
to get a statistically based mean behavior at the positioms time-dependent be-
havior can be studied by tracing the vortices through thiemdiht measurement
positions as these are placed along the path of the vortices.

The PIV setup for the HART Il test consisted of five digital eas and three
double pulse Nd:YAG lasers. The lasers and cameras weretetban a common
traversing system in order to keep the distance betweeratheras and the light
sheet generated by the lasers constant, even when movinfiet@ict measure-
ment locations (Figure 6.16). Thus, measurements couldbgntied without
recalibration. The five cameras were located on the towertlamdasers under-
neath the rotor. To obtain measurements on the retreatieg thie entire support
structure and tower was repositioned.

The three laser systems generated a light sheet of 1.5m, hiciky tvith
an orientation of 30.6with respect to the wind tunnel axis. The cameras and
lasers were synchronized with a one-per-rev signal givethbyrotor, allowing
for recording at desired phase-angles of the rotor blade.c@amera was used for
visual checking of the seeding of the particles in the flovopto the PIV data
acquisition to guide the other cameras to the vortex cefitee. other four cam-
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Figure 6.16: HART Il measurement configuration. Figure tesy of DLR
Braunschweig.
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Figure 6.17: A raw PIV image. Out of a stereo pair of these iesag-C PIV
vector fields are computed. Figure courtesy of DLR Braunsipw

eras were used for two simultaneous PIV measurements ofvétralbflow and
a small, higher resolution image focused on the vortex cegen. Each camera
had a resolution of 1024 by 1280 pixel, digitized to 12 bit.e@amera from each
system was located above and below the rotor plane, regelyctihe difference
in spatial resolution was obtained by using different lsnse

Flow seeding was accomplished by a specially designedrsgealke located
in the settling chamber. The rake was 3m by 4 m and was corth&zteaskin
nozzle particle generators. Di-2-Ethylhexyl-Sebacat KISt was used as seed
material. The mean diameter of the particles generated elasvid um. More
detailed information can be found in the literature [10,78,,100].

6.6.3 Previous processing of the HART Il PIV data

3C-PIV measurements have been applied before, and not @nhetHART II
data. Some measurement of the wake of a hovering helicopterell as first
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Figure 6.18: One vector field out of the HART Il measuremeiisplayed are
LIC and color coding of vorticity from high negative valuedqckwise rotation,
blue) to high positive values (counter-clockwise rotaticad).

attempts of processing the vector fields has been done, éonghe, by Heineck
et al. [43].

Note that 3C-PIV measurements result in three-componestordields of
the flow measured in image planes (Figure 6.15). There areetiately two
challenges concerning these data sets. First of all, treeiglof the particles in
the major flow direction is often, though not always, muchgleigthan the vortex
components and thus hides the vortices. Furthermore, taéhda been measured
and therefore contains measurement error besides theahaitbulence of this
flow. An analysis of the size of the errors of the PIV measuranias been
done by Raffel et al. [75]. Most of the time, the vortices ap¢ arthogonal to the
measurement plane. Methods for determining, for exanipéesize of the vortices
will therefore give biased results. It is necessary to deitee the direction of the
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vortex and to correct the data by projecting the (three-aomept) vectors onto a
plane orthogonal to the vortex. There is often more than amtex in the data
and the vortices and the wake sheet can influence each otkaliing again in
a non-optimal vortex shape in the image plane. Every vorextb be found
and corrected separately by removing the influence of otbeices, which is a
recursive problem.

The rotor wake contains vortices in all creation, aging aestmiction phases,
the destruction being due to bursting or interaction withdels. Regarding di-
rect visualization, the vortices are often hidden by meam omponents (Figure
8.11). Removing the mean flow is not as simple as averagingeb®rs and
subtracting the result as the vortices influence the averbgée independent of
the mean velocity components, the out-of-plane componewbrdicity w;,, that
is, the vorticity of the two in-plane components, has beedusainly for vortex
detection and classification.

Figure 8.11 shows the vorticity of one of the instantaneata dets and the
effects of measurement errors. In [10], the vortex core fsdd as the center of
vorticity (CoV):

Definition 6.6.1 Letp(i) € Q denote the positions within an ar€y and letcw;(i)
the vorticity at the positiop;. Then thecenter of vorticity of Q is defined as

oy SiP0) (i)

ip(i)

The sum is either taken over the whole frame or only within giae around
the suspected vortex center, which can be found by manuadatisn or locally
extremal vorticity. The latter approach has the advantahgethe CoV is only
influenced by one vortex, but the general area of the vortdxtaamsize have to be
determined beforehand.

Two methods to determine the size of the vortices have besshagsfar [10,43,
100]. First, velocity cuts through the vortex can be analyzmit these are quite
ragged due to the noise. Better results are obtained byratieg the vorticity
within a disc that is successively enlarged, and plottirggressults as a function
of the radius. The maximal integration result, divided by thdius, gives the size
of the vortex, and the profile, if convex, gives the velocityte core radius and
the parameteN of the Vatistas vortex model [102] (Section 6.1.1) as déscti
in [10].

A problem is the fact that the vortices are not orthogonahm light sheet
where the data is acquired. The angle between vortices aadurament plane
can be in the order of 4%r even more [11]. In the images, this presents itself in
an elliptical instead of circular shape of the vortices. &@roper evaluation of
these vortices, the direction of the vortices has to be oeited and the images
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projected onto a plane normal to the vortex direction. Qiie, for example, the
computed size of the vortices will be larger than the actizal. s

Two approaches for determining the orientation are desdrity Burley et
al. [11]. The first approach is to remove the mean vectors fiteerdata. Then,
within the vortex, averaging of the vectors results in thection on the vortex
as the rotational parts of the vectors erase each other. appioach has to be
combined with projecting the data onto the computed orthagimage plane and
iterating the whole process to give good results.

The second approach is to plot the up-wash angles given byutef-plane
component of the vectors and fit the results with a sine-waékie.maximal value
and the zero-crossings of the sine-wave give two angleshadatermine the di-
rection of the vortex.

Both methods suffer from the facts that the measurementisrtargest in the
vortex core due to less seeding within the core, and the bplame component
itself can not be determined as well as the in-plane comgsen&he averaging of
the first method and the fit of the sine-wave in the second ndatbanterbalance
some of the errors. Nevertheless, some uncertainty is txpected. Raffel et
al. [75] show that for well-formed vortices, both methodsulein generally the
same direction, but in the early stages of formation, themseéenethod is more
stable as the relative magnitude of the axial velocity islEna

The images at each measurement position were averagedbdt@ng the
vortex core positions as the positions differ due to flugturet in the rotor tip
positions (Figure 6.20). In some extraneous images, thiexevas not defined
well enough, so images where the maximum vortiatydoes not exceed a certain
threshold are discarded.
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Figure 6.19: Part of a 3-C PIV image around a vortex. The dlalderage has
already been removed.eft: Velocity in the direction of the vortex. The image
is shown from front. Middle and right: The local average has been removed,
too. Now the vectors are only orthogonal to the vortex diogct As the vortex
direction is not orthogonal to the image plane, the vectorseout of the plane.
The image is shown from frontr(iddle) and back ight).

Figure 6.20: Vortex core positions at two measurement joosit 20 images each.
Left: The measurement position is shortly after vortex creatight: Measure-
ment position is at a place where the vortex is quite old.



Chapter 7

Clifford Fourier Transform

The Fourier transform (Section 3.3) is a basis transformfrmage space to fre-
quency space. This is useful since images can be analyzedguency space
where it is easier to describe the phase and frequency ofrthged data. Filter
responses are often better analyzed in the frequency ddmaause of the con-
volution theorem. Thus, applying the Fourier transformeoter fields in the con-
text of Clifford convolution opens up a whole new approadhdioalyzing vector
fields. Furthermore, in signal and image processing, fagti€otransforms are
used to accelerate the computation of convolutions. Thidavoe beneficial for a
Fourier transform within Clifford algebra, too. In this $ea, a Fourier transform
within the Clifford algebra$s, andGs is defined.

The basic idea concerning the definition of the Fourier fians of arbitrary
multivectors is to use the pseudoscdlan replace the complexin the Fourier
kernel. This works well in 2D and 3D dsshares the most important property
of i, that isi® = i2 = —1. However, this approach does not work for arbitrary
dimensions a§, = (—1)%”(”*1). As the vector fields from flow visualization are
mostly 2D and 3D, sometimes plus an additional time-din@ndhe restriction
to 2D and 3D is not hindering though it is mathematically tis$gng.

In Section 7.1, previous and subsequent definitions of ¢tberier transforms
within Clifford algebra are introduced and discussed. Tégnition of the Clif-
ford Fourier transform as well as the most important theareirthis transform
and their proves can be found in Section 7.2 and 7.3. In Secti, further is-
sues like discretization (Section 7.4.1), fast algorittionghe computation of the
Clifford Fourier transform (Section 3.4), the connectiontihe vector convolu-
tion (Section 7.4.2) and the definition of Clifford Gabordil$ (Section 7.4.4) can
be found. First steps towards an analysis of basic vectoledalow patterns in
frequency domain are taken in Section 7.5. Finally, resafiigpplying Clifford
Fourier transform and Clifford Gabor filters to template amétg can be found in
Section 7.6.

101
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7.1 Related Work

Extensions of the Fourier transform of multidimensionghsils arose from dif-
ferent areas of research, namely disparity estimation exidire segmentation.
There, the analytic signal, which consists of a signal aséfitbert transform, is
used to analyze local phase and amplitude. As the analgtiakis only defined
for intrinsically one-dimensional structures, extensiofthis signal became nec-
essary. While extending this signal to multidimensionaldures, Bulow [9] and
Felsberg [34] defined Fourier transforms within Clifforgebra.

The first extension of the Fourier transform to Clifford dge stems from the
analysis of the local structure and phase of a signal, whachbe analyzed using
Gabor filters (Section 3.5). To obtain symmetries for mom@ntbne direction,
Bulow [9] defined the analyzing filters id'alimensional algebras. As the Gabor
filter is closely related to the Fourier transform — it is ictfa windowed Fourier
transform — the path of extending the Gabor filter to theselaks led via the
definition of corresponding Fourier transforms.

Bulow [9] used a Clifford algebra wheeé = —1 and defined the-dimensional
Fourier transform by using the basgs, ..., e,} in the Fourier kernel:

Definition 7.1.1 LetF : R" — G, be a multivector-valued signal. Lefxe R".
Let the produc];_, be performed in the fixed order of the indices. Then the
Bulow Clifford Fourier transform of F is defined as

n

Fa{F}(u) = /R F(®) k|‘|1e<E’«Z’T><l<“k>|o|><|.

If n = 2, this transform is also calleQuaternionic Fourier transform .

The corresponding convolution theorems are rather coatel; and only given
for n= 2. The complex form of the kernel and the non-commutativityhe
multiplication present a problem, especially when tryingstablish a fast version
of this Fourier transform. Therefore, Billow [9] makes alse of the commutative
hypercomplex algebrd CA,, (Definition 4.4.2) for another definition of a Fourier
transform on multidimensional signals:

Definition 7.1.2 LetF : R" — HCA,, be a multidimensional signal. Lefixe R".

Let

0 & 0
T ¢
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be the matrix given by the basis vecrof HCA,. Then theCommutative
Hypercomplex Fourier transform of F is defined as

Fu{FHu)= | F(x)e-2MTX)gy
]RI"I
The Commutative Hypercomplex Fourier transform resultshie well-known
convolution theorem:

Theorem 7.1.3LetF,H : R" — HCA, be two signals. Then
Fu{F+H}(u) = Zu{F}(u)Fu{H}(u)

However, the step away from the Clifford algebra result®osing the geometric
information inherent in this algebra. Furthermore, Bul@vuses these tools for
image processing, that is only for scalar-valued fields.

Felsberg [34] extended the analytic signal in 1D to the menaysignal
in 2D by using embedded functions to obtain additional phaséherefore, he
composed vectors by combining spatial coordinates andairesponding signal
value,v(xy, x2) = (X1, X2, f(X1,%2)). He defined convolution only for vector-valued
fields and spinor-valued signals@» andGs. Furthermore, the filters are only ap-
plied from the left.

Definition 7.1.4 Letf: R":— R" C G, be a vector-valued field anfe: R" — S, C
G, a spinor-valued filter for n=2,3. Theoonvolution of f(x) and h(x) based on
the geometric product is defined as

(h+f)(x) :/ h(x ) (x—x)|dx’|.

Rn

Definition 7.1.5 LetF : R™1 — G, n= 2, 3, be an embedded function with=
xe; in 1D andx = xie1 + X0€ in 2D. Then theFelsberg Fourier transform is
defined as

F{F}u) = /R el ~2in X U)E (x)dxy

for n=2 and
F{F}u) = / / &2 XU ()l
RJR

for n=3.

Note that these definitions are inherently tuned to embeddsctions. As the
convolution was restricted to vector-valued signals andapvalued filters, so
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was the convolution theorem. Concerning other theorenesdésivative and Par-
seval’'s theorem, only special cases of the multivectonegkignals were consid-
ered. We extend this approach to genuine vector fields by @ifford convolu-
tion and proving theorems for arbitrary multivector-valigignals.

Another definition of a Fourier transform within Cliffordggbra comes from
mathematical theory. Brackx et al. [8] pursue the idea ohiedj the Fourier
transform by using operator notation and defining a pairasfgformations whose
harmonic average is the classical Fourier transform. Nwatethey use the Clifford
algebra where the square of the unit-vectorgis- —1.

The classical Fourier transform

F{F}(u) = / f(t)el~2mXW) gy

n

of a continuous signdl : R" — C can also be written as

F{f) =el72")
with the scalar-valued differential operator

1
H - §<—An+ ||X||2 - n).

wherel, is the Laplace operator computing the second derivativan @iifford
algebra Withej2 = —1, this is equivalent to

H= %(—0)%—x2—n).

A split of this operator leads to the refinement of the Fouremsform:
Definition 7.1.6 Let

1 n

H = (0= X)(0x +%) — 5.
_ 1 n
H™ = §<0X+X)<0X_X)_§'

Then, for n-dimensional signals, the pair of transformasio

rg.H+ = e(*i”z"ﬁ)
Fnu- = e(mg—r)

defines tha&rackx Clifford Fourier transform .

For 2D, the Fourier kernel is, up to constants, givee®8Y). A huge disadvan-
tage for the application of this transform is that no closaurfis given for other
dimensions yet.
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7.2 Clifford Fourier Transform in 3D

Definition 7.2.1 LetF : R — G3 be a multivector-valued signal. Lefixe R3.
TheClifford Fourier transform (CFT) ofF is defined as

F{F}(u / F (x)el~2ms00U) gy,

The inverse transformation is then given by
FZYF} (%) :/3F(u)e<2’ﬂs<x=u>>|du|.
R

Note that the Clifford Fourier kernal—2msW) is multivector valued. To be
more exact, it consists of a scalar and a pseudoscalar.

Theorem 7.2.2 The Clifford Fourier transform is a linear combination ofufio
classical Fourier transforms.
Proof: For a multivector fieldF : R3 — G, we have

F(x) Fo(X) +F1(x)e1+Fa(x)ex + F3(x)es
Fa3(X)e23+ Fa1(X)es1+ Fia(X)er2+ F1o3(X)€123
Fo(x) +F1(x)e1+Fa(X)e2+ Fa(X)es
F23(X)izer + F31(X)izer + F12(X)ize3 + F123(X)i3

I+

_|_

which can be regarded as four complex signals:

F(x)

+ 4+

This can be interpreted as an element@f Considering the linearity of the
Clifford Fourier transform, we get

F{F}u) 11

Fo(X) + F123(X)iz}(u
F1(x) +F23(x)iz}(u)

{F2(x) +Fa1(x)iz}(u)
F{F3(x) +F12(X)iz}(u)

7 )
7 Jer
7 &2
[ Jes

++ A+

The Fourier kernel consists of a scalar and a pseudoscaldrieector. Consid-
ering the multiplication rules for a multiplication with &m concludes this proof.
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Note that dual pairs form Fourier pairs. The multivectorcgia divided into four

orthogonal spaces which are then transformed separatelyauBe of Equation
(4.2.4), the 3D Clifford Fourier kernel commutes with evemyltivector (although

Clifford multiplication is not generally commutative). lAdf the well-known the-

orems hold. Because of the non-commutativity of the Cldfowultiplication, we

present theorems for the application of a filter from thedeid right.

Theorem 7.2.3 (Shift theorem) Let F : R® — G3 be multivector valued and let
F{F} exist. Then

F{F(x—x)}u) = Z{F}(u)e-2iaX .u)

Proof:
F{F(x=x")}(u)
[rsF(x—x )el-2maxu )|dx]
fRsF(k)e(—Z“i3<ka>)e( 2mig(X’,u k|
= [raF(Kk)e(-2mta(kU) gi|el-2ma(X’ W)
F{F}(u)el—2ma(X".u))

Theorem 7.2.4 (Convolution theorem)Let F,H : R3 — Gz be multivector val-
ued and let# {F} and.# {H} exist. Then

F{HxF}(u) = F{H}(u)Z{F}()
and Z{FxH}u) = Z{F}(u)Z{H}(u).

Proof:
F{HxFHu) |
= Jua(JuaHOOF XX e 20 jox
= fie (JreHOO)F(x = x )& 20U g |) x|
= Jaa (JreHOx '>F<x x> (=2rsXU) x| ) x|
= JroH(x (f (=220 iy ) x|
= JroH(x)e -2 ﬂ{F}( )ldx

Jrs H(x el =2 Widx |7 {F} (u)

= F{H}(u)F{F}(u).
Because of the commutativity of the Clifford Fourier kerisele Equation (4.2.4),
the proof of the other case is analog to the one above.
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Theorem 7.2.5 (Derivative theorem)Let the preconditions be the same as in
7.2.4. Then
F{OF}(u) = 2mizu%{F}(u),
F{FU}(u) = F{F}(u)2misu,
(u) —4Put 7 {F}(u)
and Z{FA}(u) = —4Pu2.Z{F}(u).

Proof: Since
(OF)(x) = 0F HF{FH}X)

= O Jga 7 {F}(u)elmsXW)|d]
= Jga O (F{FHu)e@ XU} |
— Ja O (€2M1XU)) F {F }(u)
= fps2miguel2MaXW)  (FY (u)|dx|
= 7 Y(2mizu.Z {F}(u))

we get
F{0OF}(u) = 2niguZ {F}(u)

and

F{AF}(u) = 2misu.Z {OF }(u) = —41Pu>.Z {F}(u) .

The application of the derivative from the right can be paa@alogously.

Theorem 7.2.6 (Parseval’s theorem)_et the preconditions be the same as in
7.2.3. Then
IFll2=[lF#{F}|2.

This is also true for the different grades of the multivestalued signaF such
that

I{F)ill2=[|#{(F)j}l2 ] =0,..3.
Proof: The theorem for the classical Fourier transform|i§||> = ||.#{f}|2. The

proof for the Clifford Fourier transform follows directlyrece the CFT is a linear
combination of several classical Fourier transforms.

7.3 Clifford Fourier Transform in 2D

Definition 7.3.1 LetF : R? — G, be a multivector-valued signal. Lefxe R2.
TheClifford Fourier transform (CFT) ofF is defined as

F{F}(u) :/]RZF(x)e(z’Ti2<x’u>)|dx\.
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The inverse transformation is then given by

FHFI = [ Fwelm=XWiay)
R

Note that this Clifford Fourier kernel —22(5U)) again consists of a scalar and a
pseudoscalar. 15, this implies that the kernel is spinor-valued.

Theorem 7.3.2 The Clifford Fourier transform is a linear combination of aw
classical Fourier transforms.
Proof: For a multivector fieldF : R2 — G,, we have

F = Fot+Fiei+Foeo+Fioero,
which can be regarded as two complex signals

F(X) 1[F0(X) + F12(X)i2]

+ eulF1(x) + Fa(x)iz,]

which can be interpreted as an element@t Considering the linearity of the
Clifford Fourier transform, we get

F{F}u) = 1[F{Fo(x) +Fi2(x)iz}(u)]
+ e[ F{F1(x) +Fa(x)iz}(u)]

which means that the 2D Clifford Fourier transform is theslam combination of
two classical Fourier transforms.

Again, dual pairs form Fourier pairs. This time, the Foukernel does not com-
mute with every multivector, rather it commutes with thengpipart and anti-
commutes with the vector part. Therefore, we present cotieol theorems for
vector and spinor-valued fields separately. Note also Heatrtultiplication of the
Fourier kernel from the right is not quite the same as thahftioe left as in 3D.

Theorem 7.3.3 (Shift theorem) LetF be multivector valued and le¥ {F } exist.
Then, we have

F{F(x—x)}u) = Z{F}(u)e-2i2X )

Proof: Analogous to the 3D equivalent (Theorem 7.2.3).
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Theorem 7.3.4 (Convolution theorem)Let F,H be multivector valuedf,h be
vector valued and, h be spinor valued. Note thdt, f and f are fields andH, h
andh are filters. Let#{F}, #{H}, #{f}, #{h}, #{f} and.#{h} exist. Then,
we have
F{Hx f}(u) = F{H}u)F{f}(u),
F{HxfHu) = F{H}(u)F{f}(u),
F{Fshi(u) = F{F}(u)Z{h}(u),
and Z{Fx h}(u) = Z{F}(u).Z#{h}(u).
Proof: Let f be spinor valued. Then we have
F{H= f}(u) _
= Jre(JrzH(X)F(x—x")|dx’|) el~2m20UD) x|
= Jie (Jra HOC)f(x—x'yel-2m2U) x| ) x|
= JreHOO) (Jge fx = )& 22U) iy ) o |
= JreH(<)Z{f(u)el 22X W

Sz H(x')el=220¢ W) dy | 7 { £} (u)
— Z{H}WZF{H).

Letf be vector valued, we have

F{Hx f}(u) .
= Je (Jrz HOO)F(x+x7)[dx’|) el 27206U) |
= fie (JreHO)T0x-+ x )&l 220U g ) x|
= JreHO¢) (fgaf(x+x )22 dx] ) [ax |
= JreHOX)F{F}(u)em20¢ W)y |
Sz H(x')el =220 W) g7 (£} (u)dx |
Jizz H(x')el-220¢ W) ' 7 £} (u)
= FZ{H}WF{f}(u).

and therefore '
F{H = fH(u) = F{H}(u)F{f}(u) .

The other cases of the convolution theorem can be proveadgoasly.

Theorem 7.3.5 (Derivative theorem)Let the preconditions be asin 7.3.4. Then,
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we have
F{OfH(u) = =2miuZF{f}(u),
F{f0}(u) = 2muF{f}(u),
F{0fy(u) = 2muF{f}(u),
F{fO0}u) = 2muF{f}(u),
F{FO}u) = F{FHu)(-2miu),
F{AF}(u) = 4mu’.Z{F}(u),

and Z{FA}(u) = 4mPulF{F}(u).
Proof: For spinor f, the proof of the derivative theorem is analogous to that of
(7.2.5). For vector valuefl we have

OHx) = O0F HF{H}X)

= O fpe.Z{f}(u)e@m2XU)|dx|
= Jge D (& XW 2T} (u)) ldx
= Jpe D (72X} 7 {1} (u)]dx
= e —2mipuel~2mM200W) 7 (£} (u) |dx|
= e —2miu.F {f}(u)eZ2XU)|dx|
= FY—2m,uZ{f}(u)

and
F{Of}(u) = —2miu.Z {f}(u).

Sincell is a vector and anti-commutes with the 2D Clifford Fourierred, the
derivative theorem for the application of the derivativenr the right can be
proved analogously. Thus, we have

F{OF}(u) = Z{FOYWu) = 4m2ul.Z {F}(u).
Note that the frequency u is vector valued and anti-comnitd .

Theorem 7.3.6 (Parseval's theorem)Let the preconditions be as in 7.3.3. Then,
we have
IFll2=[[Z{F}ll2-

Proof: Analogous to the 3D equivalent (Theorem 7.2.6).

7.4 Further Definitions and Properties

7.4.1 Discrete Clifford Fourier Transformation

Properties of the classical Fourier transform, like the@amg theorem and issues
regarding discretization and periodicity, can be extereteily since the Clifford
Fourier transform is a linear combination of several cleadrourier transforms.
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Theorem 7.4.1 (Sampling theorem)Let F be a multivector-valued signal sam-
pled on a uniform grid having spacings,. If F is bandlimited, that is

IFll2 = 0V[k| = knyg,

then it can be reconstructed without error provided tlﬁg > 2Knyg, Where kyq
is the Nyquist rate.

Proof: The sampling theorem holds for f when f is complex-valdedan be
understood as a linear combination of two complex signaDror four complex
signals in 3D, all sampled on the same grid. The Clifford Feutransform is a
linear combination of two or four classical Fourier transfos. Thus, the sam-
pling theorem for multivector-valued signals follows ditg from the sampling
theorem of complex-valued signals.

7.4.2 Clifford Fourier Transform and Vector Convolution

Since the vector convolution on vector fields, as given bybEkg et al. [42],
is part of the Clifford convolution, we can also analyze ithim this context.
However, the theorems for vector convolution and correfaéire not as simple as
those for Clifford convolution and correlation. Consideneolution in 3D where
f.h: R® — R3 c Gz are two vector fields.

Since (hxF)(x) = ((hxT)o

we get F{(h+f)}(u) = (Fihy, F{f}) +(F{h}F{f})s

Since the Clifford Fourier transforms of 3D vector fields @on a vector and a
bivector part{.#{h}.#{f})sis generally nonzero. In Figure 7.3, one can see that
there are substantial vector and bivector parts, even focayvector patterns.

7.4.3 Fast Clifford Fourier Transform

One of the reasons for the success of the Fourier transfommeige processing is
the existence of fast Fourier transform (Section 3.4). Athms for the fast com-
putation of the Fourier transform take a divide and congpgr@ach based on
recursively dividing even and odd elements. The basic agbrassumes that the
dimensions of the images are of the forkn Since the Clifford Fourier Transform
can be computed as a linear combination of several regularidfaransforms,
FFT-like algorithms can be applied directly for acceleratof the CFT. The Clif-
ford Fourier transforms used for Figures 7.1 and 7.5 hava bemputed using a
fast Clifford Fourier transform. Thus, the computationiald of the CFT for this
data set was reduced to less than a second.
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Figure 7.1: OM06(®) (Section 6.2).Left: Color coding of the absolute magni-
tude of the vectors. The colors are scaled from zero (blugjeanaximal magni-
tude (red).Right: (Fast) Discrete Clifford Fourier transform of the datasgtro
frequency is located in the middle of the image. Vectorssi@am to multivectors
when using Clifford algebra in frequency domain, thus, celading is based on
the magnitude of the multivectors. Scaling of the colorshis $ame as the left
image.

7.4.4 Clifford Gabor Filter

The definition of Gabor filters in 2D and 3D Clifford algebrahg convolution of

the Clifford Fourier kernel with a Gaussian filter analog tefiDition 3.5.3. Thus,

the complex in their original definition is replaced ky or i3 respectively. As the
CFT can be reduced to several complex transforms in the owies, it directly

inherits most of the properties of the Fourier transformoalar fields. The Gabor
Filter can be understood as short-time Fourier transfofirhss, the Gabor filters
on multivector fields inherits the properties of the Gabdeifd on scalar fields,
too.

Definition 7.4.2 Let g: R" — R be a Gaussian filter with variance. The im-
pulse response hR" — C, n= 2,3, of theClifford Gabor filter is defined as

h(x) = g(x) «n*U)
The frequency response is

H (u) — e*2n20'2”u”)
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7.5 Analysis of Basic Vector-Valued Patterns

Now that the Clifford Fourier transform is defined, the coctien between wave-
forms like sine and cosine and basic patterns found in flowldiean be studied.
First of all, a sine wave in one direction was taken as one@fwo components
of a vector field resulting in a pattern similar to shear flovhisTsine wave was
then shifted in the spatial domain to observe the change a$eim frequency
domain. The results are analogous to scalar fields, and belphase of the 2D
vector, which is interpreted as a complex number, changgsadging a second
waveform in the other direction, flow patterns which are \Wathwn are generated
(Figure 7.2).

This leads to the analysis of vector valued flow patternsaquiency domain.
Therefore, the Clifford Fourier transforms of some 3D patdgFigure 7.3) were
studied. 3D patterns are easier to understand due to thprietation of the 3D
vector as three complex numbers in contrast to the 2D vediartws interpreted
as only one complex number.

Figure 7.2: Two single waveforms result in complex flow pattehen overlaid.
Top: Grid, hedgehog and LIC of the patterns in spatial domBottom: Grid and
hedgehog of the DCFT of the patterih®ft: A waveform in y-direction in the x-
coordinate of the vectoMiddle A waveform in x-direction in the y-coordinate.
Right: The flow pattern resulting from a superposition of the sngaves.
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Figure 7.3:Top: Various 3D patternsMiddle: The vector part of their DCFT.
Bottom: The bivector part of their DCFT, displayed as normal veofdhe plane.
Left: 3 x 3 x 3 rotation in one coordinate plankliddle: 3 x 3 x 3 convergence.
Right: 3 x 3 x 3 saddle line. The mean value of the DCFT is situated in the
center of the field. In 3D, the waves forming the patterns caredsily seen in
the frequency domain. The magnitude of the bivectors of t&8&Dis only half

the magnitude of the corresponding vectors, though botdiapgayed with same
length.

This split of the components of a 3D vector can be found in t&&Ds of the
three patterns showing rotation and a saddle along one axisa convergence
to a point (Figure 7.3). Rotation and saddle line, which arepetition of the
corresponding 2D pattern (Figure 7.4) along the third &xase no non-zero Clif-
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ford Fourier coefficients corresponding to this third direc as the values do not
change in this direction. The DCFT of the convergence, orother hand, has
non-zero coefficients for the third direction as convergaiag&es also place in this
direction.

Note that all 3D patterns are real valued. Thus, the real cloveralued parts
of DCFTs are symmetric (Theorem 3.3.11), that is

(Fe{thu)1=(F{f}(-u))a
The imaginary or bivector parts are antisymmetric,
(Fi{fh ()2 =—(FA{f}(-u))2

This is in contrast to the visual perception of these pastentich would rate the
vector part as antisymmetric and the bivector part as symerdbie to the orien-

I

Ml

Figure 7.4: Various 2D patterns (black hedgehogs) and te€FT (red hedge-
hogs). Top left: 3 x 3 saddle.Top right: 3 x 3 convergenceMiddle left: 3x 3
rotation. Middle right : 3 x 3 convergent line.Bottom left: 3 x 3 shear flow.
Bottom right: 3 x 3 divergent line. The mean value of the DCFT is situated in
the center of the fields. The results of the 2D DCFT looks adnitfesing at first
since vectors are mapped to vectors.
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tation of the vectors. However, this visual perception & symmetry of vector
fields is in contrast to the mathematical definition of synmnahd antisymmetry.

The interpretation of the DCFTs of these patterns is oddsit #y careful dis-
tinction between the direction of the waveforms, and theaion of the resulting
vectors given by the component of the vector in which the ieawe is present,
has to be made. An example is the DCFT of the rotation. Themighkt vector and
bivector correspond to the waveform with directinAs the vector isae, = ay
and the bivector-bie, = —biy, the wave is in the second component of the vec-
tor. Out of the complex numbéa — ib) corresponding to the second component
of the multivectors, the amplitude and phase of the sign#his component of
the vector can be determined. Note that for the determinatiohe properties of
this waveform, the leftmost vector and bivector can be igdafue to symmetry
properties. Another property of these patterns is that dtetion and the saddle
line differ only in the phase of the waveform in directienThis can also be seen
in 2D (Figure 7.4). Remember that 2D vectors are interpragedne complex
signal. Thus, the symmetry properties of real signals atevalid. However, as
the x-component corresponds to the real signal, it is catguiggymmetric, and the
y-component or imaginary part is conjugate-antisymméirieeorem 3.3.11).

Regard the shear, divergence line and convergence linerpsitt The corre-
spondence between convergence and divergence line, wéiichectransformed
into each other by negating every vector, can also be seaegudncy domain.
Furthermore, the shear flow is only a phase-shifted copyesfdlilows. The same
connection is true for the rotation and convergence pattern

To summarize, rotation, convergence, divergence and saaddihts in 2D and
rotation in a single coordinate plane, convergence andgivee in 3D, were
constructed by using (half) waveforms in the coordinatethefvectors. Some of
these patterns and their discrete CFT’s are shown in FiguBeand 7.4. Some of
their formulas can be found in the following Lemma 7.5.1, st can be defined
analogous.

The patterns in Lemma 7.5.1 are all defined[er, 1]? and[—1,1]3 for 2D
and 3D, respectively. The same patterns can be defindd loi]? and [k, k]
by replacingx, y andz with x/k, y/k andz/k, respectively, where the real number
2k+ 1 is the overall size of the patternsxiry, andz-directions. Subsequently, the
patterns can been multiplied with a Gaussian window functi2efinition 3.5.2)
to reduce the influence of values by the distance to the cehtbe patterns.
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Lemma 7.5.1

Rotation (3D) - f

Rotation (2D) - f

Convergence (2D) : f

Convergence (3D): f (

~ ~— ~— ~— " ~—__—
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Saddle point (2D) : f

7.6 Results

7.6.1 Clifford Fourier Transform

We chose a turbulent swirling jet entering a fluid at rest (@&, Section 6.2)
for first tests. Figure 7.1 shows the application of a fastrei® Clifford Fourier
transform to the resampled field where the absolute valugbeobriginal and
transformed fields are shown and the zeroth Clifford Fowaafficient is drawn
in the center of the image. A 2D vector field transforms intoDav&ctor field
since it forms one complex signal. A 3D vector field transfsinto a multivector
field where only the vector and bivector parts do not equal gerce vectors and
bivectors form three complex signals.

The use of fast discrete CFT can also speed up the convolugioputation of
large data sets. Figure 7.5 shows the result of matching & Eotational pattern
to the swirling jet data set. The vectors of the data set haes Imormalized to
enhance smaller rotations. The pattern matching was cadpmuding fast CFT
and multiplication in the frequency domain. The resultshe tmatching were
color coded so that red denotes high positive similaritres@rresponds to right
handed rotation and blue denotes high negative similaalyes and left handed
rotations. The difference of computing the convolution patsal or frequency
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Figure 7.5:Left: Correlation of a swirling jet data set (OMO&JRwith a counter-
clockwise 5x 5 rotational pattern. The data set has been normalized tbasige
small structures. The image shows correlation computedequency domain
with the result transformed back to spatial domain. Colalicg of the scalar part
is blue for high negative similarities (-0.94) and a lefalad rotation and red for
high positive similarities (0.94) and a right-handed rotat Right: Difference
in the computation of the correlation operation in spat@hain using a periodic
boundary condition. The colors are scaled frerh x 1013 (blue) to 1x 1013
(red).

domain (Figure 7.5), which is due to numerical errors, is astix 1012 and

is insignificant. Some representative timings of the coumvoh operation on a
1.6 GHz Intel Centrino are listed in Table 1. The timings foe 5x 5 mask

correspond to the convolution computations used for Figuse

computation | size of pattern time (sec)
spatial domain 5x5 7
spatial domain 15x 15 27
using fast CFT] 5x5 5
using fast CFT] 15x 15 5

Table 7.1: Timings for the convolution computation on a 2828 2D vector
field, comparing direct computation and using fast disc€&fd and multiplica-
tion in frequency domain.
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Symmetric Phase-Only Matching

A normalization of the data set is usually done to get a shitylavhich is indepen-
dent of the magnitude of the velocities. This magnitudeesponds to the energy
of the signal. Another technique to obtain a similarity mgasndependent of the
energy of a signal, and with a much sharper peak at localregtres symmetric
phase-only matching (Section 3.6.2). With the definitiorihaf Clifford Fourier
transform, this can be applied to vector fields within thaviework (Figure 7.6).
For simplicity, this approach was studied for a rotatioryahmetric pattern, here
a rotation.

e

Figure 7.6: Symmetric phase-only matched filtering (SPOMBIts in a sharper
peak. Top left: 9 x 9 clockwise rotation. Hedgehog, LIC and gridop right:
DCFT of the same data. Hedgehog, color coding of the magsjtadd grid.
Bottom: Color-coding of the similarities, hedgehog of the orididata set, and
grid. Bottom left: Result of auto-correlationBottom right: Result of SPOMF
of the auto-correlation results in a sharper peak.
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In 2D, the vectors form a complex signal. Thus, normalizimg 2D vectors
of template and data set in frequency domain, multiplyirey réssulting signals,
and computing the inverse Clifford Fourier transform, esponds to symmet-
ric phase-only matched filtering as the energy of the signédldquency domain
is normalized. The analogon in 3D is interpreting vectorsghivector as three
complex signals as described in Section 5.4. These comjgeals can then be
normalized separately for symmetric phase-only matchmrpJ.

However, the results of symmetric phase-only matching etorefields are
not convincing (Figure 7.7 and 7.8). The results resemi#eotiiginal template
matching with sharper peaks, but also with more noise. A eotion of the results
of SPOMF on the original data and template matching on a niarethdata set
can not be detected. This is due to the fact that magnitudegelsaare not only an
amplitude property of the features, but also part of the ¥eawes in each of the
components which is destroyed during the normalization.

Note also that this symmetric phase-only matching resuttedmisclassifica-
tion, for example the classification of the saddle point astation in Figure 7.7.
Therefore, this approach was not used at all. However, sdrtfeese problems
may be due to the fact that the global phases were comparags, $iimmetric
phase-only matched filtering was also investigated in caatimn with Gabor fil-
ters (Section 7.6.2), as these can be understood as a emt&aurier transform
(Section 3.5) and thus allow an analysis of the local phase.

Figure 7.7: Normal and symmetric phase-only matched filte(EPOMF) of the
ICE section plane resampled to a 464 grid. Color coding of the similari-
ties to a counter-clockwise %65 rotational mask, periodic boundary condition
Left:Similarities of direct template matchingight: Result of SPOMF.
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Figure 7.8: Normal and symmetric phase-only matched filte(EPOMF) of the
OMO06(2) data. Color coding of the similarities to a counter-cloevsx 5

rotational mask, periodic boundary conditioffop left: Similarities of direct
template matching.Top right: Result of SPOMFBottom left:Similarities of
direct template matching of the normalized data detttom right: Result of
SPOMF of the normalized data set.

7.6.2 Clifford Gabor Filter

Gabor filters can be applied to compute a Gabor expansioy ctrebe used for
a wavelet decomposition, or directly as filters (Sectior).33ifford Gabor filters
were used to study symmetric phase-only matched filteringaafl phase (Figure
7.9 and 7.12). Again the rotation, which is a rotational syetmn pattern, was
used to study this approach.

The results of SPOMF of local phase and direct template nragch spatial
domain and matching via Clifford Gabor filters were compgfadure 7.9). Note
that the results of direct matching of the normalized datansspatial domain and
SPOMF of local phase results in similar structures. Howeteanplate matching
of the normalized data set results in sharper featuresh&umiore, the rotation in
the upper left of the data set is not detected using SPOMFaf fihase. Template
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matching of the normalized data set via Gabor filters is simd direct matching.
However, it introduces some new features, for example teslin the right of the
image. Adaptive color coding of the magnitude of the velesiteveals a differ-
ence in the velocities there, which might be the reason fef#iature. However, it
can not be verified using other techniques like LIC. Thus ftrobably an artifact
of the matching technique.

Note that template matching via Gabor filters, SPOMF or satpmputation-
ally more expensive than direct template matching in spdbanain. An idea
to reduce the effort comes from the investigation of basttepas in frequency
domain (Section 7.5). As these patterns consist of halfewam the different
components of the vector, the low frequencies should begimtaudescribe these
patterns. Thus, only five values in 2D and seven values in 3® teebe compared.
The Gaussian of the Gabor filter introduces new frequendes raultiplication
with a Gaussian in spatial domain equals a convolution wighGaussian in fre-
guency domain. Thus, this approach has to be studied clgrefutise with Gabor
filters as information of the Gabor coefficients is lost.

For a complete overview, the different template matchirdhtéques were
computed, without normalization, with normalization iraipl domain, and with
SPOMF (Figure 7.10). The difference of matching the normealidata set using
all coefficients or only the five low-frequency values werearaist 10%, though
the structures are the same. Matching using lesser coetBaiesulted in higher
similarity values. The highest difference is found whemgssPOMF. Here, us-
ing only the low frequencies results in even fuzzier imadéste that SPOMF of
the normalized data set makes no sense as both SPOMF anatempaltching of
the normalized data set are similar. No new information istbbut the results
are blurred beyond recognition (Figure 7.11).
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Figure 7.9: OMO06 data set. Template matching using GaberdiltTop left:
Similarities of direct template matching in spatial domasing the normalized
data set. Red denotes high positive similarities and a eswhbckwise rotation
and blue high negative similarity values and a clockwisatioh. Top right:
Result of SPOMF using Gabor filterBottom left: Template matching via Gabor
domain using the normalized data set. Note the similaribebe image top left
as well as the blue line in the right of the data $&ottom right: Adaptive color
coding from zero (blue) to high values (red) of the magnitofi¢he velocities
reveals a possible reason for the blue line in the right obtiteom left image.



CHAPTER 7. CLIFFORD FOURIER TRANSFORM 124

- -

- -

v J "

- J - /
-— " -_— .
-’ = r .

. .
- 5 ‘\‘ » - s '\ )

Figure 7.10: OMO6 data set. Pattern matching with>a%rotational template
in Gabor domain using all coefficientkeft) versus matching of low frequency
values only (ight). Color coding of the similarity values. Red denotes highipo
tive similarities and a counter-clockwise rotation andddhigh negative similarity
values and a clockwise rotatiofop: No normalizationMiddle: Normalization
of the vectors in spatial domaiBottom: Symmetric phase-only matching.
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Figure 7.11: OMO6 data set. Normalization in both spatial &equency do-
main is not advisable. Color coding of the similarity valué&ed denotes high
positive similarities and a counter-clockwise rotation &tue high negative sim-
ilarity values and a clockwise rotation. Pattern matchintpwa 5x 5 rotational

template in Gabor Domairleft: Pattern matchingRight: Matching of the five

low frequency values only.

Figure 7.12: Section plane of ICE data set. Color coding efsimilarity values
and LIC. Red denotes high positive similarities and a cauciteckwise rotation
and blue high negative similarity values and a clockwisatron. Left: Template
matching of the normalized data set in spatial domRight: SPOMF with Gabor
filters.



Chapter 8

Analyzing Vector Fields using
Template Matching

In this section, several issues of applying template matcto flow fields are ex-
amined and discussed. First of all, many flow fields are defimeidregular grids,
or even on surfaces. In Section 8.1, techniques to transfeplate matching to
work directly on these data sets are discussed. The nextigu&ghich will be
discussed in this chapter is the issue of superpositiorgiwplays a central role
in signal processing. However, in flow analysis, it is oftgnared so far. Super-
position effects in flow fields, and the appropriateness sfdofow visualization
and analysis tools, are examined in Section 8.2. Determii@atures parameters,
and not only position and size, with the help of template mmatgr in flow fields
is another focus. This part of the work is motivated by the HARJata (Section
6.6). The vector fields measured there are defined on a ungodrand noisy,
thus convolution should be an ideal tool for the analysishef described flow.
Details on the analysis, which serve as an example of pah@igpy feature anal-
ysis based on template matching, are given in Section 8.& kid not least, the
insight and techniques gained by this work are brought tegeaind an algorithm
for feature based segmentation of flow fields is developeeati&n 8.4.

8.1 Irregular Grids and Surfaces

Most often data sets from flow visualization are defined oegutar grids. The
cell sizes differ greatly in size as they are very small inaeg of interest and
pretty large in regions where the flow is mostly homogenediss is illustrated
in Figure 8.1. The Clifford convolution described so farymlorks on vector
fields defined on uniform grids. Simple regridding of irresgugrids results in a
high number of grid points and oversampling in most partshefvector field.

126
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Figure 8.1: Grid of the flattened surface of the delta wing

However, this is most often the best approach due to compogdtefforts of
subsequent algorithms which are applied to the data. Ins#gtion we discuss
several approaches of template matching of irregular gratlurfaces in order
to extend Clifford convolution and correlation to theseadsé¢ts. The principal
ideas of local resampling of field and template are invetgdyén Section 8.1.1.
In Section 8.1.2, they are used to extend template matchiagpitrary surfaces.
The results are given and discussed in Section 8.1.3.

8.1.1 Local Resampling
Scaling the Mask

The size of the cells of a flow field can differ greatly, and afying approach

for scaling the template accordingly has to be determindakrd are two princi-
pal approaches: Using one size at all matching positionscaling the template
according to the neighboring cells. Note that in this sutisecthe size of a tem-
plate denotes its spatial extent and not the number of nodesch dimension. As
the templates are defined on uniform grids, the length of e&tie edges is the
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Figure 8.2: Swirling jet entering a fluid at rest, 3D simuati Pattern matching
with a 5x 5 x 5 rotational template. As the cells differ greatly in sizsgtures of
different scales are detected
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property which is regarded here.

The first approach of scaling has the advantage that all etéeatures are of
similar size. However, not all features will thus be detdctend the matching will
be computed at positions where a corresponding feature @abenin the field
due to sampling constraints according to the Nyquist thedfEheorem 3.4.6).
A multiscale approach is necessary for a thorough inspectithe data (Section
3.6.3).

Often, the cells are already scaled to the size of the fedhateis expected.
Then, it can be advantageous to use an adaptive templateHonever, the size
of the template has to be determined at every node of the fjtisecflow field,
adding computational effort. The template is usually sta@ecording to some
measure of the cell sizes of the cells surrounding grid pin€Coping with all
kinds of different cell types like tetrahedron, prism, ca@vel hexahedron, taking
the longest edge connectedRacan be used for the scaling. Lebe the length
of this edge. Then the template defined on a uniform grid ikedoaith s. That
means that every edge of the template has leagtbw. Then the template can
be used for the convolution & As the template is scaled differently at grid
points with different maximal edge lengghfeatures of different scales are found
with the same template (Figure 8.2). Note that for unifornadgyrthis scaling
corresponds to the usual convolution computation basgdamnthe values at the
grid nodes.

The techniques for Clifford convolution on irregular gridased on local re-
sampling of field or template all use this scaling. Therefeeawill not mention it
every time and just assume that the template is scaled pyofeme vector field
might require another scaling measure like an averagedieAd these measures
will have some degenerated fields where they will not work.wel

Local Resampling of the Field

The first idea is to place the template onto the field, the cesftéhe template
aligned with the grid poinP to be convolved. Then the field is sampled on those
points where the grid points of the template "lie” on the fi@figure 8.3, left).
These values are then multiplied with the correspondingesbf the template.

Local Resampling of the Mask |

Most of the computational cost of the previous approach soitoen point loca-
tion for the sampling. This leads to the next idea. The fielglé&eed onto the
template. The center of the template is again aligned wiehgtind pointP to be
convolved. The vector field is cut off at the border of the téatgp Then the tem-
plate is sampled on those points where the grid points of éatov field "lie” on
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Figure 8.3:Left: Local resampling of the fieldiiddle: Local resampling of the
template.Right: Local resampling of the template, only 1-neighborhood

the template (Figure 8.3, middle). The sampled values arertultiplied with the

values of the vector field that "lie” on the same spot. Thistiime computation is
even more expensive, as all grid points of the vector fieldboanding box have
to be found.

Local Resampling of the Mask Il

To avoid this overhead of the last approach, only the pomitisen-neighborhood,
where (2n+ 1) or (2n+ 1)2 is the size of the template, were used. The
neighborhood oP is computed, that is the set of all grid points which are con-
nected tdP by n edges at most. All points of theneighborhood are projected on
the template, the template is sampled there and the samalieesvare multiplied
with the values of the field. (Figure 8.3, right).

8.1.2 Template Matching on Surfaces

The algorithms described so far do not work for arbitraryaes. The 2D algo-
rithm assumes a planar grid and the 3D algorithm only workgfils describing
volumes. When the surface can be projected onto a planalilggithe delta wing
in Figures 6.9 and 6.11, the 2D algorithm can be applied. d#s$s possible to
project the surface only locally onto a planar grid, which iesser constraint.

For a 2D irregular grid, one idea was to use a local resamplitige field. For
a surface, however, determining the positions for the clutiams is not straight
forward as the template is planar and the surface can havenplicated form.
Thus, the template has to be deformed to fit onto the surface a&pproach to
implement this is to use geodesics:

Definition 8.1.1 A geodesias the locally shortest path between two points.

In an Euclidean space, a geodesic is always a straight line €dirface, however,
the form of the geodesic can be quite complex. Furthermoris, not always
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unambiguous, e.g. in the case of two antipodal points on arsghere are many
shortest connections.

To determine the sampling positions, the geodesics artedtat the posi-
tion where the convolution is to be computed. The directiod kength of the
geodesics is given by the vectors from the center of the tat@pb the corre-
sponding nodes. The end points of these geodesics detettmeipesitions on the
surface which are needed for the convolution computaticgu¢e 8.4).

Note that it is not advisable to transfer the other approsiohcal resampling
where the template is resampled at the grid nodes of the fldd: fieor these
approaches, geodesics from the neighboring nodes of tfeceuno the position
where the convolution is computed would need to be detemhinkhis is not
solvable other then by brute force as the path of the gealesiwot predictable
enough.

e d

Figure 8.4: For matching on surfaces, the planar 2D templadéwe to be fitted

to the surface, here a sphere. This can be done using gesidasithe position
where the convolution is to be computed, geodesics areedtavith direction
towards the template nodes and with corresponding lendiths, the positions for
the computation of the convolution can be determinkeeft: Sphere and planar
template. Middle left: Direction and length of the geodesics are determined.
Middle right : The actual geodesics determine the convolution posittonthe
sphereRight: The template was fitted on the surface.

8.1.3 Results
Irregular Grids

For template matching on irregular grids, we have chosenésatdata sets from
real applications. The first data set is the OMO06 (Sectiol, @u2d the second is
the flattened surface of the delta wing (Section 6.4).

For the OMO6 data set, which is defined on a regular grid, teelt® differ
only slightly (Figure 8.5). The highest difference can bersat the border, due
to the different approaches of dealing with the missing @alautside the field
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(Section 3.6.1). For the computation of Figure 8.5, the mgsalues were as-
sumed to be zero for simplicity of the computation. Usingaloesampling of
the template automatically assumes ideal behavior of thedidside the data set,
as only the existing values influence the number of compaosdipns. Higher
similarities at the border of the data set are the resulte Nwdt using only the 1-
neighborhood corresponds to matching with:a3template, which is the reason
for the difference to the results when using a5 template.

Looking at Figure 8.6, the images of the results of resamgptive template
seem to be splotchy. This has a couple of reasons. First,afeesgt has some
cells of size zero which distorts the results of the convotutThis is an extreme

Figure 8.5: Pattern matching of a 2D vector field with & 5 rotation template.
The grid is regular. The similarity values are normalizeht areas corresponds
to the highest similarity and to a righthanded rotation ia field and dark areas
to a lefthanded rotation, as a righthanded rotation terapgathanged into a left-
handed by multiplication with -1Top left: Local resampling of the fieldTop
right: Local resampling of the templat&ottom left: n-neighborhood Bottom
right: 1-neighborhood.
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Figure 8.6: Regions of convergence (red) and divergenae=)ldn the wing.
Adaptive color coding of the results of pattern matchingwatsx 5 convergence
template. The grid is irregulafop left: Local resampling of the fieldlop right :
Local resampling of the templat®ottom left: n-neighborhood. Bottom left:
1-neighborhood.

example distortion which different cell sizes introductithe convolution using
n-neighborhood or 1-neighborhood. Cells which have largeeetsratios cause
the same problem. Another reason for the differences iseba&mpling process
which is based on interpolation of the grid points. Thus thst fivo approaches
show different results although in the continuous case wWwyd have exactly the
same results.

In Table 8.1 and 8.2, timings of Clifford convolution and feab matching on
two different data sets are given. Local resampling of theplate is the slowest
approach for both data sets. The OMO6 is defined on a reguthirtbus local
resampling of the field is faster than local resampling oftdraplate based on
n-neighborhood as the point location is not as expensive asegular grids.

Resampling of the template is the slowest approach, and tisem-neighbor-
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hood is more sensitive in terms of noise. Therefore, locsdmgpling of the field

is the best approach so far.

Table 8.1: Timings for computing one Clifford convolution the OM06 and the

flatwing data sets on a 1,3 Ghz computer

dataset | size of | resampling| resampling| n-neigh-
template| of field | of template| borhood
swirl. jet 3x3 4s 75s 5s
(12524 p)| 5x5 6s 314 s 24 s
deltawing| 3x3 33s 88s 10s
(25800 p)| 5x5 90s 390 s 40's

Table 8.2: Timings for complete template matching on the ®M&lidd the flatwing
data sets on a 1,3 Ghz computer

dataset | size of | resampling| resampling| n-neigh-
template| offield | of template| borhood
swirl. jet 3x3 8s 88s 10s
(12524 p)| 5x5 16s 352s 40 s
deltawing| 3x3 65s 103 s 21s
(25800p)| 5x5 183s 441 s 66 s

Surfaces

Due to the computation of the geodesics, the computatioaroplate matching
on surfaces is slow. It took several hours to compute the lempnatching for
the ICE front wagon (Section 6.5). The results are robusteaneixpected when
comparing it to the LIC image (Figure 8.7). The region of dgence at the tip
of the ICE train, where the wind hits the train, is clearlyivis. Thus, template
matching on arbitrary surfaces is possible though the coatipnal effort is high.

Conclusion

Local resampling of either field or template is slow in conigam to the timings
on a regular grid. This is due to the computation of the irdkton position,
and the interpolation itself. The results are not better eawd be quite noisy.
Thus, global resampling of the field is preferred though it geeatly enlarge the
number of positions and cells. Even then, template matchimthe resampled
grid will be faster, especially if the grid size in each dirsiem is X for some,
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Figure 8.7: The surface of the front wagon of the ICE datalsst.: LIC. Right:
Similarities of the normalized flow to a:33 divergent template. Color coding
from dark blue (convergence) to dark red (divergence).

possibly differentk € IN. Then, the fast Clifford Fourier transform can be used
for acceleration of the convolution computations (Secfigh3).

The only case when global resampling of the field will not warkall is
for flow fields defined on a surface. There, local resamplin¢gheffield using
geodesics to determine the sampling positions has to bethisedh it is slow.

8.2 Flow Fields, LSI Filter and Superposition

For signal processing, linear, shift invariant systemgi({8a 3.2) play an impor-
tant role as most systems can be described, or at least apattex, by them. The
linearity property of these systems is also known as therpogéion principle,
stating that the result of two superposed signals equalsuperposed results of
the single signals. This also implies that a complex sigaallze understood as a
linear combination of several simpler signals (Figure 8.8)

Please note the difference between the linearity of LSlesyst which are
mostly used to compute the similarity of a template to a flowdfie this thesis,
and the (non-) linearity of the description of the signakntiselves, which in this
case are flow fields. These are two quite different issueshaiicnot influence
each other.

The perception of systems as a superposition of less corsptgms is fun-
damental in signal processing. However, many flow analysis\asualization
techniques do not take this principle into consideration.if©other words, not all
analysis and visualization techniques are LSI filters. Tkaseral problems can
occur, for example in measurements of wind tunnel experismienhere, domi-
nant passing flow induced by the blower often hides vortioelsaher features so
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Figure 8.8: Linearity of features - the superposition ppie The flow on the
right is the direct sum of the two different flows on the left.

a direct visualization may not reveal all features or evemenat all [99] (Figure
8.9). Furthermore, the parameters of the detected featarebe altered due to
superposition effects.

In the vector fields measured in the HART Il project (SectioB)6for ex-
ample, superposition phenomena are ubiquitous (Figune 816t only because
of the dominant passing flow, but also because each crosEmdlade creates,
among other things, a new vortex which is added to the flowmtedely previous
blade crossings, the movement and the shape of the helicdpues, for this ap-
plication, a superposition perspective of the flow comesnadly. To understand
the wake of the rotor blades, and to be able to create a modglaif vortices
and other features have to be detected and their paramatersdibe determined.
For accurate determination of the parameters, the supagoosffects and their
consequences for the accuracy of the analysis methodsdaeestudied.

The data sets from HART Il (Section 6.6) were analyzed in thetext of
superposition phenomena. The data sets consist of 3-C P&gem that is 3D
vectors in a 2D image plane which have been measured in thdation [30].
For simplicity, the third or out-of-plane component wasleeted for the analysis
here. First of all, global methods for obtaining Galileavainant features (Section
2.4.2) were tried. Note that these methods try to minimizedtfiects of global
superpositions for the detection of features.

The difference in removing the average and computing theditoed flow (Sec-
tion 2.4.5) can be seenin Figure 8.9. The wake area, cle&ilyl@ in the topology
of the data set with average removed, crosses the bordes dita set and is thus
partly removed by the computation of the localized flow. Hegre with both
methods, only one of the 4 vortices revealed by vorticityattgrn matching with
a vortex mask is detected and visualized. Thus, not onlyajlobt also local su-
perposition phenomena have to be considered in the analydigisualization of

this data set.
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Figure 8.9: One vector field of the HART Il test measuremeflismages: Color
coding of similarity to a 5< 5 counter-clockwise rotational mask, dark blue: high
negative similarity, red: high positive similaritylfop left: LIC of the original
data seffop right: LIC and topology of the data set after removing the average.
Bottom left: LIC and topology of the localized flowBottom right: LIC and
topology of the flow after removing the harmonic component@saputed by the
hodge-decomposition. In all images, the streamlines doevatal more than one

of the four vortices indicated by vorticity.

In this section, the effects of local superposition in vefields are examined.
Furthermore, basic approaches for detecting and visagligatures in flow fields
are investigated regarding their robustness towards thagerposition effects.
The properties are demonstrated using the Vatistas vat@®} [Section 6.1.1), a
popular vortex model in fluid dynamics, as an example.

The first two data sets that are used for the examination dfehavior of flow
visualization and analysis techniques in the presencepdrposition phenomena
were computed by superposing two Vatistas vortices. Fofitbedata set, the
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Figure 8.10: Superposition and interaction of two Vatistagices [102]. All
images The original vortex centers are displayed as black dotsd (green),
hedgehogs (black arrows), color coding of an additiongperty from high neg-
ative values (blue) to high positive values (reldgft: Two Vatistas vortices [102]
with both radius 5, radial velocity 1 and N=Top left: Color-coding of similarity
to 3 x 3 rotational mask detects the true vortex centBrgtom left: Normalizing
the field and matching afterwards yields results more smtdahe topological
features.Right: The left vortex has radius 2 and radial velocity 1, the righé
has radius 5 and radial velocity 3, both have NFap right: Both vortices have
the same rotation directioBottom right: The left vortex rotates clockwise and
the right vortex counterclockwis®oth right images. Color-coding of vorticity.
Topology only detects one center each (green dot), thersfune streamlines are
added.

parameters of both vortices were equal, and the distandeeafrto vortex core
centers was twice their vortex core radius (Figure 8.1Q).léh the second ex-
ample, the strength and radius of one vortex is smaller tharother. In direct
visualizations like hedgehogs or streamlines, it is thaglén in the flow of the
other vortex and only bends the shape of the flow (Figure 8idlot).

Topology, vorticity and pattern matching with a simple taiaal mask were
applied in order to detect the vortex centers. Topologica Bcal streamline
based features are good at detecting and describing featfitbe actual flow,
but not for features hidden or moved by superposition. Tiseltiag errors in
the analysis of the feature parameters are high in the cas@pefposition, even
resulting in not detecting a vortex at all (Figure 8.10, t)ghThis is also due to
the fact that streamlines are independent of the actuatiglof the flow at one
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position (Section 2.1.1).

As vorticity and template matching are LSI systems, thewrtyedepict the
vortices in the resulting scalar fields. However, even theselts can be influ-
enced by superposition. Assimilation effects, like twotia@as with same param-
eters but different rotation direction which annihilateleather, effect the results
of feature detection using any feature definition. Note th& is no counter-
example for the linearity of the systems described by theptatas as the results
of matching the single vortices have same strength butrdiftesigns and thus
annihilate each other, too.

Superposition effects should be considered for the vizatdin of vector fields.
This perception of vector fields is necessary for some agipdios, for example
the analysis of the HART Il data (Section 6.6). Template mmaig is inherently
suited for detection and analysis of features in the presehsuperposition ef-
fects as computing a similarity based on convolution witermplate is a linear,
shift invariant system. For other applications, the actisamlines may be of
higher importance. There, streamline based approacheiswdlizing the flow,
like topological methods, are better at describing the floantvelocity and direc-
tion based feature models like the Vatistas vortex.

8.3 Feature Analysis

In this section, it is shown how to use template matching &atdre detection
and analysis in flow fields. It is quite obvious that the maxisimilarity value
will hint at the position of the corresponding feature. Dlethanalysis, however,
clearly goes beyond this straightforward approach.

This section is motivated by a cooperation with the DLR Biailweig con-
cerning the evaluation of the HART Il data (Section 6.6). As measurement
noise is quite a challenge in these vector fields, and theislalggned on a regu-
lar grid, convolution based feature analysis of this dat pgomising approach.
The vortices within the data are assumed to be perfectlyleircin practice, this
is not always the case. Especially in the early stages oéxareation, elliptical
or band-shaped vortices have been observed. Neverthiglessost of the mea-
surement positions of the HART Il PIV images, this assumpisowarrantable.

First steps of an analysis of the flow fields consist in detgcdill vortices and
determining their parameters applying the Vatistas mdset{jon 6.1.1). The de-
sired precision, however, is quite high. The positions efutbrtices, for example,
have to be determined with subpixel accuracy, that is, tlaeteposition within
a cell is needed. This presents a challenge to convolutisacbapproaches, as
these are usually evaluated at grid points. In this sectiaa,shown how sub-
pixel accuracy can be obtained nonetheless.
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It is not feasible to give a complete overview of the deteation of all possi-
ble features and their parameters. The chosen exampleis iseittion, however,
demonstrate the principal application of template maiglags well as some fine-
tuning for a specific application. Due to the described t#s&,Vatistas vortex
(Section 6.1.1) is again chosen as a feature example.

8.3.1 Similarity Value and Normalization Issues

As used by Heiberg et al. [42] (Section 5.2), the similaritywo vector-valued
patterns is defined by the sum of the scalar products of tleetovs:

s(x) = ((h+f)(x))o (8.1)

The other properties of the Clifford convolution are usedlkdain rotation in-
variant matching, and to have a unified notation for the ctutian of scalar and
vector-valued data for further processing of the data.

The similarity value itself depends on the magnitude of hbé&patterns in the
field and the template itself. Therefore, the obtained sintyl values are usually
scaled by the magnitude of the template pattern:

s(x) = M (8.2)
2x¢ch Ih(x")
Often, this similarity is more influenced by the velocity bitvectors than
their orientations. Then, it can be sensible to normalieesimilarity by the ve-
locities of the pattern in the data set as well. It can be aeli@juite easily by
normalizing the vector field beforehand. Matching on a ndized data set corre-
sponds to a matching of the streamlines rather than thenggttemselves (Figure
8.10). It is often used to enhance weak features, or to oltaitthing results
more similar to the results gained by streamline-based/aisal
Normalization of the data set will work very well in some cadeut not when
the features are hidden by other components of the flow @eét2). Further-
more, normalization will shift the position of featuresdire 8.10), and can dras-
tically change their size. When the velocity of vectors ie feature is important,
for example the velocity profile of a Vatistas vortex (Seettol.1), normalization
should not be used at all. Thus, for accurate determinafitimegposition of fea-
tures, the perception of the flow has to be determined bedmikithat is whether
a superposition perception (Section 8.2) is used or not.

8.3.2 Determining Existence and Position

Vortices are quite challenging in flow visualization andlgsis as no unified def-
inition of a vortex is existent at the moment. To detect wasi with the use of
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a convolution, a vector-valued template describing théexocan be used. Tem-
plates that have been successfully used are pure rotatbm &ankine vortex
(Section 6.1, e.g. Figure 6.3). An example of a similaritypga thus computed
can be found in Figure 8.11. Note that it is quite similar teosthing of a vortic-
ity field. The templates shown in Figure 6.3 are rotationahsetric. Therefore,
it is enough to compute one convolution only in order to gedtational invari-
ant similarity. Furthermore, the templates have zero meahntlaus they are not
affected by any mean flow (Figure 8.11).

This far, the similarity values are only given at the nodeshefgrid. To get
subpixel accuracy, two different methods are proposed Irérst of all, the center
of similarity can be computed:

Definition 8.3.1 Letp(i) denote the positions if?, and let i) be the similarity
value atp,. Then the center of similarity (CoS) Ofis defined as

Cos_ 2iP)*s()
Y ip(i)
CoS result in exactly the same positions. To determine tighberhood before
the CoS computation automatically, the size of the vortaihut subpixel accu-

racy) should be approximated first. The region thus defined noultiple thereof,
can be used before the computation of CoS.

W

Figure 8.11:Left: LIC and Vorticity. Right: LIC and a similarity image. The
similarity to a % rotational template is shown where blue denotes high siityila
to a counter-clockwise rotation and red a high similarit@atolockwise rotation.
Therefore the color is inverted in comparison to the vagtichage. Note that the
scaling differs, between: 4500 in the case of vorticity anti4 for the similarity
image.
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Another approach is to use a kind of bisection method. Natelthear inter-
polation, which is most often used in grids, can be computadavconvolution
with a triangle filters and that (scalar) convolutions arsomutative. That means
that computing the similarity at an arbitrary point in a adlthe grid results in the
same value as computing the similarity at the nodes and ttierpplating the re-
sults. Thus, the maximal similarity can only be at a grid nddewever, templates
can be generated with the rotation center at every arbiprairyt in space. So, the
template is not moved for subpixel accuracy, but the vorter or rotation center
within the template. It has the disadvantage that the tet@plas to be computed
for every new position, but the similarity values of diffatesubpixel positions
are nearly equal within a few iterations. This bisection moetneeds less data
than CoS. For simple test cases, if the neighborhood for tt émputation is
large enough and well behaved, the bisection method is legssp. As soon as
the data becomes complex, the bisection method produadssredich are more
reasonable than the CoS approach.

Another issue which should not be neglected is the connmebitween scale
and position, computing the position of a feature at diffiészales can yield quite
different results. Thus, position and size can only be datezd accurately when
their detection is coupled. This will be discussed furtimethie next section.

8.3.3 Determining Size

When the grid node with (locally) maximal similarity has bedetermined, the
size of the vortex can be found by using successively largeptates (Figure
8.12) at the position of the vortex center until the simtlaxalues begin to drop
off (Figure 8.13). Another method is to compute a scale spireexample a
Gaussian pyramid (Section 3.6.3), and compute the sittidarin each of the
scales. Note that the vortices are assumed to be circuléndanoment. For the
analysis of the size of the vortex, the feature center inghgptates can be either
at a grid point or at the sub-pixel position. There is not mddference in the
results of those templates due to the averaging effectsmviotation.

When the vortices in the image plane have an non-circulgrestiae detection
of the vortex with a smaller template can give wrong resdé (isolines in Fig-
ure 8.16). Then, the computation of the size should be dotiernwa small region
of the assumed vortex center. The region can be detectethatitally by using
all positions in the neighborhood which have similarity s@a@&s above a certain
percentage of the maximal similarity value. There is a r@heship between com-
putational effort and a stable threshold, but the regioasat that large, and, for
example, 33% gives stable results for all datasets testeslpdsition which gave
the largest similarity in the computation of the size of tloetex is the grid node
next to the true vortex center and thus both determine thé@aghough not with
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Figure 8.12: The size of a vortex can be determined by cotieolwith succes-
sively larger templates.

Similarity /

Figure 8.13: Similarity with a pure rotational templategyis) vs. template size
(x-axis) for three positions. Shown are the position withximaal similarity to
the % rotational template (red), the template with maximal samiiy within the
size computation (green), and the position with maximaldiate size within the
region defined by a percentage threshold (blue). The maxsimalarity of the
green line (black arrow) determines position and size of/tré&ex.
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subpixel accuracy, and the size of the vortex. It is not aatorally the position
where the maximal size was computed as can be seen in FidilgeNote that it
is not sensible to determine subpixel accuracy of positimhsaze before the true
vortex center has thus been identified. An example for théipns and sizes of
the vortices in one data set of the HART Il test can be foundguifé 8.14.
Again, the size is only determined with an accuracy of edgegtte so far.
For subpixel accuracy, the trick from the last subsectios toabe used again.
Here, this means that the size of the template stays the saintfeebassumed core
radius is changed. This way, an accuracy of one tenth of the khgth can be
achieved. A pure rotational template is no longer optiméle Rankine template

Figure 8.14: Visualizing position and size of all detectedtices with similarity
> 1. Blue denotes high similarity to a counter-clockwise tiotaand red a high
similarity to a clockwise rotation. In the wake area, theikinties are smaller.
Note the differences in position in comparison to the LIC loé fata set with
average removed.
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itself behaves not bad, but for subpixel accuracy, the vgl@t the core radius
should be enlarged to get a significant drop-off in the sintylavalues once the
radius is bigger than the vortex core radius. Another pd#gilis to use only
the vectors within half an edge or less of the core radius @nal the rest. With
this template, the velocity at the core radigscan be read of directly from the
similarity values. Because of the averaging, the resultligle bit smaller than
the actual values, but not significantly.

8.3.4 Elliptical Shape and Orientation of Vortices

So far, the vortices have been assumed to be circular. Inabe of the HART
Il data (Section 6.6) this is a valid assumption, but theutacvortices are not
orthogonal to the image plane and so the profile of the vortgiinvthe data
set is elliptical (Figure 8.15). This introduces problerosthe determination of
the parameters of the vortex model, and thus an orientabmection has to be
computed. In this section, an approach for determining tlentation of a vortex
based on the elliptical shape in the image plane is giverhdmptocess, the major
axes of elliptical vortices are determined as well as thesifon in space. Out of
these parameters and additional information coded in the®Bplane component
of the vectors, the orientation of the vectors can be detexthi

Looking at Figure 8.15 and 8.16, the idea for the determmadif the vortex
direction can be explained quite well. First of all, it is asged that position and
size of the vortex are known, though not necessarily witlpsugbaccuracy. Then,
a local coordinate system with origin in the vortex centearsed. The direction of
the major axis of the ellipse has to be aligned with the loeakis. The rotation
angle around the local out-of-plane axis (z-axis) can beprded quite easily

Figure 8.15: When the direction of the vortex is not orthaglaa the image plane,
the vortex shape in the image plane will be elliptical.
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Figure 8.16: Looking at similarity images gained by conuadva data set with
a rotational template or a Rankine vortex, the shape of thaltieg image tells
whether the vortex direction is orthogonal to the cuttingnoage planeléft) or
not (right). Out of the shape of the ellipse in the right image, the dioacof
the vortex can be computed except for the sign of the secdation angle. The
color map of the similarity image, where red denotes highlanity and blue low
similarity, is overlaid with isolines.

from the direction of the major axis. Then, the plane itsel o be tilted. The
angle for this rotation is given by the arc cosine of the rafithe size of the major
and the second axis of the ellipse. The last step is to daterthe direction of the
tilt - positive or negative.

A tensor is optimal for describing ellipsoids. Thus, theeatation tensor is
used here in combination with the convolution. Then, theamaxis of the ellipse
is given by the first eigenvector and the ratio of the two axeshle two eigen-
values. To determine the sign of the tilt, the vectors ithalfe to be used again.
Here, the total average is subtracted and then the vec®is/araged within the
vortex region. The sign of the y-component of the result give sign of the tilt.

One idea was to determine the shape of the ellipse out ohesolas shown
in Figure 8.16. But because of the noise, the actual isolmése HART Il PIV
images are quite ragged and thus transport the noise intesldts. Therefore,
elliptical templates are used which can also be interpratedn integration of
several isolines.

Several templates were tried for this computation. Firsalgfan elliptical
Rankine vortex with ratio 1:2 was used in combination with dhientation tensor.
The size of the larger axis was chosen as the diameter givérelgpproximated
size of the vortex. The next idea was to use a circular Rankontex or a simple
rotational template with half the approximated size. Thesalted in a similarity
image similar to Figure 8.16. On this scalar-valued sirntyamage, convolutions
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with a scalar-valued, elliptical template, which has theeahape as the vector-
valued elliptical template of the previous method, was qrenkd and combined
with the orientation tensor.

The second approach gave slightly better results as thedbthe ellipse was
not as restricted as for the vector-valued elliptic tengl&urthermore, the scalar
similarity image is pretty smooth which might be the secagason for the better
behavior of the second approach. The accuracy of the anglebeiter thar-5°.

A better result for the second angle could be obtained byingt¢ghe template into
the direction of both axes of the ellipse and convolving aglising the resulting
similarity measure instead of the eigenvalues resulted imaroved accuracy of
+2°, because the similarity encoded in the eigenvalues of tiemtation tensor
is often a little bit too small. The results degrade for tiigées larger thar-60°
due to the shape of the template. For the Hart Il data all teddilt angles are
smaller than this, so this presented no disadvantage.

8.3.5 Results
Accuracy

Several "gold standard” data sets have been generatedsfiongefor example
the data shown in Figure 8.16. There, the vortex charatiteriare known and
can be compared to the results of our algorithms. In someeskthest data, the
vortex direction is orthogonal to the image plane, in otligissnot. Furthermore,
the effects of noise to the results of the algorithms can beéiesti quite well. The
methods presented so far are all pretty robust in terms g&rthie to the averaging
effect of the convolution. Furthermore, as the templatebale zero mean, the
methods are not affected by any mean flow.

Detecting the vortex core with different templates like aeptotation or a
Rankine vortex always gives essentially the same resutiac€rning the size of
a vortex, a pure rotational template or Rankine vortex tesnldiameters which
are too large. Here, a modified Rankine vortex gives bettairlt® for first ap-
proximations as well as subpixel accuracy. The Rankineexastas modified by
enlarging the velocity at the core radius, or within a smallghborhood of the
core radius, and setting the velocity outside of the coreusath zero. Another
rotational template, where only the velocities at a ringteesd at the core radius
are larger then zero, behaves similar. To determine thexalirection, a rota-
tional template or Rankine vortex in combination with a acafalued elliptical
template on the resulting similarity image gives the bestilts as described in
Section 8.3.4. The methods give really good results evenlifes like position
or size, which have to be determined beforehand for the ctatipa of size or
orientation, do not have subpixel accuracy.
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Figure 8.17: Similarity (red) and size (green) of the vaasiof 20 images each of
two measurement positionkeft: A young and well defined vortexRight: The
vortex is quite old and often the vortex can not be found atEile x-axis gives
the number of the image and the y-axis gives the similarityeain red and the
diameter of the vortices in green. The results are computdtbut orientation
correction or subpixel accuracy.

After determining the accuracy of the methods, these meativade applied to
several of the 3-C PIV images from the HART Il test. Some rsstan be seen
in Figures 6.20, 8.11, 8.13, 8.14, and 8.17. As the methaxalarobust in terms
of noise and independent of mean flow, they behave well orettata sets. The
vortex characteristics thus computed can now be used foakzstion.

The techniques are applicable to other settings as wekscgdfy the compu-
tation of feature position and size. One example is the caatiom of position
and size of vortex systems above a 3D delta wing (Section @¥frigure 8.18,
isosurfaces of the similarities of this data set to a rotatipattern and the corre-
sponding sizes can be seen.

Naturally, the orientation correction is only applicabdeperfectly round vor-
tices. For deformed vortical structures, the rest of thehas will only perform
as well as for round vortices if the shape is determined leéfamd and coded into
the masks. In the future, the interaction between nearbtycesrcould be mod-
eled directly with masks. Furthermore, the whole wake hasetadentified and
classified. Therefore, the vector fields have to be segmémiedeveral vortices,
the mean flow component, and the wake areas with a lot of Wgrtihere no
vortices have formed yet.

Comparison to Streamline-based Techniques

For the Vatistas vortex, the vectors describing the flow aoeenimportant than
the actual streamlines. The velocity of the flow is not onlgispensable for the
engineers whereas it is neglected in topological methadghke projection of the
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Figure 8.18: The 3D delta wing data set, resampled to a unifpid. Displayed
are the pressure on the wing and several isosurfaces camgeimilarity to and
corresponding size of a rotational template. From top fetige to bottom right,
the value of the displayed isosurface grows from 10 to 35 epsiof 5. The
vortices at the front of the wing are small and strong. In tremaof the vortex
burst bubbles, large sizes and lesser similarity were coeapu

vectors describing the actual flow onto the vectors deswgibhe Vatistas vortex
can be more important than the flow itself. Thus, the use optates for the
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analysis of these vortices is much better suited than stimeetbhased approaches
like e.g. topological methods.

The Vatistas vortex is an abstraction of vortices. Thougialle by some pa-
rameters like vortex core radius and velocity distributiims model assumes a
perfectly circular vortex and thus only approximates realfl The vortex is as-
sumed to spread out infinitely, though the influence of theexowill converge
to zero with increasing distance to the center. This meaatstiie region of sig-
nificant influence will be larger than the actual vortex conel apread out over
regions separated by topology.

Flow field topology itself is based on critical points, thatgoints where the
velocity in the field is zero. As discussed in Section 8.2siquite sensitive to
local and global superposition effects. As the center of\thistas vortex is a
critical point in 2D, the position of the vortex can be eadilgtermined using
vector field topology. In contrast to other feature defimtidoased on vorticity or
pattern matching, the center position is automaticallyaeined with subpixel
accuracy. This is a distinct advantage of topology as s@bgigcuracy is often
hard to obtain [30]. However, topology is sensitive to nptherefore subpixel
results are meaningless for noisy data as e.g. obtained bguraments and the
only solution is smoothing the data.

The determination of the size of a vortex — or its vortex cegian — is much
more challenging. First of all, for the 2D Vatistas Modekifs no size can be
determined using streamline-based approaches and togallogethods as there
are no separatrices and closed orbits are at all distanthe t®nter. When two
vortices interact, as in Figure 8.10, often a saddle poinfines the regions of
the two vortices. The separatrices as defined by the sadoiegaem to enclose
the vortex regions. However, in the case of a spiraling s¢pay no size can be
determined numerically. For a closed orbit, the radius efdtbit or the area of
the region can be used as a parameter describing the size wbrttex. Note that
for the visualization itself, vector field topology will mihg characterize the size
of a vortex as given by separatrices surrounding the voiex.c

Comparing these quantities with the Vatistas parametexis agveals the two
different approaches taken by streamline-base and teenp&sted descriptions.
Vector field topology segments the vector field into regidirsame flow behavior,
that is every particle within the vortex region as defined dyological methods
will pass into the critical point or has emerged there. Theexocore radius
as defined by the Vatistas vortex can be either larger or smlan that region
(Figure 8.10), as the topology depends entirely on the resthe superposition
of features and not on the original properties of the Vadistartex (Section 8.2).

From this discussion it can be seen quite clearly that stiearbased and
template-based models take quite different perspectiveth® definition of in-
teresting features. The first globally describes regionsanfie flow behavior in
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relation to inflow and outflow regions while the other is manterested in local
properties like velocity and vorticity, which can not beeletined using topology
based methods at all (Section 2.1.1). However, it is apjdinadependent which
of these two perspectives is more appropriate or beneficial.

8.4 Classification and Segmentation

Due to the amount of data nowadays, automatic detectiossiilzation and visu-
alization of features is necessary for a thorough inspectidlow data sets. In the
last section, it was discussed how to apply template majokith vector valued
templates successfully for the detection of features in flelds. In this section,
the approach is extended to automatically compute featasedsegmentations
of flow data sets. Different problems of the segmentatioa tike influence of
thresholds, overlapping features, and classificationremoe discussed. Subse-
quent visualizations of the segmentation display imparsamictures of the flow
and highlight the interesting features.

In Section 8.4.1, the advantages and disadvantages obpseapproaches for
segmentations of images and vector fields are discussed,@mwbmes clear that
a successful feature based segmentation of flow fields haseeotdeveloped so
far. In Section 8.4.2, issues like overlapping featuresd@asisification errors are
treated. The resulting segmentation algorithm is giveneanti®n 8.4.4, and the
results presented in Section 8.4.5.

8.4.1 Related Work

When the amplitude sufficiently characterizes the feafuaewlitude threshold-
ing is useful (Section 3.6.1). The results can afterwardedss for component
labeling, where the connectivity of pixels with their neloghs is examined in or-
der to assign the pixel to objects. In vector fields, the atughd or velocity of the
vector field normally does not provide enough informationdegmentation. On
the other hand, amplitude thresholding of derived valu&s\orticity or similarity
values from pattern matching can be quite useful for firstymmsteps.

Another classical approach for segmentation in image jgsiog is edge based
(Section 3.6.1). The edges of objects are combined to foramdaries, which
then determine the objects. In vector fields, this might wimkshock waves,
shear flow, and separation and attachment lines, as theseecemerpreted as
edges. However, segmentation should also classify theserés. Furthermore,
feature models of vortices, sinks, sources and saddles loftee no real boundary,
e.g. the Vatistas vortex [102], a vortex model used by eraggeT here, the vortex
is assumed to spread out infinitely though the influence of/tineex to the flow
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is nearly zero outside a certain region around the vortekeceifhe vortex core
center is given by the maximum of the velocity profile, but titaasition from in-
side the vortex core to the outside is usually smooth. Thisbier is also typical
for other flow features. Therefore, edge based segmeniatftow fields will not
yield satisfactory results.

Looking at the vectors within a vortex or a swirling motiongeFigure 6.6),
it becomes quite clear that region based approaches aneérahgs[38] will not
work for a feature centered segmentation of vector fieldegei Computing the
topology of a vector field yields a segmentation of the flove irégions of same
flow behavior. However, the features can not be classifieduantfied well.
Furthermore, the resulting visualization is not centenethe features themselves
(Figure 8.19 and 8.24).

Segmentation based on anisotropic diffusion of LIC ima@ds fesults in a
feature based segmentation. However, there is no critersop the diffusion
process, making the results not easily qualifiable. Fumloee, the problem of
classification and quantification of the segmented feat@mesins.

Pattern matching has been used for segmentation of imagesliasThere,
similarity information of several different templates isngputed at all pixels in
the image, the features are classified according to thetsesntl the image is
then segmented into the regions of the features and baakgdjinformation. This
approach is transfered to vector fields in this paper.

Before starting a segmentation, it has to be determinedhwlaatures are
of interest, and should form the template set. This inclegegifying the type of
feature like vortex, shear, sink, saddle or source (Figureas well as the strength
and size of the features and the scale at which they appear.

8.4.2 Challenges

The basic idea of segmenting a data set via pattern matchiqgte easy: Deter-
mine all features present in the data set, compute theirasideshape, and label
all positions within the feature as belonging to it. All posns not labeled at all
will be background, or not interesting at the moment. Howeieere are several
challenges when trying to use this approach on vector fields.

Position, Size and Scale

Scale space considerations should not be neglected whthisggmentation (Sec-
tion 3.6.3). The size of the features, and thus the scalebiabwhey appear and
dissappear, can play an important role for the segmentéigure 8.19). The
classification of the features, and thus the segmentatam,be done for each
scale separately and be combined with scale space visimtigdike Gaussian
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Figure 8.19: Vortices generated by an ICE train. Segmemtati a section plane
through the flow (threshold=0.5), overlaid with LIC. Theaaet was normalized.
Red: rotation, orange: shear flow, light blue: separatitetament line, green:
saddle pointLeft: Only 3x 3 templates were used to determine the line features
shear flow and separation/attachment lirRght: Templates growing from size

3 x 3 till no significant similarities were gained were used ttedethe features.
Topology added to the segmentation results. Note that thetiedl vortices are
classified as shear flow when using larger templates.

pyramids (Section 3.6.3). Another possibility is to matekletemplate using dif-
ferent template sizes. The resulting similarity imagestb@&m be combined into
one scale invariant similarity image by using the maximahaf values at each
position.

A scale-invariant similarity will also ensure a scale-inaat detection of the
position of a feature as these are usually detected by loagima of the magni-
tude of the similarity values. Note that the position of atdiea would otherwise
depend on the scale at which the feature is evaluated, ecgtiter of a vortex with
an elliptical shape will have different positions for diéat scales. Furthermore,
the scale and template size resulting in the maximal siitylatso gives size in-
formation of the feature (Section 8.3.2 and 8.3.3). Thougbpsel-accuracy is
possible, it was better to start with a template of siad@ each direction where
A is the (uniform) edge length. To continue with all uneven péate sizes will
result in a growth of the radius &.

The computation of the convolutions with different templaizes can be ac-
celerated by computing the convolutions in Fourier dom8&iection 7.4.3). An-
other possibility is to start with a small template size anty aompute similarities
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with larger templates where the similarities with the seraémplates were above
a certain threshold. The results depend on the choice ohtlestiold, and large
features may be missed because they are hidden at the salall &hile this
approach seems to be stable for e.g. rotational patterasiithilarities obtained
for shear like patterns were often to small. However, thigragch can give fast
and useful results, especially for a first overall view of dag¢a set.

The size of a feature in a flow field is usually hard to define. nPbased
features, like saddle points, usually have no size, andiauahzed using only a
very small area. However, for segmentation and visuabratsues, larger areas
are preferred as they are not easily overlooked. The regoumad a point or line
based feature classifies this feature, and therefore caegheded as belonging to
it. This is also the size that is computed by the approacheabov

The size of a line based feature, e.g. a 2D shear flow, can bertbth of the
line, or the scale at which they appear. Due to the smootHhfegteof template
matching, the region with similarity values above a thrédivall be larger for
larger features. Thus, segmenting and visualizing thidslicsimilarities is often
good enough in this case.

For region based features, the size of a feature model carfibiég, as e.g. in
the Vatistas vortex model [102]. However, the size of theéesocore region is an
important information there. Again, this is exactly theesiaformation given by
scale invariant template matching.

Non-Orthogonal Feature Definitions

Orthogonality is also defined for vector fields:

Definition 8.4.1 Two vector fieldsi(x) andv(x) are orthogonal if
<uV>= / < u(x),v(x) >dx=0.

Note that< u,v >=< u*V >qg. Using vector valued templates for the feature
definition, orthogonality of features can also be deterhiog correlation of the
different templates: A pair of templates is orthogonal iidaonly if, their (ro-
tation invariant) similarity is zero. When features arehogonal to each other,
their description and subsequent matching will not resporitie other features
at all. One example of an orthogonal feature pair is puretiostaand pure di-
vergence in 2D (Figure 8.20, top). Here, the classificatibthe features based
on template matching and subsequent segmentation is cbviRut feature def-
initions can also overlap, for example a rotation and a sfiearboth describe
part of the phenomena of the other feature (Figure 8.20ptmtt Other pairs of
features which describe similar phenomena are sinks anceagence lines, and
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Figure 8.20: An example of orthogonal and non-orthogomaplates.Top: 5x 5
rotation and divergence are orthogon&ottom: 5 x 5 rotation and shear are
non-orthogonal.

sources and divergence lines (see e.g. Figure 7.4). In tasss, more than the
similarity of one template to the flow can be non-zero at orstjm. Therefore
the different similarity values have to be compared, ande¢héure classified ac-
cording to the largest similarity value which has been comguThis also means
that misclassification can take place. An elliptical ratatifor example, can be
more similar to the shear flow description than to a circudéation (Figure 8.19),
though it surely is a vortex.

Overlapping Features

There are also other reasons why more than one templateeglbnd to the flow
at a position. Convolution with a template is a linear ogerat The linearity
property is also known as the superposition principle (Be@.2). It means that
complex flow can be analyzed by matching with several quitgpk templates
where the similarity values will indicate how much one teatplresembles the
flow. It also indicates how much of the flow at this positionugdo this particular
feature model, and how much has to be described by otheradesplAn example
is a swirling vortex which is a superposition of a perfeciicalar rotation and a
divergent flow (Figure 8.8). Another example is a wind tunmdiere the overall
velocity of the air flow will usually hide smaller vorticesuBthis means that there
may be more than one feature at a position, depending on ettis point of
view is taken. In this case, segmentation is more challegngin
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One solution is to classify the flow according to the most dwant feature at
this position. But this is short-sighted as e.g. in the wimghiel experiment only
the overall flow will remain. Regarding the swirling vortexge could classify it
into a new class of swirling features. These swirling flows tren detected by
using the already computed similarities to rotation an@jence templates. The
percentage of these two similarities also gives a measutfeeaskewness of the
swirl.

The issue of superposition and overlapping features leatiset proposition
of computing a classification of the flow at every positioroiatl of the features
found there and the percentage in which they contributeddltw. This is also
a kind of segmentation, but one of the flow at one position &ch of the inter-
esting features. Note that when the data set has been npeahélieforehand, the

Figure 8.21: A swirling jet data set. Segmentation and LIEdRrotation, or-
ange: shear flow, light blue: separation/attachment liaek @lue: sink/source,
green:saddleLeft: Threshold of 0.5Right: Threshold of 0.7.Top: Segmenta-
tion using the similarity valuesBottom: when the difference between shear and
rotation was below 0.05, the flow was classified as shearrr#iha rotation.
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similarity values equal this percentage. Otherwise, thalarity values have to
be scaled by the energy of the flow to obtain this information.

Choice of Thresholds

The choice of suitable thresholds naturally depends on ithyeepties of the data
set to be analyzed. When the data set has been normalizedpamshstant flow
hides the features, a threshold of 0.5 was a robust staré ¥aluthe examined
data sets. When the data has not been normalized, anotheraappan be to
determine all similarities larger than one. Generallyf Ha maximal computed
similarity value is a valid choice. Note that the use of diet thresholds will
result in different segmentations (Figure 8.21).

8.4.3 2D, 3D and Time-Dependent Data Sets

The vector-valued convolution is defined for arbitrary nDedsets. However, the
rotation invariant matching is only defined for 2D and 3D so fdere, the use
of the orientation tensor as defined by Heiberg [42] can bamtdgeous as it is
defined for nD, too. However, it is assumed that the valuesghanly in one
direction, which is usually not the case, even for simple 2facets. As 2D and
3D data sets are most common, the rotation invariant majgciproach using
Clifford convolution poses no disadvantages.

For time-dependent data sets, each time slice can be segpremgtarately and
the resulting regions can be traced over time (Figure 8.Z2acing algorithms
are well known from image processing [51,52], and can beiegplirectly as the
similarity data is usually scalar valued. As time dependiata is often visualized

Figure 8.22: Segmentations of three successive time sftepswirling jet data
set data setffom left to right , threshold=0.5). The data has been normalized

before matching. Color coding: clockwise rotations in rad aounter-clockwise
rotations in blue. From light to dark colors: increase initanity values.
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using movies, the tracing itself can often be left to the efyéhe user (Figure
8.22). As, due to the averaging effect of the convolutioa,gimilarity values are
robust in terms of noise, visual discontinuities over ddf# time steps are not

158

expected.

8.4.4 The Algorithm

To summerize, the algorithm for the segmentation of veceddgi based on Clif-

ford correlation is computed as follows:

1.

Determination of the features of interest and the para-
meters to be computed

. Grouping of the features for segmentation and visual-

ization (e.g. all rotations, all shear flows, etc.)

. Determination of (non-)orthogonality of the feature

definitions

. Generation of (vector-valued) templates describing the

features or feature groups

. For each feature:

(a) Template matching (rotational invariant) using dif-
ferent features sizes

(b) Thresholding of the resulting similarity values

(c) Computation of the maxima of the similarity values
at each position, storing the corresponding feature
sizes.

(d) Local maxima of the results determine position and
size of the features

(e) Computation of possible other parameters of the fea-
tures

. For non-orthogonal features at a certain position, the

features resulting in the smaller similarities are
discarded

. For orthogonal features at a certain position, the domin-

ant feature is determined but all features are stored
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8.4.5 Results

The first data set the segmentation was applied to is theosgatine through vor-
tices generated by an ICE train (Section 6.5, Figure 8.1Bjs d@ata set was also
included to remind of scale issues (Figure 8.19). Furtheerribclearly shows the
problem of classifying rotations and shear flow.

The next vector fields which were segmented are the OM06 an@8data
sets (Section 6.2). The vector fields have been normaliziedebprocessing. The
segmentation and subsequent visualization of the datiggisghts the features
and thus guides the user through the data set (Figures 823laBd 8.24). Some
vortices are found in the data, and the layers of opposite fiivided by shear
flow, are clearly visible. The classification of the most doanit feature was chal-
lenging as the similarity values of matching e.g. shear atational templates
at one position in the data set sometimes differed only b@@LQthough both
similarities were above the threshold. This usually intisan elliptical vortex or
a swirling motion generated by shear flow.

As an example of a time-dependent data set, another swijdingas used
(Section 6.2). The data was normalized and segmented imt&wlse and coun-
terclockwise rotations, and background. Three succetsinesteps are shown in
Figure 8.22. In these timesteps, the split of a vortex into mew ones can be ob-
served. The pairing of two vortices each of different ratatbrientation, and the
path of the moving vortices, can be easily studied using segation throughout
all timesteps. Only a part of the data sets of these time ssegfgwn as the rest
was classified as background.

An interesting data set is the gas furnace chamber (Sect®)n &or com-
putational issues, the data was resampled onto a unifordnvgth dimensions
126x 65 x 57. The structures in the flow can easily be identified by tlyenss-
tation (Figure 8.25). Note that the shear flow at the frontdyot(in yellow) is
a misclassification, it is actually an elliptical vortex. i$ls one reason why the
vortex core itself (in red) extends into this area. Note #t@osaddle line behind
these vortices (in green), itis clearly visible in the bottonage.

Additional information of the gas furnace chamber can baegby display-
ing an isosurface of the velocity of the original data segFé 8.25, blue iso-
surface). Using this isosurface, the gas and air inflow stgeare clearly visible.
Note the vortices besides them, and how they follow the sludzaljacent air
streams.
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Figure 8.23: A swirling jet data set. Segmentation and LI€dRrotation, or-
ange: shear flow, light blue: separation/attachment liagk #lue: sink/source,
green:saddle. Threshold of 0.5.
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Figure 8.24: Segmentation of a simulation of a swirling jateeing a fluid

at rest (threshold=0.5). Red: rotation, orange: shear flioht blue: separa-
tion/attachment line, dark blue: sink/source, green: adap: Whole data set.
Middle andbottom left: Zoomed in. Streamlines respectively topology added.
Bottom right : Some details. Hedgehogs and streamlines added.



CHAPTER 8. ANALYZING VECTOR FIELDS 162

PERSPECTIVE

Figure 8.25: Segmentation of the normalized gas furnacenbka (Threshold:
0.5). Isosurfaces of the results (Value 0.5): Red: rotatigellow: shear flow,
green: saddles. The cores of the regions are displayedjsow the same colors.
Templates of divergence/convergence resulted in sirméarbelow the threshold.
The velocity of the original data set is displayed at an ibovaf 15 (blue).Top:
Core lines and region of the featuredBottom: The results of the segmentation
can also be used for streamline seeding.



Chapter 9

Conclusion

The goal of this thesis has been to transfer analysis mefhaaismage process-
ing to vector fields via the previously defined Clifford cohwion, and to use
them for automatic feature detection and subsequent vzsdiain of flow fields.
The methods developed thereby have all been examined aliddappccessfully
to several complex flow data sets.

The author has presented en extension of the Fourier tram$6oClifford al-
gebra in 2D and 3D, and proofed convolution and correlatimotems for the
Clifford convolution on multivector fields. Other theoreniike derivative and
Parseval’s theorem, were derived as well. The theoremsi@th®se applicable
to the Fourier transform on scalar fields while still remagreasonably simple.
The existence of fast algorithms for the computation of th#dZd Fourier trans-
form allow an acceleration of Clifford convolution and rield template matching
algorithms. Analyzing flow pattern in frequency domain aonew insights into
the flow. The frequency domain descriptions of simple flovigras regarded in
this thesis, for example, differs mostly in phase.

For flow fields gained by measurement using particle imagecugletry, the
underlying grid is uniform and the data is quite noisy. Teatg@lmatching, be-
ing robust due to the inherent averaging, is inherentlyesuibr analysis of this
data and behaves well. As flow fields gained by simulation®tes defined on
irregular grids, several strategies of template matchimghese grids have been
investigated as well. However, global resampling of thelfislpreferable as tem-
plate matching on the resampled grid will be faster, esfigéfahe fast Clifford
Fourier transform is used for acceleration of the convolutomputations. For
flow fields defined on surfaces, however, global resamplidignet work. Then,
local resampling of the field using geodesics to determiresimpling positions
has been used.

Vector-valued templates used for template matching of flevdgi are linear,
shift-invariant filter. The linearity is also known as thepstposition principle.
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Thus, the author has investigated the perception of flowdiakla superposition
of several, possibly simpler fields. Engineers often thimkerms of velocity,
vorticity, and resulting feature models like the Vatistastex which are tuned
to a superposition perspective of the flow field. Howevemaigzations based on
streamline behavior can only study the resulting flow. Theot$ of superposition
on the accuracy of the detection of the original featuresthen parameters have
been discussed for different types of feature definitiomewsng that the resulting
errors can be quite high.

Based on this observation, several feature analysis methaged on Clifford
convolution were investigated. Position, size, directmd velocity at the core
radius can be determined quite robust and precise with #septed methods, for
an accuracy of edge-length as well as subpixel accuracy.

Bringing together all the developed methods and knowledgealgorithm
for automatic computation of a feature-based segmenta@snbeen presented.
The visualizations of the segmentations highlight the ctetéfeatures and reveal
information about their interrelationship as they are liged in conjunction. All
in all, analysis and visualization of flow fields based onfGiidl convolution is a
profitable approach.
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