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ngemäß aus veröffentlichten Schriften entnommen wurden, und alle Angaben, die
auf mündlichen Auskünften beruhen, als solche kenntlichgemacht. Ebenfalls sind
alle von anderen Personen bereitgestellten Materialien oder Dienstleistungen als
solche gekennzeichnet.



2



Acknowledgments

This thesis would not have been possible without the enthusiasm and support of
Prof. Dr. Scheuermann, who allowed me to work on this fascinating field between
flow field visualization and analysis, image processing, andClifford algebra. I
want to thank him for many fruitful discussions, the possibility to present my work
at several international conferences, his engagement in the search for interesting
problems, applications and cooperations, the possibilityto use the visualization
tool FAnToM, and for his humor and high spirits.

I want to thank all the members of the FAnToM development team, first at the
University of Kaiserslautern, then at the University of Leipzig. This includes Tom
Bobach, Christoph Garth, David Gruys, Mario Hlawitschka, Kai Hergenröther,
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• Markus Rütten, DLR Göttingen, for providing the gas furnace chamber, the
delta wing, and the ice train data sets.

• Berend Van der Wall, DLR Braunschweig and the complete HART II team,
consisting of members from DLR Germany, NASA Langley and US Army
AFDD, the French ONERA and the Dutch DNW. They provided 3C-PIV
real world high quality data for analysis and practical application of the
methodologies.

3



4

And last but not least, I want to thank my parents Barbara Schulte-Ebling
and Richard-Jürgen Ebling, and my brothers Fabian and Frederik Ebling, for their
everlasting assistance and encouragement.



Abstract

Vector fields from flow visualization often contain millionsof data values. It is ob-
vious that a direct inspection of the data by the user is tedious. Therefore, an auto-
mated approach for the preselection of features is essential for a complete analysis
of nontrivial flow fields. This thesis deals with automated detection, analysis, and
visualization of flow features in vector fields based on techniques transfered from
image processing. This work is build on rotation invariant template matching with
Clifford convolution as developed in the diploma thesis of the author. A detailed
analysis of the possibilities of this approach is done, and further techniques and
algorithms up to a complete segmentation of vector fields aredeveloped in the
process.

One of the major contributions thereby is the definition of a Clifford Fourier
transform in 2D and 3D, and the proof of a corresponding convolution theorem
for the Clifford convolution as well as other major theorems. This Clifford Fourier
transform allows a frequency analysis of vector fields and the behavior of vector-
valued filters, as well as an acceleration of the convolutioncomputation as a fast
transform exists.

The depth and precision of flow field analysis based on template matching
and Clifford convolution is studied in detail for a specific application, which are
flow fields measured in the wake of a helicopter rotor. Determining the features
and their parameters in this data is an important step for a better understanding
of the observed flow. Specific techniques dealing with subpixel accuracy and
the parameters to be determined are developed on the way. To regard the flow
as a superposition of simpler features is a necessity for this application as close
vortices influence each other. Convolution is a linear system, so it is suited for this
kind of analysis. The suitability of other flow analysis and visualization methods
for this task is studied here as well.

The knowledge and techniques developed for this work are brought together in
the end to compute and visualize feature based segmentations of flow fields. The
resulting visualizations display important structures ofthe flow and highlight the
interesting features. Thus, a major step towards robust andautomatic detection,
analysis and visualization of flow fields is taken.
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Chapter 1

Introduction

”One of the most interesting aspects of the world is that it can be considered to be
made up of patterns.” (Norbert Wiener)

Visualization and analysis of vector fields from flow simulations and measure-
ments is an important step in engineering processes, e.g. during the design phase
of airplanes, cars, trains, and combustion chambers. A specific role in these vi-
sualizations play features, which are often defined as ”phenomena, structures or
objects in a data set, that are of interest for a certain research or engineering prob-
lem” [73]. It is not possible to give a list of all features of interest in a flow field
as these differ from application to application and small changes of one feature
lead to a variety of new features. Nevertheless, most features can be categorized
into a few groups like vortices and other swirling flows, shock waves, shear flow
and boundary layers, reversed flow, saddle points, separation and attachment lines
or surfaces, areas with convergent or divergent behavior, and regions with laminar
flow.

Most flow simulations and measurements want to study overallstructure and
specific features, i.e. patterns of streamlines with conspicuous behavior. Flow
visualization intends to help the user to find and analyze features and structures.
Direct visualization methods like hedgehogs do not always reveal the features.
Streamline based methods may lead to missing features, too,especially without
knowing the right starting points. Texture based methods like line integral con-
volution [13] do a quite good job in 2D, but a convincing solution in 3D is still
missing. Topology [18, 44, 79, 81, 94, 96, 97], on the other hand, is directed to the
overall structure since not all features are easily connected to it. Furthermore, the
presentation of 3D topology produces visibility problems.Another, quite differ-
ent, approach for the visualization is to use information visualization methods like
brushing for interactive exploration of the data sets [22].

9



CHAPTER 1. INTRODUCTION 10

A huge amount of data is generated nowadays by flow simulations and mea-
surements. The resulting vector fields often contain millions of data values, but
even for small datasets with only thousands of values, direct inspection by the user
is tedious and features are missed easily. Therefore, many automated feature de-
tection methods have been developed in the last years (e.g. [24,42,57,73,77,90].
Streamlines can then be used in a second step to study the features. Earlier at-
tempts usually try to give an analytic model of a feature and create an algorithm
for feature detection from there. Besides the limitations of the models, most ap-
proaches have severe robustness problems.

Image processing and computer vision are mature fields and have produced
methods for analysis, feature extraction and derivative computation [51,52]. Con-
volution based approaches are robust in terms of white noisebecause of the in-
herent averaging present in the convolution method. Furthermore, many image
processing methods allow precise analysis of accuracy for operations including
sampling, interpolation and smoothing. Noise is also suitably modeled and dealt
with. Therefore, it is sensible to apply these methods to vector fields.

In her diploma thesis [23], the author has developed Clifford convolution,
which is a transfer of convolution to vector fields with the help of Clifford al-
gebra. Clifford convolution has some nice properties as it unifies the convolu-
tion of scalar, vector and spinor fields. Furthermore, a rotation invariant template
matching method based on geometric properties of this convolution was devel-
oped. These algorithms have been fundamental work on which this dissertation
thesis is build.

In image processing, the convolution and Fourier transformoperators are close-
ly related by the convolution theorem. One major contribution of this thesis is the
extension of the Fourier transform to include general elements of Clifford Alge-
bra, which are called multivectors and include scalars and vectors. The resulting
convolution and derivative theorems extend those applicable to the Fourier trans-
form on scalar fields while still remaining reasonably simple. The Clifford Fourier
transform allows a frequency analysis of vector fields and the behavior of vector-
valued filters. In frequency space, vectors are transformedinto general multivec-
tors of the Clifford Algebra. Many basic vector-valued patterns such as source,
sink, saddle points and potential vortices can be describedby a few multivectors
in frequency space. Furthermore, the existence of fast algorithms for the computa-
tion of the Clifford Fourier transform together with the corresponding convolution
theorem allow an acceleration of the computation of the Clifford convolution.

Vector-valued templates are linear and shift invariant filters. The linearity
property is also known as the superposition principal, and awell known property
in signal and image processing. In flow field visualization, however, this percep-
tion has been neglected. In some applications [100], the user is not interested as
much in the actual flow behavior as in an approximation of the phenomena us-
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ing simpler features models. Then, superposition effects have to be taken into
account in order to analyze these features and compute theirparameters. This is
inherently done by using template matching. One question, which is examined
in this thesis, is how other basic flow analysis and visualization techniques cope
with superposition phenomena.

One application and test for feature analysis based on Clifford convolution are
three-component particle image velocimetry (3-C PIV) measurements within the
wake of a helicopter rotor from the HART II test. These PIV-images are quite a
challenge as the noise due to the measurement method and the inherent turbulence
of the flow can not be distinguished. Furthermore, features are often hidden by a
flow-through component, which is influenced by vortices and therefore not easy to
determine. Several image processing methods based on convolution, integration,
bisection, and the orientation tensor, are investigated inthis thesis in order to
determine parameters of vortices given by a cut of the vortices with the image
plane. Position, size, direction and velocity at the core radius can be determined
quite robust and precise with the presented methods, for an accuracy of edge-
length as well as subpixel accuracy. The methods are all independent of any mean
flow and robust in terms of noise, which is both important for the evaluation of
the HART II PIV images. Thus, this application serves also asan example and
instruction for flow feature analysis based on template matching.

Finally, the gained knowledge and techniques are brought together in an algo-
rithm for automatic computation of a feature-based segmentation of 2D, 3D, and
time dependent vector fields. The template matching allows an unified approach
for the detection of different features, and the segmentation is based on the fea-
tures themselves. Another advantage is that feature modelsused by engineers can
be coded into the templates and thus automatic determination of the model param-
eters is possible within this framework as well. Several challenges of designing
the algorithm like misclassification and superposition effects are presented and
discussed. The visualizations of the segmentations clearly depict the structures of
the flow data as the features are displayed in conjunction with each other. Thus,
even highly turbulent data can be studied easily.

Structure of this Thesis

Chapter 1: In this chapter,introduction and overview of the topics discussed in
this thesis are given. Furthermore, the structure of this thesis is described and the
publications, which arose during the work on this thesis, are enumerated.
Chapter 2: This chapter gives an introduction toflow field visualization. Central
definitions concerning flow fields and their discretization are given there. Flow
visualization is closely connected to feature detection. Therefore direct flow vi-
sualization techniques are presented as well as common feature definitions and
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feature detection for subsequent visualization.
Chapter 3: Signal and image processingfundamentals are discussed in the third
chapter. This includes the definitions of signals and systems, especially the class
of linear and shift invariant systems, which also play an important role in this
thesis. Discretization issues are discussed in this chapter as well as the Fourier
transform and Gabor filters. Techniques for feature detection and segmentation of
images are presented, including approaches for rotation and scale invariant match-
ing.
Chapter 4: Clifford algebra is a geometric algebra. Once understood, it pro-
vides an intuitive access to vector fields as well as a unified notation for scalar,
vector and spinor data. This thesis is based on Clifford convolution which makes
extensive use of the properties of this algebra, therefore an introduction is given in
Chapter 4. Differing definitions of Clifford algebras are discussed there as well.
Chapter 5: Several definitions of convolution of vector fields have been devel-
oped so far,Clifford convolution being one of them. Their advantages and dis-
advantages are discussed in Chapter 5. Furthermore, two rotation invariant tem-
plate matching techniques based on two different convolution definitions, based
on scalar product and Clifford multiplication of two vectors, are explained.
Chapter 6: There are a fewdata setswhich are repeatedly used to demonstrate
techniques and results in this thesis. For a more structuredapproach, all data sets
are presented and explained in detail in this chapter. The templates and vortex
definitions used in this thesis are introduced there, too.
Chapter 7: Convolution and Fourier transform are closely connected by the con-
volution theorem. By transferring convolution into Clifford algebra, the question
of an appropriate Fourier transform arose. In Chapter 7, a definition of aClifford
Fourier transform for Clifford algebra for 2D and 3D is given and major theo-
rems including the convolution theorems are stated and proved. This led also to
the definition ofClifford Gabor filters , which can be interpreted as a Clifford
Fourier transform localized by a Gabor filter. Furthermore,typical vector valued
flow patterns are analyzed in frequency domain in this chapter.
Chapter 8: This chapter is a collection of several issues and techniques concern-
ing the application of template matching based on Clifford convolution to flow
fields. So far, Clifford convolution was only defined on uniform grids. As many
flow fields are defined onirregular grids and evensurfaces, the template match-
ing technique had to be transfered to these kinds of grids. Another topic is the
perception of a flow field as asuperposition of several, possibly simpler flow
fields, and the response of basic flow analysis and visualization techniques to this
phenomena. The application of vector-valued template matching tofeature anal-
ysis is described in detail for the example of a specific application. All acquired
knowledge is then brought together in an algorithm for a feature basedsegmen-
tation of flow fields.
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• Julia Ebling and Gerik Scheuermann. Segmentation of Flow Fields using
Pattern Matching. Data Visualization 2006. [28]
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Notation

notation meaning
p scalar
v vector
v̂ normalized vector
s spinor
A multivector
T matrix
t time value
x position inRn

f () continuous function or signal
f [] discrete function or signal
f{} system

F{} Fourier transform
p(x) scalar field
v(x) vector field
s(x) spinor field
A(x) multivector field

i imaginary number
e unit
n dimension
N quantity
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Chapter 2

Flow Field Visualization

A lot of flow data sets are generated nowadays, either by simulation or by mea-
surement. The application ranges from evaluation of the flight quality of aircraft
and helicopters, to evaluating the drag of moving cars, trucks and trains, the mix-
ing of gases and efficiency of combustion chambers, the comfort of closed com-
partments with regards to the air condition, and many more.

Over the years, many flow visualization methods have been developed. Often
they are variants of a few basic techniques: glyphs, particle tracing, visualization
of derived quantities, and feature detection with subsequent visualization of the
results. In this chapter, an introduction to flow fields and their visualization is
given which concentrates on basic approaches. For an extensive overview of flow
visualization, the reader is referred to surveys [40,72,73].

2.1 Flow Fields

In all practicable applications, vector fields describing flow are given in 2 or 3 di-
mensions. Sometimes the vector field will be given on an arbitrary curved surface,
therefore the definition of vector fields needs to be done on arbitrary manifolds:

Definition 2.1.1 Let TM be a tangent bundle, that is a collection of all tangents
along with their position, and let TxM be the tangent space associated with the
point x. Let M be a smooth m-manifold with boundary and N⊂ M be a smooth
n-dimensional sub-manifold with boundary. Let I⊂R be an open interval of real
numbers. Then the map

v : N× I → TM

with
v(x, t) ∈ TxM

15



CHAPTER 2. FLOW FIELD VISUALIZATION 16

is calledtime-dependent vector field. If

v : N× I → TN⊂ TM,

thenv is calledtangential time-dependent vector field.

In the following, only tangential vector fields will be of interest. Most of the time
the vector field will be given in Euclidean space. Then, the definition of tangential
vector fields can be simplified:

Definition 2.1.2 Let Ω ⊂ Rn be an Euclidean space and let I⊂ R be an open
interval of real numbers. Then the map

v : Ω× I →Rn

(x, t) 7→ v(x, t)

is a tangential time-dependent vector field.

Vector fields which are time-independent are usually calledsteady. In the follow-
ing, vector fields will always denote a steady vector fields ifnot indicated other-
wise. Integral curves and vector fields are closely interrelated as vector fields can
describe the derivatives of curves, e.g. curves of the path of particles released into
a flow:

Definition 2.1.3 Let M be a smooth manifold with boundary, let TM be a tangent
bundle. Let0∈ J ⊂ I ⊂R be open intervals of real numbers, and letv : M× I →
TM be continuous. Letx0 ∈ M. A pathline for v with initial condition x0 is a
C1-map

α : J → M
α(0) = x0

α ′(t) = v(α(t), t) ∀t ∈ J

An C1-map with initial condition x0 and

α ′(t) = v(α(t),τ) ∀t ∈ J,τ ∈ I

is calledstreamline.

Pathlines follow a particle over time, and streamlines are integral curves within a
fixed timestep. Another important type of curves are streaklines which are gained
by constantly releasing particles into the flow and then taking a snapshot of all
particles at once. For steady, time-independent vector fields pathlines, streamlines
and streaklines are the same.

In some applications, the magnitude of the velocity is neglected and only the
directions are of interest.
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Definition 2.1.4 Let v be a vector field. Then the fieldv̂ given by

v̂(x)

{

v(x)
‖v(x)‖ ‖v(x)‖ 6= 0

0 else

is called thenormalized vector field.

Note that this definition is in contrast to the usual definition of normalizing, where
the range of values is projected onto a scaled range.

2.1.1 Streamlines and Velocity

In this subsection, the relation of the velocity magnitude of the flow to the resulting
streamlines is analyzed. Streamlines are independent of the velocity magnitude of
the flow so far as changing the velocity magnitude corresponds to a reparametriza-
tion of the streamline:

Theorem 2.1.5 Let D⊂ Rn be an open domain andv : D → Rn a vector field
satisfying the Lipschitz condition. Let Z:= { z∈ D | v(z) = 0 } be the set of
critical points and Dε := { x ∈ D | ∀z∈ Z : |x−z| > ε } the domain without the
critical points and theirε-neighborhood. Letw be the vector fieldv without the
critical points and theirε-neighborhood, and̂w the corresponding normalized
vector field:

w : Dε →R
d, x 7→ v(x)

ŵ : Dε →R
d, x 7→ w(x)

|w(x)| .

For x0 ∈ Dε and I = (0, tmax) let α : I → Dε be the well-defined streamline ofw
throughx0 with maximal length, that is

α(0) = xa

∂α
∂ t

(t) = w(α(t)).

Define the following mapping for reparametrization which makes use of the arc
length:

l : I → l(I), l(t) =
∫ t

0
|w(α(τ))| dτ.

This function is strictly monotonic and therefore invertible. Then the streamline
α̃ , a reparametrization ofα using this mapping, is the well-defined streamline of
ŵ through starting pointx0:

Ĩ = (l(0), l(tmax)) = l(I)
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α̃ : Ĩ → Dε , s 7→ α(l−1(s))

Proof:

α̃(0) = α̃(l(0)) = α(0) = x0

∂α̃
∂s

(s) =
∂α
∂s

(l−1(s))

= w(α(l−1(s)))
1

∂ l(t)
∂ t

= w(α(l−1(s)))
1

|w(α(l−1(s)))|

= w(α̃(s))
1

|w(α̃(s))|
= ŵ(α̃(s)).

This means that the streamlines ofw are the same as the streamlines ofŵ, the
normalized field.

2.1.2 Grid Types

In practice, flow fields are gained by simulations or measurement. Therefore the
data is not continuous but discrete. In this section, the underlying structures of
discrete data are defined. First of all, the term simplex is introduced:

Definition 2.1.6 Let M⊂Rn be a finite set. Let{x0, ..,xr} ⊂ M be r+1 geomet-
rically independent points. Then

S= {x ∈R
n|x =

r

∑
j=0

λ1x j ,
r

∑
j=0

λ j = 1, λ j ≥ 0, j = 0, .., r}

is a r-simplex over M of the vertices{x0, ..,xr}.

Note that a 0-simplex is a point, a 1-simplex a line, a 2-simplex a plane, and a
3-simplex a volume. These simplices can be brought togetherto form cells:

Definition 2.1.7 Let M⊂Rn be a finite set. A finite union

C =
r

⋃

j=0

Sj

of q-simplices Sj over P is called aq-cell over P if the following properties are
satisfied:
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1. C is simply connected.

2. The intersection of any two q-simplices of C is a k-simplexof C with k< q,
or empty.

3. There exists a q-dimensional affine subspace ofRn containing the cell C.

Often used cell types are quads and triangles in 2D, and cubes, tetrahedrons and
hexahedrons in 3D, though many more cell types can occur. A grid is a collection
of points together with neighborhood information coded in cells:

Definition 2.1.8 Let {C0, ..,Cr} be a set of q-cells with Cm∩Cn = S, S is a k-
simplex with k< q, m 6= n. Then

G =
r

⋃

j=0

Cj

is calledgrid .

Various grid types are distinguished (Figure 2.1):

Definition 2.1.9 Letx j ∈Rn, j = 0, ..,k be the positions at which flow information
is given. If no neighborhood information of the data points is given, the data is
called scattered data. When the data points are given as nodes of a grid, and
no other information about a structure of the grid can be given, the grid is called
unstructured grid . When

x j = x(k1, ..,kn), km ∈N, m= 1, ..,n,

it is calledcurvilinear grid . A curvilinear grid with

x j = x(k1, ..,kn) = x0+







k1∆1,k1
...

kn∆n,kn







is calledrectilinear grid , and if

x j = x(k1, ..,kn) = x0 +∆







k1
...

kn






,

the grid is auniform grid .

Within the cells of a grid, data values are gained by using linear interpolation.
Thus, continuous vector fields are approximated.
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Figure 2.1:Top left: A uniform grid. Top right : A curvilinear grid.Bottom left:
A rectilinear grid.Bottom right : An unstructured triangle grid.

2.2 Derived Quantities

A vector field has many derived quantities like vorticity, divergence and many
more. These are often used for direct visualization of the vector field as well as
for feature detection. Therefore, some of the derived values are presented here.
The Jacobian or gradient of a vector field is the source of manyof these values.

Definition 2.2.1 Let {e1, ..,en} be a basis of Rn. Let p be a scalar field. The
partial derivative of p with respect toej is ∂ p

∂ej
, j = 1, ..,n. Thegradient of p is

the vector of its partial derivatives

grad p= ∇p = (
∂ p
∂e1

, ..,
∂ p
∂en

)T .

The gradient of a vector fieldv = (v1, ...vn)
T is calledJacobianand is defined as

∇v =









∂v1
∂e1

· · · ∂v1
∂en

...
. . .

...
∂vn
∂e1

· · · ∂vn
∂en









The vorticity or curl is defined as the local circulation or rotation of a vector field:
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Definition 2.2.2 Let v be a vector field and let× be the cross product. Then the
vorticity or curl of v is defined as

curl v = ∇×v

Thedivergenceis defined as

div v = ∇ ·v =
n

∑
j=1

∂v j

∂ej

Helicity is defined as the cosine between velocity and vorticity:

Definition 2.2.3 Let v be a vector field andw its vorticity. Thehelicity of v at x
is given by

〈v(x)w(x)〉
‖v(x)‖‖w(x))‖ .

Another quantity of 3D vector fields which is often used for vortex detection is
λ2. Before it can be defined, the decomposition of a matrix into its eigenvalues
and eigenvectors has to be introduced.

Definition 2.2.4 Let T be a complex-valued n×n matrix. Aneigenvalueof T is a
scalarλ ∈C which solves the equation Mx = λx. x is the corresponding non-zero
eigenvectorof T .

Note that the eigenvectors and eigenvalues of of a Jacobian indicate the direction
of tangential curves of the flow.

Definition 2.2.5 Let v be a vector field inR3 and J= ∇v the velocity gradient
tensor. Let S= J+JT

2 be the symmetric part of J and letΩ = J−JT

2 be the antisym-
metric part. S is also called deformation or rate of strain tensor, andΩ is called
spin tensor. Let the eigenvalues of S2 +Ω2 be ordered by magnitude. Thenλ2 is
the middle eigenvalue.

2.3 Direct Flow Visualization Techniques

A basic example of direct visualization are glyphs serving as local flow probes.
Most of the time, arrows are used as glyphs. The resulting visualization is called
a hedgehog:

Definition 2.3.1 Let v(x) = v(x,τ) be a vector field. A set of local flow probes

is calledhedgehogif the local flow probes are arrows with directionv(x)‖v(x)‖ and

magnitude proportional to‖v(x)‖.
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A disadvantage of glyphs, especially in 3D, is visual clutter. Another possible
visualization of vector fields is particle tracing, that is the display of streamlines,
pathlines and streaklines. The lines better represent the continuity of the flow.
In the following, mostly streamlines are mentioned. Placing the streamlines can
be a difficult problem between visually missing features because of clutter and
occlusion, and missing features because of not placing an adequate streamline.
One solution is to detect the features first and use the results for streamline placing.
There also exist some other approaches trying to give a complete overview of the
streamlines. One of these methods is line integral convolution:

Definition 2.3.2 Letv be a vector field inR2. Let p be a scalar field inR2 defined
over the same region as the vector field. Let the values of p be computed as white
noise. Then the image computed by locally smoothing p along streamlines of v is
called aline integral convolution (LIC) image [13].

Another approach is to compute and visualize the topology ofthe flow, that is a
segmentation based on streamline start and end regions. This works well because
streamlines can not cross each other.

Definition 2.3.3 Let v : B⊂ Rn → Rn be a vector field. Letp∈ B be a position
within the vector field. Let cp(t) be the streamline ofv(x) throughp. Then

A(cp) =
{

x ∈ B|∃(tn)n = 0∞ ⊂R, tn →−∞, limn→∞cp(tn) = x
}

is theα limit set of cp and

Ω(cp) =
{

x ∈ B|∃(tn)n = 0∞ ⊂R, tn → ∞, limn→∞cp(tn) = x
}

is theω limit set of cp. Let M⊂ B. The sets

Bα(M) =
{

p∈ B|A(cp) = M
}

and
Bω(M) =

{

p∈ B|Ω(cp) = M
}

are calledα basin and ω basin of M, respectively. A segmentation of B into
simply connected components of intersections ofα and ω basins is calledflow
topology.

For 2D linear vector fields, the computation of the flow topology can also be done
via critical points and separatrices:

Definition 2.3.4 Let v be a vector field. A positionx with ‖v(x)‖ = 0 is called a
critical point .
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Figure 2.2: Examples of basic visualization techniques fora 2D data set. Shown
is a section of the OM06 data set (Section 6.2).Top left: Hedgehog.Top right :
Hedgehog, all arrows drawn with same length.Middle left : Color-coding of
vorticity. Middle right : LIC. Bottom left: Streamlines.Bottom right : Topology
with sources (green), saddles (red) and separatrices (black).

These critical points can be classified according to the eigenvalue decomposition
(Definition 2.2.4) of their Jacobian (Definition 2.2.1) intosinks (ω limit sets),
sources (α limit sets), and saddles. Starting streamlines at the saddles in direction
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of the eigenvectors yields the so calledseparatriceswhich divide the flow into
regions of same flow behavior with respect to start and end region. A closed
orbit is a streamlinec with initial conditionc(0) = x0 and a parameterα 6= 0 with
c(α) = x0. The set of all critical points and orbits together with the separatrices
produce the topology of the vector field [44].

Directly visualizing derived scalar values of the flow like magnitude of vortic-
ity is easily done in 2D using color-coding. In 3D, there exist two basic possibil-
ities: Volume rendering, that is a 2D projection of the 3D data, and visualization
of isosurfaces.

Definition 2.3.5 Let p be a scalar field, andα ∈ R. The set of all valuesx with
p(x) = α is calledisosurface, or isoline in 2D, of p at valueα.

For volume rendering, the choice of the transfer function, which assigns color
and opacity to former scalar values, plays an important rolefor the quality of the
images.

2.4 Feature Detection in Flow Fields

A huge amount of data is generated nowadays by flow simulations and measure-
ments. The resulting vector fields often contain millions ofdata values, but even
for small datasets with only thousands of values, direct inspection by the user is te-
dious and features are missed easily. Therefore, many automated feature detection
methods have been developed in the last years to assist the user.

Pagendarm and Walter [67] and Walsum et al. [101] were the first to shape
the term ”features” for flow fields. A feature is simply a region of interest in the
dataset. It can be extracted using a feature criterion evaluation function. This
function can be a logical combination of several scalar thresholds using boolean
algebra. Often, and especially on vector-valued flow fields,the feature criterion
does not evaluates the data itself but scalar functions defined on the data.

2.4.1 Feature Definitions

Most feature detection methods follow an analytic model andthen employ a suit-
able algorithm, however, when features are not well defined,the limitations of the
model introduce problems. One example for a feature definition which can not be
defined precisely is one of the most important classes of features in flow fields:
swirling flows or vortices. They are often described as a swirling motion around a
central region. However, this description is not precise enough for an implemen-
tation of a feature detection algorithm. Therefore, over the years, several different
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Figure 2.3: Examples of basic visualization techniques fora 3D data set. Shown
is the velocity magnitude of a gas furnace chamber (Section 6.3). Top: Volume
rendering.Bottom: Isosurfaces with isovalue 10 (blue) and 20 (red).

algorithms have been proposed which all describe part of thephenomenon ”vor-
tex”. Some examples are the maximum of vorticity (Definition2.2.2) and helicity
(Definition 2.2.3) as well as the isosurface ofλ2 (Definition 2.2.5) of zero (or
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of a slightly negative) value [53]. Another algorithm for vortex detection is the
method of Sujudi and Haimes [90], which makes use of the classification of local
flow similar to flow topology:

Definition 2.4.1 Let v be a vector field andx a position within the vector field.
Let J be the Jacobian (Definition 2.2.1) of the velocity. Compute the eigenvalue
decomposition (Definition 2.2.4) of J. When two of the three eigenvalues are com-
plex and the investigated vector is one of the eigenvectors,the vector is classified
as belonging to a vortex core according to thevortex core detection algorithm
of Sujudi and Haimes[90].

The parallel-vectors operator as introduced by Roth [77] can be used for unifying
the notations of the different definitions. Other vortex core detection algorithms
are based on classifying the streamlines, e.g. using the winding angle which is
a measure of the change of direction of streamline segments,or based on label-
ing the vectors belonging to one cell. With so many differentvortex definitions
assumed by the different algorithms, it is quite obvious that some kind of verifi-
cation of the results has to take place which has to be left to the user. However,
the user can be aided by highlighting potential vortex areas, and combining the
results with direct visualizations of the flow.

Another example for model based feature extraction is due toKenwright [57],
for separation and attachment line detection. These lines show where the flow at-
taches itself to or separates from a surface. Kenwright gives two algorithms again
based on eigenvector analysis of the velocity gradient tensor to extract separation
and attachment lines.

Note that for most of the definitions mentioned here, derivatives have to be
computed. These are sensitive to the presence of noise, which can make smooth-
ing necessary. This robustness is especially important when dealing with mea-
sured as opposed to simulation data.

Image processing and computer vision are mature fields and have produced
methods for analysis, feature extraction and derivative computation [51,52]. Con-
volution based approaches are robust in terms of white noisebecause of the in-
herent averaging present in the convolution method. They also allow an intuitive
definition of features. Furthermore, many image processingmethods allow precise
analysis of accuracy for operations including sampling, interpolation and smooth-
ing. Noise is also suitably modeled and dealt with. Therefore, it is sensible to
apply these methods to vector fields. The convolution operation has already been
extended to vector fields which has lead to the creation of pattern matching algo-
rithms for vector fields. These algorithms will be discussedin Chapter 5, as soon
as the prerequisites have been defined and explained.
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2.4.2 Galilean Invariant Features

The notion of Galilean invariance can play an important rolefor feature detection:

Definition 2.4.2 The principle stating that the fundamental laws in physics are
the same for every inertial frame of reference is calledGalilean invariance. This
also implies that lengths and times are unaffected by a change of velocity, e.g. the
velocity of the observer. A property or feature is called Galilean invariant if it is
unaffected by the speed and direction of a moving observer.

Features which are not Galilean invariant will thus change with the frame of refer-
ence, and may not be detected at all under the wrong circumstances. Examples for
Galilean invariant features are vorticity, derivatives and λ2. Streamlines, however,
are not Galilean invariant, which can be seen e.g. in Figure 2.4. Thus, feature
detection and visualization based on streamlines is highlydependent on the frame
of reference. Different vortices, for example, may appear or disappear when sub-
tracting or adding different constant flows [99].

Regarding for example a Galilean invariant vortex detection, one method could
be to compute the average and remove it from the vector field. But the vortices,
though having zero average, can add to the average of the whole field as they are
often assumed to be spread out infinitely (Section 6.1.1) andonly a part of the
vortex, not having zero average, might be within the data set. Thus, removing the
average will change the results of a latter analysis of the data.

Another approach of Galilean invariant feature detection is to divide the flow
field into three fields containing the divergence, rotation and harmonic parts using
the Helmholtz-Hodge decomposition theorem [69,70,93]:

Definition 2.4.3 For a vector fieldv, there exists a unique decomposition into two
potentials d, r and a vector fieldh with

v = ∇d+∇× r +h,

∇d being normal to the boundary, and∇× r being tangential to the boundary.
This decomposition is calledHelmholtz-Hodge decomposition.

Note thatr is a scalar field in 2D, and a vector-valued field in 3D.

Lemma 2.4.4 ∇d and∇× r are vector fields with the following properties:

curl ∇d = curl grad d= 0

div ∇× r = div curl r = 0

Thus,∇d is acurl-free and∇× r a divergence-freevector field.h is aharmonic
vector field as both curl and divergence vanish. Thus

div v = div ∇d+div ∇× r +div h = div ∇d

curl v = curl ∇d+curl ∇× r +curl h = curl ∇×d
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Features can then be detected as extremal points of the divergence and ro-
tational field, or using feature detection methods in the resulting vector fields.
However, it is not quite clear how analysis and visualization methods are effected
by this decomposition (Figure 2.4). Furthermore, the choice of the boundary can
greatly influence the results.

A better choice of a decomposition to aid in the detection of Galilean invariant
features is the so called localized flow [109]. There, the boundary induced flow
is removed to get a region-specific or localized flow which is Galilean invariant
itself:

Definition 2.4.5 Let v : Ω ⊂Rn →Rn be a vector field. Then theregion-specific
flow vR is defined by the following properties:

vR ·n = 0 on∂Ω

div v = div vR

curl v = curl vR

This means that the flow through the boundary of the region-specific field is zero.
Vorticity and divergence, and thus the local features of theoriginal flow, are pre-
served in the region-specific flow and can be visualized accordingly (Figure 2.4).
The region-specific flow thus is independent of superposed constant and homoge-
nous flows and represents a basis with non-changing topologyfor fields with
different superposed constant or homogenous flows. Computing the boundary-
induced flow is a Neumann-Laplace problem and can thus be solved [109]. The
region specific flow is then obtained by removing the boundaryinduced flow from
the original vector field.
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Figure 2.4: Comparison of different fields obtained from a cylinder data set with
a Kármán vortex street.Top left: Streamlines in the original flow. Only sinuous
structures of the lines give hints on the vortices.Top right : Four vortices re-
vealed by removing the average flow.Middle left : Potential flow induced by the
boundary.Middle right : Subtracting the potential flow reveals all six vortices.
Bottom left: Rotational free component as computed by the Helmholtz-Hodge
decomposition.Bottom right : The divergence free component as computed by
the Helmholtz-Hodge decomposition shows two vortices, andone at a rather sur-
prising position. The results of the Helmholtz-Hodge decomposition are difficult
to interpret.



Chapter 3

Signal and Image Processing

A signal can be defined as transmitted energy that is used to convey information —
it is a message. Signal processing therefore is the art of displaying, transforming
and manipulating signals and thus the information they carry. It began with analog
circuits and the study of continuous signals. Discrete signals became interesting
with the invention of digital circuits. The first digital circuits were quite slow,
but they were also quite versatile. Thus they were often usedfor approximating
analog circuits. The development of the fast Fourier transform (Section 3.4) was
a milestone for the development of digital circuits as it provided an enormous
acceleration of the computation as well as an understandingof the importance
of time-discrete signals. A lot of new filters which could notbe implemented
analogous were now available.

Image processing started as a consequent transfer of signalprocessing, which
had mostly been one-dimensional, to two dimensions and thusto images. The
signals, however, remained real and complex. In this chapter, signal and image
processing are introduced as far as they are later transfered to vector-valued sig-
nals — vector fields. Most of the information on signal and image processing
presented here can be found in textbooks by e.g. Oppenheim etal [66], Jain [52],
and Jähne [51].

3.1 Signals

In the following, continuous signals or functions will be studied as well as dis-
crete sequences. To distinguish these two types of signals,continuous signals
are always indicated by parenthesis, that isf (t) : R → C is a continuous sig-
nal. Discrete sequences, on the other hand, are notated using brackets, and thus
f [t] : [0, ..,N−1] ⊂N→C denotes a discrete signal. If no constraint is set on the
function, the continuous form is chosen. A complex signal can be split up into its

30
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real part and its imaginary part:

Definition 3.1.1 Let f(t) :R→C be a signal. Let fr(t) be thereal part and fi(t)
be theimaginary part of the signal f(t) = fr(t)+ i f i(t). Let f∗(t) denote the
complex conjugatesignal, that is f∗(t) = fr(t)− i f i(t).

Lemma 3.1.2 Let f(t) : R→ C be a signal. Then

fr(t) = 1
2( f (t)+ f ∗(t))

and fi(t) = 1
2( f (t)− f ∗(t)).

Another split-up of a signal can now be done according to its symmetry properties:

Definition 3.1.3 Let f(t) : R → C be a signal. If f(t) = f ∗(−t), the signal is
conjugate symmetricand denoted with fe(t). If f (t) = − f ∗(−t), the signal is
conjugate antisymmetricand denoted with fo(t). If f (t) is real and conjugate
symmetric, it is calledeven, and if f(t) is real and conjugate antisymmetric, is is
calledodd.

Lemma 3.1.4 Let f(t) : R→ C be a signal. Then f(t) = fe(t)+ fo(t) with

fe(t) = 1
2( f (t)+ f ∗(−t))

and fo(t) = 1
2( f (t)− f ∗(−t)).

3.2 LSI Filter

A system is a function that transforms one signal into another. An important class
of systems, or filters, are linear, shift invariant filters asa lot of systems can be
described by them, and the rest can be approximated quite well. The linearity
and shift invariance of these systems lead to many other properties which are
advantageous for signal processing.

Definition 3.2.1 Let f1, f2 :R→C be two complex signals, letα1,α2 ∈C and let
T be a system or filter. T is calledlinear if

T{α1 f1 +α2 f2} = α1T{ f1}+α2T{ f2}

The linearity of a system is also known as the superposition principle as the results
of applying the system to two superposed signals equals the superposed results of
the single signals.
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Definition 3.2.2 Let f1 : R→C be a signal and let T be a system. Let f2 :R→C

be a second signal with f2(t) = f1(t − t0) ∀t, t0 ∈ R. T is calledtime-invariant
or shift-invariant if

T{ f2}(t) = T{ f1}(t− t0)

Definition 3.2.3 A system which is linear and shift invariant is called alinear,
shift invariant (LSI) system or filter.

A signal with a special role in signal processing is the impulseδ , which is an
impulse with width zero and amplitude∞. This signal is often used as basis for
the space of signalsf :

Definition 3.2.4 δ : R→ C is the signal defined by

δ (t) =

{

∞ t = 0
0 else

and for any signal f: R→ C, t ∈R

f (t) =

∫

R

f (k)δ (t−k)dk

Definition 3.2.5 Let T be a LSI filter and let t∈ R. Then h: R→ C with h(t) =
T{δ (t)} is calledpulse responseof T .

Convolution and correlation are two basic and often used operations:

Definition 3.2.6 Let f1, f2 : R→C be continuous signals and let t,k∈ R. Con-
volution of f1 and f2 is defined as

( f1∗ f2)(t) =

∫

R

f1(k) f2(t−k)dk.

Spatialcorrelation of f1 and f2 is defined as

( f1⋆ f2)(t) =
∫

R

f1(k) f2(t +k)dk.

Thus, a correlation is a convolution with a signal that has been reflected at its
center:

Theorem 3.2.7 Let f1, f2 : R→ C be two signals. Leṫf1 : R→ C be defined by
ḟ1(t) = f1(−t). Then

f1⋆ f2 = ḟ1∗ f2.
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Proof:

( f1 ⋆ f2)(t) =
∫

R

f1(k) f2(t +k)dk

=
∫

R

ḟ1(−k) f2(t +k)dk

=
∫

R

ḟ1(k
′) f2(t −k′)dk′

= ( ḟ1∗ f2)(t)

Theorem 3.2.8 Convolution is a commutative operation:

( f1∗ f2)(t) = ( f2∗ f1)(t)

Proof:

( f1∗ f2)(t) =

∫

R

f1(k) f2(t −k)dk.

=

∫

R

f1(t− l) f2(l)dl.

=

∫

R

f2(l) f1(t − l)dl.

= ( f2∗ f1)(t)

One reason for the usefulness of LSI filters is the fact that they can be described
by a convolution with their pulse response:

Theorem 3.2.9 Let f : R → C be a signal and let T be a LSI filter with pulse
response h. Then

T{ f}(t) =
∫

R

f (k)h(t−k)dk

Proof:

T{ f}(t) = T{
∫

R

f (k)δ (t −k)dk}

=
∫

R

f (k)T{δ (t −k)}dk

=
∫

R

f (k)h(t−k)dk

Transferring these definitions and theorems to spacial 2D and 3D signals or im-
ages instead of time-dependent signals is straightforward. Concerning a transfer
to discrete data, the basic definitions and most important differences can be found
in Section 3.4.



CHAPTER 3. SIGNAL AND IMAGE PROCESSING 34

3.3 Fourier Transform

The description of a signal as a weighted sum of shifted basissignals plays an
important role in signal processing. In the last section, impulses were used as basis
functions. The domain thus described is also called time domain. In this section,
the description as a sum of complex exponentials and sinusoids is introduced.
These basis functions are special as the complex exponentials are eigenfunctions
of LSI systems and thus the system answer to a sinusoid is a sinusoid with same
frequency. The domain defined by the complex exponentials iscalled frequency
or Fourier domain as the Fourier transform is the basis transform from time to
frequency domain and back again.

Definition 3.3.1 For a continuous signal f: R→C, theFourier transform of f
is defined as

F{ f}(u) =

∫

R

f (t)e(−2π itu)dt

provided the integral exists. Theinverse Fourier transform is defined as

F
−1{ f}(u) =

∫

R

f (t)e(2π itu)dt .

Note thati with i2 = −1 is the imaginary unit of the complex numbers. The
Fourier transform is sometimes defined using the kernele(−itu). Note that this is
mainly due to the difference of defining frequency in radiansper second (rad/s),
or in Herz (Hz) as 1Hz= 2πrad/s. However, the symmetry of the transform is
thus destroyed. A discussion of the existence ofF can be found in Bracewell [7].
In generalF exists if

∫

R

| f (t)|e(−2π itu)dt < ∞ .

This is not always true even though the integral ofF may exists nonetheless.
Note that the complex exponential of the Fourier kernel can also be written as the
sum of sine and cosine according to Euler’s formula:

Theorem 3.3.2 (Euler’s Formula)

eix = cos(x)+ isin(x) ∀x∈R

Now the property of complex exponentials as eigenfunctionsof LSI systems is
shown:

Theorem 3.3.3 Let T be a LSI system with pulse response h(t). Let f(t)= e(2π itu)

be a signal. Then
T{ f}(t) = F{h}(u)e(2π itu)
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and e(2π itu) is an eigenfunction of T with eigenvalueF{h}(u).
Proof: Using the commutativity of the convolution yields

T{ f}(t) =
∫

R

e(2π iku)h(t−k)dk

=
∫

R

e(2π i(t−k)u)h(k)dk

=
∫

R

e(2π itu)e(−2π iku)h(k)dk

= e(2π itu)
∫

R

h(k)e(−2π iku)dk

= e(2π itu)
F{h}(u)

In the following, central theorems of the Fourier transformare introduced. First
of all, the Fourier transform is linear:

Theorem 3.3.4 (Linearity)Let f1, f2 :R→C be two signals, and letα1,α2 ∈R.
The Fourier transform is linear:

F{α1 f1+α2 f2} = α1F{ f1}+α2F{ f2}

Proof:

F{α1 f1 +α2 f2} =

∫

R

(α1 f1(t)+α2 f2)e
(−2π itu)dt

= α1

∫

R

f1(t)e
(−2π itu)dt+α2

∫

R

f2(t)e
(−2π itu)dt

= α1F{ f1}+α2F{ f2}

Time and frequency shifts of a signal are modeled by a multiplication with a com-
plex exponential:

Theorem 3.3.5 (Time and frequency shifts)Let f : R→ C be a signal and k∈
R. Then the Fourier transform of a time-shift is

F{ f (t−k)} = e(−2π ik)
F{ f (t)}

an the frequency-shift in Fourier domain is given by

F{e(−2π ik) f}(u) = F{ f}(u−k)
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Proof:

F{ f (t −k)}(u) =

∫

R

f (t −k)e(−2π itu)dt

=

∫

R

f (l)e(−2π i(l+k)u)dl

= e(−2π ik)
∫

R

f (l)e(−2π ilu)dl

= e(−2π ik)
F{ f (l)}(u)

The proof for the frequency shift is analogous.

Theorem 3.3.6 (Plancherel’s theorem)Let f1, f2 : R → C be two signals, and
for c = a+ ib ∈ C let c+ = a− ib denote the complex conjugate of c. Then

∫

R

f1(t) f +
2 (t)dt =

∫

R

F{ f1}(u)F+{ f2}(u)du

Parseval’s theorem, which follows directly out of Plancherel’s theorem, states that
the energy of a signal is equal in both time and frequency domain:

Theorem 3.3.7 (Parseval’s theorem)

E{ f} =

∫

R

‖ f (t)‖2dt =

∫

R

‖F{ f}(u)‖2du= E{F{ f}}

The convolution theorem is one of the most important theorems in signal pro-
cessing. It states that a convolution of two signals in time domain is equal to a
multiplication of the signals in frequency domain:

Theorem 3.3.8 (Convolution theorem)Let f1, f2 : R→ C be two signals. Then

F{ f1∗ f2} = F{ f1}F{ f2}

Proof:

F{ f1∗ f2}(u) =

∫

R

( f1∗ f2)(t)e
(−2π itu)dt

=

∫

R

(

∫

R

f1(k) f2(t −k)dk)e(−2π itu)dt

=

∫

R

∫

R

f1(k) f2(t)e
(−2π iku)dke(−2π itu)dt

=

∫

R

f1(k)e
(−2π iku)dk

∫

R

f2(t)e
(−2π itu)dt

= F{ f1}(u)F{ f2}(u)
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Thus, the Fourier transform of the pulse response of a systemis often contem-
plated.

Definition 3.3.9 Let h: R→ C be the pulse response of a system T. The Fourier
transformF{h} of h is calledfrequency response.

The following derivation theorem is only valid for signalsf which are bounded
with limt→±∞ f (t) = 0. This is the case for all physically significant signals.

Theorem 3.3.10 (Derivative theorem)Let f : R→ C be a signal with
limt→±∞ f (t) = 0. Then

F{ f ′}(u) = 2π iuF{ f}(u)

and F{ f (n)}(u) = (2π iu)nF{ f}(u).

Proof: Using integration by parts yields

F{ f ′}(u) =
∫

R

f ′(t)e(−2π itu)dt

= [ f (t)e(−2π itu)]∞−∞ −2π iu
∫

R

f (t)e(−2π itu)dt

= −2π iu
∫

R

f (t)e(−2π itu)dt

= −2π iuF{ f}(u)

Iteration yields the formula for the n-th derivative.

The Fourier transform also has several symmetry properties:

Theorem 3.3.11Let f(t) : R→ C be a signal. Then

F{ f ∗}(u) = F
∗{ f}(−u)

F{ fr}(u) = Fe{ f}(u)

F{i f i}(u) = Fo{ f}(u)

F{ fe}(u) = Fr{ f}(u)

F{ fo}(u) = jFo{ f}(u)

Let f(t) : R→R be a real signal. Then

F{ f}(u) = F
∗{ f}(−u)

Fr{ f}(u) = Fr{ f}(−u)

Fi{ f}(u) = −Fi{ f}(−u)
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Proof:

F{ f ∗}(u) =

∫

R

f ∗(t)e(−2π itu)dt

=

∫

R

( f (t)e(2π itu))∗dt

= F
∗{ f}(−u)

The rest follows directly from this property, the definitions of real, imaginary,
conjugate symmetric, conjugate antisymmetric, and the linearity of the Fourier
transform.

3.4 Discrete Signals and the FFT

In the former sections, only continuous signals have been regarded. As digital
signals and systems play an important role nowadays, they are addressed in this
section.

Definition 3.4.1 A sequence of numbers f[t], t ∈ Z, −∞ < t < ∞, f [t] ∈ C is
called atime-discrete signal. A time-discrete signal f[t] with f [t]∈ Q⊂C where
Q is a finite set of numbers, is called adiscretesignal.

Let f (t) : R → C be a continuous signal. A time-discrete signalf [t] is usually
gained by periodic sampling off (t): f [t] = f (tT), T ∈ R. A discrete signal is
then gained by quantizing the values off [t]. Both operations together describe an
analog-to-digital converter, or digitizer.

Definition 3.4.2 δ : Z→ C is the signal defined by

δ [t] =

{

1 t = 0
0 else

Thus for or any time-discrete signalf : Z→ C

f [t] =
∞

∑
k=−∞

f [k]δ [t−k]

The results from Section 3.2 can be transfered directly to time-discrete and dis-
crete signals. The convolution of discrete signals, for example, is defined as fol-
lows:
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Definition 3.4.3 Let f1, f2 : [0, ..,N−1] →C be discrete signals and let t,k∈R.
Convolution of f1 and f2 is defined as

( f1∗ f2)[t] =
N−1

∑
k=0

f1[k] f2[t −k].

However, the Fourier transform of discrete signals has somespecial peculiarities.

Definition 3.4.4 For a time-discrete signal f: Z→C, thediscrete time Fourier
transform (DTFT) of f is defined as

F{ f}(u) =
∞

∑
t=−∞

f [t]e(−2π itu)

provided the limit of the sequence exists. Theinverse DTFT is defined as

F
−1{ f}[u] =

∫ 1

t=0
f (t)e(2π itu)dt .

For a finite time-discrete signal f: [0,N− 1] ⊂ N → C, the discrete Fourier
transform (DFT) is defined as

F{ f}[u] =
N−1

∑
t=0

f [t]e(
−2π itu

N )

and the inverse transform as

F{ f}[u] =
1
N

N−1

∑
t=0

f [t]e(
2π itu

N )

It is important to note that the discrete Fourier transform of a time-discrete sig-
nal is always a periodic continuous signal with period 1. Therefore the inverse
transform only needs to be evaluated in[0,1].

Theorem 3.4.5 The DTFT spectrum is periodic with period1.
Proof: Let t ∈ [0,m] ⊂N.

e(−2π it (u+1)) = e(−2π itu)e(−2π it )

= e(−2π itu)e(−2π i)t

= e(−2π itu)(1)t

= e(−2π itu)
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When a signal is sampled and quantized, information loss usually occurs. For
band-limited signals, a threshold for the sampling frequency can be determined.
Above this threshold, a perfect reconstruction of the signal is possible provided
the sampling frequency is still known.

Theorem 3.4.6 (Nyquist-Shannon sampling theorem)Let f(t) : R → C be a
band-limited signal with maximal frequency fmax. When a time-discrete signal
f [t] : Z→ C is computed by sampling f(t) with period T= 1

fs
, and the sampling

frequency fs fulfills
fs≥ 2 fmax,

then perfect reconstruction of f(t) out of the signal f[t] and the known sampling
frequency fs is possible.
Proof: The Fourier transform of a band-limited signal with maximal frequency
fmax has a finite width of2 fmax. When the sampling frequency is larger than
2 fmax, the periodic repetitions of the Fourier transform do not overlap and the
original signal can be reconstructed using an ideal low-pass filter which only lets
frequencies in[− fmax, fmax] pass. Further details can be found in the literature
[66].

A DFT of lengthN = 2m can be computed as the sum of two DFTs of lengthN
2 :

Theorem 3.4.7 Let f : [0, ..,N−1] → C be a discrete signal and let N= 2m. Let
f even, f odd : [0,N/2−1]→C be the two signals with feven[t] = f [2t] and fodd[t] =
f [2t +1]. Then

F{ f}[u] = F{ f even}[u]+e(
2π iu

N )F{ f odd}[u]

and
F

−1{ f}[t] = F
−1{ f even}[t]+e(

2π it
N )F−1{ f odd}[t]

Proof:

F{ f}[u] =
N−1

∑
t=0

f [t]e(
−2π itu

N )

=
N/2−1

∑
t=0

f [2t]e

(

−2π i(2t)u
N

)

+
N/2−1

∑
t=0

f [2t +1]e

(

−2π i(2t+1)u
N

)

=
N/2−1

∑
t=0

f even[t]e

(

−2π i(2t)u
N

)

+e(
−2π iu

N )
N/2−1

∑
t=0

f odd[t]e

(

−2π i(2t)u
N

)

=
N/2−1

∑
t=0

f even[t]e

(

−2π itu
N/2

)

+e(
−2π iu

N )
N/2−1

∑
t=0

f odd[t]e

(

−2π itu
N/2

)

= F{ f even}[u]+e(
2π iu

N )F{ f odd}[u]
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The proof for the inverse Fourier transform is analog.

Definition 3.4.8 The algorithm for computing the DFT recursively based on The-
orem 3.4.7 is calledfast Fourier transform (FFT) [16].

Note that DTFT and DFT are only defined for (time-)discrete signals with equidis-
tant spacing of the supporting points of the signals here. The FFT is further limited
as it needs equidistant spacing ofN = 2m supporting points here. Fast DFT algo-
rithms for other decompositions ofN exist, too. Discretizations of the Fourier
transform for signals with irregular spacings also exist, and even fast algorithms
for their computation. Further information can be found in [74,88].

Let f [t] : [0, ..,N−1] → C andh[t] : [0, ..,M−1] → C be two discrete signals
with N > M. The FFT reduces the complexity of the computation of the DFT
of f [t] from O(N2) to O(Nlog(N)). The computation of a convolution off [t]
andh[t] has complexityO(NM). Computing the convolution in frequency domain
via convolution theorem and FFT’s reduces the cost toO(Nlog(N)). Thus, the
computation of the convolution via frequency domain is faster forM > log(N).

3.5 Gabor Filter

Due to the uncertainty principle, a signal can either be optimally localized in time
domain or in frequency domain. Examples are the impulsesδ which are opti-
mally localized in time domain but spread out infinitely in frequency domain, and
the sinusoids which are optimally localized in frequency domain and spread out
infinitely in time domain.

Theorem 3.5.1 Let f : R→ C be a signal and E( f ) =
∫

R
f (t)dt its mean value.

Let ∆t =
√

2πE(( f −E( f ))2) and∆u =
√

2πE((F{ f}−E(F{ f}))2). ∆t and
∆u measure the variances, normalized with

√
2π, of the signal f and its Fourier

transformF{ f}. Theuncertainty principle is given by the relation

∆t∆u≥ 1
2
.

Thus, resolution in frequency domain has to be halved to get double resolution in
time domain and vice versa. The Gabor filter is the only function which achieves
the equality∆t∆u = 1/2 as it is the modulation product of a complex sinusoid
with an impulse of the form of a probability or Gaussian function [35].

Definition 3.5.2 TheGaussian functionis defined as g(t) = 1
σ
√

2π e

(

−t2

2σ2

)
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Definition 3.5.3 Let g: R→ R be a Gaussian filter with varianceσ . The pulse
response h: R→ C of theGabor filter is defined as

h(t) = g(t)∗e(2π itu).

The frequency response is

F{h}(u) = e−2πσu.

The Gabor transformation thus defined can also be understoodas a Fourier trans-
form localized by the Gaussian window function, as special type of a short-time
Fourier transform. Note that, in 2D and 3D, sometimes Gaussians with elliptical
instead of circular shape are used.

The Gabor filters form a complete non-orthogonal basis. Iff : R → C is a
finite-dimensional function, it can be expressed by a weighted sum of appropri-
ately shifted Gabor functions:

Definition 3.5.4 TheGabor expansionof a function f: R→ C is defined as

f (t) = ∑
r

∑
u

βr,ug(t − tr)e
(2π i(t−tr)u)

The sequences of shifts xr , and modulation frequencies u, have constant spacings
X and U satisfying XU= 1. Together, they form theGabor lattice.

An example of a Gabor lattice in 2D can be found in Figure 3.1. When the density
of positionstr and frequenciesu is equal to or higher than that given by the sam-
pling theorem, the Gabor expansion scheme is exact. Then,f (t) can be exactly
reconstructed from the expansion coefficientsβr,u though it is a complex process
as the basis is non-orthogonal. A good and often used approximation [6, 65] is
given by:

βr,u ≈
∫

f (t)g(t− tr)e
(−2π i(t−tr)udt.

When f (x) is approximately band limited, e.g.f (x) has been sampled, a finite
number of expansion coefficients can adequately represent the important frequen-
cies of the function. More important is the localization property, that is a large
coefficientβr,u corresponds to the dominant frequencies in the spatial vicinity of
tr . The Gabor expansion can be generalized using other windowing functions
than the Gaussian, but then the optimal localization in bothfrequency and spatial
domain is lost.

Gabor filters are often used for wavelet transformations. The difference be-
tween a Gabor expansion and a Gabor wavelet transform is thatthe coefficients
of the Gabor expansion are computed using an equally sized Gaussian and for the
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Figure 3.1: The Gabor lattice.Left : Original grid (green), coarser spatial resolu-
tion of the Gabor lattice (black) and the Gaussians adumbrated by the orange and
blue circles.Right: At every grid node of the coarser spatial grid of the Gabor
lattice (black), a short time FT is computed. The underlyinggrid of the Gabor
coefficients in frequency domain is drawn in blue. The coarsespatial grid and the
local grids in frequency domain together form the Gabor lattice.

wavelet transform, the size of the Gaussian is directly proportional to the wave-
length of the frequency to be computed. The advantage of the wavelet approach
is that the Gaussian is optimally scaled in proportion to thefrequency to be de-
scribed.

An interesting observation is the fact that simple cells in the human visual
cortex, that is in the first steps of human visual informationprocessing, can be
modeled as Gabor filters [65]. Thus, it is only consequentialto use Gabor filters
in image processing. Applications of Gabor filters and wavelets so far include
frequency-space analysis for resampling [106], segmentation of texture [6, 9, 32],
image registration and motion estimation [64] and object recognition in general,
e.g. the recognition of faces [39,60,64].

3.6 Segmentation of Images

The step from 1D signals with time as variable to 2D signals inspacial domain is
straightforward, the signals are evaluated for each dimension.

Definition 3.6.1 Let Xj = [0, ..,mx j ] ⊂ N, G = [0, ..,mg] ⊂ N, mx j ,mg ∈ N, j =
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1, ..,k. An elementx = (x1, ..,xn) ∈ X1× ..×Xk is called apixel (or voxel for
k = 3). A discrete scalar field p[x] : X1× ..×Xk → G is called agrayscale image.
A discrete scalar fieldp[x] : X1× ..×Xk → Gkc with kc > 1∈ N is called acolor
image. The number kc of color channels is usually 3 or 4.

Note that there are several conventions for choosing the color space. RGB splits
the color into red, green and blue parts. HSV, on the other hand, is based on hue,
saturation and brightness value. YUV was developed to add color to grayscale
television while keeping downward compatibility and has one luminance channel
corresponding to the grayscale image, and two chrominance channels. CMYK
is based on cyan, magenta, yellow, and black, and is mostly used for printer.
Note that a color from one color space may not have a correspondence in another
space, though most colors can be converted. Due to the differences in defining the
color space, no unifying approach for extending algorithmsfor grayscale images
to color has been developed.

RGB color images can be converted into grayscale images via the magnitude
of their color vector. Otherwise, each color channel can be examined separately,
and the results be interpreted according to the color space which was used. It is
important to note that though the color channels form vectors, they have not much
in common with vectors that describe directions. Thereforealgorithms for color
images are not necessarily transferable to vector fields from flow visualization. In
the following, only 2D and 3D grayscale images are discussed.

3.6.1 Feature Detection and Segmentation

A central issue in image processing and machine vision is feature detection. Seg-
mentation itself is the process of partitioning the image into multiple regions ac-
cording to some criterion. Both have always been central issues in image pro-
cessing, therefore a huge amount of different approaches isavailable nowadays.
In this chapter, the most basic ideas are introduced and discussed to give a short
overview of the approaches and the challenges they met.

Whenever the amplitude, here grayscale values, sufficiently characterizes the
features, amplitude thresholding is useful:

Definition 3.6.2 Let p[x] be a discrete grayscale image.Amplitude threshold-
ing is the process of segmenting an image based on a given threshold α by classi-
fying every pixelx according to its value p[x] as p[x] ≤ α or p[x] > α.

The choice of the threshold, however, is often a difficult problem as it greatly
influences the result of the segmentation (Figure 3.2). Without further information
about the information displayed in the images, the threshold can only be guessed.
When the edge between feature and background is symmetric, the median of their
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grayscale values is the correct threshold. Here, analysis of the histogram of the
gray values is helpful in choosing the threshold. Note that when amplitude values
of feature and background overlap, only a partial segmentation is possible, or none
at all.

This way, the image can be binarized by thresholding, and each pixel is labeled
as belonging to the object or not. Thus, pixels or areas separated from the main
object can still belong to the same object. This is often not desired, as an object is
inherently characterized by connectivity. Further processing can amend this. The
binarized image can be used e.g. for component labeling, where the connectivity
of pixels with their neighbors is examined in order to assignthe pixel to objects.

Another classical approach for segmentation in image processing is based on
edge detection. An edge in a discrete image can be defined as follows:

Definition 3.6.3 Let p[x] be an image. An pixelx belongs to anedgeif the differ-
ence of the grayvalues of neigbouring pixels is large in one direction, and small
in the orthogonal directions.

Thus, edges can be described as extrema of the magnitude of the gradient. This
approach leads to the approximation of edge-detection operators by discrete dif-
ferentials. To improve the performance, the Sobel operator, based on the first
derivative, smoothes the image along one direction while computing the deriva-
tive into the other. Another description of edges is a zero-crossing of the sec-
ond derivative. However, not every zero-crossing describes an edge, and many
zero-crossings are only due to noise. Only those zero-crossings with a signifi-
cant extrema on either side are due to edges. The operator computing the second
derivative is called Laplace operator. Note that both first and second derivative are
sensitive to noise (Figure 3.2). Smoothing of the object, e.g. by using Gaussian
filters (Definition 3.5.2), can be necessary. Furthermore, thresholding has to be
applied after edge detection to filter the results and discard insignificant informa-
tion. Then the edges of objects have to be combined to form theboundaries of the
objects. This can be done e.g. by contour following or edge linking.

Region growing is computed by dividing the image into regions of same gray
levels. Adjacent regions which are similar with respect to the gray value are then
merged until neighboring regions are sufficiently different. This can also be com-
puted the other way round by splitting algorithm. These region based approaches,
also called clustering algorithms, are less sensitive in terms of noise. However,
they can be quite complex. Furthermore, the merging or splitting criteria is not
easy to choose and it greatly influences the results.

Pattern matching has been used for segmentation of images aswell. There,
similarity to templates from a given list is computed at all positions in the image
via a correlation (Definition 3.2.6). Positions with a significant local maxima of
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Figure 3.2: Segmentation based on thresholding and edge-detection. The values
are distributed between 0 (black) and 255 (white).Top: Original image. Bina-
rization based on:Left row top two images: Thresholding (value 80 and 180)
depends on the chosen threshold.Right row top : The median of the two max-
ima of the color distribution is often chosen as threshold (here value 133).Left
row bottom two images: Edge detection using the gradient and the Sobel opera-
tor. Right row bottom : Binarization using thresholding of edge detection results
(gradient operator). Edge detection algorithms are sensitive to noise, therefore
their results are not convincing for this example.

the similarity values have a high probability of being the center of the feature to be
found. The size of the feature is assumed to be the size as coded in the template.

The correlation has to be computed at every point of the grid.But at the border
of the image, the correlation would need values outside the image. This problem
of boundary values is usually solved using one of the following approaches:
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1. Using zero values. Thus, artificial edges at the border arecreated.

2. Extrapolation. At the simplest case, one can take the values at the boundary.
All extrapolations lay too much stress on the border values.

3. Cyclic convolution. The results depend on the chosen display window as
most images are not periodic as assumed here.

4. Windowing. The values are gradually reduced to zero near the boundary.
Some values at the border are lost but otherwise this is the preferred ap-
proach in image processing.

Another problem of template matching using correlation is choosing the right
threshold for determining significant similarity. One technique to obtain sharper
local maxima of the similarity values are symmetric phase-only matching filters,
which are introduced in Section 3.6.2. Other challenges arerotation and scale
invariant similarity measures. These can be approximated by using templates with
different sizes and directions. However, this is computationally expensive. For
scale invariant matching, use of the scale space and multi-grid approaches can
be made (Section 3.6.3). For rotation invariant matching, the orientation tensor
in Section 3.6.4 can be used to determine the major directionof the structure.
Template and structure in the field can thus be aligned for maximal similarity.

3.6.2 Symmetric Phase-Only Matched Filter

A distinct disadvantage of template matching based on the correlation is that the
similarity depends more on the energy structure of the imagethan the spatial struc-
tures. Therefore, template matching often provides a poor discrimination between
objects of different shapes but similar energy content. Furthermore, the shape of
the filter output around the maximum is broad. This can becomea problem for
the detection of local maxima, especially in the presence ofnoise. Phase-only
matching solves these problems as the phase preserves the object location and is
insensitive to the object energy.

Definition 3.6.4 A filter h(x) : Rn → C is called aphase-only matched filter
if the phase of its pulse response is equal to the spectral phase of the function
f (x) : Rn → C to be analyzed.

A further improvement can be achieved by extracting the phases of both functions,
and matching them [14]:

Definition 3.6.5 Let f,h : Rn → C be two functions. Let q: Rn → C be a filter
defined by

q(x) = F
−1

{

F{ f}
‖F{ f}‖

F{h}
‖F{h}‖

}

(x).
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Then q(x) is the result ofsymmetric phase-only matched filtering(SPOMF) of
f (x) and h(x).

3.6.3 Scale Space

In Section 3.5, the uncertainty principle was introduced which states that a fea-
ture can only be localized well in either time (or spatial) domain, or in frequency
domain. The idea of Gabor filters was to get both information of the involved
frequencies and the spatial resolution. The frequencies contain information about
the size of a feature. Thus, a range of frequencies is also called a scale, and divid-
ing the occurring frequencies into different scales is the basis for a scale space, in
which the frequencies are subsequently removed according to their scale. This is
analogous to a diffusion process.

Definition 3.6.6 Let p[x] be an image. Let s,s1,s2 ∈ [0,ms] with s1 < s2. Then
q[x,s] is a scale spaceif

q[x,0] = p[x],
‖q[x,s1‖] ≥ ‖q[x,s2]‖,

and all local extrema in q[x,s2] are local extrema in q[x,s1] and of the same type.

Thus, the information inq[x,s] is reduced with growings. This is achieved using
smoothing filters. As the smoothing process should also be independent of the
scales at which it is started, the Gaussian filter (Definition 3.5.2)is the only LSI
filter satisfying both criteria as well as isotropy and homogeneity [63].

A disadvantage of the scale space is the additional scale dimension and thus an
extensive increase in computational time and storage space. This leads to multi-
grid approaches for discrete grids, the best known being theGaussian pyramid
created by subsequently smoothing with the Gaussian filter and reducing the size
of the grid as far as possible while still satisfying the Nyquist theorem (Theorem
3.4.6). The Gaussian pyramid can then be used for template matching on each of
its grids, and combining the results of different scales results in a scale-invariant
similarity measure. Sometimes it it also interesting to investigate the Laplace-
Pyramid, which is the opposite of the Gaussian pyramid as theinformation which
is lost between two subsequent grids of the Gaussian pyramidis computed.

3.6.4 Rotation Invariant Matching

Rotation invariant matching is a difficult problem. The onlygeneral solution
known is to generate many templates with the object of interest rotated into dif-
ferent directions, match with all of them, and use the maximal similarity. This is
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obviously computationally expensive. When a feature is rotationally symmetric,
it is obvious that the similarity to this feature will be rotation invariant, too. For
other features, different approaches have to be found.

Let a feature be describable by a simple function, that is a function that varies
only in one direction. Basic examples for such features are edges and lines. If
the neighborhood of a point can be modeled by a simple function, as it is the case
within such features, local orientation, symmetries and curvature can be deter-
mined by a so called orientation tensor [36]. This orientation tensor is based on
an outer product of the response of quadrature filters to a function. Quadrature
filters are filters with a zero transfer function in one half plane of the frequency
domain. The normal of this plane is called the orientation ofthe quadrature filter.
Note that the real part of the quadrature filter corresponds to a line detector and
the complex part to an edge detector. Furthermore the magnitude of the filter re-
sponse is proportional to the square of the angle between thedirections of filter
and image.

Definition 3.6.7 Let p(x) : Rn → R be a scalar field. Let hk : Rn → R,k ∈ N

be a quadrature filter with directionnk, and thenk be evenly distributed over a
half-sphere. Let I be the identity tensor, letα,β ∈R andx ∈Rn. Then the tensor

To(x) =
N−1

∑
j=0

‖(p∗hk)(x)‖(αnkn
T
k −β I)

is calledorientation tensor. α,β , N and the template directionsnk depend on
the dimension. A possible distribution of the filter directions is [36]:

2D: N = 3, α = 4/3, andβ = 1/3. Let a= 0.5 and b=
√

3
2 . Then the directions

nk, k = 1,2,3, aren1 = (1,0)T , n2 = (a,b)T andn3 = (−a,b)T

3D: N = 6, α = 5/4 and β = 1/4. Let a= 2, b = (1+
√

5), and c= (10+

2
√

5)−
1
2 . Then the directionsnk, k = 1, ..,6, are

n1 = c(a,0,b)T, n2 = c(−a,0,b)T ,
n3 = c(b,a,0)T, n4 = c(b,−a,0)T ,
n5 = c(0,b,a)T, n6 = c(0,b,−a)T

Note that these directions in 2D correspond to the x-axis rotated 0◦, 60◦ and 120◦,
which are also the axes of a hectahedron. In 3D, the directions correspond to the
axes of a icosahedron.

Theorem 3.6.8 Let p(x) : R3 → R be a 3D scalar field. Let hk : R3 → R,k ∈
N be a quadrature filter with directionnk. Let To(x j) be the orientation tensor
generated by p(x j) and hk at positionx j .
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1. Let the neighborhood ofx j have one unique orientation nd. Let s be the sim-
ilarity of the frequencies of field and filter. Then To(x j) has the eigenvalues
λ1 = s2, λ2 = λ3 = 0 and the eigenvector e1 = n.

2. Let the neighborhood ofx j consist of a linear combination of two unique
orientations nd1 and nd2. Let s1,s2 be the similarity of the two frequencies of
the field and the one frequency of the filter. Then To(x j) has the eigenvalues
λ3 = 0 and

λ1,2 =
s2
1+s2

2

2
±

√

(

s2
1+s2

2

2

)2

−‖s1‖‖s2‖‖sin2(φ)‖.

If nd1 and nd2 are orthogonal, this simplifies toλ1 = s1, λ2 = s2, and the
eigenvectors are e1 = nd1 and e2 = nd2.

3. Let the neighborhood ofx j consist of a linear combination of three unique
orientations. Then To(x j) has three non-zero eigenvalues.

For other dimensions of the scalar field, the properties are analogous. The proof
can be found in the literature [36,41]. This orientation tensor can also be combined
with arbitrary templates and used for determining a rotation invariant similarity
as well as the orientation of the structure in the field as longas the template is
describable by a simple function. For other templates, onlyapproximations can
be computed and the error may be high. Further discussion will be postponed to
Section 5.2, where the orientation tensor is applied to template matching of vector
fields.



Chapter 4

Clifford Algebra

Clifford algebra extends the classical description of Euclideann-space — which
is a realn-dimensional vector space with scalar product — to a real algebra. El-
ements of this algebra are called multivectors and include scalars, vectors, and
other elements. The vectors describing flow are usually 2D or3D, and therefore
the main focus in this thesis is on Clifford algebras in thesedimensions. Here, a
special Clifford algebra which is also called geometric algebra is used because of
its useful geometric properties. Using Clifford algebra has the following advan-
tages:

• It provides a unifying notation for scalars, vectors, and spinors. Complex
numbers, which play an integral part of many signal processing concepts
and methods, can be integrated as well.

• When working with multidimensional signals and including vector fields,
many different mathematical approaches for representing the elements are
used, and the operations on them are mixed as well. Clifford algebra pro-
vides a unification for the operators, too.

• When rotations are described by means of matrix algebra, their use is often
not intuitive. Rotation angle and axis of a 3D rotation do notnecessarily
show up in their corresponding matrix. A more intuitive description of ro-
tations are spinors, which are contained in Clifford algebra. (In 3D, spinors
are also called quaternions.)

• The basis elements can be interpreted as points, vectors, planes, and vol-
umes. Operations on these basis elements have geometric correspondences
as well, which aids in the understanding of and thinking in Clifford Algebra.

• For the definition of a correlation of vector fields, a multiplication of vectors
had to be defined or chosen. Clifford algebra provides a multiplication with

51
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useful geometric properties.

In this chapter, Clifford algebra is explained as far as it isimportant for the under-
standing of this thesis. Clifford algebra in 2D and 3D are introduced in Section
4.1 and 4.2 respectively. A short elaboration of Clifford algebra in nD, as well
as some Clifford calculus including the definition of integral and derivative, can
be found in Section 4.3. As some of the related work is based onother, slightly
different definitions of Clifford and other algebras, thesealgebras and the relation-
ship to the Clifford algebra used in this thesis can be found in Section 4.4. The
material of this chapter is mainly taken from [46,47,79].

4.1 Clifford Algebra in 2D

The 2D Euclidean vector spaceE2 is spanned by two orthonormal vectorse1 and
e2:

Definition 4.1.1 Let E2 be theR-vector space generated by the basis e1,e2 with
the Euclideaninner product

〈·, ·〉 : E2 →R

(a,b) 7→ 〈a,b〉 = a ·b = a1b1+a2b2

for a = a1e1 +a2e2 and b= b1e1 +b2e2

which is distributive and associative, and identical to thescalar product.

Note that〈ei ,ej〉 = δi j which yields the orthogonality. Furthermore, the inner
product is grade reducing as it maps fromE2 intoR and thus reduces vectors to a
scalar.

Definition 4.1.2 Let V2 be theR-vector space with basis{1,e1,e2,e1∧e2}. The
bilinear outer product ∧ is defined as

∧ : V2 →V2,
(A,B) 7→ A∧B

given by
α ∧A = αA ∀ α ∈R

and a∧b = −b∧a ∀ a,b∈ E2 ⊂V2.

The outer product is also called wedge or Grassmann product and leads out ofE2.
The basis elemente1∧e2 can be interpreted as the oriented area spanned by the
two unit vectorse1 ande2. For arbitrary vectorsa,b,c∈ E2 ⊂V2 we geta∧a = 0
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anda∧b∧c = 0. Note that the wedge product can increase, decrease or maintain
the grade of an elementA∈V2.

The inner and outer products can be unified to the so called geometric product.
With this geometric product, the Clifford algebraG2 is defined:

Definition 4.1.3 Let E2 be as before. TheClifford or geometric algebraG2 is
the real 4-dimensional vector space with basis{1,e1,e2,e1e2} and the bilinear,
associativegeometric product

G2×G2 → G2,
(A,B) 7→ AB

given by
1e1 = e1, 1e2 = e2,
e1e1 = 1, e2e2 = 1,

and e1e2 = −e2e1.

The geometric product can also be defined by a multiplicationtable stating the
multiplication rules for each pair of basis elements (Table4.1).

1 e1 e2 e1e2

1 1 e1 e2 e1e2
e1 e1 1 e1e2 e2

e2 e2 −e1e2 1 −e1

e1e2 e1e2 −e2 e1 −1

Table 4.1: Multiplication table of the basis elements ofG2. Note that multiplica-
tion is not commutative. The left factors are indicated by the first column and the
right factors by the first row.

Since Clifford algebra might be considered complicated, here is the derivation of
the multiplication of two arbitrary elementsA,B ∈ G2. Let

A = a0 +a1e1 +a2e2 +a3e1e2

and
B = b0+b1e1+b2e2+b3e1e2.
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Then the geometric productAB can be computed as follows:

AB = a0B+a1e1B+a2e2B+a3e1e2B
= a0b0 +a0b1e1+a0b2e2 +a0b3e1e2

+a1e1b0+a1e1b1e1+a1e1b2e2+a1e1b3e1e2

+a2e2b0+a2e2b1e1+a2e2b2e2+a2e2b3e1e2

+a3e1e2b0 +a3e1e2b1e1+a3e1e2b2e2+a3e1e2b3e1e2

= a0b0 +a1b1+a2b2−a3b3

+(a0b1+a1b0−a2b3+a3b2)e1
+(a0b2+a2b0+a1b3−a3b1)e2

+(a0b3+a3b0+a1b2−a2b1)e1e2

An arbitrary elementA = α + a1e1 + a2e2 + βe1e2 ∈ G2 is called multivec-
tor and consist of a scalarα, a vectora = a1e1 + a2e2, and a so called bivector
βe1e2. The bivector basis elemente1e2 corresponds toe1∧e2 ∈ V2 and can be
interpreted as the oriented area spanned by the two unit vectorse1 ande2 (Figure
4.1). Note that the orientation of the area is the geometric motivation for using a
non-commutative product.

In G2, the bivector is also called pseudoscalar. It is often denoted by i, or i2
when indicating that the pseudoscalar ofG2 is meant. Multiplication of a vector
a with i corresponds to a counterclockwise rotation of the vector bya right angle
(Figure 4.1). Note thati2 = (e1e2)

2 = −1. Thus, the spinorsS2 = {α + iβ |α,β ∈
R} ⊂ G2 form a group. Each spinor can be regarded as a representationof a com-
bined rotation and dilation, andi is the generator of the rotations. Furthermore,
S2 is isomorphic to the complex numbersC, which are fundamental for many
signal processing concepts and algorithms.i ∈ G2 corresponds to the imaginary
unit i ∈ C. Thus we also get the following lemma which is later needed for the
definition of a Fourier transform of multivectors:

Lemma 4.1.4 e(iγ) = cos(γ)+ isin(γ) ∀γ ∈R, and thus a spinor.

Partitioning the basis elements ofG2 into vector and spinor basis elements
yields a separation which is closed under multiplication with a bivector or a com-
plete spinor (Table 4.1). It is understandable as the rotation of a vector will again
yield a vector, and combining two rotations will result in a new rotation. This
separation is also given by the definition of dual pairs:

Definition 4.1.5 Thedual of A is defined asiA. The dual of a scalar is a bivector,
and the dual of a vector is another vector. Thedual pairs of the basis elements
are

1 ↔ i
and e1 ↔ e2.
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Figure 4.1:Left : The two unit vectors and the bivector in the Clifford Algebra
G2. Right: Multiplication with i corresponds to a multiplication by a right angle.

Note that the dual pairs are only given as basis elements as e.g. the dual ofe1

is ie1 = e2 and the dual ofe2 is −e1. Remember thati corresponds to a counter-
clockwise rotation by a right angle.

The elements ofG2 can also be sorted by grade (Table 4.2). A multivectorA
in G2 will often be written as the sum of its elements of different grade,

A = α +a+ iβ

with α,β ∈R,a∈ E2 andi = e1e2.

name grade dimension basis elements
scalar 0 1 1
vector 1 2 e1,e2

bivector 2 1 e1e2

Table 4.2: The elements ofG2 sorted by grade.

Definition 4.1.6 Thegrade projectors 〈·〉k : G2 → G2 are the maps

〈A〉0 = α, 〈A〉1 = a, 〈A〉2 = iβ

for A = α +a+ iβ .

Now we can come back to the relation of the geometric product and inner and
outer product. With the canonic vector space isomorphism

Φ : G2 →V,
Φ(1) = 1,Φ(e1) = e1,Φ(e2) = e2,Φ(e1e2) = e1∧e2,
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∧ and〈·〉 can be transported intoG2. For two vectorsa,b ∈ E2 ⊂ G2 we get

ab = (a1e1+a2e2)(b1e1 +b2e2)

= a1b1e2
1 +a1b2e1e2+a2b1e2e1+a2b2e2

2

= a1b1+a2b2+(a1b2−a2b1)e1e2

= 〈a,b〉+a∧b.

This motivates the following definitions:

Definition 4.1.7 Let a,b∈ E2 ⊂ G2. Theinner product 〈a,b〉 is defined by

〈a,b〉 = 〈ab〉0 =
1
2
(ab+ba).

Theouter product a∧b is defined by

a∧b = 〈ab〉2 =
1
2
(ab−ba).

The inner product can be extended to a scalar product of multivectors. For this, an
operation similar to conjugation inC is defined:

Definition 4.1.8 Let A = α +a+ iβ ∈ G2. Then thereversionA+ is defined by

A+ = α +a− iβ

Definition 4.1.9 Let A = α + a+ iβ ,B = γ + c+ iδ ∈ G2. Thescalar product
〈A,B〉 is defined by

〈A,B〉 = αγ + 〈a,c〉+βδ = 〈AB+〉0 ∈R⊂ G2

Definition 4.1.10 Themagnitude of A ∈ G2 is

‖A‖ = +
√

〈A,A〉

For a vectora∈ G2, the magnitude‖a‖= +
√

〈a,a〉 is the usual Euclidean length.
The geometric product of two vectorsa andb is a spinor and describes the

rotation and dilation which is necessary to transforma into b. This geometric
interpretation of the geometric product, or the inner and outer products, can now
be specified:

Lemma 4.1.11 Let a,b∈ E2 ⊂ G2, andω be the angle betweena andb. Then

〈ab〉0 = 〈a,b〉 = ‖a‖‖b‖cosω
and 〈ab〉2 = a∧b = ‖a‖‖b‖sinω,
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Furthermore, every non-zero vector inG2 has an inverse, and thus division of
vectors can be computed in the Clifford algebraG2:

Lemma 4.1.12 Let a∈ E2\{0}. Then there exist an inversea−1 = 1
‖a‖a

Proof: ‖a| > 0 for a∈ E2\{0}. Therefore 1
‖a‖a∈ E2 and

1
‖a‖aa=

1
‖a‖〈a,a〉+a∧a =

1
‖a‖〈a,a〉 = 1

Non-zero spinors also have inverse elements:

Lemma 4.1.13 Let A = α + iβ ∈ S2 ⊂ G2. Then there exist an inverseA−1 =
1

‖A‖A+

This was expected as spinors describe rotation and dilation, and the inverse of
a spinor reverses the rotation and dilation. Note that arbitrary multivectorsA ∈
G2\{0} do not always have inverse elements.

4.2 Clifford Algebra in 3D

In the 3-dimensional Euclidean vector spaceE3 with basis{e1,e2,e3}, the vectors
can not only span oriented areas but also volumes. This is reflected in the Clifford
or geometric algebraG3:

Definition 4.2.1 Let E3 be the 3-dimensional Euclidean vector space with the ba-
sis{e1,e2,e3}. TheClifford or geometric algebraG3 is the real 8-dimensional
vector space with basis{1,e1,e2,e3,e1e2,e2e3,e3e1,e1e2e3} and the bilinear, as-
sociativegeometric product

G3×G3 → G3,
(A,B) 7→ AB

given by
1ej = ej , j = 1,2,3 ,

ejej = 1, j = 1,2,3 ,
and ejek = −ekej , j,k = 1,2,3, j 6= k .

An arbitrary multivectorA ∈ G3 consists of a scalarα, a vectora= a1e1+a2e2+
a3e3, a bivectorb = b1e2e3 +b2e3e1 +b3e1e2, and a trivectorβe1e2e3. The unit
bivectors correspond to three oriented areas orthogonal toeach other, and the unit
trivectore1e2e3 corresponds to the unit volume (Figure 4.2).
In G3, the trivectore1e2e3 is also called pseudoscalar. It is denoted byi, or i3 when
indicating that the pseudoscalar ofG3 is meant. The trivectori is commutative to
every arbitrary multivectorA ∈ G3 (Table 4.3). TheHodge-duality states that the
trivector converts vectors into bivectors and vice versa:
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Figure 4.2:Left : The three unit vectors inG3. Middle : The three unit bivectors
in G3 representing areas.Right: The unit trivector inG3 representing the unit
volume.

Lemma 4.2.2 (Hodge-duality)

e1e2 = e1e2e3e3 = ie3

e2e3 = ie1

e3e1 = ie2

Thus, an arbitrary multivectorA ∈ G3 can be written as

A = α +a+ i(b+β )

with α,β ∈R, a,b ∈ E3, andi = e1e2e3.

Definition 4.2.3 Thedual of a multivectorA is defined as−Ai. Thus, the dual
of a scalar is a trivector, and the dual of a vector is a bivector analog to the
Hodge-duality.

1 e1 e2 e3 e2e3 e3e1 e1e2 e1e2e3

1 1 e1 e2 e3 e2e3 e3e1 e1e2 e1e2e3
e1 e1 1 e1e2 −e3e1 e1e2e3 −e3 e2 e2e3

e2 e2 −e1e2 1 e2e3 e3 −e1e2e3 −e1 e3e1

e3 e3 e3e1 −e2e3 1 −e2 e1 e1e2e3 e1e2

e2e3 e2e3 e1e2e3 −e3 e2 −1 −e1e2 e3e1 −e1

e3e1 e3e1 e3 e1e2e3 −e1 e1e2 −1 −e2e3 −e2
e1e2 e1e2 −e2 e1 e1e2e3 −e3e1 e2e3 −1 −e3

e1e2e3 e1e2e3 e2e3 e3e1 e1e2 −e1 −e2 −e3 −1

Table 4.3: Multiplication table of the basis elements ofG3. Note that multiplica-
tion is not commutative. The left factors are indicated by the first column and the
right factors by the first row.
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Note that(e1e2)
2 = −1,(e2e3)

2 = −1,(e3e1)
2 = −1 and(e1e2e3)

2 = −1 (Table
4.3). S3 = {α + ib} ⊂ G3 is the group of the quaternions, an extension of the
complex numbers which is often used to describe rotations, and which is a special
group of spinors.

Now there are several possibilities of choosing an isomorphism to the complex
numbers. Often the trivector is chosen for the complexi as already indicated by
naming it i. C3 = {α + iβ} is isomorph to the complex numbersC. Any of the
sets{α + b j iej}, j = 1,2,3 based on the scalar and a unit bivector would also
be isomorph to the complex numbers. However, in this thesis the choice of the
trivector as imaginary number is advantageous as the resulting complex numbers
are commutative to every multivector inG3 (Table 4.3).

Lemma 4.2.4 For every scalarγ

e(iγ) = cos(γ)+ isin(γ)

and for every multivectorA ∈ G3

Ae(iγ) = e(iγ)A.

Proof:
Ae(iγ) = Acos(γ)+Aisin(γ)

= cos(γ)A+ isin(γ)A
= e(iγ)A .

Again, inner and outer product of two vectors can be defined. The cross prod-
uct, which corresponds to the normal vector of the area spanned by two vectors
whereas the outer product corresponds to the oriented area itself (Figure 4.3), can
also be defined in the Clifford algebraG3:

Definition 4.2.5 Thegrade projectors 〈·〉k : G3 → G3 are the maps

〈A〉0 = α, 〈A〉1 = a, 〈A〉2 = ib,〈A〉3 = iβ

for A = α +a+ i(b+β ).

name grade dimension basis elements
scalar 0 1 1
vector 1 3 e1,e2,e3

bivector 2 3 e2e3,e3e1,e1e2
trivector 3 1 e1e2e3

Table 4.4: The elements ofG3 sorted by grade.
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Figure 4.3: The cross product gives the normal vector of the area spanned by the
two vectorsa and b, whereas the outer product ofa and b corresponds to the
oriented area itself.

Definition 4.2.6 Let a,b∈ E3 ⊂ G3. Theinner product 〈a,b〉 is defined by

〈a,b〉 = 〈ab〉0 =
1
2
(ab+ba).

Theouter product a∧b is defined by

a∧b = 〈ab〉2 =
1
2
(ab−ba).

Thecross producta×b is defined as

a×b = −i(a∧b)

Definition 4.2.7 LetA = α +a+ i(b+β ) ∈G3. Then thereversionA+ is defined
by

A+ = α +a− i(b+β )

Scalar product and magnitude are defined based on this reversion and analogous
to G2. Again every non-zero vector and spinor has an inverse element.

Lemma 4.2.8 Clifford multiplication of two vectorsa,b∈ E3 ⊂ G3 results in

ab= 〈a,b〉+a∧b,

Furthermore,ab is a spinor or quaternion and has the properties

〈ab〉0 = 〈a,b〉 = ‖a‖‖b‖cosω
and ‖〈ab〉2‖ = ‖a∧b‖ = ‖a‖‖b‖sinω,

whereω is the angle betweena andb and the bivector〈ab〉2 corresponds to the
area spanned bya andb, and thus the plane where the angle is measured.
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4.3 Clifford Algebra and Calculus in nD

Now that Clifford algebra and its elements have been introduced and analyzed in
2D and 3D, a brief extension to arbitrary dimension is given.Some Clifford cal-
culus including the definitions of integral and derivative is situated in this chapter,
too.

Definition 4.3.1 For the n-dimensional Euclidean vector space En with basis
{e1, ..,en}, the 2n-dimensionalClifford or geometric algebraGn is defined as
a direct sum V0⊕V1⊕ ...⊕Vn with the basis elements from the following table

space name grad dimension basiselements

V0 scalars 0

(

n
0

)

= 1 1

V1 vectors 1

(

n
1

)

= n e1, ..,en

V2 bivectors 2

(

n
2

)

ejek, j < k

V3 trivectors 3

(

n
3

)

ejekel , j < k < l

...
...

...
...

...

Vk k−vectors k

(

n
k

)

ej1ej2...ejk, j1 < ... < jk ∈ 1, ..,n

...
...

...
...

...

Vn n−vectors n

(

n
n

)

= 1 e1..en = in

together with the associative, bilineargeometric product

Gn×Gn → Gn,
(A,B) 7→ AB

given by

1ej = ej , j ∈ {1, ..,n} ,
ejej = 1, j ∈ {1, ..,n} ,

and ejek = −ekej , j,k∈ {1, ..,n}, j 6= k .

Definition 4.3.2 An arbitrary element of Gn is calledmultivector . An element
A∈Vk which can be written as A= αej1ej2...ejk, α ∈R is calledk-blade.

Definition 4.3.3 The canonic projection〈·〉k : Gn → Gn, A 7→ 〈A〉k is calledk-
projector .
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The squared pseudoscalari2n is not always -1, e.g.i24 = 1. The formula for cal-

culating the square of an arbitrary pseudoscalar isi2n = (−1)
1
2n(n−1). Thus the set

{α + inβ} is not always isomorph to the complex numbers. The definitionof the
reversion has to be adjusted as well:

Definition 4.3.4 Let A ∈ Gn be a multivector. Then thereversion A+ is defined
by

〈A+〉k = (−1)
1
2k(k−1)〈A〉k

Inner and outer product of two vectors, and scalar product and magnitude of mul-
tivectors are defined analog toG2. Now let F be a multivector-valued function
(field) of a vector variablex defined on some region of the Euclidean spaceEn. (If
the function is only scalar or vector valued, it will be called scalar or vector field,
respectively.)

Definition 4.3.5 TheRiemann integral of a multivector-valued functionF is de-
fined as

∫

En
F(x)|dx| = lim

|∆x j | → 0
k→ ∞

k

∑
i=1

F(x jej)|∆x j | .

The quantity|dx| is used to make the integral grade preserving sincedx is a vector
within Clifford algebra. Thus, the integral can be discretized into sums using
quadrature formulas.

Definition 4.3.6 Thedirectional derivative of F in directionr is

Fr(x) = lim
h→0

[F(x+hr)−F(x)]

h

with h∈R.

Definition 4.3.7 Thevector derivative ∇ is defined as

∇ =
n

∑
j=1

ej
∂

∂x j

Note that∇ is vector valued, and computation of the derivative can now be done
using the geometric product:

Definition 4.3.8 The (complete)derivative of F from the left is

∇F(x) =
n

∑
j=1

ejFej (x),
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whereFej (x) are the directional derivatives. The derivative from the right is

F(x)∇ =
n

∑
j=1

Fej (x)ej .

In contrast to the Jacobian (Definition 2.2.1), which is a matrix, the derivative here
is spinor-valued. In flow analysis and visualization, curl and divergence (Defini-
tion 2.2.2) are often used. They can also be computed within Clifford algebra:

Definition 4.3.9 Curl anddivergenceof a 2D or 3D vector-valued functionf can
be computed as

curl f = ∇∧ f =
(∇f− f∇)

2

and divf = 〈∇, f〉 =
(∇f + f∇)

2
.

This curl operator gives the bivector describing the plane of strongest rotation
whereas the classical curl operator results in the corresponding normal vector.

4.4 Other Clifford Algebras

In some of the related work concerning the definition of a Fourier transform within
Clifford algebra, different definitions of Clifford algebra are used [8, 9, 34]. Let
e1, ...en be an orthogonal basis ofEn. The used Clifford algebras mostly differ in
the definition of the square of the unit vectors which ise2

j =±1, j = 1, ..,n. These
definitions can be integrated into one algebra:

Definition 4.4.1 Let (p,q), p+q = n be a non-degenerate quadratic form of sig-
nature for En, ande1, ..,en be an orthogonal basis of En. The basis elements of the
Clifford algebra Ep,q are constructed analog to Gn, and the associative, bilinear
multiplication is defined by the rules

1ej = ej , j = 1, ..,n ,
ejej = 1, j = 1, .., p ,
ejej = −1, j = p+1, ..,m ,

and ejek = −ekej , j,k = 1, ..,n, j 6= k .

The Clifford algebraGn which is used in this thesis corresponds toEn,0, and an-
other often used Clifford algebra isE0,n.

A big disadvantage of Clifford algebras when ignoring the geometric interpre-
tation is the non-commutativity of the multiplication. Subsequent problems have
led to the definition and use of hypercomplex algebras where multiplication is
commutative, e.g. the algebraHCAn [9]:
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Definition 4.4.2 Let e1, ..,en be n symbols obeying

1ej = ej , j = 1, ..,n ,
ejej = −1, j = 1, .., p ,

and ejek = ekej , j,k = 1, ..,n, j 6= k .

Creation of the2n basis elements out ofe1, ..,en is analog to Gn. These basis
elements, and the product defined by the multiplication rules above, define the
hypercomplex algebra HCAn.



Chapter 5

Template Matching of Vector Fields

The use of scalar LSI filters on vector fields is unproblematicfor the most part, as
convolution can be defined using the multiplication of a vector with a scalar:

Definition 5.0.3 Let f : Rn → Rn be a vector field and h: Rn → R be a scalar-
valued filter. Thenconvolution of f and h is defined as:

(h∗ f)(x) =

∫

Rn
h(x’)f(x−x’)dx’ .

The definition of a convolution of two vector fields, however,is more challenging.
In this chapter, several approaches to this problem are introduced and discussed.

Note that for template matching, the correlation is of interest and not the con-
volution. However, every correlation can be computed by a convolution with a
suitably adjusted filter or template. The use of convolutioninstead of the cor-
relation is due to the convolution theorem (Theorem 3.3.8) and the analysis and
acceleration thus possible. Therefore, mostly the convolution is regarded in the
following sections. Keep in mind that the correlation can always be defined anal-
ogously.

The similarity measure should be independent of the direction of the structure
within the vector field and the template. Otherwise, one has to rotate the template
many times and compute the similarities for all the rotated templates. In a last
step, it would be necessary to compute the maximum similarity and take the cor-
responding direction as the direction of the structure. Thus, defining convolution
and correlation for vector-valued fields is only the beginning, and a rotation invari-
ant template matching algorithm based on these definitions has to follow. In this
chapter, several approaches for both tasks are introduced and discussed in detail
as they will provide a starting point for this thesis. Especially the Clifford convo-
lution (Section 5.4), which was developed in the master thesis of the author [23]
along with a rotation invariant template matching algorithm (Section 5.5), will be
important later on.

65
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5.1 Separate Matching of Component Fields

The first idea regarding image processing on vector fields is to simply treat a vec-
tor field as several scalar fields. Thus, convolution and Fourier transformation of
the separated scalar components of the vector can be computed. However, a vector
represents more information than its separated componentsprovide. Furthermore,
the scalar fields of the components are not independent and donot provide in-
sight into the vector as a whole. Granlund and Knutson [36] have investigated
this approach in 2D for optical flow fields as well as vector fields describing the
local orientation of textures. The latter fields were computed using the orientation
tensor (Definition 3.6.7). Sudden changes in the feature vector descriptor fields
describe texture borders which can thus be extracted.

5.2 Template Matching using the Inner Product

Another approach of transferring convolution to vector fields makes use of the
generalized inner product of pertinent vectors. This approach is first described by
Heiberg et al. [41,42].

Definition 5.2.1 Let f : Rn → Rn be a vector field andh : Rn → Rn be a filter.
Then thevector convolution∗v is defined as:

(h∗v f)(x) =

∫

Rn
〈h(x’), f(x−x’)〉dx’ ,

The inner product of normalized vectors provides an approximation to the cosine
of the angle between the direction of patterns present in thevector field and the
direction of the filters. Thus, the vector convolution of a template and the field
results in a similarity measure which is approximately proportional to the cosine
of the angle of the structures in field and template. Due to thedifference of rotating
one vector in contrast to rotating the complete template, the similarity may be
much smaller, an example can be found in Figure 5.1.

The disadvantage of this approach is that a unifying notation including the
convolution of scalar fields, or a scalar and a vector field, isnot possible within
this framework. Furthermore, Heiberg et al. [41, 42] do not formulate or use a
Fourier transform in their method. However, the use of the scalar Fourier kernel
for a Fourier transform is possible. This will transform each coordinate of the
vector field separately as in Section 5.1.

Definition 5.2.2 For a continuous signalf : Rn →Cn, thevector Fourier trans-
form of f is defined as

F{f}(u) =

∫

Rn
f(x)e(−2π i〈x,u〉)dx
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Due to the separate transformation of the coordinates, mostof the theorems from
Section 3.3 can be proven analogously. Because of the bilinearity of the inner
product, the convolution theorem (Theorem 3.3.8) can also be proved.

Theorem 5.2.3 Let f1, f2 : Rn → Cn be two signals. Then

F{f1∗v f2} = 〈F{f1},F{f2}〉

Proof:

F{f1∗ f2}u =

∫

R

(f1∗ f2)(x)e(−2π i〈xu〉)dx

=

∫

R

(

∫

R

〈f1(k), f2(x−k)〉dk)e(−2π i〈xu〉)dx

=

∫

R

〈f1(k),

∫

R

f2(x−k)e(−2π i〈xu)dx〉dk

=

∫

R

〈f1(k),F{f2}(u)e(−2π i〈ku〉)〉dk

= 〈
∫

R

f1(k)e(−2π i〈ku〉)dk,F{f2}(u)〉
= 〈F{f1}(u),F{f2}(u)〉

Again, note that the result of the inner product of two vectors, and thus of the
vector convolution too, is a scalar and not a vector. Thus, the vector domain in
which the computation was done has to be left. Therefore, a unifying approach for
these computations would be preferable as a mathematical basis for the analysis
and application of these methods.

Figure 5.1: Rotation of the template leads to similarities much smaller than the
expected value, here -0.63 instead of -1 for a correlation though the rotation angle
of the vector field is 180◦.
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5.3 Rotation Invariant Matching with the Orienta-
tion Tensor

Heiberg et al. [41, 42] also propose a rotation invariant template matching algo-
rithm based on the orientation tensor (Definition 3.6.7) to evaluate the filter re-
sponses of a few rotated templates to the vector field. This algorithm is introduced
in this section in detail, an overview can be found in Table 5.1.

First of all, the vector field is normalized. Note that template matching of
the normalized vector field corresponds to matching of the streamlines as they
are independent of the velocity (Theorem 2.1.5). Then the templates are defined.
Heiberg et al. [41, 42] state that their algorithm works onlyfor axis-symmetric
patterns. Lethb denote one axis-symmetric, vector-valued template. The size
of the patterns should be limited, therefore the templates are multiplied with a
rotational symmetric weighting function:

Definition 5.3.1 Let r, rmax∈R. Define the rotational symmetric weighting func-
tion w with respect to the radius r as

w : R→R

r 7→
{

1 ‖r‖ < rmax

e−
‖r‖−rmax

σ2 ‖r‖ ≥ rmax

rmax controls the size of the patterns andσ influences the drop-off of the values.
Note that for small templates, omitting this step makes no significant difference
in the resulting similarity values.

The magnitude of the response of the original quadrature filter used in the
orientation tensor is proportional to the square of the angle between the directions
of filter and function. This is the motivation for scaling themagnitude of the
vectors in the template again, this time setting the energy of the template to one.
Thus, the templates used for the matching are

h(x) = γ w(r)hb(x)

with
E{h} =

∫

Rn
〈h(x),h(x)〉dx = 1

Each of the templates is now rotated to yield the directionalresponses neces-
sary for the orientation tensor (Definition 3.6.7). In 2D, three filter directionsnk,
which correspond to their symmetry axis, are necessary for the computation of the
orientation tensor. A possible filter distributionhk can be computed by taking the
template itself as well as rotated copies with rotation angles of 60◦ and 120◦. In
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3D, six filtershk evenly distributed over a half-sphere are necessary, the formula
for the filter directionsnk can be found in Section 3.6.4.

Now, the orientation tensorTo of the template similarities can be computed at
every position of the vector fieldv:

To(x) =
N−1

∑
j=0

‖(v∗hk)(x)‖(αnkn
T
k −β I)

Then, an eigenvalue decomposition ofTo is computed. When template and local
structure in the field are equal up to a rotation, the largest eigenvalue should be
one, and the corresponding eigenvector gives the directionwhere the template has
to be rotated. Otherwise, the largest eigenvalue gives the similarity of the two
structures, and the other eigenvalues can be non-zero.

As the algorithm is based on convolution, it is robust in terms of noise. Note
that the smoothing effect of the convolution grows with the size of the templates.
One disadvantage of the algorithm is that it works only for axis-symmetric pat-
terns. This in itself is not a big disadvantage in flow visualization as features are
usually abstracted, and the basic patterns are quite simple. However, even for axis-
symmetric patterns, the algorithm does not always result insatisfying similarity
values. This is due to the more complex nature of vector fieldsin comparison to
scalar fields. A pattern like the one in Figure 5.1 is axis-symmetric, however, ro-
tating it disadvantageously, especially in a direction notcovered by the half sphere
of the filter directions, yields unsatisfying results. For this example, the rotation
invariant similarity computed using the orientation tensor was 43%. Note that the
similarities can be much smaller than that, e.g. a similar template where the diver-
gent part was doubled and the template than rotated 180◦ will result in a rotation
invariant similarity of 0.2%, which is no significant similarity at all. The error is
largest in the hemisphere not covered by the filter directions, so the best way to
redeem this is to compute the algorithm a second time for the filter directions in
the other hemisphere.

Another solution, and an acceleration when matching with a lot of different
templates, is to break down the templates into simpler patterns, match these and
combine the resulting similarities. The pattern of Figure 5.1, e.g. was computed
by adding a constant flow to a pure divergence from a line (Figure 5.2). How-
ever, the directions with maximal similarity have to be taken into account when
combining the single similarities. The convolution is linear, so the the results of
the single convolutions can be combined quite well. But the orientation tensor,
and thus also the similarity value computed via the orientation tensor, is not lin-
ear (Theorem 3.6.8). Thus the rotation invariant similarities can not be combined
quite as simple. Because of the square of the filter responsesin the definition of the
orientation tensor, this algorithm does not distinguish patterns which are gained
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1. Normalize the vector field

2. Choose the template to be matched

3. Limit the size of the patterns in the template with a

rotational symmetric weighting function

4. Scale the template until its energy is one

5. Rotate the template into each of the needed directions

6. For each grid node of the field:

(a) Compute vector correlation with all templates

(b) Compute the orientation tensor with the similarity

values

(c) Compute eigenvalue decomposition of the orientation

tensor

(d) The largest eigenvalue gives the rotation invariant

similarity

Table 5.1: Outline of the rotation invariant matching algorithm using the orienta-
tion tensor as proposed by Heiberg et al. [41,42], and schematic of the 2D case.

by multiplying every vector in the template with -1. Thus, diverging and converg-
ing patterns can not be distinguished, as well as pure left-handed and right-handed
rotations. Examples of these patterns can be found in Section 6.1.
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Figure 5.2: Computing a pattern by adding a constant flow and adivergence from
a line.

5.4 Clifford Convolution

As Clifford algebra provides a unifying notation for the multiplication of vectors
and scalars, as well as valuable geometric properties of theresult of the multipli-
cation of two vectors, a convolution of vector fields based onClifford algebra was
defined [23,24].

Definition 5.4.1 Let F be a multivector-valued field andH a multivector-valued
filter. ThenClifford convolution based on the geometric product is defined as

(H ∗l F)(x) =
∫

Rn
H(x’)F(x−x’)|dx’ |

and analog

(F ∗r H)(x) =

∫

Rn
F(x−x’ )H(x’)|dx’ |

Since Clifford multiplication is not commutative, application of the filter from the
left and from the right is distinguished. Clifford convolution is an extension of
the convolution of scalar fields, and of the convolution of a scalar with a vector.
However, it is also an extension of the vector convolution defined by Heiberg et
al. [41,42] as

(h∗v f)(x) =
∫

Rn
〈h(x’), f(x−x’ )〉dx’

and thus
(h∗s f)(x) = 〈(h∗l f)〉0 = 〈(f ∗r h)〉0

for vector fieldsh, f.
The spatial Clifford correlation is defined analogous to theClifford convolu-

tion. It is a Clifford convolution with a filter whose positions have been reflected
about its center (Theorem 3.2.7). Another idea for an operator based on the convo-
lution could be to mirror not only the positions of the filtersbut the multivectors as
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well. This needs special treatment for the different gradesof the multivector since
the scalar part stays the same and the vector part has to be negated. Furthermore,
the relation to the convolution becomes more difficult, and it is not motivated
from the well-established signal processing theory. Thus,this approach was not
pursued further.

The result of the vector convolution based on the inner product of two vec-
tors is valuable as a directed similarity value, therefore it is also used within the
Clifford algebra framework. However, the Clifford convolution provides more in-
formation about the geometric relation of template and vector field. Remember
that in Clifford algebra, the geometric product of two vectors a,b, with angleω
betweena andb, results in the spinor

ab = 〈a,b〉+a∧b

= 〈a,b〉+ i(a×b).

(Lemma 4.1.11 and 4.2.8) and, with respect to the dimension,the following prop-
erties are true:

1. (2D)
〈ab〉0 = 〈a,b〉 = ‖a‖‖b‖cosω

and 〈ab〉2 = a∧b = ‖a‖‖b‖sinω

2. (3D)
〈ab〉0 = 〈a,b〉 = ‖a‖‖b‖cosω

and ‖〈ab〉2‖ = ‖a∧b‖ = ‖a‖‖b‖sinω,

Clifford multiplication can be regarded as a correlation ofa point in the vector
field with a 1× 1 template. Thus, Clifford correlation with larger templates is
an averaging of the geometric relations of the single vectors. The direction of a
structure in the field at positionx can thus be computed out of correlation with a
suitable template when the direction of the template is known:

Theorem 5.4.2 Let m=2,3. Letf,h : Rm ⊂ Gm → R be two vector fields. Let
x ∈Rm denote a position in the vector field. Letωx denote the angle between the
templateh and the structure in the fieldf at pointx. Then correlation of the two
fields atx results in:

1. (2D)

〈(h⋆ f)(x)〉0 ≈ γ cosωx
〈(h⋆ f)(x)〉2 ≈ γ sinωx
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2. (3D)
〈(h⋆ f)(x)〉0 ≈ γ cosωx

‖〈(h⋆ f)(x)〉2‖ ≈ γ sinωx
〈(h⋆ f)(x)〉2 is the normal vector of the plane ofωx

Note thatγ is given by the magnitudes of the velocities of field and template and
can be determined directly.

Due to annihilation effects (Figure 5.3), Clifford correlation of two equal but
rotated patterns can result in a wrong estimation of the rotation angle between the
two patterns. However, this effect can be avoided, and the geometric properties of
the geometric product are used for rotation invariant template matching (Section
5.5).

Figure 5.3: Correlation of the template (left) and a rotated copy (middle) results
in a zero multivector as the approximations for the angles annihilate each other
(right ).

5.4.1 Vector Derivation using Convolution

In image processing, it is well known that the derivative operation is a convolution.
The vector derivative∂ as described in Section 4.3 can be discretized using many
different approaches. One example are central differences. This is discussed now
in relation to convolution and correlation, to show that it corresponds to a con-
volution with a vector valued template. Discretizing the derivative using central
differences yields

∂ f =
d

∑
j=1

ej fej (x) =
d

∑
j=1

ej
f(x+sej)− f(x−sej)

2h
.

When f is defined on a uniform 2D grid, the values of the grid nodes areoften
written asf(x) = fm,n, andh = 1. Thus

∂ f =
e1fm+1,n−e1fm−1,n+e2fm,n+1−e2fm,n−1

2h
.
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Now the templates for the derivative operation using central differences can be
computed. They are shown in Fig. 5.4 for convolution in 2D and3D and corre-
lation in 2D. Curl and divergence can also be extracted out ofthe results of the
computation of the derivative using Clifford convolution (Definition 4.3.9):

div f = 〈(∇∗ f)〉0

curl f = 〈(∇∗ f)〉2

Thus, the divergence is the scalar part and the curl the bivector part of the result
of the derivative computation. The connection between derivative and divergence
becomes clear when looking at the central difference derivative templates as they
depict divergence of local flow for correlation and convolution, respectively (Fig-
ure 5.4). The connection between curl and derivative or divergence can also be
understood when interpreting a unit bivector as a rotation of 90◦, and applying
this transformation to every vector of a divergence patternin one plane (Figure
5.5). Note that in 3D, the bivector is vector-valued and gives the rotation axis.

Figure 5.4: Central difference derivative templates.Left : Template for 2D con-
volution. Middle : Template for 2D correlation.Right: Template for 3D convolu-
tion.

5.5 Template Matching with Clifford Convolution

As discussed in Section 5.4, the angle between the directions of the template and
the structure in the field can be computed by a Clifford correlation. A basic idea
for a rotation invariant matching algorithm would thus be torotate the template
into this direction, and compute one vector correlation forthe similarity.

As annihilation effects the approximation of the direction, it is not enough to
compute only one Clifford correlation for stable results. Thus, additional tem-
plates with different directions have to be used [23, 24]. A possible template dis-
tribution, which results in a stable, rotation invariant matching algorithm, is:
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Figure 5.5: Rotating every vector of a 2D divergent pattern about the unit bivector
i2, or 90◦, results in a rotational pattern.Left : 2D divergent pattern.Middle :
Rotating every vector.Right: 2D rotational pattern.

1. 2D:a = 0.5 andb =
√

3
2

n1 = (1,0)T

n2 = (−a,b)T , that isn1 rotated 120◦ counterclockwise.

n2 = (−a,−b)T , that isn1 rotated 240◦ counterclockwise.

2. 3D: The directions of the principal axes of the coordinatesystem are used:

n1 = (1,0,0)T , n2 = (−1,0,0)T ,

n3 = (0,1,0)T , n4 = (0,−1,0)T ,

n5 = (0,0,1)T , n6 = (0,0,−1)T ,

The algorithm also works with other directions and other numbers of directions.
As usual, one can trade precision for computational speed. The templates are
rotated in the desired direction using Clifford algebra andlinear interpolation.

For an easier computation of the angles unhindered by the magnitudes of the
vectors, both vector fields are normalized. Then, correlation with each rotated
template is computed. Now, the approximationsn’k(x) of the direction of the
structure in the field atx given by the correlations with the different templates are
computed. Out of these directions, a single directionn’(x) has to be determined.
In 2D, the template response with the smallest angle to the structure can be used
directly. In 3D, the direction is computed analog to the computation of a center of
gravity. Only the directionsn’ k calculated out of the template responses(h⋆ f)(x)
with scalar part〈(h⋆ f)(x)〉0 ≥ 0 are used, as they point into the right hemisphere.
These directions are weighted with the scalar part of their filter response. The
resulting vector is normalized and gives the directionn’ of the structure. For
patterns which are rotational symmetric for all rotation directions, this approach
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can fail as all filter responses will result in the same similarity value. This has
to be considered in the implementation, simple queries concerning the similarity
values can detect this case. For these structures, any direction is correct, so the
original direction of the template can be chosen.

In a last step, the template is rotated into the computed direction, and another
vector correlation is computed as the final similarity value. Note that for this last
vector correlation, field and template need not be normalized. This is an advantage
in comparison to the approach using the result of the orientation tensor directly.
For some applications, it is even necessary that the field is not normalized for the
matching. This will be discussed extensively in Section 8.2and 8.3. A summery
of the complete algorithm for rotation invariant matching can be found in Table
5.2.

5.5.1 Acceleration

Besides the obvious acceleration of this algorithm via parallelization, there is an-
other computation that can speed up this algorithm. The rotation of the template
at every node of the grid is computational expensive. Therefore, the directions of
the template for the final scalar correlation are discretized and all rotated templates
are computed only once. The template with the direction closest to the direction
of the structure is taken for the scalar correlation at this point. The direction of the
template and theγn j are computed, and saved with the rotated template. In 2D, the
template can be chosen by the angle between the direction andthe vector(1,0)T .

In 3D, it is not easy to distribute the directions evenly overthe sphere. A
subdivision algorithm on the sphere starting with an octahedron gives an approxi-
mation. The octahedron is used to support the search for the nearest direction later
on. Each triangle of the octahedron is divided into 4 new triangles and the vertices
are normalized. With three subdivision steps, one gets 258 directions (Table 5.3).
Then, there are 45 directions in each octant. For the computation of the nearest
template, the right octant has to be identified. Then the scalar product of the di-
rection of the structure and all directions in the octant is computed. The template
with the direction resulting in the biggest scalar product is chosen. As there are
only a few points in each octant, a more complex search pattern is not necessary.

Note that the algorithm for rotation invariant matching is computationally still
more expensive than the approach with the inner product and the orientation ten-
sor. The amount of correlations is only one more, but the computational cost of
the geometric product of two vectors is higher than that of the inner product of the
vectors. Furthermore, the computation of the inner productcan be sped up using a
FFT and the convolution theorem for the vector convolution.For Clifford algebra,
a Fourier transform was developed in this thesis and is discussed in Section 7.
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1. Convert the vectors from field and template into

multivectors

2. Rotate template to get the filter set

3. For each grid node of the field:

(a) Compute Clifford correlation with all templates and

the normalized field

(b) Compute the direction n’ of the structure

(c) Rotate the template into the direction n’

(d) Compute a scalar correlation of the rotated template

and the field for the similarity value

Table 5.2: Outline of the rotational invariant pattern matching using Clifford con-
volution, and schematic for the 2D case.

step # points # triangles
0 6 8
1 18 32
2 66 128
3 258 512

Table 5.3: The number of points, or directions, gained by subdividing an octahe-
dron on a sphere.



Chapter 6

Data Sets and Templates

6.1 Vector-Valued Templates

Many interesting features in flow fields can be described quite intuitively by vector-
valued templates. Basic examples of these features are rotation and swirl, con-
verging and diverging patterns, shear flow and saddle points(Figures 6.1 and 6.2).
Note that a feature model is often a simplification and abstraction of the real flow.
Furthermore, as already mentioned in Section 5.3, complicated patterns can often
be modeled as a superposition of simpler features (Figure 5.2). A lot of 3D pat-
terns are just repetitions of 2D patterns along a line. Note that a pure convergence
to, or divergence from a point, as well as the rotation pattern in 2D, are rotationally
symmetric. This means that the similarity gained by one vector correlation with
them is already a rotation invariant measure. Another important issue in flow anal-
ysis and visualization is the concept of Galilean invariance, which is the principle
stating that the fundamental laws of physics are the same in all inertial frames of
reference. That means that a moving observer will see the same as a stationary
observer, or one with another velocity. For feature detection, Galilean invariance
of a feature definition can be important e.g. when a large flow-through component
hides features. This will be investigated further in Section 8.2.

Galilean invariance of the similarity of a template and an arbitrary data set can
be determined quite easily:

Theorem 6.1.1 Let v[x] denote the velocities of a discrete template. Let N be the
number of positionsx j in the template. Let the similarity s be obtained by a vector
correlation of this template and an arbitrary data set. Thens is Galilean invariant
if, and only if, the average velocity

va =
1
N

N−1

∑
j=0

v[x j ].

78
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satisfiesva = 0.

Note that all templates in Figures 6.1 and 6.2 satisfyva = 0 and are thus Galilean
invariant.

Figure 6.1: A basic 2d template set. Grid (blue), LIC, and hedgehogs (black).
Top: Clockwise and counter-clockwise rotation.Middle : Convergence and di-
vergence.Bottom left: Shear flow.Bottom middle: Convergence line.Bottom
right : Saddle. Note that clockwise and counterclockwise patterns can be con-
verted into each other by negating the vectors, as well as divergence and conver-
gence patterns.
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Figure 6.2: A basic 3d template set. Grid (blue), LIC of the rear surface, hedge-
hogs (black) and some streamlines (red).Top left: Rotation.Top right : Conver-
gence.Bottom left: Saddle.Bottom right : Shear flow. Note that counterclock-
wise and divergence patterns can be found with these templates as well.
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6.1.1 Vortex Models

To detect vortices with the use of a correlation, a vector-valued template describ-
ing the vortex can be used. A basic approach for a rotational vector-valued tem-
plate is shown in Figures 6.1 and 6.2. An improved approach isto scale the mag-
nitude of the vectors of the rotational pattern according tosome vortex model like
Rankine [76], Scully [84] or Vatistas [102]. These vortex models are explained
in this section. Note that when matching with a normalized template, the magni-
tude information coded in these vortex models is lost, and a pure rotational pattern
remains (Figure 6.3). Furthermore, note that all of these vortex models are rota-
tionally symmetric and Galilean invariant.

Figure 6.3:Left : A Rankine vortex withrc = 2. Right: A normalized rotational
pattern.

One of the often-used vortex models is the Rankine vortex [76]. It assumes a
solid-body rotation within the vortex core and an exponential drop-off outside:

Definition 6.1.2 Let f(x) denote a pure, circular rotation aroundx0. Let r =
‖x−x0‖ denote the radial distance of a positionx to the rotation centerx0. Let
rc be the vortex core radius and let vc be the magnitude of the circumferential
velocity at rc. Then theRankine vortex [76] is given by the magnitude of the
velocity v(r) = ‖f(r)‖ with

v(r) =

{

vcr r ≤ rc
vc
r r ≥ rc

.

Note that the first derivative of the functionv(r) is discontinuous inrc, which
is not true for a real vortex. The Rankine vortex is a special case of the Vatistas
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vortex [102], where an additional parameterN can be used to control the transition
between the solid body rotation and the exponential drop-off (Figure 6.4):

Definition 6.1.3 Let f(x) denote a pure, circular rotation aroundx0. Let r =
‖x−x0‖ denote the radial distance of a positionx to the rotation centerx0. Let rc
be the vortex core radius and let vc be the magnitude of the circumferential velocity
at rc. Let N∈R. Then theVatistas vortex [102] is given by the magnitude of the
velocity v(r) = ‖f(r)‖ with

v(r) = 21/Nr2
c

vcr

(r2N
c + r2N)1/N

.

Note that 21/Nr2
c is a scaling factor to obtainv(rc) = vc. For N = 1, the Vatistas

vortex equals another vortex model called the Scully vortex[84], and forN = ∞,
the Rankine model [76] is obtained.

For an arbitrary vortex within a data set, the engineers wantto determine cer-
tain parameters of these vortex models to quantify the flow. Important parameters
are not only the vortex core centerx0, the vortex core radiusrc, the circumfer-
ential velocity at the vortex core radiusvc, but also the circumferential velocity
distribution, the overall vorticity within the vortex core, and, in 3D, the maximal
axial velocity and the axial velocity distribution. Some ofthese parameters can be
coded directly into the templates, and thus be determined using template matching
as will be shown in Section 8.3.
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Figure 6.4: A cut through a vortex. Circumferential velocity distribution (grey
arrows) as given by the Vatistas vortex model forN = 1 (red),N = 2 (green), and
by the Rankine vortex as a special case of the Vatistas vortexwith N = ∞ (blue).
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6.2 Swirling Jets Entering Fluid at Rest

In this section, several CFD simulations describing a vortex breakdown are intro-
duced. Vortex breakdown can be found in flows ranging from tornados, wing tip
vortices, pipe flows to swirling jets. Here, the turbulent swirling jets each enter a
fluid at rest. The simulation considers a cylinder, and a planar cut along the axis
of the cylinder is used as a domain. The domain is discretizedby a 124× 101
respectively a 251×159 rectilinear grid with smaller rectangles towards the axis
of the cylinder for the OM06 and OM08 data sets (Figure 6.5 and6.6). Since a
lot of small and large scale vortices are present in the flow, adiscrete numerical
simulation (DNS) using a higher order finite difference scheme is used to solve
the incompressible Navier-Stokes equations.

Figure 6.5: OM06: A swirling jet entering a fluid at rest.Top left: Velocity
magnitude from zero (blue) to 7.4 (red).Top right : Topology.Bottom: LIC and
color coding of vorticity from high negative values (clockwise rotation, blue) to
high positive values (counter-clockwise rotation, red).Left : The velocity of the
vectors is high when the swirling jet enters the fluid at rest.Right: Normalizing
the data set and then computing vorticity reveals more of theflow structures.
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Figure 6.6:OM08: A swirling jet entering a fluid at rest.Top: Color-coding of
the velocity using a logarithmic scale from zero (blue) to 25,7 (red).Middle : LIC
and color coding of vorticity from high negative values (clockwise rotation, blue)
to high positive values (counter-clockwise rotation, red). The black areas of the
LIC display areas where the velocity is zero. Again the data set was normalized
to reveal more of the flow structures.Bottom: Topology of the data set.

For computational issues, resampling of the OM06 data set toa uniform 128×
128 rectilinear grid was done. This data set is referred to asOM06(2k). Note that
the magnitude of the inflow dominates the data set and a lot of the features present
in the data can only be found when using streamline-based approaches like LIC
and topology. For these data sets, the shear flow generated bythe inflow of the
swirling jet is the most prominent feature. The vortex breakdown results in some
vortices and many layers of flow with different directions, again divided by shear
flow. The resulting structures are quite complex.

Another example of a swirling jet from CFD simulations are 125 timesteps of
an unsteady vector field. Again, the simulation considers a cylinder, and a planar
cut along the axis of the cylinder is used as a domain resulting in a 141× 251
structured grid (Figure 6.7). This time-dependent data setis called VTOP. Again,
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the swirling jet enters a fluid at rest. This time, only one half of the symmetry
plane is used. In the different timesteps of this flow the generation, detaching, and
general path of vortices can be studied.

Figure 6.7:VTOP: A swirling jet entering a fluid at rest. Here: 6 out of 125 time
steps. From top left to bottom right: Timestep 1, 25, 50, 75, 100 and 125. Color-
coding of the velocity from zero (blue) to maximal value within the corresponding
time step (red). Only the left half of the data set is displayed as the right half has
only zero values.
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6.3 Gas Furnace Chamber

An interesting flow data set is a gas furnace chamber as it is used for heating a
house. The simulation solves compressible Navier-Stokes equations using a tur-
bulent model applied on an irregular grid consisting of 174341 tetrahedra with
32440 vertices. For template matching, the data was also resampled onto a uni-
form grid with dimensions 126×65×57. In Figure 6.8, the swirling gas enters
the chamber in the center of the left face while the air entersfrom 9 openings on
the top and 9 openings on the bottom, so that the combustion takes place in the
center area of the chamber. The products of the combustion leave the chamber on
the right. The flow is highly turbulent and exhibits a lot of different scale vortices.
This is desirable, as the combustion will be more efficient the longer gas and air
mix.

Figure 6.8: A gas furnace chamber. Color-coding of the velocity of the boundary
to show the inflow areas. Streamlines (red) started at the topand bottom gas
inflow. The gas leaves the chamber in the rear. Streamlines (blue) seeded by the
results of matching with a 5×5×5 rotational template (threshold 0.5) to display
vortices in the front half of the chamber.
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6.4 Deltawing

The delta wing is a vortex break down study. Ideally, two strong, tubular vortices
form above the wing along with secondary and tertiary vortices, each with oppo-
site rotation direction to the former vortex. The two well formed vortices on top
of the delta wing are necessary for the generation of the lift, and thus the ability
of the airplane to fly. However, in certain circumstances like low velocities and a
high angle of attack, the vortices can burst. This drastically reduces the lift which
leads to dangerous flight conditions. The pressure, which isexerted on the wing
by the vortex burst, can be so high it can lead to structural damage and destroy the
wing. Therefore these vortices and their breakdown are studied (Figures 6.9 and
6.10). This data set is a steady simulation with an angle of attack of 25 degrees.
The grid consists of 1.8 million unstructured points forming 6.3 million cells. For
demonstration purposes and acceleration of the computation of the Clifford con-
volution, resampling of the area around the wing to a uniformgrid of dimensions
66× 47×24 was done (Figure 6.10, top left). The new grid has the lowerleft
corner at (0,-0.25,-0.1) and the upper right corner at (0.7,0.25, 0.15).

Figure 6.9: The 3D delta wing data set. This is a study of vortex break down.
The pressure on the surface is color coded. The results of thealgorithm of Sujudi-
Haimes basically depict two vortices, though secondary andtertiary vortices can
be seen as well. Some streamlines are drawn to enhance the understanding of the
flow.
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Figure 6.10: The 3D delta wing data set. The pressure on the surface is color
coded. The results of the algorithm of Sujudi-Haimes were filtered by segment
length and depict the two major vortices.Top left: The boundary of the resam-
pled grid. Note that the wing itself vanishes in the resampled data set. As the
vortical structures above the wing are of interest, this is no disadvantage here.
Top right : Isosurface (value: 5000) of the vorticity of original dataset. Thus, the
shear flow at the boundary of the wing is displayed as well.Bottom left: Isosur-
face (value: 30) of the similarity of the resampled data set to a 3×3×3 rotational
template.Bottom right : The data set was normalized before the template match-
ing, enhancing the visualization of the vortical structures in the rear of the wing.
Isosurface (value: 0.4) of the similarity.

The shear stress vector field defined on the wing is studied as well. Therefore
the surface of the delta wing was extracted, and flattened to get a planar 2D data
set (Figure 6.11). This flattened delta wing is defined on an irregular grid with
25800 grid points and 49898 cells. In this data set, the separation and attachment
lines are of interest (Figure 6.4) [57, 95]. They are a resultof the vortex systems
above the wing, as these press the flow onto the surface and lift it up again.
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Figure 6.11: The flattened surface of the delta wing with the wall shear stress
vectors. LIC and results of pattern matching with a 5× 5 divergence template.
Adaptive color coding of the results. Red corresponds to high similarity and con-
vergence, and blue to high negative similarity values and divergence. The separa-
tion and attachment behavior of the flow is clearly depicted
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6.5 ICE

This data set describes the flow around an ICE train (Figure 6.12) moving with a
speed of 250 km/h. The wind comes directly from one side but due to the speed of
the train, the angle of attack is 15 degrees. The wind hits theICE train front and
left, and then rolls up on the right side of the train forming several vortices. These
vortices are closely connected to the air flow attaching to and separating from the
surface of the train.

A section plane through three of these vortices with dimensions 51×51 was
computed (Figure 6.13), and used as an example of a simple flowwith only a few
features. The front wagon of the ICE train was extracted and analyzed separately
(Figure 6.14). It consists of 26532 positions and 52758 triangular cells. It is used
to demonstrate template matching on arbitrary surfaces (Section 8.1.2).

Figure 6.12: Vortices generated by an ICE train. A streamsurface started in front
of the train clearly depicts the roll-up of vortices besidesthe train. At the border
of the train, abrupt separation of the flow can be seen. Figurecourtesy of Gerik
Scheuermann.
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Figure 6.13: A section plane through the vortices alongsidethe train.Left : LIC,
topology, and color coding of vorticity of the normalized data set.Right: Color-
coding of the magnitude of the velocity from zero (blue) to high values (red), and
topology. Note that the vortices are within an area of low velocity magnitudes.

Figure 6.14: The front wagon of the ICE train. Color-coding of the magnitude of
the velocity at the surface from zero (dark blue) to maximum (dark red).
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6.6 HART II

In 2001, a major international cooperative research program was conducted to in-
vestigate the physics of blade pressure, noise radiation, and vibrations caused by
the wake of helicopter rotors [10, 100]. Concurrently, a comprehensive experi-
mental database for code development and validation has been generated. There
are three major sources for blade pressure fluctuations, noise and vibrations – the
superposition of flight speed and blade rotation, the aerodynamic interference be-
tween the rotor and the main body of the helicopter, and the wake vortices of the
rotor hitting other blades. This research program concentrates on the latter phe-
nomena. It is called HART II for Higher-harmonic-control (HHC) Aeroacoustics
Rotor Test II and it is a follow up on the HART program of 1994. (HHC describes
the process of influencing the blade pitch angle, 3,4 or 5 times per revolution, to
reduce noise and vibration.) The German DLR, the French ONERA, the Nether-
lands DNW, the US Army Aeroflightdynamics (AFDD) and NASA Langley all
take part in the cooperation.

Figure 6.15: PIV measurement positions in the wake of a helicopter rotor. The
red blade is at the rear position, and the wind comes from right. Figure courtesy
of DLR Braunschweig.
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6.6.1 The Test

The HART II test was conducted in the open-jet, anechoic testsection of the Large
Low-speed Facility (LLF) of the DNW. The set-up for the PIV measurements is
shown in Figure 6.16. The rotor is a 40-percent, dynamicallyand Mach-scaled
model of the Bo105 main rotor and operated counter clockwisewhen looking
from above. The model is 4m in diameter and has four hingelessblades with a
precone of 2.5◦ at the hub. For the HART II test, the rotor was operated at a
nominal rpm of 1041, thrust coefficientCT=0.0044, hover tip speed of 218m/s,
and an advance ratio of 0.15, for a range of rotor angles and conditions with and
without HHC. More detailed information can be found in the literature [10,100].

6.6.2 3-C PIV Measurements

The rotor wake was measured on both the advancing and retreating sides of the
rotor using 3-component particle image velocimetry (3C-PIV) [43,75]. The mea-
surement locations (cut planes) are shown in Figure 6.15. Two rotor azimuthal
orientations were used in order to keep the blade from interfering with the mea-
surements. There were approximately 50 locations on each side of the advancing
and retreating sides for the baseline and two HHC conditions. For some locations
on the advancing side, PIV measurements were made for six different shaft angles
to get more precise information about various flight conditions from steep climb
to steep descent. At every PIV measurement location, 100 instantaneous vector
fields were obtained, not to get time-dependent behavior, but to average the results
to get a statistically based mean behavior at the positions.The time-dependent be-
havior can be studied by tracing the vortices through the different measurement
positions as these are placed along the path of the vortices.

The PIV setup for the HART II test consisted of five digital cameras and three
double pulse Nd:YAG lasers. The lasers and cameras were mounted on a common
traversing system in order to keep the distance between the cameras and the light
sheet generated by the lasers constant, even when moving to different measure-
ment locations (Figure 6.16). Thus, measurements could be continued without
recalibration. The five cameras were located on the tower andthe lasers under-
neath the rotor. To obtain measurements on the retreating side, the entire support
structure and tower was repositioned.

The three laser systems generated a light sheet of 1.5m, 7mm thick, with
an orientation of 30.6◦ with respect to the wind tunnel axis. The cameras and
lasers were synchronized with a one-per-rev signal given bythe rotor, allowing
for recording at desired phase-angles of the rotor blade. One camera was used for
visual checking of the seeding of the particles in the flow prior to the PIV data
acquisition to guide the other cameras to the vortex center.The other four cam-
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Figure 6.16: HART II measurement configuration. Figure courtesy of DLR
Braunschweig.
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Figure 6.17: A raw PIV image. Out of a stereo pair of these images, 3-C PIV
vector fields are computed. Figure courtesy of DLR Braunschweig.

eras were used for two simultaneous PIV measurements of the overall flow and
a small, higher resolution image focused on the vortex core region. Each camera
had a resolution of 1024 by 1280 pixel, digitized to 12 bit. One camera from each
system was located above and below the rotor plane, respectively. The difference
in spatial resolution was obtained by using different lenses.

Flow seeding was accomplished by a specially designed seeding rake located
in the settling chamber. The rake was 3m by 4 m and was connected to Laskin
nozzle particle generators. Di-2-Ethylhexyl-Sebacat (DEHS) was used as seed
material. The mean diameter of the particles generated was below 1 µm. More
detailed information can be found in the literature [10,11,75,100].

6.6.3 Previous processing of the HART II PIV data

3C-PIV measurements have been applied before, and not only to the HART II
data. Some measurement of the wake of a hovering helicopter as well as first
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Figure 6.18: One vector field out of the HART II measurements.Displayed are
LIC and color coding of vorticity from high negative values (clockwise rotation,
blue) to high positive values (counter-clockwise rotation, red).

attempts of processing the vector fields has been done, for example, by Heineck
et al. [43].

Note that 3C-PIV measurements result in three-component vector fields of
the flow measured in image planes (Figure 6.15). There are immediately two
challenges concerning these data sets. First of all, the velocity of the particles in
the major flow direction is often, though not always, much bigger than the vortex
components and thus hides the vortices. Furthermore, the data has been measured
and therefore contains measurement error besides the natural turbulence of this
flow. An analysis of the size of the errors of the PIV measurement has been
done by Raffel et al. [75]. Most of the time, the vortices are not orthogonal to the
measurement plane. Methods for determining, for example, the size of the vortices
will therefore give biased results. It is necessary to determine the direction of the
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vortex and to correct the data by projecting the (three-component) vectors onto a
plane orthogonal to the vortex. There is often more than one vortex in the data
and the vortices and the wake sheet can influence each other, resulting again in
a non-optimal vortex shape in the image plane. Every vortex has to be found
and corrected separately by removing the influence of other vortices, which is a
recursive problem.

The rotor wake contains vortices in all creation, aging and destruction phases,
the destruction being due to bursting or interaction with blades. Regarding di-
rect visualization, the vortices are often hidden by mean flow components (Figure
8.11). Removing the mean flow is not as simple as averaging thevectors and
subtracting the result as the vortices influence the average. To be independent of
the mean velocity components, the out-of-plane component of vorticity ωz, that
is, the vorticity of the two in-plane components, has been used mainly for vortex
detection and classification.

Figure 8.11 shows the vorticity of one of the instantaneous data sets and the
effects of measurement errors. In [10], the vortex core is defined as the center of
vorticity (CoV):

Definition 6.6.1 Letp(i)∈ Ω denote the positions within an areaΩ, and letωz(i)
the vorticity at the positionpi . Then thecenter of vorticity of Ω is defined as

CoV =
∑i p(i)∗ωz(i)

∑i p(i)
.

The sum is either taken over the whole frame or only within a region around
the suspected vortex center, which can be found by manual inspection or locally
extremal vorticity. The latter approach has the advantage that the CoV is only
influenced by one vortex, but the general area of the vortex and the size have to be
determined beforehand.

Two methods to determine the size of the vortices have been used so far [10,43,
100]. First, velocity cuts through the vortex can be analyzed, but these are quite
ragged due to the noise. Better results are obtained by integrating the vorticity
within a disc that is successively enlarged, and plotting the results as a function
of the radius. The maximal integration result, divided by the radius, gives the size
of the vortex, and the profile, if convex, gives the velocity at the core radius and
the parameterN of the Vatistas vortex model [102] (Section 6.1.1) as described
in [10].

A problem is the fact that the vortices are not orthogonal to the light sheet
where the data is acquired. The angle between vortices and measurement plane
can be in the order of 45◦ or even more [11]. In the images, this presents itself in
an elliptical instead of circular shape of the vortices. Fora proper evaluation of
these vortices, the direction of the vortices has to be determined and the images
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projected onto a plane normal to the vortex direction. Otherwise, for example, the
computed size of the vortices will be larger than the actual size.

Two approaches for determining the orientation are described by Burley et
al. [11]. The first approach is to remove the mean vectors fromthe data. Then,
within the vortex, averaging of the vectors results in the direction on the vortex
as the rotational parts of the vectors erase each other. Thisapproach has to be
combined with projecting the data onto the computed orthogonal image plane and
iterating the whole process to give good results.

The second approach is to plot the up-wash angles given by theout-of-plane
component of the vectors and fit the results with a sine-wave.The maximal value
and the zero-crossings of the sine-wave give two angles which determine the di-
rection of the vortex.

Both methods suffer from the facts that the measurement error is largest in the
vortex core due to less seeding within the core, and the out-of-plane component
itself can not be determined as well as the in-plane components. The averaging of
the first method and the fit of the sine-wave in the second method counterbalance
some of the errors. Nevertheless, some uncertainty is to be expected. Raffel et
al. [75] show that for well-formed vortices, both methods result in generally the
same direction, but in the early stages of formation, the second method is more
stable as the relative magnitude of the axial velocity is smaller.

The images at each measurement position were averaged afteraligning the
vortex core positions as the positions differ due to fluctuations in the rotor tip
positions (Figure 6.20). In some extraneous images, the vortex was not defined
well enough, so images where the maximum vorticityωz does not exceed a certain
threshold are discarded.
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Figure 6.19: Part of a 3-C PIV image around a vortex. The global average has
already been removed.Left : Velocity in the direction of the vortex. The image
is shown from front.Middle and right : The local average has been removed,
too. Now the vectors are only orthogonal to the vortex direction. As the vortex
direction is not orthogonal to the image plane, the vectors come out of the plane.
The image is shown from front (middle) and back (right ).

Figure 6.20: Vortex core positions at two measurement positions, 20 images each.
Left : The measurement position is shortly after vortex creation. Right: Measure-
ment position is at a place where the vortex is quite old.



Chapter 7

Clifford Fourier Transform

The Fourier transform (Section 3.3) is a basis transform from image space to fre-
quency space. This is useful since images can be analyzed in frequency space
where it is easier to describe the phase and frequency of the image data. Filter
responses are often better analyzed in the frequency domainbecause of the con-
volution theorem. Thus, applying the Fourier transform to vector fields in the con-
text of Clifford convolution opens up a whole new approach for analyzing vector
fields. Furthermore, in signal and image processing, fast Fourier transforms are
used to accelerate the computation of convolutions. This would be beneficial for a
Fourier transform within Clifford algebra, too. In this section, a Fourier transform
within the Clifford algebrasG2 andG3 is defined.

The basic idea concerning the definition of the Fourier transform of arbitrary
multivectors is to use the pseudoscalari to replace the complexi in the Fourier
kernel. This works well in 2D and 3D asi shares the most important property
of i, that is i2 = i2 = −1. However, this approach does not work for arbitrary
dimensions asin = (−1)

1
2n(n−1). As the vector fields from flow visualization are

mostly 2D and 3D, sometimes plus an additional time-dimension, the restriction
to 2D and 3D is not hindering though it is mathematically unsatisfying.

In Section 7.1, previous and subsequent definitions of otherFourier transforms
within Clifford algebra are introduced and discussed. The definition of the Clif-
ford Fourier transform as well as the most important theorems of this transform
and their proves can be found in Section 7.2 and 7.3. In Section 7.4, further is-
sues like discretization (Section 7.4.1), fast algorithmsfor the computation of the
Clifford Fourier transform (Section 3.4), the connection to the vector convolu-
tion (Section 7.4.2) and the definition of Clifford Gabor filters (Section 7.4.4) can
be found. First steps towards an analysis of basic vector valued flow patterns in
frequency domain are taken in Section 7.5. Finally, resultsof applying Clifford
Fourier transform and Clifford Gabor filters to template matching can be found in
Section 7.6.

101
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7.1 Related Work

Extensions of the Fourier transform of multidimensional signals arose from dif-
ferent areas of research, namely disparity estimation and texture segmentation.
There, the analytic signal, which consists of a signal and its Hilbert transform, is
used to analyze local phase and amplitude. As the analytic signal is only defined
for intrinsically one-dimensional structures, extensions of this signal became nec-
essary. While extending this signal to multidimensional structures, Bülow [9] and
Felsberg [34] defined Fourier transforms within Clifford algebra.

The first extension of the Fourier transform to Clifford algebra stems from the
analysis of the local structure and phase of a signal, which can be analyzed using
Gabor filters (Section 3.5). To obtain symmetries for more than one direction,
Bülow [9] defined the analyzing filters in 2n-dimensional algebras. As the Gabor
filter is closely related to the Fourier transform – it is in fact a windowed Fourier
transform – the path of extending the Gabor filter to these algebras led via the
definition of corresponding Fourier transforms.

Bülow [9] used a Clifford algebra wheree2
j =−1 and defined then-dimensional

Fourier transform by using the bases{e1, ...,en} in the Fourier kernel:

Definition 7.1.1 Let F : Rn → Gn be a multivector-valued signal. Let x,u∈ Rn.
Let the product∏n

k=1 be performed in the fixed order of the indices. Then the
Bülow Clifford Fourier transform of F is defined as

FB{F}(u) =
∫

Rn
F(x)

n

∏
k=1

e(−ek2πxkuk)|dx|.

If n = 2, this transform is also calledQuaternionic Fourier transform .

The corresponding convolution theorems are rather complicated, and only given
for n = 2. The complex form of the kernel and the non-commutativity of the
multiplication present a problem, especially when trying to establish a fast version
of this Fourier transform. Therefore, Bülow [9] makes alsouse of the commutative
hypercomplex algebraHCAn (Definition 4.4.2) for another definition of a Fourier
transform on multidimensional signals:

Definition 7.1.2 LetF : Rn →HCAn be a multidimensional signal. Let x,u∈Rn.
Let

In =











e1 0 · · · 0

0 e2
. . . 0

...
. . . . . . 0

0 · · · 0 en










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be the matrix given by the basis vectorej of HCAn. Then theCommutative
Hypercomplex Fourier transform of F is defined as

FH{F}(u) =
∫

Rn
F(x)e(−2πuT Inx)dx

The Commutative Hypercomplex Fourier transform results inthe well-known
convolution theorem:

Theorem 7.1.3 Let F,H : Rn → HCAn be two signals. Then

FH{F ∗H}(u) = FH{F}(u)FH{H}(u)

However, the step away from the Clifford algebra results in loosing the geometric
information inherent in this algebra. Furthermore, Bülow[9] uses these tools for
image processing, that is only for scalar-valued fields.

Felsberg [34] extended the analytic signal in 1D to the monogenic signal
in 2D by using embedded functions to obtain additional phases. Therefore, he
composed vectors by combining spatial coordinates and the corresponding signal
value,v(x1,x2) = (x1,x2, f (x1,x2)). He defined convolution only for vector-valued
fields and spinor-valued signals inG2 andG3. Furthermore, the filters are only ap-
plied from the left.

Definition 7.1.4 Let f :Rn :→Rn⊂Gn be a vector-valued field andh :Rn→Sn⊂
Gn a spinor-valued filter for n=2,3. Thenconvolution of f(x) andh(x) based on
the geometric product is defined as

(h∗ f)(x) =

∫

Rn
h(x’)f(x−x’)|dx’ |.

Definition 7.1.5 Let F : Rn−1 → Gn, n= 2,3, be an embedded function withx =
xe1 in 1D andx = x1e1 + x2e2 in 2D. Then theFelsberg Fourier transform is
defined as

F{F}(u) =
∫

R

e(−2πin〈x,u〉)F(x)dx1

for n=2 and

F{F}(u) =

∫

R

∫

R

e(−2πi3〈x,u〉)F(x)dx1dx2

for n=3.

Note that these definitions are inherently tuned to embeddedfunctions. As the
convolution was restricted to vector-valued signals and spinor-valued filters, so
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was the convolution theorem. Concerning other theorems like derivative and Par-
seval’s theorem, only special cases of the multivector-valued signals were consid-
ered. We extend this approach to genuine vector fields by using Clifford convolu-
tion and proving theorems for arbitrary multivector-valued signals.

Another definition of a Fourier transform within Clifford algebra comes from
mathematical theory. Brackx et al. [8] pursue the idea of refining the Fourier
transform by using operator notation and defining a pair of transformations whose
harmonic average is the classical Fourier transform. Note that they use the Clifford
algebra where the square of the unit-vectors ise2

j = −1.
The classical Fourier transform

F{ f}(u) =

∫

Rn

f (t)e(−2π i〈x,u〉)dx

of a continuous signalf : Rn →C can also be written as

F{ f} = e(
−iπH

2 )

with the scalar-valued differential operator

H =
1
2
(−∆n+‖x‖2−n).

where∆n is the Laplace operator computing the second derivative. Ina Clifford
algebra withe2

j = −1, this is equivalent to

H =
1
2
(−∂ 2

x−x2−n).

A split of this operator leads to the refinement of the Fouriertransform:

Definition 7.1.6 Let

H+ =
1
2
(∂x−x)(∂x +x)− n

2
,

H− =
1
2
(∂x +x)(∂x−x)− n

2
.

Then, for n-dimensional signals, the pair of transformations

FH+ = e

(

−iπH+

2

)

FH− = e

(

−iπH−
2

)

defines theBrackx Clifford Fourier transform .

For 2D, the Fourier kernel is, up to constants, given ase(x∧u). A huge disadvan-
tage for the application of this transform is that no closed form is given for other
dimensions yet.
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7.2 Clifford Fourier Transform in 3D

Definition 7.2.1 Let F : R3 → G3 be a multivector-valued signal. Let x,u∈ R3.
TheClifford Fourier transform (CFT) ofF is defined as

F{F}(u) =

∫

R3
F(x)e(−2πi3〈x,u〉)|dx|.

The inverse transformation is then given by

F
−1{F}(x) =

∫

R3
F(u)e(2πi3〈x,u〉)|du|.

Note that the Clifford Fourier kernele(−2πi3〈x,u〉) is multivector valued. To be
more exact, it consists of a scalar and a pseudoscalar.

Theorem 7.2.2 The Clifford Fourier transform is a linear combination of four
classical Fourier transforms.
Proof: For a multivector fieldF : R3 → G3, we have

F(x) = F0(x)+F1(x)e1+F2(x)e2+F3(x)e3
+ F23(x)e23+F31(x)e31+F12(x)e12+F123(x)e123

= F0(x)+F1(x)e1+F2(x)e2+F3(x)e3
+ F23(x)i3e1 +F31(x)i3e2+F12(x)i3e3 +F123(x)i3

which can be regarded as four complex signals:

F(x) = [F0(x)+F123(x)i3]1
+ [F1(x)+F23(x)i3]e1

+ [F2(x)+F31(x)i3]e2
+ [F3(x)+F12(x)i3]e3

This can be interpreted as an element ofC
4. Considering the linearity of the

Clifford Fourier transform, we get

F{F}(u) = [F{F0(x)+F123(x)i3}(u)]1
+ [F{F1(x)+F23(x)i3}(u)]e1
+ [F{F2(x)+F31(x)i3}(u)]e2

+ [F{F3(x)+F12(x)i3}(u)]e3.

The Fourier kernel consists of a scalar and a pseudoscalar ortrivector. Consid-
ering the multiplication rules for a multiplication with them concludes this proof.



CHAPTER 7. CLIFFORD FOURIER TRANSFORM 106

Note that dual pairs form Fourier pairs. The multivector space is divided into four
orthogonal spaces which are then transformed separately. Because of Equation
(4.2.4), the 3D Clifford Fourier kernel commutes with everymultivector (although
Clifford multiplication is not generally commutative). All of the well-known the-
orems hold. Because of the non-commutativity of the Clifford multiplication, we
present theorems for the application of a filter from the leftand right.

Theorem 7.2.3 (Shift theorem)Let F : R3 → G3 be multivector valued and let
F{F} exist. Then

F{F(x−x’ )}(u) = F{F}(u)e(−2πi3〈x’ ,u〉) .

Proof:
F{F(x−x’)}(u)

=
∫

R3 F(x−x’)e(−2πi3〈x,u〉)|dx|
=

∫

R3 F(k)e(−2πi3〈k,u〉)e(−2πi3〈x’ ,u〉)|dk|
=

∫

R3 F(k)e(−2πi3〈k,u〉)|dk|e(−2πi3〈x’ ,u〉)

= F{F}(u)e(−2πi3〈x’ ,u〉) .

Theorem 7.2.4 (Convolution theorem)Let F,H : R3 → G3 be multivector val-
ued and letF{F} andF{H} exist. Then

F{H ∗l F}(u) = F{H}(u)F{F}(u)
and F{F ∗r H}(u) = F{F}(u)F{H}(u).

Proof:
F{H ∗l F}(u)

=
∫

R3 (
∫

R3 H(x’)F(x−x’)|dx’ |)e(−2πi3〈x,u〉)|dx|
=

∫

R3

(

∫

R3 H(x’)F(x−x’)e(−2πi3〈x,u〉)|dx’ |
)

|dx|
=

∫

R3

(

∫

R3 H(x’)F(x−x’)e(−2πi3〈x,u〉)|dx|
)

|dx’ |
=

∫

R3 H(x’)
(

∫

R3 F(x−x’)e(−2πi3〈x,u〉)|dx|
)

|dx’ |
=

∫

R3 H(x’)e(−2πi3〈x’ ,u〉)F{F}(u)|dx’ |
=

∫

R3 H(x’)e(−2πi3〈x’ ,u〉)|dx’ |F{F}(u)
= F{H}(u)F{F}(u) .

Because of the commutativity of the Clifford Fourier kernel, see Equation (4.2.4),
the proof of the other case is analog to the one above.
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Theorem 7.2.5 (Derivative theorem)Let the preconditions be the same as in
7.2.4. Then

F{∇F}(u) = 2π i3uF{F}(u) ,
F{F∇}(u) = F{F}(u)2π i3u ,
F{∆F}(u) = −4π2u2F{F}(u) ,

and F{F∆}(u) = −4π2u2F{F}(u) .

Proof: Since

(∇F)(x) = ∇F−1{F{F}}(x)

= ∇
∫

R3 F{F}(u)e(2πi3〈x,u〉)|dx|
=

∫

R3 ∇
(

F{F}(u)e(2πi3〈x,u〉)
)

|dx|
=

∫

R3 ∇
(

e(2πi3〈x,u〉)
)

F{F}(u)|dx|
=

∫

R3 2π i3ue(2πi3〈x,u〉)F{F}(u)|dx|
= F−1(2π i3uF{F}(u))

we get
F{∇F}(u) = 2π i3uF{F}(u)

and
F{∆F}(u) = 2π i3uF{∇F}(u) = −4π2u2

F{F}(u) .

The application of the derivative from the right can be proved analogously.

Theorem 7.2.6 (Parseval’s theorem)Let the preconditions be the same as in
7.2.3. Then

‖F‖2 = ‖F{F}‖2 .

This is also true for the different grades of the multivector-valued signalF such
that

‖〈F〉 j‖2 = ‖F{〈F〉 j}‖2, j = 0, ..,3 .

Proof: The theorem for the classical Fourier transform is‖ f‖2 = ‖F{ f}‖2. The
proof for the Clifford Fourier transform follows directly since the CFT is a linear
combination of several classical Fourier transforms.

7.3 Clifford Fourier Transform in 2D

Definition 7.3.1 Let F : R2 → G2 be a multivector-valued signal. Let x,u∈ R2.
TheClifford Fourier transform (CFT) ofF is defined as

F{F}(u) =
∫

R2
F(x)e(−2πi2〈x,u〉)|dx|.
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The inverse transformation is then given by

F
−1{F}(x) =

∫

R2
F(u)e(2πi2〈x,u〉)|du|.

Note that this Clifford Fourier kernele(−2πi2〈x,u〉) again consists of a scalar and a
pseudoscalar. InG2 this implies that the kernel is spinor-valued.

Theorem 7.3.2 The Clifford Fourier transform is a linear combination of two
classical Fourier transforms.
Proof: For a multivector fieldF : R2 → G2, we have

F = F0 +F1e1 +F2e2+F12e12,

which can be regarded as two complex signals

F(x) = 1[F0(x)+F12(x)i2]
+ e1[F1(x)+F2(x)i2, ]

which can be interpreted as an element ofC2. Considering the linearity of the
Clifford Fourier transform, we get

F{F}(u) = 1[F{F0(x)+F12(x)i2}(u)]
+ e1[F{F1(x)+F2(x)i2}(u)]

which means that the 2D Clifford Fourier transform is the linear combination of
two classical Fourier transforms.

Again, dual pairs form Fourier pairs. This time, the Fourierkernel does not com-
mute with every multivector, rather it commutes with the spinor part and anti-
commutes with the vector part. Therefore, we present convolution theorems for
vector and spinor-valued fields separately. Note also that the multiplication of the
Fourier kernel from the right is not quite the same as that from the left as in 3D.

Theorem 7.3.3 (Shift theorem)LetF be multivector valued and letF{F} exist.
Then, we have

F{F(x−x’ )}(u) = F{F}(u)e(−2πi2〈x’ ,u〉) .

Proof: Analogous to the 3D equivalent (Theorem 7.2.3).
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Theorem 7.3.4 (Convolution theorem)Let F,H be multivector valued,f,h be
vector valued andf,h be spinor valued. Note thatF, f and f are fields andH,h
andh are filters. LetF{F}, F{H}, F{f}, F{h}, F{f} andF{h} exist. Then,
we have

F{H ∗l f}(u) = F{H}(u)F{f}(u) ,
F{H ∗l f}(u) = F{Ḣ}(u)F{f}(u) ,
F{F ∗r h}(u) = F{F}(u)F{h}(u) ,

and F{F ∗r h}(u) = F{Ḟ}(u)F{ḣ}(u) .

Proof: Let f be spinor valued. Then we have

F{H ∗l f}(u)

=
∫

R2 (
∫

R2 H(x’)f(x−x’ )|dx’ |)e(−2πi2〈x,u〉)|dx|
=

∫

R2

(

∫

R2 H(x’)f(x−x’)e(−2πi2〈x,u〉)|dx’ |
)

|dx|
=

∫

R2 H(x’)
(

∫

R2 f(x−x’ )e(−2πi2〈x,u〉)|dx|
)

|dx’ |
=

∫

R2 H(x’)F{f}(u)e(−2πi2〈x’ ,u〉)|dx’ |
=

∫

R2 H(x’)e(−2πi2〈x’ ,u〉)|dx’ |F{f}(u)
= F{H}(u)F{f}(u) .

Let f be vector valued, we have

F{H ⋆l f}(u)

=
∫

R2 (
∫

R2 H(x’)f(x+x’ )|dx’ |)e(−2πi2〈x,u〉)|dx|
=

∫

R2

(

∫

R2 H(x’)f(x+x’)e(−2πi2〈x,u〉)|dx’ |
)

|dx|
=

∫

R2 H(x’)
(

∫

R2 f(x+x’ )e(−2πi2〈x,u〉)|dx|
)

|dx’ |
=

∫

R2 H(x’)F{f}(u)e(2πi2〈x’ ,u〉)|dx’ |
=

∫

R2 H(x’)e(−2πi2〈x’ ,u〉)F{f}(u)|dx’ |
=

∫

R2 H(x’)e(−2πi2〈x’ ,u〉)|dx’ |F{f}(u)
= F{H}(u)F{f}(u) .

and therefore
F{H ∗l f}(u) = F{Ḣ}(u)F{f}(u) .

The other cases of the convolution theorem can be proved analogously.

Theorem 7.3.5 (Derivative theorem)Let the preconditions be as in 7.3.4. Then,
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we have
F{∇f}(u) = −2π i2uF{f}(u) ,
F{f∇}(u) = 2π i2uF{f}(u) ,
F{∇f}(u) = 2π i2uF{f}(u) ,
F{f∇}(u) = 2π i2uF{f}(u) ,
F{F∇}(u) = F{F}(u)(−2π i2u) ,
F{∆F}(u) = 4π2u2F{F}(u) ,

and F{F∆}(u) = 4π2u2F{F}(u) .

Proof: For spinor f, the proof of the derivative theorem is analogous to that of
(7.2.5). For vector valuedf, we have

(∇f)(x) = ∇F−1{F{f}}(x)

= ∇
∫

R2 F{f}(u)e(2πi2〈x,u〉)|dx|
=

∫

R2 ∇
(

e(−2πi2〈x,u〉)F{f}(u)
)

|dx|
=

∫

R2 ∇
(

e(−2πi2〈x,u〉)
)

F{f}(u)|dx|
=

∫

R2−2π i2ue(−2πi2〈x,u〉)F{f}(u)|dx|
=

∫

R2−2π i2uF{f}(u)e(2πi2〈x,u〉)|dx|
= F−1(−2π i2uF{f}(u))

and
F{∇f}(u) = −2π i2uF{f}(u).

Since∇ is a vector and anti-commutes with the 2D Clifford Fourier kernel, the
derivative theorem for the application of the derivative from the right can be
proved analogously. Thus, we have

F{∆F}(u) = F{F∇}(u) = 4π2u2
F{F}(u).

Note that the frequency u is vector valued and anti-commuteswith i2.

Theorem 7.3.6 (Parseval’s theorem)Let the preconditions be as in 7.3.3. Then,
we have

‖F‖2 = ‖F{F}‖2.

Proof: Analogous to the 3D equivalent (Theorem 7.2.6).

7.4 Further Definitions and Properties

7.4.1 Discrete Clifford Fourier Transformation

Properties of the classical Fourier transform, like the sampling theorem and issues
regarding discretization and periodicity, can be extendedeasily since the Clifford
Fourier transform is a linear combination of several classical Fourier transforms.
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Theorem 7.4.1 (Sampling theorem)Let F be a multivector-valued signal sam-
pled on a uniform grid having spacings∆xw. If F is bandlimited, that is

‖F‖2 = 0∀|kw| ≥ knyq,

then it can be reconstructed without error provided that1
∆xw

> 2knyq, where knyq

is the Nyquist rate.
Proof: The sampling theorem holds for f when f is complex-valued.F can be
understood as a linear combination of two complex signals in2D or four complex
signals in 3D, all sampled on the same grid. The Clifford Fourier transform is a
linear combination of two or four classical Fourier transforms. Thus, the sam-
pling theorem for multivector-valued signals follows directly from the sampling
theorem of complex-valued signals.

7.4.2 Clifford Fourier Transform and Vector Convolution

Since the vector convolution on vector fields, as given by Heiberg et al. [42],
is part of the Clifford convolution, we can also analyze it within this context.
However, the theorems for vector convolution and correlation are not as simple as
those for Clifford convolution and correlation. Consider convolution in 3D where
f,h : R3 →R

3 ⊂ G3 are two vector fields.

Since (h∗v f)(x) = 〈(h∗l f)〉0

we get F{(h∗v f)}(u) = 〈F{h},F{f}〉+ 〈F{h}F{f}〉3

Since the Clifford Fourier transforms of 3D vector fields contain a vector and a
bivector part,〈F{h}F{f}〉3 is generally nonzero. In Figure 7.3, one can see that
there are substantial vector and bivector parts, even for typical vector patterns.

7.4.3 Fast Clifford Fourier Transform

One of the reasons for the success of the Fourier transform inimage processing is
the existence of fast Fourier transform (Section 3.4). Algorithms for the fast com-
putation of the Fourier transform take a divide and conquer approach based on
recursively dividing even and odd elements. The basic approach assumes that the
dimensions of the images are of the form 2k. Since the Clifford Fourier Transform
can be computed as a linear combination of several regular Fourier transforms,
FFT-like algorithms can be applied directly for acceleration of the CFT. The Clif-
ford Fourier transforms used for Figures 7.1 and 7.5 have been computed using a
fast Clifford Fourier transform. Thus, the computational time of the CFT for this
data set was reduced to less than a second.
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Figure 7.1: OM06(2k) (Section 6.2).Left : Color coding of the absolute magni-
tude of the vectors. The colors are scaled from zero (blue) tothe maximal magni-
tude (red).Right: (Fast) Discrete Clifford Fourier transform of the dataset. Zero
frequency is located in the middle of the image. Vectors transform to multivectors
when using Clifford algebra in frequency domain, thus, color coding is based on
the magnitude of the multivectors. Scaling of the colors is the same as the left
image.

7.4.4 Clifford Gabor Filter

The definition of Gabor filters in 2D and 3D Clifford algebra isthe convolution of
the Clifford Fourier kernel with a Gaussian filter analog to Definition 3.5.3. Thus,
the complexi in their original definition is replaced byi2 or i3 respectively. As the
CFT can be reduced to several complex transforms in the coordinates, it directly
inherits most of the properties of the Fourier transform of scalar fields. The Gabor
Filter can be understood as short-time Fourier transforms.Thus, the Gabor filters
on multivector fields inherits the properties of the Gabor filters on scalar fields,
too.

Definition 7.4.2 Let g : Rn → R be a Gaussian filter with varianceσ . The im-
pulse response h: Rn → C, n= 2,3, of theClifford Gabor filter is defined as

h(x) = g(x)∗e2πin〈x,U〉

The frequency response is

H(u) = e−2π2σ2‖u‖)
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7.5 Analysis of Basic Vector-Valued Patterns

Now that the Clifford Fourier transform is defined, the connection between wave-
forms like sine and cosine and basic patterns found in flow fields can be studied.
First of all, a sine wave in one direction was taken as one of the two components
of a vector field resulting in a pattern similar to shear flow. This sine wave was
then shifted in the spatial domain to observe the change of phase in frequency
domain. The results are analogous to scalar fields, and only the phase of the 2D
vector, which is interpreted as a complex number, changes. By adding a second
waveform in the other direction, flow patterns which are wellknown are generated
(Figure 7.2).

This leads to the analysis of vector valued flow patterns in frequency domain.
Therefore, the Clifford Fourier transforms of some 3D patterns (Figure 7.3) were
studied. 3D patterns are easier to understand due to the interpretation of the 3D
vector as three complex numbers in contrast to the 2D vector which is interpreted
as only one complex number.

Figure 7.2: Two single waveforms result in complex flow pattern when overlaid.
Top: Grid, hedgehog and LIC of the patterns in spatial domain.Bottom: Grid and
hedgehog of the DCFT of the patterns.Left : A waveform in y-direction in the x-
coordinate of the vector.Middle A waveform in x-direction in the y-coordinate.
Right: The flow pattern resulting from a superposition of the single waves.
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Figure 7.3:Top: Various 3D patterns.Middle : The vector part of their DCFT.
Bottom: The bivector part of their DCFT, displayed as normal vectorof the plane.
Left : 3×3×3 rotation in one coordinate plane.Middle : 3×3×3 convergence.
Right: 3× 3× 3 saddle line. The mean value of the DCFT is situated in the
center of the field. In 3D, the waves forming the patterns can be easily seen in
the frequency domain. The magnitude of the bivectors of the DCFT is only half
the magnitude of the corresponding vectors, though both aredisplayed with same
length.

This split of the components of a 3D vector can be found in the DCFTs of the
three patterns showing rotation and a saddle along one axis,and a convergence
to a point (Figure 7.3). Rotation and saddle line, which are arepetition of the
corresponding 2D pattern (Figure 7.4) along the third axis,have no non-zero Clif-
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ford Fourier coefficients corresponding to this third direction as the values do not
change in this direction. The DCFT of the convergence, on theother hand, has
non-zero coefficients for the third direction as convergence takes also place in this
direction.

Note that all 3D patterns are real valued. Thus, the real or vector valued parts
of DCFTs are symmetric (Theorem 3.3.11), that is

〈Fr{ f}(u)〉1 = 〈Fr{ f}(−u)〉1.

The imaginary or bivector parts are antisymmetric,

〈Fi{ f}(u)〉2 = −〈Fi{ f}(−u)〉2.

This is in contrast to the visual perception of these patterns, which would rate the
vector part as antisymmetric and the bivector part as symmetric due to the orien-

Figure 7.4: Various 2D patterns (black hedgehogs) and theirDCFT (red hedge-
hogs).Top left: 3×3 saddle.Top right : 3×3 convergence.Middle left : 3×3
rotation. Middle right : 3× 3 convergent line.Bottom left: 3× 3 shear flow.
Bottom right : 3×3 divergent line. The mean value of the DCFT is situated in
the center of the fields. The results of the 2D DCFT looks a bit confusing at first
since vectors are mapped to vectors.
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tation of the vectors. However, this visual perception of the symmetry of vector
fields is in contrast to the mathematical definition of symmetry and antisymmetry.

The interpretation of the DCFTs of these patterns is odd at first. A careful dis-
tinction between the direction of the waveforms, and the direction of the resulting
vectors given by the component of the vector in which the waveform is present,
has to be made. An example is the DCFT of the rotation. The rightmost vector and
bivector correspond to the waveform with directionx. As the vector isae2 = ay
and the bivector−bie2 = −biy, the wave is in the second component of the vec-
tor. Out of the complex number(a− ib) corresponding to the second component
of the multivectors, the amplitude and phase of the signal inthis component of
the vector can be determined. Note that for the determination of the properties of
this waveform, the leftmost vector and bivector can be ignored due to symmetry
properties. Another property of these patterns is that the rotation and the saddle
line differ only in the phase of the waveform in directionx. This can also be seen
in 2D (Figure 7.4). Remember that 2D vectors are interpretedas one complex
signal. Thus, the symmetry properties of real signals are not valid. However, as
the x-component corresponds to the real signal, it is conjugate symmetric, and the
y-component or imaginary part is conjugate-antisymmetric(Theorem 3.3.11).

Regard the shear, divergence line and convergence line patterns. The corre-
spondence between convergence and divergence line, which can be transformed
into each other by negating every vector, can also be seen in frequency domain.
Furthermore, the shear flow is only a phase-shifted copy of these flows. The same
connection is true for the rotation and convergence patterns.

To summarize, rotation, convergence, divergence and saddle points in 2D and
rotation in a single coordinate plane, convergence and divergence in 3D, were
constructed by using (half) waveforms in the coordinates ofthe vectors. Some of
these patterns and their discrete CFT’s are shown in Figures7.3 and 7.4. Some of
their formulas can be found in the following Lemma 7.5.1, therest can be defined
analogous.

The patterns in Lemma 7.5.1 are all defined on[−1,1]2 and [−1,1]3 for 2D
and 3D, respectively. The same patterns can be defined on[−k,k]2 and [−k,k]3

by replacingx, y andzwith x/k, y/k andz/k, respectively, where the real number
2k+1 is the overall size of the patterns inx,y, andz-directions. Subsequently, the
patterns can been multiplied with a Gaussian window function (Definition 3.5.2)
to reduce the influence of values by the distance to the centerof the patterns.
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Lemma 7.5.1

Rotation (3D) : f





x
y
z



 =





0
−sin(2πz)
sin(2πy)



 ,

Convergence (3D) : f





x
y
z



 =





−sin(2πx)
−sin(2πy)
−sin(2πz)



 ,

Rotation (2D) : f

(

x
y

)

=

(

sin(2πy)
−sin(2πx)

)

,

Convergence (2D) : f

(

x
y

)

=

(

−sin(2πx)
−sin(2πy)

)

, and

Saddle point (2D) : f

(

x
y

)

=

(

sin(2πy)
sin(2πx)

)

.

7.6 Results

7.6.1 Clifford Fourier Transform

We chose a turbulent swirling jet entering a fluid at rest (OM06(2k), Section 6.2)
for first tests. Figure 7.1 shows the application of a fast discrete Clifford Fourier
transform to the resampled field where the absolute values ofthe original and
transformed fields are shown and the zeroth Clifford Fouriercoefficient is drawn
in the center of the image. A 2D vector field transforms into a 2D vector field
since it forms one complex signal. A 3D vector field transforms into a multivector
field where only the vector and bivector parts do not equal zero since vectors and
bivectors form three complex signals.

The use of fast discrete CFT can also speed up the convolutioncomputation of
large data sets. Figure 7.5 shows the result of matching a 5×5 rotational pattern
to the swirling jet data set. The vectors of the data set have been normalized to
enhance smaller rotations. The pattern matching was computed using fast CFT
and multiplication in the frequency domain. The results of the matching were
color coded so that red denotes high positive similarities and corresponds to right
handed rotation and blue denotes high negative similarity values and left handed
rotations. The difference of computing the convolution in spatial or frequency
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Figure 7.5:Left : Correlation of a swirling jet data set (OM06(2k)) with a counter-
clockwise 5×5 rotational pattern. The data set has been normalized to emphasize
small structures. The image shows correlation computed in frequency domain
with the result transformed back to spatial domain. Color coding of the scalar part
is blue for high negative similarities (-0.94) and a left-handed rotation and red for
high positive similarities (0.94) and a right-handed rotation. Right: Difference
in the computation of the correlation operation in spatial domain using a periodic
boundary condition. The colors are scaled from−1×10−13 (blue) to 1×10−13

(red).

domain (Figure 7.5), which is due to numerical errors, is at most 1×10−13 and
is insignificant. Some representative timings of the convolution operation on a
1.6 GHz Intel Centrino are listed in Table 1. The timings for the 5× 5 mask
correspond to the convolution computations used for Figure7.5.

computation size of pattern time (sec)
spatial domain 5×5 7
spatial domain 15×15 27
using fast CFT 5×5 5
using fast CFT 15×15 5

Table 7.1: Timings for the convolution computation on a 128× 128 2D vector
field, comparing direct computation and using fast discreteCFT and multiplica-
tion in frequency domain.
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Symmetric Phase-Only Matching

A normalization of the data set is usually done to get a similarity which is indepen-
dent of the magnitude of the velocities. This magnitude corresponds to the energy
of the signal. Another technique to obtain a similarity measure independent of the
energy of a signal, and with a much sharper peak at local extrema, is symmetric
phase-only matching (Section 3.6.2). With the definition ofthe Clifford Fourier
transform, this can be applied to vector fields within this framework (Figure 7.6).
For simplicity, this approach was studied for a rotational symmetric pattern, here
a rotation.

Figure 7.6: Symmetric phase-only matched filtering (SPOMF)results in a sharper
peak. Top left: 9×9 clockwise rotation. Hedgehog, LIC and grid.Top right :
DCFT of the same data. Hedgehog, color coding of the magnitude, and grid.
Bottom: Color-coding of the similarities, hedgehog of the original data set, and
grid. Bottom left: Result of auto-correlation.Bottom right : Result of SPOMF
of the auto-correlation results in a sharper peak.
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In 2D, the vectors form a complex signal. Thus, normalizing the 2D vectors
of template and data set in frequency domain, multiplying the resulting signals,
and computing the inverse Clifford Fourier transform, corresponds to symmet-
ric phase-only matched filtering as the energy of the signal in frequency domain
is normalized. The analogon in 3D is interpreting vector plus bivector as three
complex signals as described in Section 5.4. These complex signals can then be
normalized separately for symmetric phase-only matching in 3D.

However, the results of symmetric phase-only matching of vector fields are
not convincing (Figure 7.7 and 7.8). The results resemble the original template
matching with sharper peaks, but also with more noise. A connection of the results
of SPOMF on the original data and template matching on a normalized data set
can not be detected. This is due to the fact that magnitude changes are not only an
amplitude property of the features, but also part of the waveforms in each of the
components which is destroyed during the normalization.

Note also that this symmetric phase-only matching resultedin a misclassifica-
tion, for example the classification of the saddle point as a rotation in Figure 7.7.
Therefore, this approach was not used at all. However, some of these problems
may be due to the fact that the global phases were compared. Thus, symmetric
phase-only matched filtering was also investigated in combination with Gabor fil-
ters (Section 7.6.2), as these can be understood as a localized Fourier transform
(Section 3.5) and thus allow an analysis of the local phase.

Figure 7.7: Normal and symmetric phase-only matched filtering (SPOMF) of the
ICE section plane resampled to a 64× 64 grid. Color coding of the similari-
ties to a counter-clockwise 5× 5 rotational mask, periodic boundary condition
Left :Similarities of direct template matching.Right: Result of SPOMF.
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Figure 7.8: Normal and symmetric phase-only matched filtering (SPOMF) of the
OM06(2k) data. Color coding of the similarities to a counter-clockwise 5× 5
rotational mask, periodic boundary condition.Top left: Similarities of direct
template matching.Top right : Result of SPOMF.Bottom left:Similarities of
direct template matching of the normalized data set.Bottom right : Result of
SPOMF of the normalized data set.

7.6.2 Clifford Gabor Filter

Gabor filters can be applied to compute a Gabor expansion, they can be used for
a wavelet decomposition, or directly as filters (Section 3.5). Clifford Gabor filters
were used to study symmetric phase-only matched filtering oflocal phase (Figure
7.9 and 7.12). Again the rotation, which is a rotational symmetric pattern, was
used to study this approach.

The results of SPOMF of local phase and direct template matching in spatial
domain and matching via Clifford Gabor filters were compared(Figure 7.9). Note
that the results of direct matching of the normalized data set in spatial domain and
SPOMF of local phase results in similar structures. However, template matching
of the normalized data set results in sharper features. Furthermore, the rotation in
the upper left of the data set is not detected using SPOMF of local phase. Template
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matching of the normalized data set via Gabor filters is similar to direct matching.
However, it introduces some new features, for example the lines in the right of the
image. Adaptive color coding of the magnitude of the velocities reveals a differ-
ence in the velocities there, which might be the reason for this feature. However, it
can not be verified using other techniques like LIC. Thus, it is probably an artifact
of the matching technique.

Note that template matching via Gabor filters, SPOMF or not, is computation-
ally more expensive than direct template matching in spatial domain. An idea
to reduce the effort comes from the investigation of basic patterns in frequency
domain (Section 7.5). As these patterns consist of half-waves in the different
components of the vector, the low frequencies should be enough to describe these
patterns. Thus, only five values in 2D and seven values in 3D have to be compared.
The Gaussian of the Gabor filter introduces new frequencies as a multiplication
with a Gaussian in spatial domain equals a convolution with the Gaussian in fre-
quency domain. Thus, this approach has to be studied carefully for use with Gabor
filters as information of the Gabor coefficients is lost.

For a complete overview, the different template matching techniques were
computed, without normalization, with normalization in spatial domain, and with
SPOMF (Figure 7.10). The difference of matching the normalized data set using
all coefficients or only the five low-frequency values were atmost 10%, though
the structures are the same. Matching using lesser coefficients resulted in higher
similarity values. The highest difference is found when using SPOMF. Here, us-
ing only the low frequencies results in even fuzzier images.Note that SPOMF of
the normalized data set makes no sense as both SPOMF and template matching of
the normalized data set are similar. No new information is found but the results
are blurred beyond recognition (Figure 7.11).
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Figure 7.9: OM06 data set. Template matching using Gabor filters. Top left:
Similarities of direct template matching in spatial domainusing the normalized
data set. Red denotes high positive similarities and a counter-clockwise rotation
and blue high negative similarity values and a clockwise rotation. Top right :
Result of SPOMF using Gabor filters.Bottom left: Template matching via Gabor
domain using the normalized data set. Note the similaritiesto the image top left
as well as the blue line in the right of the data set.Bottom right : Adaptive color
coding from zero (blue) to high values (red) of the magnitudeof the velocities
reveals a possible reason for the blue line in the right of thebottom left image.
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Figure 7.10: OM06 data set. Pattern matching with a 5× 5 rotational template
in Gabor domain using all coefficients (left) versus matching of low frequency
values only (right ). Color coding of the similarity values. Red denotes high posi-
tive similarities and a counter-clockwise rotation and blue high negative similarity
values and a clockwise rotation.Top: No normalization.Middle : Normalization
of the vectors in spatial domain.Bottom: Symmetric phase-only matching.
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Figure 7.11: OM06 data set. Normalization in both spatial and frequency do-
main is not advisable. Color coding of the similarity values. Red denotes high
positive similarities and a counter-clockwise rotation and blue high negative sim-
ilarity values and a clockwise rotation. Pattern matching with a 5×5 rotational
template in Gabor Domain.Left : Pattern matching.Right: Matching of the five
low frequency values only.

Figure 7.12: Section plane of ICE data set. Color coding of the similarity values
and LIC. Red denotes high positive similarities and a counter-clockwise rotation
and blue high negative similarity values and a clockwise rotation.Left : Template
matching of the normalized data set in spatial domain.Right: SPOMF with Gabor
filters.



Chapter 8

Analyzing Vector Fields using
Template Matching

In this section, several issues of applying template matching to flow fields are ex-
amined and discussed. First of all, many flow fields are definedon irregular grids,
or even on surfaces. In Section 8.1, techniques to transfer template matching to
work directly on these data sets are discussed. The next question which will be
discussed in this chapter is the issue of superposition, which plays a central role
in signal processing. However, in flow analysis, it is often ignored so far. Super-
position effects in flow fields, and the appropriateness of basic flow visualization
and analysis tools, are examined in Section 8.2. Determining features parameters,
and not only position and size, with the help of template matching in flow fields
is another focus. This part of the work is motivated by the HART II data (Section
6.6). The vector fields measured there are defined on a uniformgrid and noisy,
thus convolution should be an ideal tool for the analysis of the described flow.
Details on the analysis, which serve as an example of principal flow feature anal-
ysis based on template matching, are given in Section 8.3. Last but not least, the
insight and techniques gained by this work are brought together, and an algorithm
for feature based segmentation of flow fields is developed in Section 8.4.

8.1 Irregular Grids and Surfaces

Most often data sets from flow visualization are defined on irregular grids. The
cell sizes differ greatly in size as they are very small in regions of interest and
pretty large in regions where the flow is mostly homogeneous.This is illustrated
in Figure 8.1. The Clifford convolution described so far only works on vector
fields defined on uniform grids. Simple regridding of irregular grids results in a
high number of grid points and oversampling in most parts of the vector field.

126
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Figure 8.1: Grid of the flattened surface of the delta wing

However, this is most often the best approach due to computational efforts of
subsequent algorithms which are applied to the data. In thissection we discuss
several approaches of template matching of irregular grid and surfaces in order
to extend Clifford convolution and correlation to these data sets. The principal
ideas of local resampling of field and template are investigated in Section 8.1.1.
In Section 8.1.2, they are used to extend template matching to arbitrary surfaces.
The results are given and discussed in Section 8.1.3.

8.1.1 Local Resampling

Scaling the Mask

The size of the cells of a flow field can differ greatly, and a unifying approach
for scaling the template accordingly has to be determined. There are two princi-
pal approaches: Using one size at all matching positions, orscaling the template
according to the neighboring cells. Note that in this subsection, the size of a tem-
plate denotes its spatial extent and not the number of nodes in each dimension. As
the templates are defined on uniform grids, the length of eachof the edges is the
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Figure 8.2: Swirling jet entering a fluid at rest, 3D simulation. Pattern matching
with a 5×5×5 rotational template. As the cells differ greatly in size, features of
different scales are detected
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property which is regarded here.
The first approach of scaling has the advantage that all detected features are of

similar size. However, not all features will thus be detected, and the matching will
be computed at positions where a corresponding feature can not be in the field
due to sampling constraints according to the Nyquist theorem (Theorem 3.4.6).
A multiscale approach is necessary for a thorough inspection of the data (Section
3.6.3).

Often, the cells are already scaled to the size of the featurethat is expected.
Then, it can be advantageous to use an adaptive template size. However, the size
of the template has to be determined at every node of the grid of the flow field,
adding computational effort. The template is usually scaled according to some
measure of the cell sizes of the cells surrounding grid pointP. Coping with all
kinds of different cell types like tetrahedron, prism, cubeand hexahedron, taking
the longest edge connected toP can be used for the scaling. Lets be the length
of this edge. Then the template defined on a uniform grid is scaled with s. That
means that every edge of the template has lengths now. Then the template can
be used for the convolution atP. As the template is scaled differently at grid
points with different maximal edge lengths, features of different scales are found
with the same template (Figure 8.2). Note that for uniform grids, this scaling
corresponds to the usual convolution computation based only on the values at the
grid nodes.

The techniques for Clifford convolution on irregular gridsbased on local re-
sampling of field or template all use this scaling. Thereforewe will not mention it
every time and just assume that the template is scaled properly. Some vector field
might require another scaling measure like an averaged length. All these measures
will have some degenerated fields where they will not work well.

Local Resampling of the Field

The first idea is to place the template onto the field, the center of the template
aligned with the grid pointP to be convolved. Then the field is sampled on those
points where the grid points of the template ”lie” on the field(Figure 8.3, left).
These values are then multiplied with the corresponding values of the template.

Local Resampling of the Mask I

Most of the computational cost of the previous approach comes from point loca-
tion for the sampling. This leads to the next idea. The field isplaced onto the
template. The center of the template is again aligned with the grid pointP to be
convolved. The vector field is cut off at the border of the template. Then the tem-
plate is sampled on those points where the grid points of the vector field ”lie” on



CHAPTER 8. ANALYZING VECTOR FIELDS 130

Figure 8.3:Left : Local resampling of the field.Middle : Local resampling of the
template.Right: Local resampling of the template, only 1-neighborhood

the template (Figure 8.3, middle). The sampled values are then multiplied with the
values of the vector field that ”lie” on the same spot. This time the computation is
even more expensive, as all grid points of the vector field in abounding box have
to be found.

Local Resampling of the Mask II

To avoid this overhead of the last approach, only the points in then-neighborhood,
where (2n+ 1)2 or (2n+ 1)3 is the size of the template, were used. Then-
neighborhood ofP is computed, that is the set of all grid points which are con-
nected toP by n edges at most. All points of then-neighborhood are projected on
the template, the template is sampled there and the sampled values are multiplied
with the values of the field. (Figure 8.3, right).

8.1.2 Template Matching on Surfaces

The algorithms described so far do not work for arbitrary surfaces. The 2D algo-
rithm assumes a planar grid and the 3D algorithm only works for grids describing
volumes. When the surface can be projected onto a planar gridlike the delta wing
in Figures 6.9 and 6.11, the 2D algorithm can be applied. It isalso possible to
project the surface only locally onto a planar grid, which isa lesser constraint.

For a 2D irregular grid, one idea was to use a local resamplingof the field. For
a surface, however, determining the positions for the convolutions is not straight
forward as the template is planar and the surface can have a complicated form.
Thus, the template has to be deformed to fit onto the surface. One approach to
implement this is to use geodesics:

Definition 8.1.1 A geodesicis the locally shortest path between two points.

In an Euclidean space, a geodesic is always a straight line. On a surface, however,
the form of the geodesic can be quite complex. Furthermore, it is not always
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unambiguous, e.g. in the case of two antipodal points on a sphere there are many
shortest connections.

To determine the sampling positions, the geodesics are started at the posi-
tion where the convolution is to be computed. The direction and length of the
geodesics is given by the vectors from the center of the template to the corre-
sponding nodes. The end points of these geodesics determinethe positions on the
surface which are needed for the convolution computation (Figure 8.4).

Note that it is not advisable to transfer the other approaches of local resampling
where the template is resampled at the grid nodes of the flow field. For these
approaches, geodesics from the neighboring nodes of the surface to the position
where the convolution is computed would need to be determined. This is not
solvable other then by brute force as the path of the geodesics is not predictable
enough.

Figure 8.4: For matching on surfaces, the planar 2D templates have to be fitted
to the surface, here a sphere. This can be done using geodesics: At the position
where the convolution is to be computed, geodesics are started with direction
towards the template nodes and with corresponding length. Thus, the positions for
the computation of the convolution can be determined.Left : Sphere and planar
template. Middle left : Direction and length of the geodesics are determined.
Middle right : The actual geodesics determine the convolution positionson the
sphere.Right: The template was fitted on the surface.

8.1.3 Results

Irregular Grids

For template matching on irregular grids, we have chosen twotest data sets from
real applications. The first data set is the OM06 (Section 6.2), and the second is
the flattened surface of the delta wing (Section 6.4).

For the OM06 data set, which is defined on a regular grid, the results differ
only slightly (Figure 8.5). The highest difference can be seen at the border, due
to the different approaches of dealing with the missing values outside the field
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(Section 3.6.1). For the computation of Figure 8.5, the missing values were as-
sumed to be zero for simplicity of the computation. Using local resampling of
the template automatically assumes ideal behavior of the flow outside the data set,
as only the existing values influence the number of compared positions. Higher
similarities at the border of the data set are the result. Note that using only the 1-
neighborhood corresponds to matching with a 3×3 template, which is the reason
for the difference to the results when using a 5×5 template.

Looking at Figure 8.6, the images of the results of resampling the template
seem to be splotchy. This has a couple of reasons. First, the data set has some
cells of size zero which distorts the results of the convolution. This is an extreme

Figure 8.5: Pattern matching of a 2D vector field with a 5×5 rotation template.
The grid is regular. The similarity values are normalized. Light areas corresponds
to the highest similarity and to a righthanded rotation in the field and dark areas
to a lefthanded rotation, as a righthanded rotation template is changed into a left-
handed by multiplication with -1.Top left: Local resampling of the field.Top
right : Local resampling of the template.Bottom left: n-neighborhood.Bottom
right : 1-neighborhood.
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Figure 8.6: Regions of convergence (red) and divergence (blue) on the wing.
Adaptive color coding of the results of pattern matching with a 5×5 convergence
template. The grid is irregular.Top left: Local resampling of the field.Top right :
Local resampling of the template.Bottom left: n-neighborhood. (Bottom left:
1-neighborhood.

example distortion which different cell sizes introduce into the convolution using
n-neighborhood or 1-neighborhood. Cells which have large aspect ratios cause
the same problem. Another reason for the differences is the resampling process
which is based on interpolation of the grid points. Thus the first two approaches
show different results although in the continuous case theywould have exactly the
same results.

In Table 8.1 and 8.2, timings of Clifford convolution and pattern matching on
two different data sets are given. Local resampling of the template is the slowest
approach for both data sets. The OM06 is defined on a regular grid, thus local
resampling of the field is faster than local resampling of thetemplate based on
n-neighborhood as the point location is not as expensive as onirregular grids.

Resampling of the template is the slowest approach, and using then-neighbor-
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hood is more sensitive in terms of noise. Therefore, local resampling of the field
is the best approach so far.

Table 8.1: Timings for computing one Clifford convolution on the OM06 and the
flatwing data sets on a 1,3 Ghz computer

dataset size of resampling resampling n-neigh-
template of field of template borhood

swirl. jet 3×3 4 s 75 s 5 s
(12524 p) 5×5 6 s 314 s 24 s

delta wing 3×3 33 s 88 s 10 s
(25800 p) 5×5 90 s 390 s 40 s

Table 8.2: Timings for complete template matching on the OM06 and the flatwing
data sets on a 1,3 Ghz computer

dataset size of resampling resampling n-neigh-
template of field of template borhood

swirl. jet 3×3 8 s 88 s 10 s
(12524 p) 5×5 16 s 352 s 40 s

delta wing 3×3 65 s 103 s 21 s
(25800 p) 5×5 183 s 441 s 66 s

Surfaces

Due to the computation of the geodesics, the computation of template matching
on surfaces is slow. It took several hours to compute the template matching for
the ICE front wagon (Section 6.5). The results are robust andas expected when
comparing it to the LIC image (Figure 8.7). The region of divergence at the tip
of the ICE train, where the wind hits the train, is clearly visible. Thus, template
matching on arbitrary surfaces is possible though the computational effort is high.

Conclusion

Local resampling of either field or template is slow in comparison to the timings
on a regular grid. This is due to the computation of the interpolation position,
and the interpolation itself. The results are not better andcan be quite noisy.
Thus, global resampling of the field is preferred though it can greatly enlarge the
number of positions and cells. Even then, template matchingon the resampled
grid will be faster, especially if the grid size in each dimension is 2k for some,
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Figure 8.7: The surface of the front wagon of the ICE data set.Left : LIC. Right:
Similarities of the normalized flow to a 3×3 divergent template. Color coding
from dark blue (convergence) to dark red (divergence).

possibly different,k ∈ N. Then, the fast Clifford Fourier transform can be used
for acceleration of the convolution computations (Section7.4.3).

The only case when global resampling of the field will not workat all is
for flow fields defined on a surface. There, local resampling ofthe field using
geodesics to determine the sampling positions has to be usedthough it is slow.

8.2 Flow Fields, LSI Filter and Superposition

For signal processing, linear, shift invariant systems (Section 3.2) play an impor-
tant role as most systems can be described, or at least approximated, by them. The
linearity property of these systems is also known as the superposition principle,
stating that the result of two superposed signals equals thesuperposed results of
the single signals. This also implies that a complex signal can be understood as a
linear combination of several simpler signals (Figure 8.8).

Please note the difference between the linearity of LSI systems, which are
mostly used to compute the similarity of a template to a flow field in this thesis,
and the (non-) linearity of the description of the signals themselves, which in this
case are flow fields. These are two quite different issues which do not influence
each other.

The perception of systems as a superposition of less complexsystems is fun-
damental in signal processing. However, many flow analysis and visualization
techniques do not take this principle into consideration. Or, in other words, not all
analysis and visualization techniques are LSI filters. Thus, several problems can
occur, for example in measurements of wind tunnel experiments. There, domi-
nant passing flow induced by the blower often hides vortices and other features so
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Figure 8.8: Linearity of features - the superposition principle: The flow on the
right is the direct sum of the two different flows on the left.

a direct visualization may not reveal all features or even none at all [99] (Figure
8.9). Furthermore, the parameters of the detected featurescan be altered due to
superposition effects.

In the vector fields measured in the HART II project (Section 6.6), for ex-
ample, superposition phenomena are ubiquitous (Figure 8.9). Not only because
of the dominant passing flow, but also because each crossing of a blade creates,
among other things, a new vortex which is added to the flow created by previous
blade crossings, the movement and the shape of the helicopter. Thus, for this ap-
plication, a superposition perspective of the flow comes naturally. To understand
the wake of the rotor blades, and to be able to create a model ofit, all vortices
and other features have to be detected and their parameters have to be determined.
For accurate determination of the parameters, the superposition effects and their
consequences for the accuracy of the analysis methods have to be studied.

The data sets from HART II (Section 6.6) were analyzed in the context of
superposition phenomena. The data sets consist of 3-C PIV images, that is 3D
vectors in a 2D image plane which have been measured in the simulation [30].
For simplicity, the third or out-of-plane component was neglected for the analysis
here. First of all, global methods for obtaining Galilean invariant features (Section
2.4.2) were tried. Note that these methods try to minimize the effects of global
superpositions for the detection of features.

The difference in removing the average and computing the localized flow (Sec-
tion 2.4.5) can be seen in Figure 8.9. The wake area, clearly visible in the topology
of the data set with average removed, crosses the border of the data set and is thus
partly removed by the computation of the localized flow. However, with both
methods, only one of the 4 vortices revealed by vorticity or pattern matching with
a vortex mask is detected and visualized. Thus, not only global but also local su-
perposition phenomena have to be considered in the analysisand visualization of
this data set.
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Figure 8.9: One vector field of the HART II test measurements.All images: Color
coding of similarity to a 5×5 counter-clockwise rotational mask, dark blue: high
negative similarity, red: high positive similarity.Top left: LIC of the original
data setTop right : LIC and topology of the data set after removing the average.
Bottom left: LIC and topology of the localized flow.Bottom right : LIC and
topology of the flow after removing the harmonic component ascomputed by the
hodge-decomposition. In all images, the streamlines do notreveal more than one
of the four vortices indicated by vorticity.

In this section, the effects of local superposition in vector fields are examined.
Furthermore, basic approaches for detecting and visualizing features in flow fields
are investigated regarding their robustness towards thesesuperposition effects.
The properties are demonstrated using the Vatistas vortex [102] (Section 6.1.1), a
popular vortex model in fluid dynamics, as an example.

The first two data sets that are used for the examination of thebehavior of flow
visualization and analysis techniques in the presence of superposition phenomena
were computed by superposing two Vatistas vortices. For thefirst data set, the
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Figure 8.10: Superposition and interaction of two Vatistasvortices [102]. All
images: The original vortex centers are displayed as black dots. Grid (green),
hedgehogs (black arrows), color coding of an additional property from high neg-
ative values (blue) to high positive values (red).Left : Two Vatistas vortices [102]
with both radius 5, radial velocity 1 and N=1.Top left: Color-coding of similarity
to 3×3 rotational mask detects the true vortex centers.Bottom left: Normalizing
the field and matching afterwards yields results more similar to the topological
features.Right: The left vortex has radius 2 and radial velocity 1, the rightone
has radius 5 and radial velocity 3, both have N=1.Top right : Both vortices have
the same rotation direction.Bottom right : The left vortex rotates clockwise and
the right vortex counterclockwise.Both right images: Color-coding of vorticity.
Topology only detects one center each (green dot), therefore some streamlines are
added.

parameters of both vortices were equal, and the distance of the two vortex core
centers was twice their vortex core radius (Figure 8.10, left). In the second ex-
ample, the strength and radius of one vortex is smaller than the other. In direct
visualizations like hedgehogs or streamlines, it is thus hidden in the flow of the
other vortex and only bends the shape of the flow (Figure 8.10,right).

Topology, vorticity and pattern matching with a simple rotational mask were
applied in order to detect the vortex centers. Topological and local streamline
based features are good at detecting and describing features of the actual flow,
but not for features hidden or moved by superposition. The resulting errors in
the analysis of the feature parameters are high in the case ofsuperposition, even
resulting in not detecting a vortex at all (Figure 8.10, right). This is also due to
the fact that streamlines are independent of the actual velocity of the flow at one
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position (Section 2.1.1).
As vorticity and template matching are LSI systems, they clearly depict the

vortices in the resulting scalar fields. However, even theseresults can be influ-
enced by superposition. Assimilation effects, like two vortices with same param-
eters but different rotation direction which annihilate each other, effect the results
of feature detection using any feature definition. Note thatthis is no counter-
example for the linearity of the systems described by the templates as the results
of matching the single vortices have same strength but different signs and thus
annihilate each other, too.

Superposition effects should be considered for the visualization of vector fields.
This perception of vector fields is necessary for some applications, for example
the analysis of the HART II data (Section 6.6). Template matching is inherently
suited for detection and analysis of features in the presence of superposition ef-
fects as computing a similarity based on convolution with a template is a linear,
shift invariant system. For other applications, the actualstreamlines may be of
higher importance. There, streamline based approaches of visualizing the flow,
like topological methods, are better at describing the flow than velocity and direc-
tion based feature models like the Vatistas vortex.

8.3 Feature Analysis

In this section, it is shown how to use template matching for feature detection
and analysis in flow fields. It is quite obvious that the maximal similarity value
will hint at the position of the corresponding feature. Detailed analysis, however,
clearly goes beyond this straightforward approach.

This section is motivated by a cooperation with the DLR Braunschweig con-
cerning the evaluation of the HART II data (Section 6.6). As the measurement
noise is quite a challenge in these vector fields, and the datais aligned on a regu-
lar grid, convolution based feature analysis of this data isa promising approach.
The vortices within the data are assumed to be perfectly circular. In practice, this
is not always the case. Especially in the early stages of vortex creation, elliptical
or band-shaped vortices have been observed. Nevertheless,for most of the mea-
surement positions of the HART II PIV images, this assumption is warrantable.

First steps of an analysis of the flow fields consist in detecting all vortices and
determining their parameters applying the Vatistas model (Section 6.1.1). The de-
sired precision, however, is quite high. The positions of the vortices, for example,
have to be determined with subpixel accuracy, that is, the exact position within
a cell is needed. This presents a challenge to convolution based approaches, as
these are usually evaluated at grid points. In this section,it is shown how sub-
pixel accuracy can be obtained nonetheless.
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It is not feasible to give a complete overview of the determination of all possi-
ble features and their parameters. The chosen examples in this section, however,
demonstrate the principal application of template matching as well as some fine-
tuning for a specific application. Due to the described task,the Vatistas vortex
(Section 6.1.1) is again chosen as a feature example.

8.3.1 Similarity Value and Normalization Issues

As used by Heiberg et al. [42] (Section 5.2), the similarity of two vector-valued
patterns is defined by the sum of the scalar products of their vectors:

s(x) = 〈(h∗ f)(x)〉0 (8.1)

The other properties of the Clifford convolution are used toobtain rotation in-
variant matching, and to have a unified notation for the convolution of scalar and
vector-valued data for further processing of the data.

The similarity value itself depends on the magnitude of boththe patterns in the
field and the template itself. Therefore, the obtained similarity values are usually
scaled by the magnitude of the template pattern:

s(x) =
(h∗ f)(x)

∑x’∈h |h(x’)| (8.2)

Often, this similarity is more influenced by the velocity of the vectors than
their orientations. Then, it can be sensible to normalize the similarity by the ve-
locities of the pattern in the data set as well. It can be achieved quite easily by
normalizing the vector field beforehand. Matching on a normalized data set corre-
sponds to a matching of the streamlines rather than the vectors themselves (Figure
8.10). It is often used to enhance weak features, or to obtainmatching results
more similar to the results gained by streamline-based analysis.

Normalization of the data set will work very well in some cases, but not when
the features are hidden by other components of the flow (Section 8.2). Further-
more, normalization will shift the position of features (Figure 8.10), and can dras-
tically change their size. When the velocity of vectors in the feature is important,
for example the velocity profile of a Vatistas vortex (Section 6.1.1), normalization
should not be used at all. Thus, for accurate determination of the position of fea-
tures, the perception of the flow has to be determined beforehand, that is whether
a superposition perception (Section 8.2) is used or not.

8.3.2 Determining Existence and Position

Vortices are quite challenging in flow visualization and analysis as no unified def-
inition of a vortex is existent at the moment. To detect vortices with the use of
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a convolution, a vector-valued template describing the vortex can be used. Tem-
plates that have been successfully used are pure rotation and a Rankine vortex
(Section 6.1, e.g. Figure 6.3). An example of a similarity image thus computed
can be found in Figure 8.11. Note that it is quite similar to smoothing of a vortic-
ity field. The templates shown in Figure 6.3 are rotational symmetric. Therefore,
it is enough to compute one convolution only in order to get a rotational invari-
ant similarity. Furthermore, the templates have zero mean and thus they are not
affected by any mean flow (Figure 8.11).

This far, the similarity values are only given at the nodes ofthe grid. To get
subpixel accuracy, two different methods are proposed here. First of all, the center
of similarity can be computed:

Definition 8.3.1 Let p(i) denote the positions inΩ, and let s(i) be the similarity
value atpi . Then the center of similarity (CoS) ofΩ is defined as

CoS=
∑i p(i)∗s(i)

∑ ip(i)
.

CoS result in exactly the same positions. To determine the neighborhood before
the CoS computation automatically, the size of the vortex (without subpixel accu-
racy) should be approximated first. The region thus defined, or a multiple thereof,
can be used before the computation of CoS.

Figure 8.11:Left : LIC and Vorticity. Right: LIC and a similarity image. The
similarity to a 52 rotational template is shown where blue denotes high similarity
to a counter-clockwise rotation and red a high similarity toa clockwise rotation.
Therefore the color is inverted in comparison to the vorticity image. Note that the
scaling differs, between± 4500 in the case of vorticity and±4 for the similarity
image.
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Another approach is to use a kind of bisection method. Note that linear inter-
polation, which is most often used in grids, can be computed via a convolution
with a triangle filters and that (scalar) convolutions are commutative. That means
that computing the similarity at an arbitrary point in a cellof the grid results in the
same value as computing the similarity at the nodes and then interpolating the re-
sults. Thus, the maximal similarity can only be at a grid node. However, templates
can be generated with the rotation center at every arbitrarypoint in space. So, the
template is not moved for subpixel accuracy, but the vortex core or rotation center
within the template. It has the disadvantage that the template has to be computed
for every new position, but the similarity values of different subpixel positions
are nearly equal within a few iterations. This bisection method needs less data
than CoS. For simple test cases, if the neighborhood for the CoS computation is
large enough and well behaved, the bisection method is less precise. As soon as
the data becomes complex, the bisection method produces results which are more
reasonable than the CoS approach.

Another issue which should not be neglected is the connection between scale
and position, computing the position of a feature at different scales can yield quite
different results. Thus, position and size can only be determined accurately when
their detection is coupled. This will be discussed further in the next section.

8.3.3 Determining Size

When the grid node with (locally) maximal similarity has been determined, the
size of the vortex can be found by using successively larger templates (Figure
8.12) at the position of the vortex center until the similarity values begin to drop
off (Figure 8.13). Another method is to compute a scale space, for example a
Gaussian pyramid (Section 3.6.3), and compute the similarities in each of the
scales. Note that the vortices are assumed to be circular forthe moment. For the
analysis of the size of the vortex, the feature center in the templates can be either
at a grid point or at the sub-pixel position. There is not muchdifference in the
results of those templates due to the averaging effects of convolution.

When the vortices in the image plane have an non-circular shape, the detection
of the vortex with a smaller template can give wrong results (see isolines in Fig-
ure 8.16). Then, the computation of the size should be done within a small region
of the assumed vortex center. The region can be detected automatically by using
all positions in the neighborhood which have similarity measures above a certain
percentage of the maximal similarity value. There is a relationship between com-
putational effort and a stable threshold, but the regions are not that large, and, for
example, 33% gives stable results for all datasets tested. The position which gave
the largest similarity in the computation of the size of the vortex is the grid node
next to the true vortex center and thus both determine the position, though not with
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Figure 8.12: The size of a vortex can be determined by convolution with succes-
sively larger templates.

Figure 8.13: Similarity with a pure rotational template (y-axis) vs. template size
(x-axis) for three positions. Shown are the position with maximal similarity to
the 52 rotational template (red), the template with maximal similarity within the
size computation (green), and the position with maximal template size within the
region defined by a percentage threshold (blue). The maximalsimilarity of the
green line (black arrow) determines position and size of thevortex.
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subpixel accuracy, and the size of the vortex. It is not automatically the position
where the maximal size was computed as can be seen in Figure 8.13. Note that it
is not sensible to determine subpixel accuracy of position and size before the true
vortex center has thus been identified. An example for the positions and sizes of
the vortices in one data set of the HART II test can be found in Figure 8.14.

Again, the size is only determined with an accuracy of edge length so far.
For subpixel accuracy, the trick from the last subsection has to be used again.
Here, this means that the size of the template stays the same but the assumed core
radius is changed. This way, an accuracy of one tenth of the edge length can be
achieved. A pure rotational template is no longer optimal. The Rankine template

Figure 8.14: Visualizing position and size of all detected vortices with similarity
≥ 1. Blue denotes high similarity to a counter-clockwise rotation and red a high
similarity to a clockwise rotation. In the wake area, the similarities are smaller.
Note the differences in position in comparison to the LIC of the data set with
average removed.
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itself behaves not bad, but for subpixel accuracy, the velocity at the core radius
should be enlarged to get a significant drop-off in the similarity values once the
radius is bigger than the vortex core radius. Another possibility is to use only
the vectors within half an edge or less of the core radius and zero the rest. With
this template, the velocity at the core radiusvr can be read of directly from the
similarity values. Because of the averaging, the result is alittle bit smaller than
the actual values, but not significantly.

8.3.4 Elliptical Shape and Orientation of Vortices

So far, the vortices have been assumed to be circular. In the case of the HART
II data (Section 6.6) this is a valid assumption, but the circular vortices are not
orthogonal to the image plane and so the profile of the vortex within the data
set is elliptical (Figure 8.15). This introduces problems for the determination of
the parameters of the vortex model, and thus an orientation correction has to be
computed. In this section, an approach for determining the orientation of a vortex
based on the elliptical shape in the image plane is given. In the process, the major
axes of elliptical vortices are determined as well as their position in space. Out of
these parameters and additional information coded in the out-of-plane component
of the vectors, the orientation of the vectors can be determined.

Looking at Figure 8.15 and 8.16, the idea for the determination of the vortex
direction can be explained quite well. First of all, it is assumed that position and
size of the vortex are known, though not necessarily with subpixel accuracy. Then,
a local coordinate system with origin in the vortex center isused. The direction of
the major axis of the ellipse has to be aligned with the local x-axis. The rotation
angle around the local out-of-plane axis (z-axis) can be computed quite easily

Figure 8.15: When the direction of the vortex is not orthogonal to the image plane,
the vortex shape in the image plane will be elliptical.
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Figure 8.16: Looking at similarity images gained by convolving a data set with
a rotational template or a Rankine vortex, the shape of the resulting image tells
whether the vortex direction is orthogonal to the cutting orimage plane (left) or
not (right ). Out of the shape of the ellipse in the right image, the direction of
the vortex can be computed except for the sign of the second rotation angle. The
color map of the similarity image, where red denotes high similarity and blue low
similarity, is overlaid with isolines.

from the direction of the major axis. Then, the plane itself has to be tilted. The
angle for this rotation is given by the arc cosine of the ratioof the size of the major
and the second axis of the ellipse. The last step is to determine the direction of the
tilt - positive or negative.

A tensor is optimal for describing ellipsoids. Thus, the orientation tensor is
used here in combination with the convolution. Then, the major axis of the ellipse
is given by the first eigenvector and the ratio of the two axes by the two eigen-
values. To determine the sign of the tilt, the vectors itselfhave to be used again.
Here, the total average is subtracted and then the vectors are averaged within the
vortex region. The sign of the y-component of the result gives the sign of the tilt.

One idea was to determine the shape of the ellipse out of isolines as shown
in Figure 8.16. But because of the noise, the actual isolinesin the HART II PIV
images are quite ragged and thus transport the noise into theresults. Therefore,
elliptical templates are used which can also be interpretedas an integration of
several isolines.

Several templates were tried for this computation. First ofall, an elliptical
Rankine vortex with ratio 1:2 was used in combination with the orientation tensor.
The size of the larger axis was chosen as the diameter given bythe approximated
size of the vortex. The next idea was to use a circular Rankinevortex or a simple
rotational template with half the approximated size. Theseresulted in a similarity
image similar to Figure 8.16. On this scalar-valued similarity image, convolutions
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with a scalar-valued, elliptical template, which has the same shape as the vector-
valued elliptical template of the previous method, was performed and combined
with the orientation tensor.

The second approach gave slightly better results as the formof the ellipse was
not as restricted as for the vector-valued elliptic template. Furthermore, the scalar
similarity image is pretty smooth which might be the second reason for the better
behavior of the second approach. The accuracy of the angles was better than±5◦.
A better result for the second angle could be obtained by rotating the template into
the direction of both axes of the ellipse and convolving again. Using the resulting
similarity measure instead of the eigenvalues resulted in an improved accuracy of
±2◦, because the similarity encoded in the eigenvalues of the orientation tensor
is often a little bit too small. The results degrade for tilt angles larger than±60◦

due to the shape of the template. For the Hart II data all reported tilt angles are
smaller than this, so this presented no disadvantage.

8.3.5 Results

Accuracy

Several ”gold standard” data sets have been generated for testing, for example
the data shown in Figure 8.16. There, the vortex characteristics are known and
can be compared to the results of our algorithms. In some of these test data, the
vortex direction is orthogonal to the image plane, in othersit is not. Furthermore,
the effects of noise to the results of the algorithms can be studied quite well. The
methods presented so far are all pretty robust in terms of noise due to the averaging
effect of the convolution. Furthermore, as the templates all have zero mean, the
methods are not affected by any mean flow.

Detecting the vortex core with different templates like a pure rotation or a
Rankine vortex always gives essentially the same results. Concerning the size of
a vortex, a pure rotational template or Rankine vortex results in diameters which
are too large. Here, a modified Rankine vortex gives better results for first ap-
proximations as well as subpixel accuracy. The Rankine vortex was modified by
enlarging the velocity at the core radius, or within a small neighborhood of the
core radius, and setting the velocity outside of the core radius to zero. Another
rotational template, where only the velocities at a ring centered at the core radius
are larger then zero, behaves similar. To determine the vortex direction, a rota-
tional template or Rankine vortex in combination with a scalar-valued elliptical
template on the resulting similarity image gives the best results as described in
Section 8.3.4. The methods give really good results even if values like position
or size, which have to be determined beforehand for the computation of size or
orientation, do not have subpixel accuracy.
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Figure 8.17: Similarity (red) and size (green) of the vortices of 20 images each of
two measurement positions.Left : A young and well defined vortex.Right: The
vortex is quite old and often the vortex can not be found at all. The x-axis gives
the number of the image and the y-axis gives the similarity values in red and the
diameter of the vortices in green. The results are computed without orientation
correction or subpixel accuracy.

After determining the accuracy of the methods, these methods were applied to
several of the 3-C PIV images from the HART II test. Some results can be seen
in Figures 6.20, 8.11, 8.13, 8.14, and 8.17. As the methods are all robust in terms
of noise and independent of mean flow, they behave well on these data sets. The
vortex characteristics thus computed can now be used for visualization.

The techniques are applicable to other settings as well, especially the compu-
tation of feature position and size. One example is the computation of position
and size of vortex systems above a 3D delta wing (Section 6.4). In Figure 8.18,
isosurfaces of the similarities of this data set to a rotational pattern and the corre-
sponding sizes can be seen.

Naturally, the orientation correction is only applicable to perfectly round vor-
tices. For deformed vortical structures, the rest of the methods will only perform
as well as for round vortices if the shape is determined beforehand and coded into
the masks. In the future, the interaction between nearby vortices could be mod-
eled directly with masks. Furthermore, the whole wake has tobe identified and
classified. Therefore, the vector fields have to be segmentedinto several vortices,
the mean flow component, and the wake areas with a lot of vorticity where no
vortices have formed yet.

Comparison to Streamline-based Techniques

For the Vatistas vortex, the vectors describing the flow are more important than
the actual streamlines. The velocity of the flow is not only indispensable for the
engineers whereas it is neglected in topological methods, but the projection of the
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Figure 8.18: The 3D delta wing data set, resampled to a uniform grid. Displayed
are the pressure on the wing and several isosurfaces concerning similarity to and
corresponding size of a rotational template. From top left image to bottom right,
the value of the displayed isosurface grows from 10 to 35 in steps of 5. The
vortices at the front of the wing are small and strong. In the area of the vortex
burst bubbles, large sizes and lesser similarity were computed.

vectors describing the actual flow onto the vectors describing the Vatistas vortex
can be more important than the flow itself. Thus, the use of templates for the
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analysis of these vortices is much better suited than streamline-based approaches
like e.g. topological methods.

The Vatistas vortex is an abstraction of vortices. Though tunable by some pa-
rameters like vortex core radius and velocity distribution, this model assumes a
perfectly circular vortex and thus only approximates real flow. The vortex is as-
sumed to spread out infinitely, though the influence of the vortex will converge
to zero with increasing distance to the center. This means that the region of sig-
nificant influence will be larger than the actual vortex core and spread out over
regions separated by topology.

Flow field topology itself is based on critical points, that is points where the
velocity in the field is zero. As discussed in Section 8.2, it is quite sensitive to
local and global superposition effects. As the center of theVatistas vortex is a
critical point in 2D, the position of the vortex can be easilydetermined using
vector field topology. In contrast to other feature definitions based on vorticity or
pattern matching, the center position is automatically determined with subpixel
accuracy. This is a distinct advantage of topology as subpixel accuracy is often
hard to obtain [30]. However, topology is sensitive to noise, therefore subpixel
results are meaningless for noisy data as e.g. obtained by measurements and the
only solution is smoothing the data.

The determination of the size of a vortex – or its vortex core region – is much
more challenging. First of all, for the 2D Vatistas Model itself, no size can be
determined using streamline-based approaches and topological methods as there
are no separatrices and closed orbits are at all distances tothe center. When two
vortices interact, as in Figure 8.10, often a saddle point confines the regions of
the two vortices. The separatrices as defined by the saddle point seem to enclose
the vortex regions. However, in the case of a spiraling separatrix, no size can be
determined numerically. For a closed orbit, the radius of the orbit or the area of
the region can be used as a parameter describing the size of the vortex. Note that
for the visualization itself, vector field topology will mostly characterize the size
of a vortex as given by separatrices surrounding the vortex core.

Comparing these quantities with the Vatistas parameters again reveals the two
different approaches taken by streamline-base and template based descriptions.
Vector field topology segments the vector field into regions of same flow behavior,
that is every particle within the vortex region as defined by topological methods
will pass into the critical point or has emerged there. The vortex core radius
as defined by the Vatistas vortex can be either larger or smaller than that region
(Figure 8.10), as the topology depends entirely on the result of the superposition
of features and not on the original properties of the Vatistas vortex (Section 8.2).

From this discussion it can be seen quite clearly that streamline-based and
template-based models take quite different perspectives on the definition of in-
teresting features. The first globally describes regions ofsame flow behavior in
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relation to inflow and outflow regions while the other is more interested in local
properties like velocity and vorticity, which can not be determined using topology
based methods at all (Section 2.1.1). However, it is application dependent which
of these two perspectives is more appropriate or beneficial.

8.4 Classification and Segmentation

Due to the amount of data nowadays, automatic detection, classification and visu-
alization of features is necessary for a thorough inspection of flow data sets. In the
last section, it was discussed how to apply template matching with vector valued
templates successfully for the detection of features in flowfields. In this section,
the approach is extended to automatically compute feature based segmentations
of flow data sets. Different problems of the segmentation like the influence of
thresholds, overlapping features, and classification errors are discussed. Subse-
quent visualizations of the segmentation display important structures of the flow
and highlight the interesting features.

In Section 8.4.1, the advantages and disadvantages of previous approaches for
segmentations of images and vector fields are discussed, andit becomes clear that
a successful feature based segmentation of flow fields has notbeen developed so
far. In Section 8.4.2, issues like overlapping features andclassification errors are
treated. The resulting segmentation algorithm is given in Section 8.4.4, and the
results presented in Section 8.4.5.

8.4.1 Related Work

When the amplitude sufficiently characterizes the features, amplitude threshold-
ing is useful (Section 3.6.1). The results can afterwards beused for component
labeling, where the connectivity of pixels with their neighbors is examined in or-
der to assign the pixel to objects. In vector fields, the amplitude or velocity of the
vector field normally does not provide enough information for segmentation. On
the other hand, amplitude thresholding of derived values like vorticity or similarity
values from pattern matching can be quite useful for first analysis steps.

Another classical approach for segmentation in image processing is edge based
(Section 3.6.1). The edges of objects are combined to form boundaries, which
then determine the objects. In vector fields, this might workfor shock waves,
shear flow, and separation and attachment lines, as these canbe interpreted as
edges. However, segmentation should also classify these features. Furthermore,
feature models of vortices, sinks, sources and saddles often have no real boundary,
e.g. the Vatistas vortex [102], a vortex model used by engineers. There, the vortex
is assumed to spread out infinitely though the influence of thevortex to the flow
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is nearly zero outside a certain region around the vortex center. The vortex core
center is given by the maximum of the velocity profile, but thetransition from in-
side the vortex core to the outside is usually smooth. This behavior is also typical
for other flow features. Therefore, edge based segmentationin flow fields will not
yield satisfactory results.

Looking at the vectors within a vortex or a swirling motion (e.g. Figure 6.6),
it becomes quite clear that region based approaches and clustering [38] will not
work for a feature centered segmentation of vector fields, either. Computing the
topology of a vector field yields a segmentation of the flow into regions of same
flow behavior. However, the features can not be classified or quantified well.
Furthermore, the resulting visualization is not centered on the features themselves
(Figure 8.19 and 8.24).

Segmentation based on anisotropic diffusion of LIC images [21] results in a
feature based segmentation. However, there is no criteria to stop the diffusion
process, making the results not easily qualifiable. Furthermore, the problem of
classification and quantification of the segmented featuresremains.

Pattern matching has been used for segmentation of images aswell. There,
similarity information of several different templates is computed at all pixels in
the image, the features are classified according to the results and the image is
then segmented into the regions of the features and background information. This
approach is transfered to vector fields in this paper.

Before starting a segmentation, it has to be determined which features are
of interest, and should form the template set. This includesspecifying the type of
feature like vortex, shear, sink, saddle or source (Figure 6.1) as well as the strength
and size of the features and the scale at which they appear.

8.4.2 Challenges

The basic idea of segmenting a data set via pattern matching is quite easy: Deter-
mine all features present in the data set, compute their sizeand shape, and label
all positions within the feature as belonging to it. All positions not labeled at all
will be background, or not interesting at the moment. However, there are several
challenges when trying to use this approach on vector fields.

Position, Size and Scale

Scale space considerations should not be neglected within the segmentation (Sec-
tion 3.6.3). The size of the features, and thus the scales at which they appear and
dissappear, can play an important role for the segmentation(Figure 8.19). The
classification of the features, and thus the segmentation, can be done for each
scale separately and be combined with scale space visualizations like Gaussian
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Figure 8.19: Vortices generated by an ICE train. Segmentation of a section plane
through the flow (threshold=0.5), overlaid with LIC. The data set was normalized.
Red: rotation, orange: shear flow, light blue: separation/attachment line, green:
saddle point.Left : Only 3×3 templates were used to determine the line features
shear flow and separation/attachment lines.Right: Templates growing from size
3×3 till no significant similarities were gained were used to detect the features.
Topology added to the segmentation results. Note that the elliptical vortices are
classified as shear flow when using larger templates.

pyramids (Section 3.6.3). Another possibility is to match each template using dif-
ferent template sizes. The resulting similarity images canthen be combined into
one scale invariant similarity image by using the maxima of the values at each
position.

A scale-invariant similarity will also ensure a scale-invariant detection of the
position of a feature as these are usually detected by local maxima of the magni-
tude of the similarity values. Note that the position of a feature would otherwise
depend on the scale at which the feature is evaluated, e.g thecenter of a vortex with
an elliptical shape will have different positions for different scales. Furthermore,
the scale and template size resulting in the maximal similarity also gives size in-
formation of the feature (Section 8.3.2 and 8.3.3). Though subpixel-accuracy is
possible, it was better to start with a template of size 3∆ for each direction where
∆ is the (uniform) edge length. To continue with all uneven template sizes will
result in a growth of the radius of∆.

The computation of the convolutions with different template sizes can be ac-
celerated by computing the convolutions in Fourier domain (Section 7.4.3). An-
other possibility is to start with a small template size and only compute similarities
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with larger templates where the similarities with the smaller templates were above
a certain threshold. The results depend on the choice of the threshold, and large
features may be missed because they are hidden at the small scale. While this
approach seems to be stable for e.g. rotational patterns, the similarities obtained
for shear like patterns were often to small. However, this approach can give fast
and useful results, especially for a first overall view of thedata set.

The size of a feature in a flow field is usually hard to define. Point based
features, like saddle points, usually have no size, and are visualized using only a
very small area. However, for segmentation and visualization issues, larger areas
are preferred as they are not easily overlooked. The region around a point or line
based feature classifies this feature, and therefore can be regarded as belonging to
it. This is also the size that is computed by the approach above.

The size of a line based feature, e.g. a 2D shear flow, can be thelength of the
line, or the scale at which they appear. Due to the smoothing effect of template
matching, the region with similarity values above a threshold will be larger for
larger features. Thus, segmenting and visualizing thresholded similarities is often
good enough in this case.

For region based features, the size of a feature model can be infinite, as e.g. in
the Vatistas vortex model [102]. However, the size of the vortex core region is an
important information there. Again, this is exactly the size information given by
scale invariant template matching.

Non-Orthogonal Feature Definitions

Orthogonality is also defined for vector fields:

Definition 8.4.1 Two vector fieldsu(x) andv(x) areorthogonal if

< u,v >=

∫

< u(x),v(x) > dx = 0.

Note that< u,v >=< u ⋆ v >0. Using vector valued templates for the feature
definition, orthogonality of features can also be determined by correlation of the
different templates: A pair of templates is orthogonal if, and only if, their (ro-
tation invariant) similarity is zero. When features are orthogonal to each other,
their description and subsequent matching will not respondto the other features
at all. One example of an orthogonal feature pair is pure rotation and pure di-
vergence in 2D (Figure 8.20, top). Here, the classification of the features based
on template matching and subsequent segmentation is obvious. But feature def-
initions can also overlap, for example a rotation and a shearflow both describe
part of the phenomena of the other feature (Figure 8.20, bottom). Other pairs of
features which describe similar phenomena are sinks and convergence lines, and



CHAPTER 8. ANALYZING VECTOR FIELDS 155

Figure 8.20: An example of orthogonal and non-orthogonal templates.Top: 5×5
rotation and divergence are orthogonal.Bottom: 5× 5 rotation and shear are
non-orthogonal.

sources and divergence lines (see e.g. Figure 7.4). In thesecases, more than the
similarity of one template to the flow can be non-zero at one position. Therefore
the different similarity values have to be compared, and thefeature classified ac-
cording to the largest similarity value which has been computed. This also means
that misclassification can take place. An elliptical rotation, for example, can be
more similar to the shear flow description than to a circular rotation (Figure 8.19),
though it surely is a vortex.

Overlapping Features

There are also other reasons why more than one template will respond to the flow
at a position. Convolution with a template is a linear operation. The linearity
property is also known as the superposition principle (Section 8.2). It means that
complex flow can be analyzed by matching with several quite simple templates
where the similarity values will indicate how much one template resembles the
flow. It also indicates how much of the flow at this position is due to this particular
feature model, and how much has to be described by other templates. An example
is a swirling vortex which is a superposition of a perfectly circular rotation and a
divergent flow (Figure 8.8). Another example is a wind tunnel, where the overall
velocity of the air flow will usually hide smaller vortices. But this means that there
may be more than one feature at a position, depending on whether this point of
view is taken. In this case, segmentation is more challenging.
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One solution is to classify the flow according to the most dominant feature at
this position. But this is short-sighted as e.g. in the wind tunnel experiment only
the overall flow will remain. Regarding the swirling vortex,one could classify it
into a new class of swirling features. These swirling flows are then detected by
using the already computed similarities to rotation and divergence templates. The
percentage of these two similarities also gives a measure ofthe skewness of the
swirl.

The issue of superposition and overlapping features leads to the proposition
of computing a classification of the flow at every position into all of the features
found there and the percentage in which they contribute to the flow. This is also
a kind of segmentation, but one of the flow at one position intoeach of the inter-
esting features. Note that when the data set has been normalized beforehand, the

Figure 8.21: A swirling jet data set. Segmentation and LIC. Red: rotation, or-
ange: shear flow, light blue: separation/attachment line, dark blue: sink/source,
green:saddle.Left : Threshold of 0.5.Right: Threshold of 0.7.Top: Segmenta-
tion using the similarity values.Bottom: when the difference between shear and
rotation was below 0.05, the flow was classified as shear rather than rotation.
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similarity values equal this percentage. Otherwise, the similarity values have to
be scaled by the energy of the flow to obtain this information.

Choice of Thresholds

The choice of suitable thresholds naturally depends on the properties of the data
set to be analyzed. When the data set has been normalized, andno constant flow
hides the features, a threshold of 0.5 was a robust start value for the examined
data sets. When the data has not been normalized, another approach can be to
determine all similarities larger than one. Generally, half the maximal computed
similarity value is a valid choice. Note that the use of different thresholds will
result in different segmentations (Figure 8.21).

8.4.3 2D, 3D and Time-Dependent Data Sets

The vector-valued convolution is defined for arbitrary nD data sets. However, the
rotation invariant matching is only defined for 2D and 3D so far. Here, the use
of the orientation tensor as defined by Heiberg [42] can be advantageous as it is
defined for nD, too. However, it is assumed that the values change only in one
direction, which is usually not the case, even for simple 2D data sets. As 2D and
3D data sets are most common, the rotation invariant matching approach using
Clifford convolution poses no disadvantages.

For time-dependent data sets, each time slice can be segmented separately and
the resulting regions can be traced over time (Figure 8.22).Tracing algorithms
are well known from image processing [51,52], and can be applied directly as the
similarity data is usually scalar valued. As time dependentdata is often visualized

Figure 8.22: Segmentations of three successive time steps of a swirling jet data
set data set (from left to right , threshold=0.5). The data has been normalized
before matching. Color coding: clockwise rotations in red and counter-clockwise
rotations in blue. From light to dark colors: increase in similarity values.
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using movies, the tracing itself can often be left to the eye of the user (Figure
8.22). As, due to the averaging effect of the convolution, the similarity values are
robust in terms of noise, visual discontinuities over different time steps are not
expected.

8.4.4 The Algorithm

To summerize, the algorithm for the segmentation of vector fields based on Clif-
ford correlation is computed as follows:

1. Determination of the features of interest and the para-

meters to be computed

2. Grouping of the features for segmentation and visual-

ization (e.g. all rotations, all shear flows, etc.)

3. Determination of (non-)orthogonality of the feature

definitions

4. Generation of (vector-valued) templates describing the

features or feature groups

5. For each feature:

(a) Template matching (rotational invariant) using dif-

ferent features sizes

(b) Thresholding of the resulting similarity values

(c) Computation of the maxima of the similarity values

at each position, storing the corresponding feature

sizes.

(d) Local maxima of the results determine position and

size of the features

(e) Computation of possible other parameters of the fea-

tures

6. For non-orthogonal features at a certain position, the

features resulting in the smaller similarities are

discarded

7. For orthogonal features at a certain position, the domin-

ant feature is determined but all features are stored
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8.4.5 Results

The first data set the segmentation was applied to is the section plane through vor-
tices generated by an ICE train (Section 6.5, Figure 8.19). This data set was also
included to remind of scale issues (Figure 8.19). Furthermore, it clearly shows the
problem of classifying rotations and shear flow.

The next vector fields which were segmented are the OM06 and OM08 data
sets (Section 6.2). The vector fields have been normalized before processing. The
segmentation and subsequent visualization of the data setshighlights the features
and thus guides the user through the data set (Figures 8.21, 8.23 and 8.24). Some
vortices are found in the data, and the layers of opposite flow, divided by shear
flow, are clearly visible. The classification of the most dominant feature was chal-
lenging as the similarity values of matching e.g. shear and rotational templates
at one position in the data set sometimes differed only by 0.0001, though both
similarities were above the threshold. This usually indicates an elliptical vortex or
a swirling motion generated by shear flow.

As an example of a time-dependent data set, another swirlingjet was used
(Section 6.2). The data was normalized and segmented into clockwise and coun-
terclockwise rotations, and background. Three successivetime steps are shown in
Figure 8.22. In these timesteps, the split of a vortex into two new ones can be ob-
served. The pairing of two vortices each of different rotation orientation, and the
path of the moving vortices, can be easily studied using segmentation throughout
all timesteps. Only a part of the data sets of these time stepsis shown as the rest
was classified as background.

An interesting data set is the gas furnace chamber (Section 6.3). For com-
putational issues, the data was resampled onto a uniform grid with dimensions
126×65×57. The structures in the flow can easily be identified by the segmen-
tation (Figure 8.25). Note that the shear flow at the front bottom (in yellow) is
a misclassification, it is actually an elliptical vortex. This is one reason why the
vortex core itself (in red) extends into this area. Note alsothe saddle line behind
these vortices (in green), it is clearly visible in the bottom image.

Additional information of the gas furnace chamber can be gained by display-
ing an isosurface of the velocity of the original data set (Figure 8.25, blue iso-
surface). Using this isosurface, the gas and air inflow streams are clearly visible.
Note the vortices besides them, and how they follow the shapeof adjacent air
streams.
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Figure 8.23: A swirling jet data set. Segmentation and LIC. Red: rotation, or-
ange: shear flow, light blue: separation/attachment line, dark blue: sink/source,
green:saddle. Threshold of 0.5.
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Figure 8.24: Segmentation of a simulation of a swirling jet entering a fluid
at rest (threshold=0.5). Red: rotation, orange: shear flow,light blue: separa-
tion/attachment line, dark blue: sink/source, green: saddle. Top: Whole data set.
Middle andbottom left: Zoomed in. Streamlines respectively topology added.
Bottom right : Some details. Hedgehogs and streamlines added.
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Figure 8.25: Segmentation of the normalized gas furnace chamber (Threshold:
0.5). Isosurfaces of the results (Value 0.5): Red: rotations, yellow: shear flow,
green: saddles. The cores of the regions are displayed, too,using the same colors.
Templates of divergence/convergence resulted in similarities below the threshold.
The velocity of the original data set is displayed at an isovalue of 15 (blue).Top:
Core lines and region of the features.Bottom: The results of the segmentation
can also be used for streamline seeding.



Chapter 9

Conclusion

The goal of this thesis has been to transfer analysis methodsfrom image process-
ing to vector fields via the previously defined Clifford convolution, and to use
them for automatic feature detection and subsequent visualization of flow fields.
The methods developed thereby have all been examined and applied successfully
to several complex flow data sets.

The author has presented en extension of the Fourier transform to Clifford al-
gebra in 2D and 3D, and proofed convolution and correlation theorems for the
Clifford convolution on multivector fields. Other theorems, like derivative and
Parseval’s theorem, were derived as well. The theorems extend those applicable
to the Fourier transform on scalar fields while still remaining reasonably simple.
The existence of fast algorithms for the computation of the Clifford Fourier trans-
form allow an acceleration of Clifford convolution and related template matching
algorithms. Analyzing flow pattern in frequency domain allows new insights into
the flow. The frequency domain descriptions of simple flow patterns regarded in
this thesis, for example, differs mostly in phase.

For flow fields gained by measurement using particle image velocimetry, the
underlying grid is uniform and the data is quite noisy. Template matching, be-
ing robust due to the inherent averaging, is inherently suited for analysis of this
data and behaves well. As flow fields gained by simulations areoften defined on
irregular grids, several strategies of template matching on these grids have been
investigated as well. However, global resampling of the field is preferable as tem-
plate matching on the resampled grid will be faster, especially if the fast Clifford
Fourier transform is used for acceleration of the convolution computations. For
flow fields defined on surfaces, however, global resampling will not work. Then,
local resampling of the field using geodesics to determine the sampling positions
has been used.

Vector-valued templates used for template matching of flow fields are linear,
shift-invariant filter. The linearity is also known as the superposition principle.
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Thus, the author has investigated the perception of flow fields as a superposition
of several, possibly simpler fields. Engineers often think in terms of velocity,
vorticity, and resulting feature models like the Vatistas vortex which are tuned
to a superposition perspective of the flow field. However, visualizations based on
streamline behavior can only study the resulting flow. The effects of superposition
on the accuracy of the detection of the original features andtheir parameters have
been discussed for different types of feature definitions, showing that the resulting
errors can be quite high.

Based on this observation, several feature analysis methods based on Clifford
convolution were investigated. Position, size, directionand velocity at the core
radius can be determined quite robust and precise with the presented methods, for
an accuracy of edge-length as well as subpixel accuracy.

Bringing together all the developed methods and knowledge,an algorithm
for automatic computation of a feature-based segmentationhas been presented.
The visualizations of the segmentations highlight the detected features and reveal
information about their interrelationship as they are displayed in conjunction. All
in all, analysis and visualization of flow fields based on Clifford convolution is a
profitable approach.
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