48,745 research outputs found

    Applying Block Chain Technologies to Digital Voting Algorithms

    Get PDF
    Voting is a fundamental aspect to democracy. Many countries have advanced voting systems in place, but many of these systems have issues behind them such as not being anonymous or verifiable. Additionally, most voting systems currently have a central authority in charge of counting votes, which can be prone to corruption. We propose a voting system which mitigates many of these issues. Our voting system attempts to provide decentralization, pseudoanonymity, and verifiability. For our system, we have identified the requirements, implemented the backbone of the system, recognized some of its shortcomings, and proposed areas of future work on this voting system

    Public Evidence from Secret Ballots

    Full text link
    Elections seem simple---aren't they just counting? But they have a unique, challenging combination of security and privacy requirements. The stakes are high; the context is adversarial; the electorate needs to be convinced that the results are correct; and the secrecy of the ballot must be ensured. And they have practical constraints: time is of the essence, and voting systems need to be affordable and maintainable, and usable by voters, election officials, and pollworkers. It is thus not surprising that voting is a rich research area spanning theory, applied cryptography, practical systems analysis, usable security, and statistics. Election integrity involves two key concepts: convincing evidence that outcomes are correct and privacy, which amounts to convincing assurance that there is no evidence about how any given person voted. These are obviously in tension. We examine how current systems walk this tightrope.Comment: To appear in E-Vote-Id '1

    E-voting discourses in the UK and the Netherlands

    Get PDF
    A qualitative case study of the e-voting discourses in the UK and the Netherlands was performed based on the theory of strategic niche management. In both countries, eight e-voting experts were interviewed on their expectations, risk estimations, cooperation and learning experiences. The results show that differences in these variables can partly explain the variations in the embedding of e-voting in the two countries, from a qualitative point of view

    What proof do we prefer? Variants of verifiability in voting

    Get PDF
    In this paper, we discuss one particular feature of Internet voting, verifiability, against the background of scientific literature and experiments in the Netherlands. In order to conceptually clarify what verifiability is about, we distinguish classical verifiability from constructive veriability in both individual and universal verification. In classical individual verifiability, a proof that a vote has been counted can be given without revealing the vote. In constructive individual verifiability, a proof is only accepted if the witness (i.e. the vote) can be reconstructed. Analogous concepts are de- fined for universal veriability of the tally. The RIES system used in the Netherlands establishes constructive individual verifiability and constructive universal verifiability, whereas many advanced cryptographic systems described in the scientific literature establish classical individual verifiability and classical universal verifiability. If systems with a particular kind of verifiability continue to be used successfully in practice, this may influence the way in which people are involved in elections, and their image of democracy. Thus, the choice for a particular kind of verifiability in an experiment may have political consequences. We recommend making a well-informed democratic choice for the way in which both individual and universal verifiability should be realised in Internet voting, in order to avoid these unconscious political side-effects of the technology used. The safest choice in this respect, which maintains most properties of current elections, is classical individual verifiability combined with constructive universal verifiability. We would like to encourage discussion about the feasibility of this direction in scientific research
    • 

    corecore