4 research outputs found

    Motorcycle active safety systems: Assessment of the function and applicability using a population-based crash data set

    Get PDF
    Objective: Motorcycles and mopeds, often referred to as powered 2-wheelers (PTWs), play an important role in personal mobility worldwide. Despite their advantages, including low cost, space occupancy, and fuel efficiency, the risk of sustaining serious or fatal injuries is higher than that for occupants of passenger cars. The development of safety systems specific for PTWs represents a potential way to reduce casualties among riders. With the proliferation of new active and passive safety technologies, the question as to which might offer the most value is important. In this context, a prioritization process was applied to a set of PTW active safety systems to evaluate their applicability to crash scenarios alone and in combination. The systems included in the study were antilock braking (ABS), autonomous emergency braking (AEB), collision warning, curve warning, and curve assist. Methods: With the functional performance of the 5 safety systems established, the relevance of each system to specific crash configurations and vehicle movements defined by a standardized accident classification system used in Victoria, Australia, was rated by 2 independent reviewers, with a third reviewer acting as a moderator where disagreements occurred. Ratings ranged from 1 (definitely not applicable) to 4 (definitely applicable). Using population-based crash data, the number and percentage of crashes that each safety system could potentially influence, or be relevant for, was defined. Applying accepted injury costs permitted the derivation of the societal economic cost of PTW crashes and the potential reductions associated with each safety system given a theoretical crash avoidance effectiveness of 100%. Results: In the 12-year period 2000–2011, 23,955 PTW riders and 1292 pillion passengers were reported to have been involved in a road crash, with over 500 killed and more than 10,000 seriously injured; only 3.5% of riders/pillion passengers were uninjured. The total economic cost associated with these injured riders and pillion passengers was estimated to be AU11.1billion(US11.1 billion (US7.70 billion; €6.67 billion). The 5 safety systems, as single solutions or in combination, were relevant to 57% of all crashes and to 74% of riders killed. Antilock braking was found to be relevant to the highest number of crashes, with incremental increases in coverage when combined with other safety systems. Conclusions: The findings demonstrate that ABS, alone and in combination with other safety systems, has the potential to mitigate or possibly prevent a high percentage of PTW crashes in the considered setting. Other safety systems can influence different crash scenarios and are also recommended. Given the high cost of motorcycle crashes and the increasing number of PTW safety technologies, the proposed approach can be used to inform the process of selection of the most suitable interventions to improve PTW safety.</p

    Active safety systems for powered two-wheelers: A systematic review

    Get PDF
    Objective: Active safety systems, of which antilock braking is a prominent example, are going to play an important role to improve powered two-wheeler (PTW) safety. This paper presents a systematic review of the scientific literature on active safety for PTWs. The aim was to list all systems under development, identify knowledge gaps and recognize promising research areas that require further efforts. Methods: A broad search using "safety" as the main keyword was performed on Scopus, Web of Science and Google Scholar, followed by manual screening to identify eligible papers that underwent a full-text review. Finally, the selected papers were grouped by general technology type and analyzed via structured form to identify the following: specific active safety system, study type, outcome type, population/sample where applicable, and overall findings. Results: Of the 8,000 papers identified with the initial search, 85 were selected for full-text review and 62 were finally included in the study, of which 34 were journal papers. The general technology types identified included antilock braking system, autonomous emergency braking, collision avoidance, intersection support, intelligent transportation systems, curve warning, human machine interface systems, stability control, traction control, and vision assistance. Approximately one third of the studies considered the design and early stage testing of safety systems (n. 22); almost one fourth (n.15) included evaluations of system effectiveness. Conclusions: Our systematic review shows that a multiplicity of active safety systems for PTWs were examined in the scientific literature, but the levels of development are diverse. A few systems are currently available in the series production, whereas other systems are still at the level of early-stage prototypes. Safety benefit assessments were conducted for single systems, however, organized comparisons between systems that may inform the prioritization of future research are lacking. Another area of future analysis is on the combined effects of different safety systems, that may be capitalized for better performance and to maximize the safety impact of new technologies

    All wheel drive electric motorcycle modelling and control.

    Get PDF
    Conventional motorcycles are powered through a chain or shaft linking the engine to the rear wheel. However, motorcycle riders are now facing riding conditions and obstacles where having only rear wheel drive can lead to vehicle damage, loss of control and an unstable front wheel during cornering and off-road riding in general. Traction and climbing ability are severely limited in extreme mountain conditions by only having the rear wheel to provide power. Accordingly, there is a need in the industry for a two-wheel drive motorcycle that efficiently and safely transfers power from the motor to the front wheel, because it provides the rider with increased ability to safely negotiate rough terrain. In this background, the design of an optimal torque distribution strategy implemented by two separate electric motors in an all-wheel-drive electric motorcycle has many potentialities not fully explored and deeply understood for two wheel vehicles, that makes this study interesting from a scientific point of view. With this in mind, the research project aims to design control systems for improving rider’s safety and vehicle performance at low as well as high speeds, especially in critical situations and rough terrains, taking into account the presence of the front wheel torque generated by a hub-mounted electric motor. At low speed the research investigates whether and how the front wheel torque helps the stabilization of the vehicle around the upright position, without any rider action required. The study is developed by deriving a simplified analytical model of the vehicle, which captures its lateral motion and a model-based control system, employing the sliding mode control technique. As further requirement, the motorcycle should be balanced in a small bounded area, by means of Multi Input control system. At medium and high speeds the study explores how and how much the traction torque repartition can improve continuously the vehicle performances in combined longitudinal and lateral acceleration situations, such as the exit of a curve, especially in those conditions where a traditional motorcycle falls down because it overcomes tyre adherence limits. Last purpose is achieved deriving a dynamical optimal traction strategy which does not require the a priori knowledge of the friction coefficient. Steady state analysis indicates outperformances of the all wheel drive motorcycle over the classical rear wheel drive one. Then, dynamical simulations of selected manoeuvres, in both flat and uneven road, corroborate the result

    Electronic Stability Control for Powered Two-Wheelers}

    No full text
    Active stability control is now present in all cars. On powered two-wheelers (PTW), instead, this control system has not been introduced yet. This is due to both a structural delay in control system design for PTW with respect to four-wheeled ones and the very challenging nature of the related control problems due to the complexity of the vehicle dynamics involved. This paper constitutes the first attempt to address this problem, and it provides an innovative control strategy that significantly enhances vehicle stability while preserving driveability. A control strategy is herein proposed, which, by modulating braking and traction torques, improves the stability of the vehicle. The proposed strategy is endowed with an activation/deactivation logic. Extensive validation tests carried out on a commercial multibody simulator assess the validity of the proposed approac
    corecore