1,336 research outputs found

    Modularity in robotic systems

    Get PDF
    Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design

    A continuum robotic platform for endoscopic non-contact laser surgery: design, control, and preclinical evaluation

    Get PDF
    The application of laser technologies in surgical interventions has been accepted in the clinical domain due to their atraumatic properties. In addition to manual application of fibre-guided lasers with tissue contact, non-contact transoral laser microsurgery (TLM) of laryngeal tumours has been prevailed in ENT surgery. However, TLM requires many years of surgical training for tumour resection in order to preserve the function of adjacent organs and thus preserve the patient’s quality of life. The positioning of the microscopic laser applicator outside the patient can also impede a direct line-of-sight to the target area due to anatomical variability and limit the working space. Further clinical challenges include positioning the laser focus on the tissue surface, imaging, planning and performing laser ablation, and motion of the target area during surgery. This dissertation aims to address the limitations of TLM through robotic approaches and intraoperative assistance. Although a trend towards minimally invasive surgery is apparent, no highly integrated platform for endoscopic delivery of focused laser radiation is available to date. Likewise, there are no known devices that incorporate scene information from endoscopic imaging into ablation planning and execution. For focusing of the laser beam close to the target tissue, this work first presents miniaturised focusing optics that can be integrated into endoscopic systems. Experimental trials characterise the optical properties and the ablation performance. A robotic platform is realised for manipulation of the focusing optics. This is based on a variable-length continuum manipulator. The latter enables movements of the endoscopic end effector in five degrees of freedom with a mechatronic actuation unit. The kinematic modelling and control of the robot are integrated into a modular framework that is evaluated experimentally. The manipulation of focused laser radiation also requires precise adjustment of the focal position on the tissue. For this purpose, visual, haptic and visual-haptic assistance functions are presented. These support the operator during teleoperation to set an optimal working distance. Advantages of visual-haptic assistance are demonstrated in a user study. The system performance and usability of the overall robotic system are assessed in an additional user study. Analogous to a clinical scenario, the subjects follow predefined target patterns with a laser spot. The mean positioning accuracy of the spot is 0.5 mm. Finally, methods of image-guided robot control are introduced to automate laser ablation. Experiments confirm a positive effect of proposed automation concepts on non-contact laser surgery.Die Anwendung von Lasertechnologien in chirurgischen Interventionen hat sich aufgrund der atraumatischen Eigenschaften in der Klinik etabliert. Neben manueller Applikation von fasergefĂŒhrten Lasern mit Gewebekontakt hat sich die kontaktfreie transorale Lasermikrochirurgie (TLM) von Tumoren des Larynx in der HNO-Chirurgie durchgesetzt. Die TLM erfordert zur Tumorresektion jedoch ein langjĂ€hriges chirurgisches Training, um die Funktion der angrenzenden Organe zu sichern und damit die LebensqualitĂ€t der Patienten zu erhalten. Die Positionierung des mikroskopis chen Laserapplikators außerhalb des Patienten kann zudem die direkte Sicht auf das Zielgebiet durch anatomische VariabilitĂ€t erschweren und den Arbeitsraum einschrĂ€nken. Weitere klinische Herausforderungen betreffen die Positionierung des Laserfokus auf der GewebeoberflĂ€che, die Bildgebung, die Planung und AusfĂŒhrung der Laserablation sowie intraoperative Bewegungen des Zielgebietes. Die vorliegende Dissertation zielt darauf ab, die Limitierungen der TLM durch robotische AnsĂ€tze und intraoperative Assistenz zu adressieren. Obwohl ein Trend zur minimal invasiven Chirurgie besteht, sind bislang keine hochintegrierten Plattformen fĂŒr die endoskopische Applikation fokussierter Laserstrahlung verfĂŒgbar. Ebenfalls sind keine Systeme bekannt, die Szeneninformationen aus der endoskopischen Bildgebung in die Ablationsplanung und -ausfĂŒhrung einbeziehen. FĂŒr eine situsnahe Fokussierung des Laserstrahls wird in dieser Arbeit zunĂ€chst eine miniaturisierte Fokussieroptik zur Integration in endoskopische Systeme vorgestellt. Experimentelle Versuche charakterisieren die optischen Eigenschaften und das Ablationsverhalten. Zur Manipulation der Fokussieroptik wird eine robotische Plattform realisiert. Diese basiert auf einem lĂ€ngenverĂ€nderlichen Kontinuumsmanipulator. Letzterer ermöglicht in Kombination mit einer mechatronischen Aktuierungseinheit Bewegungen des Endoskopkopfes in fĂŒnf Freiheitsgraden. Die kinematische Modellierung und Regelung des Systems werden in ein modulares Framework eingebunden und evaluiert. Die Manipulation fokussierter Laserstrahlung erfordert zudem eine prĂ€zise Anpassung der Fokuslage auf das Gewebe. DafĂŒr werden visuelle, haptische und visuell haptische Assistenzfunktionen eingefĂŒhrt. Diese unterstĂŒtzen den Anwender bei Teleoperation zur Einstellung eines optimalen Arbeitsabstandes. In einer Anwenderstudie werden Vorteile der visuell-haptischen Assistenz nachgewiesen. Die Systemperformanz und Gebrauchstauglichkeit des robotischen Gesamtsystems werden in einer weiteren Anwenderstudie untersucht. Analog zu einem klinischen Einsatz verfolgen die Probanden mit einem Laserspot vorgegebene Sollpfade. Die mittlere Positioniergenauigkeit des Spots betrĂ€gt dabei 0,5 mm. Zur Automatisierung der Ablation werden abschließend Methoden der bildgestĂŒtzten Regelung vorgestellt. Experimente bestĂ€tigen einen positiven Effekt der Automationskonzepte fĂŒr die kontaktfreie Laserchirurgie

    Telerobotic Sensor-based Tool Control Derived From Behavior-based Robotics Concepts

    Get PDF
    @font-face { font-family: TimesNewRoman ; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0in 0in 0.0001pt; font-size: 12pt; font-family: Times New Roman ; }div.Section1 { page: Section1; } Teleoperated task execution for hazardous environments is slow and requires highly skilled operators. Attempts to implement telerobotic assists to improve efficiency have been demonstrated in constrained laboratory environments but are not being used in the field because they are not appropriate for use on actual remote systems operating in complex unstructured environments using typical operators. This work describes a methodology for combining select concepts from behavior-based systems with telerobotic tool control in a way that is compatible with existing manipulator architectures used by remote systems typical to operations in hazardous environment. The purpose of the approach is to minimize the task instance modeling in favor of a priori task type models while using sensor information to register the task type model to the task instance. The concept was demonstrated for two tools useful to decontamination & dismantlement type operations—a reciprocating saw and a powered socket tool. The experimental results demonstrated that the approach works to facilitate traded control telerobotic tooling execution by enabling difficult tasks and by limiting tool damage. The role of the tools and tasks as drivers to the telerobotic implementation was better understood in the need for thorough task decomposition and the discovery and examination of the tool process signature. The contributions of this work include: (1) the exploration and evaluation of select features of behavior-based robotics to create a new methodology for integrating telerobotic tool control with positional teleoperation in the execution of complex tool-centric remote tasks, (2) the simplification of task decomposition and the implementation of sensor-based tool control in such a way that eliminates the need for the creation of a task instance model for telerobotic task execution, and (3) the discovery, demonstrated use, and documentation of characteristic tool process signatures that have general value in the investigation of other tool control, tool maintenance, and tool development strategies above and beyond the benefit sustained for the methodology described in this work

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 344)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    The Virtual Robotics Laboratory

    Full text link

    Vitreo-retinal eye surgery robot : sustainable precision

    Get PDF
    Vitreo-retinal eye surgery encompasses the surgical procedures performed on the vitreous humor and the retina. A procedure typically consists of the removal of the vitreous humor, the peeling of a membrane and/or the repair of a retinal detachment. Vitreo-retinal surgery is performed minimal invasively. Small needle shaped instruments are inserted into the eye. Instruments are manipulated by hand in four degrees of freedom about the insertion point. Two rotations move the instrument tip laterally, in addition to a translation in axial instrument direction and a rotation about its longitudinal axis. The manipulation of the instrument tip, e.g. a gripping motion can be considered as a fifth degree of freedom. While performing vitreo-retinal surgery manually, the surgeon faces various challenges. Typically, delicate micrometer range thick tissue is operated, for which steady hand movements and high accuracy instrument manipulation are required. Lateral instrument movements are inverted by the pivoting insertion point and scaled depending on the instrument insertion depth. A maximum of two instruments can be used simultaneously. There is nearly no perception of surgical forces, since most forces are below the human detection limit. Therefore, the surgeon relies only on visual feedback, obtained via a microscope or endoscope. Both vision systems force the surgeon to work in a static and non ergonomic body posture. Although the surgeon’s proficiency improves throughout his career, hand tremor will become a problem at higher age. Robotically assisted surgery with a master-slave system can assist the surgeon in these challenges. The slave system performs the actual surgery, by means of instrument manipulators which handle the instruments. The surgeon remains in control of the instruments by operating haptic interfaces via a master. Using electronic hardware and control software, the master and slave are connected. Amongst others, advantages as tremor filtering, up-scaled force feedback, down-scaled motions and stabilized instrument positioning will enhance dexterity on surgical tasks. Furthermore, providing the surgeon an ergonomic body posture will prolong the surgeon’s career. This thesis focuses on the design and realization of a high precision slave system for eye surgery. The master-slave system uses a table mounted design, where the system is compact, lightweight, easy to setup and equipped to perform a complete intervention. The slave system consists of two main parts: the instrument manipulators and their passive support system. Requirements are derived from manual eye surgery, conversations with medical specialists and analysis of the human anatomy and vitreo-retinal interventions. The passive support system provides a stiff connection between the instrument manipulator, patient and surgical table. Given the human anatomical diversity, presurgical adjustments can be made to allow the instrument manipulators to be positioned over each eye. Most of the support system is integrated within the patient’s headrest. On either the left or right side, two exchangeable manipulator-support arms can be installed onto the support system, depending on the eye being operated upon. The compact, lightweight and easy to install design, allows for a short setup time and quick removal in case of a complication. The slave system’s surgical reach is optimized to emulate manually performed surgery. For bimanual instrument operation, two instrument manipulators are used. Additional instrument manipulators can be used for non-active tools e.g. an illumination probe or an endoscope. An instrument manipulator allows the same degrees of freedom and a similar reach as manually performed surgery. Instrument forces are measured to supply force feedback to the surgeon via haptic interfaces. The instrument manipulator is designed for high stiffness, is play free and has low friction to allow tissue manipulation with high accuracy. Each instrument manipulator is equipped with an on board instrument change system, by which instruments can be changed in a fast and secure way. A compact design near the instrument allows easy access to the surgical area, leaving room for the microscope and peripheral equipment. The acceptance of a surgical robot for eye surgery mostly relies on equipment safety and reliability. The design of the slave system features various safety measures, e.g. a quick release mechanism for the instrument manipulator and additional locks on the pre-surgical adjustment fixation clamp. Additional safety measures are proposed, like a hard cover over the instrument manipulator and redundant control loops in the controlling FPGA. A method to fixate the patient’s head to the headrest by use of a custom shaped polymer mask is proposed. Two instrument manipulators and their passive support system have been realized so far, and the first experimental results confirm the designed low actuation torque and high precision performance

    Review of Intelligent Control Systems with Robotics

    Get PDF
    Interactive between human and robot assumes a significant job in improving the productivity of the instrument in mechanical technology. Numerous intricate undertakings are cultivated continuously via self-sufficient versatile robots. Current automated control frameworks have upset the creation business, making them very adaptable and simple to utilize. This paper examines current and up and coming sorts of control frameworks and their execution in mechanical technology, and the job of AI in apply autonomy. It additionally expects to reveal insight into the different issues around the control frameworks and the various approaches to fix them. It additionally proposes the basics of apply autonomy control frameworks and various kinds of mechanical technology control frameworks. Each kind of control framework has its upsides and downsides which are talked about in this paper. Another kind of robot control framework that upgrades and difficulties the pursuit stage is man-made brainpower. A portion of the speculations utilized in man-made reasoning, for example, Artificial Intelligence (AI) such as fuzzy logic, neural network and genetic algorithm, are itemized in this paper. At long last, a portion of the joint efforts between mechanical autonomy, people, and innovation were referenced. Human coordinated effort, for example, Kinect signal acknowledgment utilized in games and versatile upper-arm-based robots utilized in the clinical field for individuals with inabilities. Later on, it is normal that the significance of different sensors will build, accordingly expanding the knowledge and activity of the robot in a modern domai

    A Learnt Approach for the Design of Magnetically Actuated Shape Forming Soft Tentacle Robots

    Get PDF
    Soft continuum robots have the potential to revolutionize minimally invasive surgery. The challenges for such robots are ubiquitous; functioning within sensitive, unstructured and convoluted environments which are inconsistent between patients. As such, there exists an open design problem for robots of this genre. Research currently exists relating to the design considerations of on-board actuated soft robots such as fluid and tendon driven manipulators. Magnetically reactive robots, however, exhibit off-board actuation and consequently demonstrate far greater potential for miniaturization and dexterity. In this letter we present a soft, magnetically actuated, slender, shape forming ‘tentacle-like’ robot. To overcome the associated design challenges we also propose a novel design methodology based on a Neural Network trained using Finite Element Simulations. We demonstrate how our design approach generates static, two-dimensional tentacle profiles under homogeneous actuation based on predefined, desired deformations. To demonstrate our learnt approach, we fabricate and actuate candidate tentacles of 2 mm diameter and 42 mm length producing shape profiles within 8% mean absolute percentage error of desired shapes. With this proof of concept, we make the first step towards showing how tentacles with bespoke magnetic profiles may be designed and manufactured to suit specific anatomical constraints

    Robotic manipulators for single access surgery

    Get PDF
    This thesis explores the development of cooperative robotic manipulators for enhancing surgical precision and patient outcomes in single-access surgery and, specifically, Transanal Endoscopic Microsurgery (TEM). During these procedures, surgeons manipulate a heavy set of instruments via a mechanical clamp inserted in the patient’s body through a surgical port, resulting in imprecise movements, increased patient risks, and increased operating time. Therefore, an articulated robotic manipulator with passive joints is initially introduced, featuring built-in position and force sensors in each joint and electronic joint brakes for instant lock/release capability. The articulated manipulator concept is further improved with motorised joints, evolving into an active tool holder. The joints allow the incorporation of advanced robotic capabilities such as ultra-lightweight gravity compensation and hands-on kinematic reconfiguration, which can optimise the placement of the tool holder in the operating theatre. Due to the enhanced sensing capabilities, the application of the active robotic manipulator was further explored in conjunction with advanced image guidance approaches such as endomicroscopy. Recent advances in probe-based optical imaging such as confocal endomicroscopy is making inroads in clinical uses. However, the challenging manipulation of imaging probes hinders their practical adoption. Therefore, a combination of the fully cooperative robotic manipulator with a high-speed scanning endomicroscopy instrument is presented, simplifying the incorporation of optical biopsy techniques in routine surgical workflows. Finally, another embodiment of a cooperative robotic manipulator is presented as an input interface to control a highly-articulated robotic instrument for TEM. This master-slave interface alleviates the drawbacks of traditional master-slave devices, e.g., using clutching mechanics to compensate for the mismatch between slave and master workspaces, and the lack of intuitive manipulation feedback, e.g. joint limits, to the user. To address those drawbacks a joint-space robotic manipulator is proposed emulating the kinematic structure of the flexible robotic instrument under control.Open Acces

    A Novel Minimally Invasive Tumour Localization Device

    Get PDF
    Lung cancer is one of the leading causes of death, by cancer. The usual treatment is surgical resection of tumours. However, patients who are weak or have poor pulmonary function are deemed unfit for surgery. For these patients, a minimally-invasive approach is desired. A major problem associated with minimally-invasive approaches is tumour localization in real time and accurate measurement of tool--tissue forces. This thesis describes the design, analysis, manufacturing and validation of a minimally-invasive instrument for tumour localization, named Palpatron. The instrument has an end effector that is able to support two previously designed jaws, one containing an ultrasound sensor and the other a tactile sensor. The jaws can move with two degrees of freedom to palpate tissue and rotate about the central axis of the instrument. The Palpatron has uncoupled jaw motion that allows for optimal alignment of sensors to improve data acquisition. The instrument can be easily assembled and disassembled allowing it to be cleaned and sterilized. The mechanism is articulated using push rods, each actuated by a motor. A semi-automatic control system was created for palpation. It is composed of a microcontroller that controls four motors via serial communication. In addition, the Palpatron has the ability to prevent tissue damage by measuring tool--tissue forces. Finite element analysis was used to guide material selection for designed components. Grade 5 titanium was selected for end effector links to provide a factor of safety of 1.2 against yielding under a 10 N point load at the tip of a jaw. The design was fabricated and validated by conducting experiments to test articulation and load carrying capacity. An 8-N force was applied to the instrument, which was successfully supported. The semi-automatic control system was used to perform basic maneuvering tasks to verify jaw motion capabilities. With positive testing results, the Palpatron forms the next step towards a comprehensive robotic-assisted palpation technology
    • 

    corecore