9 research outputs found

    Diffusivity variation in electromigration failure

    Get PDF
    Electromigration driven void dynamics plays an important role in the reliability of copper interconnects; a proper understanding of which is made more difficult due to local variations in line microstructure. In simulations, the parameter incorporating these variations best is the effective atomic diffusivity Deff which is sensitive to grain size and orientation, interface layer thickness, etc. We examine a number of experimental results and conclude that, to explain observations using current theoretical models, Deff values must vary significantly along the interconnect, and that such variations are enough to yield encouraging simulations of resistance variations under bidirectional stress

    Interconnect reliability dependence on fast diffusivity paths

    Get PDF
    a b s t r a c t The reliability of interconnects in modern integrated circuits is determined by the magnitude and direction of the effective valence for electromigration (EM). The effective valence depends on local atomistic configurations of fast diffusivity paths such as metal interfaces, dislocations, and the grain boundary; therefore, microstructural variations lead to a statistically predictable behavior for the EM life time. Quantum mechanical investigations of EM have been carried out on an atomistic level in order to obtain numerically efficient methods for calculating the effective valence. The results of ab initio calculations of the effective valence have been used to parametrize the continuum-level EM models. The impact of fast diffusivity paths on the long term EM behavior is demonstrated with these models

    Diffusivity variation in Electromigration failure

    Get PDF
    This article was published in the journal, Microelectronics Reliability [© Elsevier] and the definitive version is available at: http://dx.doi.org/10.1016/j.microrel.2012.06.057Electromigration driven void dynamics plays an important role in the reliability of copper interconnects; a proper understanding of which is made more difficult due to local variations in line microstructure. In simulations, the parameter incorporating these variations best is the effective atomic diffusivity Deff which is sensitive to grain size and orientation, interface layer thickness, etc. We examine a number of experimental results and conclude that, to explain observations using current theoretical models, Deff values must vary significantly along the interconnect, and that such variations are enough to yield encouraging simulations of resistance variations under bidirectional stress

    Charakterisierung und Optimierung elektrochemisch abgeschiedener Kupferdünnschichtmetallisierungen für Leitbahnen höchstintegrierter Schaltkreise

    Get PDF
    Die Entwicklung der Mikroelektronik wird durch eine fortschreitende Miniaturisierung der Bauelemente geprägt. Infolge einer Reduzierung der Querschnittflächen von Leitbahnstrukturen erhöht sich die elektrische Leistungsdichte und das Metallisierungssystem bestimmt zunehmend die Übertragungsgeschwindigkeiten. Kupfer repräsentiert hierbei das verbreitetste Leitbahnmaterial und wird vorwiegend mittels elektrochemischer Abscheidung in vergrabene Damaszen-Strukturen eingebracht. Die vorliegende Dissertation beschreibt Möglichkeiten für eine Optimierung von Kupferleitbahnen für höchstintegrierte Schaltkreise. Von besonderem Interesse sind hierbei die Gefügequalität und der Reinheitsgrad. Es erfolgen umfangreiche werkstoffanalytische und elektrochemische Untersuchungen zur Charakterisierung von Depositionsmechanismen, des Einbaus von Fremdstoffen, des Mikrogefüges nach der Abscheidung und der Mikrogefügeumwandlung. In einem abschließenden Forschungsschwerpunkt werden Kupfer-Damaszen-Teststrukturen mit unterschiedlichen Gehalten nichtmetallischer Verunreinigungen hergestellt und entsprechenden Lebensdauerexperimenten unterzogen. Hierdurch gelingt eine Evaluierung des Einflusses jener Verunreinigungen auf die Elektromigrationsbeständigkeit von Kupferleitbahnen. Die Arbeit umfasst daher das gesamte Spektrum von der Grundlagenforschung bis zur Applikation von elektrochemisch abgeschiedenen Kupferdünnschichtmetallisierungen

    Stretchable metallization technologies for skin-like transducers

    Get PDF
    The skin is not only the largest human organ, capable of accomplishing distributed and multimodal sensing functions. Replicating the versatility of skin artificially is a significant challenge, not only in terms of signal processing but also in mechanics. Stretchable electronics are an approach designed to cover human and artificial limbs and provide wearable sensing capabilities: motion sensors distributed on the hand of neurologically impaired patients could help therapists quantify their abilities; prostheses equipped with multiple tactile sensors could enable amputees to naturally adjust their grasp force. Skin-like electronic systems have specific requirements: they must mechanically adapt to the deformations imposed by the body they equip with minimal impediment to its natural movements, while also providing sufficient electrical performance for sensor transduction and passing electrical signals and power. A metallization ensuring stable conductivity under large strains is a prerequisite to designing and assembling wearable circuits that are integrated with several types of sensors. In this work, two innovative metallization processes have been developed to enable scalable integration of multiple sensing modalities in stretchable circuits. First, stretchable micro-cracked gold (Au) thin films were interfaced with gallium indium eutectic (EGaIn) liquid metal wires. The Au films, thermally evaporated on silicone elastomer substrates, combined high sheet resistance (9 to 30 Ohm/sq) and high sensitivity to strain up to 50%. The EGaIn wires drawn using a micro-plotting setup had a low gauge factor (2) and a low sheet resistance (5 mOhm/sq). Second, a novel physical vapor deposition method to deposit of thin gallium-based biphasic (solid-liquid) films over large areas was achieved. The obtained conductors combined a low sheet resistance (0.5 Ohm/sq), a low gauge factor (~1 up to 80% strain), and a failure strain of more than 400%. They could be patterned down to 10 µm critical dimensions. Skin-like sensors for the hand were assembled using the two processes and their capabilities were demonstrated. Thin (0.5 mm) silicone strips integrating EGaIN wires and micro-cracked Au strain gauges were mounted on gloves to encode the position of a biomimetic robotic finger and a human finger. In combination with soft pressure sensors, they enabled precise grasp analysis over a limited range of motion. Then, biphasic films were micro-patterned on silicone to assemble 50 µm thin epidermal strain gauges. The strain gauges were attached on a user's finger and accurately encoded fine grasping tasks covering most of the human hand range of motion. The biphasic films were also used to power wireless MEMS pressure sensors integrated in a rubber scaffold. The device was mounted on a prosthetic hand to encode normal forces in the 0 N to 20 N range with excellent linearity. The epidermal strain sensors are currently being used to quantify the tremors of patients with Parkinson's disease. In the future, the unique properties of the biphasic films could enable advanced artificial skins integrating a high density of soft transducers and traditional high-performance circuits

    CARRIER TRANSPORT IN DIRAC-BAND MATERIALS AND THEIR DEVICE PHYSICS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore