18 research outputs found

    Micro and Desktop Factory Roadmap

    Get PDF
    Terms desktop and microfactory both refer to production equipment that is miniaturized down to the level where it can placed on desktop and manually moved without any lifting aids. In this context, micro does not necessarily refer to the size of parts produced or their features, or the actual size or resolution of the equipment. Instead, micro refers to a general objective of downscaling production equipment to the same scale with the products they are manufacturing. Academic research literature speculates with several advantages and benefits of using miniaturized production equipment. These range from reduced use of energy and other resources (such as raw material) to better operator ergonomics and from greater equipment flexibility and reconfigurability to ubiquitous manufacturing (manufacturing on-the-spot, i.e. manufacturing the end product where it is used). Academic research has also generated several pieces of equipment and application demonstrations, and many of those are described in this document. Despite of nearly two decades of academic research, wider industrial breakthrough has not yet taken place and, in fact, many of the speculated advantages have not been proven or are not (yet) practical. However, there are successful industrial examples including miniaturized machining units; robotic, assembly and process cells; as well as other pieces of desktop scale equipment. These are also presented in this document. Looking at and analysing the current state of micro and desktop production related academic and commercial research and development, there are notable gaps that should be addressed. Many of these are general to several fields, such as understanding the actual needs of industry, whereas some are specific to miniaturised production field. One such example is the size of the equipment: research equipment is often “too small” to be commercially viable alternative. However, it is important to seek the limits of miniaturisation and even though research results might not be directly adaptable to industrial use, companies get ideas and solution models from research. The field of desktop production is new and the future development directions are not clear. In general, there seems to be two main development directions for micro and desktop factory equipment: 1) Small size equipment assisting human operators at the corner of desk 2) Small size equipment forming fully automatic production lines (including line components, modules, and cells) These, and other aspects including visions of potential application areas and business models for system providers, are discussed in detail in this roadmap. To meet the visions presented, some actions are needed. Therefore, this document gives guidelines for various industrial user groups (end users of miniaturized production equipment, system providers/integrators and component providers) as well as academia for forming their strategies in order to exploit the benefits of miniaturized production. To summarise, the basic guidelines for different actors are: • Everyone: Push the desktop ideology and awareness of the technology and its possibilities. Market and be present at events where potential new fields get together. Tell what is available and what is needed. • Equipment end users: Specify and determine what is needed. Be brave to try out new ways of doing things. Think what is really needed – do not over specify. • System providers / integrators: Organize own operations and product portfolios so that supplying equipment fulfilling the end user specifications can be done profitably. • Component providers: Design and supply components which are cost-efficient and easy to integrate to and to take into use in desktop scale equipment. • Academia: Look further into future, support industrial sector in their shorter term development work and act as a facilitator for cooperation between different actors

    Design and realization of a microassembly workstation

    Get PDF
    With the miniaturization of products to the levels of micrometers and the recent developments in microsystem fabrication technologies, there is a great need for an assembly process for the formation of complex hybrid microsystems. Integration of microcomponents made up of different materials and manufactured using different micro fabrication techniques is still a primary challenge since some of the fundamental problems originating from the small size of parts to be manipulated, high precision necessity and specific problems of the microworld in that field are still not fully investigated. In this thesis, design and development of an open-architecture and reconfigurable microassembly workstation for efficient and reliable assembly of micromachined parts is presented. The workstation is designed to be used as a research tool for investigation of the problems in microassembly. The development of such a workstation includes the design of: (i) a manipulation system consisting of motion stages providing necessary travel range and precision for the realization of assembly tasks, (ii) a vision system to visualize the microworld and the determination of the position and orientation of micro components to be assembled, (iii) a robust control system and necessary fixtures for the end effectors that allow easy change of manipulation tools and make the system ready for the desired task. In addition tele-operated and semi-automated assembly concepts are implemented. The design is verified by implementing tasks in various ranges for micro-parts manipulation. The versatility of the workstation is demonstrated and high accuracy of positioning is shown

    Workshop on "Robotic assembly of 3D MEMS".

    No full text
    Proceedings of a workshop proposed in IEEE IROS'2007.The increase of MEMS' functionalities often requires the integration of various technologies used for mechanical, optical and electronic subsystems in order to achieve a unique system. These different technologies have usually process incompatibilities and the whole microsystem can not be obtained monolithically and then requires microassembly steps. Microassembly of MEMS based on micrometric components is one of the most promising approaches to achieve high-performance MEMS. Moreover, microassembly also permits to develop suitable MEMS packaging as well as 3D components although microfabrication technologies are usually able to create 2D and "2.5D" components. The study of microassembly methods is consequently a high stake for MEMS technologies growth. Two approaches are currently developped for microassembly: self-assembly and robotic microassembly. In the first one, the assembly is highly parallel but the efficiency and the flexibility still stay low. The robotic approach has the potential to reach precise and reliable assembly with high flexibility. The proposed workshop focuses on this second approach and will take a bearing of the corresponding microrobotic issues. Beyond the microfabrication technologies, performing MEMS microassembly requires, micromanipulation strategies, microworld dynamics and attachment technologies. The design and the fabrication of the microrobot end-effectors as well as the assembled micro-parts require the use of microfabrication technologies. Moreover new micromanipulation strategies are necessary to handle and position micro-parts with sufficiently high accuracy during assembly. The dynamic behaviour of micrometric objects has also to be studied and controlled. Finally, after positioning the micro-part, attachment technologies are necessary

    How to build a biological machine using engineering materials and methods

    Get PDF
    We present work in 3D printing electric motors from basic materials as the key to building a self-replicating machine to colonise the Moon. First, we explore the nature of the biological realm to ascertain its essence, particularly in relation to the origin of life when the inanimate became animate. We take an expansive view of this to ascertain parallels between the biological and the manufactured worlds. Life must have emerged from the available raw material on Earth and, similarly, a self-replicating machine must exploit and leverage the available resources on the Moon. We then examine these lessons to explore the construction of a self-replicating machine using a universal constructor. It is through the universal constructor that the actuator emerges as critical. We propose that 3D printing constitutes an analogue of the biological ribosome and that 3D printing may constitute a universal construction mechanism. Following a description of our progress in 3D printing motors, we suggest that this engineering effort can inform biology, that motors are a key facet of living organisms and illustrate the importance of motors in biology viewed from the perspective of engineering (in the Feynman spirit of "what I cannot create, I cannot understand")

    Affordable flexible hybrid manipulator for miniaturised product assembly

    Get PDF
    Miniaturised assembly systems are capable of assembling parts of a few millimetres in size with an accuracy of a few micrometres. Reducing the size and the cost of such a system while increasing its flexibility and accuracy is a challenging issue. The introduction of hybrid manipulation, also called coarse/fine manipulation, within an assembly system is the solution investigated in this thesis. A micro-motion stage (MMS) is designed to be used as the fine positioning mechanism of the hybrid assembly system. MMSs often integrate compliant micro-motion stages (CMMSs) to achieve higher performances than the conventional MMSs. CMMSs are mechanisms that transmit an output force and displacement through the deformation of their structure. Although widely studied, the design and modelling techniques of these mechanisms still need to be improved and simplified. Firstly, the linear modelling of CMMSs is evaluated and two polymer prototypes are fabricated and characterised. It is found that polymer based designs have a low fabrication cost but not suitable for construction of a micro-assembly system. A simplified nonlinear model is then derived and integrated within an analytical model, allowing for the full characterisation of the CMMS in terms of stiffness and range of motion. An aluminium CMMS is fabricated based on the optimisation results from the analytical model and is integrated within an MMS. The MMS is controlled using dual-range positioning to achieve a low-cost positioning accuracy better than 2µm within a workspace of 4.4×4.4mm2. Finally, a hybrid manipulator is designed to assemble mobile-phone cameras and sensors automatically. A conventional robot manipulator is used to pick and place the parts in coarse mode while the aluminium CMMS based MMS is used for fine alignment of the parts. A high-resolution vision system is used to locate the parts on the substrate and to measure the relative position of the manipulator above MMS using a calibration grid with square patterns. The overall placement accuracy of the assembly system is ±24µm at 3σ and can reach 2µm, for a total cost of less than £50k, thus demonstrating the suitability of hybrid manipulation for desktop-size miniaturised assembly systems. The precision of the existing system could be significantly improved by making the manipulator stiffer (i.e. preloaded bearings…) and adjustable to compensate for misalignment. Further improvement could also be made on the calibration of the vision system. The system could be either scaled up or down using the same architecture while adapting the controllers to the scale.Engineering and Physical Sciences Research Council (EPSRC

    Software framework for high precision motion control applications

    Get PDF
    Developing a motion control system requires much effort in different domains. Namely control, electronics and software engineering. In addition to these, there are the system requirements which may be completely different to these spanning from biomedical engineering to psychology. Collaboration between these fields is vital, however these fields should be involved only as much as they are needed to be in the fields of expertise of the others. Several software frameworks exist for the creation of robotics applications. But currently there is no standard for the creation of mechatronics systems nor is there a complete software package that can deal with all aspects in the programming of such systems. Existing frameworks each have their advantages and disadvantages, however they generally have limited or no dedicated structure for the development of the motion control aspect of the problem and deal extensively with the robotenvironment interactions and inter mechanism communications. Dealing with the higher levels of the problem, they are usually not well suited for hard realtime; since the interactions can run on soft realtime constraints. The software framework proposed in this study aims to achieve a level of abstraction between the different domains utilized within a system. The aim in using the framework is to achieve a sustainable software structure for the system. Sustainability is an important part of systems, as it permits a system to evolve with changing requirements and variable hardware, with the ultimate goal of having robust software that can be utilized on different platforms and with other systems using an abstraction layer between the hardware and the software. This ensures that the system can be migrated from a processing platform to any other platform and also from one set of hardware to another. The framework was tested on several systems that have precision motion control requirements such as a 10 degree of freedom micro assembly workstation, a modular micro factory and a haptic system with time delay. Each of the systems works in di erent processing platforms and have different motion control requirements. The achieved results from the implementations show that the software framework is an important tool for the development of motion control software

    An integrated framework for developing generic modular reconfigurable platforms for micro manufacturing and its implementation

    Get PDF
    The continuing trends of miniaturisation, mass customisation, globalisation and wide use of the Internet have great impacts upon manufacturing in the 21st century. Micro manufacturing will play an increasingly important role in bridging the gap between the traditional precision manufacturing and the emerging technologies like MEMS/NEMS. The key requirements for micro manufacturing in this context are hybrid manufacturing capability, modularity, reconfigurability, adaptability and energy/resource efficiency. The existing design approaches tend to have narrow scope and are largely limited to individual manufacturing processes and applications. The above requirements demand a fundamentally new approach to the future applications of micro manufacturing so as to obtain producibility, predictability and productivity covering the full process chains and value chains. A novel generic modular reconfigurable platform (GMRP) is proposed in such a context. The proposed GMRP is able to offer hybrid manufacturing capabilities, modularity, reconfigurablity and adaptivity as both an individual machine tool and a micro manufacturing system, and provides a cost effective solution to high value micro manufacturing in an agile, responsive and mass customisation manner. An integrated framework has been developed to assist the design of GMRPs due to their complexity. The framework incorporates theoretical GMRP model, design support system and extension interfaces. The GMRP model covers various relevant micro manufacturing processes and machine tool elements. The design support system includes a user-friendly interface, a design engine for design process and design evaluation, together with scalable design knowledge base and database. The functionalities of the framework can also be extended through the design support system interface, the GMRP interface and the application interface, i.e. linking to external hardware and/or software modules. The design support system provides a number of tools for the analysis and evaluation of the design solutions. The kinematic simulation of machine tools can be performed using the Virtual Reality toolbox in Matlab. A module has also been developed for the multiscale modelling, simulation and results analysis in Matlab. A number of different cutting parameters can be studied and the machining performance can be subsequently evaluated using this module. The mathematical models for a non-traditional micro manufacturing process, micro EDM, have been developed with the simulation performed using FEA. Various design theories and methodologies have been studied, and the axiomatic design theory has been selected because of its great power and simplicity. It has been applied in the conceptual design of GMRP and its design support system. The implementation of the design support system is carried out using Matlab, Java and XML technologies. The proposed GMRP and framework have been evaluated through case studies and experimental results.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The Federal Conference on Intelligent Processing Equipment

    Get PDF
    Research and development projects involving intelligent processing equipment within the following U.S. agencies are addressed: Department of Agriculture, Department of Commerce, Department of Energy, Department of Defense, Environmental Protection Agency, Federal Emergency Management Agency, NASA, National Institutes of Health, and the National Science Foundation

    Development of a Virtual Factory Environment to Study, Simulate and Improve the Material Flow Between Multiple Micro Assembly Work Cells

    Get PDF
    This thesis focuses on the creation of a virtual factory environment and its use to improve material flow between micro assembly work cells. The idea is to create a methodology that enables users to study the improvement of micro factory layouts and compare them based on their performance in the virtual environment. The main objectives for this project are to create a virtual factory environment using Unity� software, a game engine, and use it to simulate near optimal routing sequences between work cells. Programming in Unity� creates user interfaces that accept inputs with near optimal sequences that visit all the micro assembly cells in the simulated factory. Near optimal sequences are obtained using genetic algorithms within the Global Optimization tool from MatLab. This tool calls pre - programed functions that repeatedly apply genetic operators, like crossovers and mutations, to a given sequence in order to find a near optimal one. MatLab feeds from external data that consists of the distances between the work cells. These distances are calculated and stored in an Excel file which is read directly from the MatLab environment.All thesis objectives are fulfilled and the proposed methodology is used successfully to create a virtual micro factory in Unity�. The model is used to simulate several sequences for different circumstances:� Material distribution for a twenty four cell layout connected by conveyors.� Material distribution for only twelve of the twenty four available stations.� Design of material distribution sequence to supply twenty four work cells that are not limited by conveyor connections.In all situations the cumulative travel distances calculated in the Unity� model matched the objective function value estimated in MatLab. This validated the ability of the model to accurately represent the motion of materials within a micro assembly factory. This methodology can be used not only to study and improve existing micro factory systems but to also design future micro factories to be more efficient. The flexibility of the Unity� environment enables the users not to only simulate the movement of materials along near optimal sequences but to also reposition objects to quickly create different layout options.Industrial Engineering & Managemen
    corecore