358 research outputs found

    Overcoming the Challenges for Multichip Integration: A Wireless Interconnect Approach

    Get PDF
    The physical limitations in the area, power density, and yield restrict the scalability of the single-chip multicore system to a relatively small number of cores. Instead of having a large chip, aggregating multiple smaller chips can overcome these physical limitations. Combining multiple dies can be done either by stacking vertically or by placing side-by-side on the same substrate within a single package. However, in order to be widely accepted, both multichip integration techniques need to overcome significant challenges. In the horizontally integrated multichip system, traditional inter-chip I/O does not scale well with technology scaling due to limitations of the pitch. Moreover, to transfer data between cores or memory components from one chip to another, state-of-the-art inter-chip communication over wireline channels require data signals to travel from internal nets to the peripheral I/O ports and then get routed over the inter-chip channels to the I/O port of the destination chip. Following this, the data is finally routed from the I/O to internal nets of the target chip over a wireline interconnect fabric. This multi-hop communication increases energy consumption while decreasing data bandwidth in a multichip system. On the other hand, in vertically integrated multichip system, the high power density resulting from the placement of computational components on top of each other aggravates the thermal issues of the chip leading to degraded performance and reduced reliability. Liquid cooling through microfluidic channels can provide cooling capabilities required for effective management of chip temperatures in vertical integration. However, to reduce the mechanical stresses and at the same time, to ensure temperature uniformity and adequate cooling competencies, the height and width of the microchannels need to be increased. This limits the area available to route Through-Silicon-Vias (TSVs) across the cooling layers and make the co-existence and co-design of TSVs and microchannels extreamly challenging. Research in recent years has demonstrated that on-chip and off-chip wireless interconnects are capable of establishing radio communications within as well as between multiple chips. The primary goal of this dissertation is to propose design principals targeting both horizontally and vertically integrated multichip system to provide high bandwidth, low latency, and energy efficient data communication by utilizing mm-wave wireless interconnects. The proposed solution has two parts: the first part proposes design methodology of a seamless hybrid wired and wireless interconnection network for the horizontally integrated multichip system to enable direct chip-to-chip communication between internal cores. Whereas the second part proposes a Wireless Network-on-Chip (WiNoC) architecture for the vertically integrated multichip system to realize data communication across interlayer microfluidic coolers eliminating the need to place and route signal TSVs through the cooling layers. The integration of wireless interconnect will significantly reduce the complexity of the co-design of TSV based interconnects and microchannel based interlayer cooling. Finally, this dissertation presents a combined trade-off evaluation of such wireless integration system in both horizontal and vertical sense and provides future directions for the design of the multichip system

    Remotely interrogated MEMS pressure sensor

    Get PDF
    This thesis considers the design and implementation of passive wireless microwave readable pressure sensors on a single chip. Two novel-all passive devices are considered for wireless pressure operation. The first device consists of a tuned circuit operating at 10 GHz fabricated on SiO2 membrane, supported on a silicon wafer. A pressure difference across the membrane causes it to deflect so that a passive resonant circuit detunes. The circuit is remotely interrogated to read off the sensor data. The chip area is 20 mm2 and the membrane area is 2mm2 with thickness of 4 ”m. Two on chip passive resonant circuits were investigated: a meandered dipole and a zigzag antenna. Both have a physical length of 4.25 mm. the sensors show a shift in their resonant frequency in response to changing pressure of 10.28-10.27 GHz for the meandered dipole, and 9.61-9.58 GHz for the zigzag antenna. The sensitivities of the meandered dipole and zigzag sensors are 12.5 kHz and 16 kHz mbar, respectively. The second device is a pressure sensor on CMOS chip. The sensing element is capacitor array covering an area of 2 mm2 on a membrane. This sensor is coupled with a dipole antenna operating at 8.77 GHz. The post processing of the CMOS chip is carried out only in three steps, and the sensor on its own shows a sensitivity of 0.47fF/mbar and wireless sensitivity of 27 kHz/mbar. The MIM capacitors on membrane can be used to detune the resonant frequency of an antenna

    Temperature Evaluation of NoC Architectures and Dynamically Reconfigurable NoC

    Get PDF
    Advancements in the field of chip fabrication led to the integration of a large number of transistors in a small area, giving rise to the multi–core processor era. Massive multi–core processors facilitate innovation and research in the field of healthcare, defense, entertainment, meteorology and many others. Reduction in chip area and increase in the number of on–chip cores is accompanied by power and temperature issues. In high performance multi–core chips, power and heat are predominant constraints. High performance massive multicore systems suffer from thermal hotspots, exacerbating the problem of reliability in deep submicron technologies. High power consumption not only increases the chip temperature but also jeopardizes the integrity of the system. Hence, there is a need to explore holistic power and thermal optimization and management strategies for massive on–chip multi–core environments. In multi–core environments, the communication fabric plays a major role in deciding the efficiency of the system. In multi–core processor chips this communication infrastructure is predominantly a Network–on–Chip (NoC). Tradition NoC designs incorporate planar interconnects as a result these NoCs have long, multi–hop wireline links for data exchange. Due to the presence of multi–hop planar links such NoC architectures fall prey to high latency, significant power dissipation and temperature hotspots. Networks inspired from nature are envisioned as an enabling technology to achieve highly efficient and low power NoC designs. Adopting wireless technology in such architectures enhance their performance. Placement of wireless interconnects (WIs) alters the behavior of the network and hence a random deployment of WIs may not result in a thermally optimal solution. In such scenarios, the WIs being highly efficient would attract high traffic densities resulting in thermal hotspots. Hence, the location and utilization of the wireless links is a key factor in obtaining a thermal optimal highly efficient Network–on–chip. Optimization of the NoC framework alone is incapable of addressing the effects due to the runtime dynamics of the system. Minimal paths solely optimized for performance in the network may lead to excessive utilization of certain NoC components leading to thermal hotspots. Hence, architectural innovation in conjunction with suitable power and thermal management strategies is the key for designing high performance and energy–efficient multicore systems. This work contributes at exploring various wired and wireless NoC architectures that achieve best trade–offs between temperature, performance and energy–efficiency. It further proposes an adaptive routing scheme which factors in the thermal profile of the chip. The proposed routing mechanism dynamically reacts to the thermal profile of the chip and takes measures to avoid thermal hotspots, achieving a thermally efficient dynamically reconfigurable network on chip architecture

    Graphene and Communications Technology

    Get PDF
    The advances in communications technology depend on the development of tiny devices being capable of transmitting and receiving data at the highest possible data rates. The digital signal processing at gigabit-per-second rates is soon to be upgraded to the terabit-per-second range. Nanotechnology provides a variety of alternatives for the design of ultrafast nanoscale components. Graphene is one particular material which is considered for possible implementation due to its superior physical properties. This contribution is based on a selection of some foundation studies which explore the potential of graphene for emerging applications with an emphasis on communications technology

    Caractérisation et modélisation d'interconnexions. Développement de nouvelles solutions pour la transmission d'informations au sein des cartes et puces électroniques.

    Get PDF
    Since the first IC in 1959 the performances and computing capacity of electronic devices have always grown, following thus the well-known empirical Moore’s law which says that the number of transistors in a dense integrated circuit doubles approximately every 18 months. This prevision is still verified even if some limitations appears like for example the limitation of the clock frequency which grow less than the projection that the ITRS (International Technology Roadmap for Semiconductors) has made in 2000. One of the stumbling point comes from interconnects which ensure the transmission of information inside electronic chips or cards. The interconnects imply delay, signal distortion, crosstalk and power dissipation and they now must be taken into account during electronic device design. So the researches depicted in this manuscript deal with the modelling of interconnect and study of new solutions to overcome problems due to classical interconnects. These works have been realized in Lab-STICC laboratory with the help of colleagues, post-doc, PhDs and Master Students. The manuscript include three chapters, the first one concerns researches on modelling aspects, the second is about alternative solutions to classical wired interconnects and to conclude the research projects for the next years are presented.The first chapter concern researches about modelling which aim to develop reliable models in view to simulate more quickly the electrical behavior of interconnects. Firstly the collaborations concerning the development of model-order reduction are presented. Then with the aim to evaluate the impact of inductive behavior, the current return patch problem and so the extraction of loop inductance is treated. The 3D discontinuities and 3D environment effects are presented in the third part of this chapter. For example the parallel grid influences on propagation are explored as well as the case of coupling between microvias and parallel-plates cavities inside multilayer PCB.The second chapter is about research of new solutions to overcome the limitation due to classical wired interconnects. A review of envisaged alternative solutions like for example optical interconnects and CNT (carbon Nano Tube) is first presented. Then a focus on RF guided interconnect is made and constraints in term of bandwidth are explained and some coupling techniques are explored. These studies naturally lead to exploration of the paradigm of wireless interconnects and the preliminary researches on radio transmission between two circuits placed on a PCB are shown. All these approaches of RF wireless interconnect are prelude to the research projects which are developed in a third chapter of the manuscript.The development of the draft over 4 years is based on the BBC project (wireless interconnect network on chip or in board for Broadcast-Based parallel Computing) funded by the Labex COMINLABS and which will begin in October 2016. The aims of this project are outlined as well as the aims of another project entitled “BROADWAYS” (Broadcast-Based new paradigms of ubiquitous memory mapping, bandwidth allocation and parallel programing made possible by Radio Network On Chip) which is currently in the second step of review by the ANR. To conclude this research part other embryonic researches are presented as well as long term researches envisaged like terahertz applications of the use of graphene for microwave applications.Depuis les premiers circuits intĂ©grĂ©s en 1959 les composants et les systĂšmes Ă©lectroniques n’ont cessĂ© de voir leurs performances augmenter suivant ainsi la loi empirique de Gordon Moore qui prĂ©voit un doublement de la complexitĂ© des circuits tous les 18 mois. Cette prĂ©vision reste aujourd’hui toujours vĂ©rifiĂ©e mĂȘme si nous constatons depuis une dizaine d’annĂ©es que les frĂ©quences d’horloges stagnent autour de 4-5 GHz alors que l’ITRS (International Technology Roadmap for Semiconductors) prĂ©voyait dans les annĂ©es 2000 des frĂ©quences de travail pouvant atteindre 40 GHz pour 2016. L’un des facteurs limitant la progression des performances vient des interconnexions mĂ©talliques servant au transport de l’information au sein des systĂšmes Ă©lectroniques. Les travaux de recherche prĂ©sentĂ©s dans le cadre de l’obtention de l‘habilitation Ă  diriger des recherches concernent d’une part les travaux rĂ©alisĂ©s sur la modĂ©lisation des interconnexions et d’autre part ceux sur l’étude de solutions alternatives Ă  ces interconnexions classiques. Ces travaux ont Ă©tĂ© rĂ©alisĂ©s au sein du Lab-STICC en collaboration avec plusieurs collĂšgues et lors de l’encadrement de plusieurs post-doctorants, doctorants et stagiaires de master recherche. Le mĂ©moire comporte trois chapitres principaux, le premier concerne les travaux sur la modĂ©lisation des interconnexions, le second porte sur l’étude de solutions alternatives Ă  ces interconnexions classiques et le dernier permet la prĂ©sentation des projets de recherches pour les prochaines annĂ©es.L’objectif de nos travaux sur la modĂ©lisation des interconnexions consiste au dĂ©veloppement de modĂšles fiables permettant d’apprĂ©hender leurs effets sur les signaux. Dans un premier temps, les travaux portant sur l’obtention de modĂšles Ă  complexitĂ© rĂ©duite sont prĂ©sentĂ©s. Puis, afin d’évaluer l’impact des effets inductifs des interconnexions, nous prĂ©sentons les travaux sur l’identification des chemins de retours du courant dans un rĂ©seau comprenant plusieurs lignes et qui sont nĂ©cessaires pour dĂ©terminer les inductances de boucles. La prise en compte de l’environnement 3D des interconnexions fait l’objet de la troisiĂšme partie de ce chapitre. Nous traitons ainsi de l’influence de diffĂ©rentes discontinuitĂ©s et nous prĂ©sentons des rĂšgles de design permettant la limitation des risques de conversion de mode de propagation. Dans le cadre de structures multicouches, nous abordons l’influence de grilles mĂ©talliques placĂ©es au voisinage d’une ligne sur la propagation des signaux. Enfin nous traitons des risques de couplage entre des vias et les modes de cavitĂ©s au sein des structures PCB multicouches.La seconde thĂ©matique dĂ©veloppĂ©e dans ce mĂ©moire porte sur le dĂ©veloppement de solutions alternatives aux interconnexions classiques. AprĂšs avoir listĂ© certaines de ces solutions telle que les interconnexions optiques ou les nanotubes de carbone, nous prĂ©sentons plus particuliĂšrement les interconnexions RF qui vĂ©hiculent l’information numĂ©rique sur porteuse Ă  haute frĂ©quence. Dans un premier temps nous analysons les interconnexions RF guidĂ©es qui utilisent une ligne de transmission comme support pour transporter l’information. A partir de l’étude des modes d’accĂšs multiples nous montrons que les canaux doivent ĂȘtre large bande et nous explorons diverses façons de transmettre l’énergie Ă  la ligne de transmission. Enfin nous prĂ©sentons quelques exemples de performances obtenues Ă  l’aide de dĂ©monstrateurs numĂ©riques. Ces Ă©tudes des interconnexions RF guidĂ©es nous ont naturellement amenĂ© Ă  considĂ©rer les possibilitĂ©s de transmission par voie hertzienne des informations au sein des cartes et puces Ă©lectroniques. Nous avons ainsi analysĂ© Ă  l’aide de dĂ©monstrateurs trĂšs simples les niveaux de transmission entre deux circuits placĂ©s sur une mĂȘme carte PCB (Printed Circuit Board).Ces Ă©tudes initiales sur les interconnexions radios ou sans fils servent de point d’appui aux projets de recherche prĂ©sentĂ©s Ă  la fin de ce manuscrit. La philosophie du projet BBC (wireless interconnect network on chip or in board for Broadcast-Based parallel Computing) financĂ© par le Labex COMINLABS Ă  partir d’octobre est prĂ©sentĂ© de mĂȘme que celle du projet ANR Broadways (Broadcast-Based new paradigms of ubiquitous memory mapping, bandwidth allocation and parallel programing made possible by Radio Network On Chip) en seconde phase d’étude auprĂšs de l’ANR

    Concepts for Short Range Millimeter-wave Miniaturized Radar Systems with Built-in Self-Test

    Get PDF
    This work explores short-range millimeter wave radar systems, with emphasis on miniaturization and overall system cost reduction. The designing and implementation processes, starting from the system level design considerations and characterization of the individual components to final implementation of the proposed architecture are described briefly. Several D-band radar systems are developed and their functionality and performances are demonstrated

    Through-Silicon Vias in SiGe BiCMOS and Interposer Technologies for Sub-THz Applications

    Get PDF
    Im Rahmen der vorliegenden Dissertation zum Thema „Through-Silicon Vias in SiGe BiCMOS and Interposer Technologies for Sub-THz Applications“ wurde auf Basis einer 130 nm SiGe BiCMOS Technologie ein Through-Silicon Via (TSV) Technologiemodul zur Herstellung elektrischer Durchkontaktierungen fĂŒr die Anwendung im Millimeterwellen und Sub-THz Frequenzbereich entwickelt. TSVs wurden mittels elektromagnetischer Simulationen modelliert und in Bezug auf ihre elektrischen Eigenschaften bis in den sub-THz Bereich bis zu 300 GHz optimiert. Es wurden die Wechselwirkungen zwischen Modellierung, Fertigungstechnologie und den elektrischen Eigenschaften untersucht. Besonderes Augenmerk wurde auf die technologischen Einflussfaktoren gelegt. Daraus schlussfolgernd wurde das TSV Technologiemodul entwickelt und in eine SiGe BiCMOS Technologie integriert. Hierzu wurde eine Via-Middle Integration gewĂ€hlt, welche eine Freilegung der TSVs von der Wafer RĂŒckseite erfordert. Durch die geringe Waferdicke von ca. 75 ÎŒm wird einen Carrier Wafer Handling Prozess verwendet. Dieser Prozess wurde unter der Randbedingung entwickelt, dass eine nachfolgende Bearbeitung der Wafer innerhalb der BiCMOS Pilotlinie erfolgen kann. Die RĂŒckseitenbearbeitung zielt darauf ab, einen Redistribution Layer auf der RĂŒckseite der BiCMOS Wafer zu realisieren. Hierzu wurde ein Prozess entwickelt, um gleichzeitig verschiedene TSV Strukturen mit variablen Geometrien zu realisieren und damit eine hohe TSV Design FlexibilitĂ€t zu gewĂ€hrleisten. Die TSV Strukturen wurden von DC bis ĂŒber 300 GHz charakterisiert und die elektrischen Eigenschaften extrahiert. Dabei wurde gezeigt, dass TSV Verbindungen mit sehr geringer DĂ€mpfung <1 dB bis 300 GHz realisierbar sind und somit ausgezeichnete Hochfrequenzeigenschaften aufweisen. Zuletzt wurden vielfĂ€ltige Anwendungen wie das Grounding von Hochfrequenzschaltkreisen, Interposer mit Waveguides und 300 GHz Antennen dargestellt. Das Potential fĂŒr Millimeterwellen Packaging und 3D Integration wurde evaluiert. TSV Technologien sind heutzutage in vielen Anwendungen z.B. im Bereich der Systemintegration von Digitalschaltkreisen und der Spannungsversorgung von integrierten Schaltkreisen etabliert. Im Rahmen dieser Arbeit wurde der Einsatz von TSVs fĂŒr Millimeterwellen und dem sub-THz Frequenzbereich untersucht und die Anwendung fĂŒr den sub-THz Bereich bis 300 GHz demonstriert. Dadurch werden neue Möglichkeiten der Systemintegration und des Packaging von Höchstfrequenzsystemen geschaffen.:Bibliographische Beschreibung List of symbols and abbreviations Acknowledgement 1. Introduction 2. FEM Modeling of BiCMOS & Interposer Through-Silicon Vias 3. Fabrication of BiCMOS & Silicon Interposer with TSVs 4. Characterization of BiCMOS Embedded Through-Silicon Vias 5. Applications 6. Conclusion and Future Work 7. Appendix 8. Publications & Patents 9. Bibliography 10. List of Figures and Table

    AC-coupled substrate-integrated waveguide slot antenna in CMOS for terahertz applications

    Get PDF
    Substrate integrated waveguide (SIW) technology exhibits an emerging and very promising candidate for the development of circuits and components in the millimeter-wave region. As a part of the high-frequency wireless communication system, the on-chip antenna is playing an important role. However, designing an on-chip antenna presents significant challenges due to the design-rule restrictions posed by the foundries. Also, antenna performance degrades owing to the process limitation and the conventional structure. In this thesis, an on-chip SIW slot antenna has been designed in the TSMC 65-nm CMOS process to improve the radiation efficiency and to minimize the radiation leakage of the antenna. The antenna shows radiation efficiency of 35% and −10-dB bandwidth of 20 GHz at 410 GHz. However, characterizing on-chip antennas at this THz frequency range is difficult due to parasitic radiations from the measurement apparatus such as THz probes. One way to measure the antenna response is to integrate a detector circuit. Typically, a detector circuit needs RF and DC signal isolation. However, the SIW structure of the antenna is DC-shorted in the sidewall which poses a great challenge to building a detector circuit. Therefore, an AC-coupled SIW slot antenna has been presented by exploiting the antenna sidewall as a DC capacitor. Therefore, the SIW slot antenna including the DC capacitor can work well as expected. The designed AC-coupled SIW slot antenna integrated detector exhibits voltage responsivity of 316 V/W and 37 pW/Hz1/2 at 410 GHz

    An Implantable Microsystem for Autonomous Intraocular Pressure Monitoring .

    Full text link
    Glaucoma, a leading cause of blindness worldwide, is a disease in which the pressure within the eye is too high for the eye to tolerate and must be reduced in order to slow or prevent damage to the optic nerve. Conventional methods for monitoring eye pressure are normally only used in the physician’s office and rely on indirect measurement methods, leading to inaccuracies. Furthermore, intraocular pressure can vary throughout the day and also depends on activity. An autonomous implantable microsystem capable of monitoring intraocular pressure with minimal patient intervention would provide useful information to the clinician in the management of glaucoma. This dissertation studies the feasibility of an integrated microsystem for autonomously measuring intraocular pressure. Small size ensures minimal impact on the patient, preventing the device from entering the field of view and simplifying implantation. Integrated haptics aid surgical implantation and minimize trauma while allowing the implant to be removed if needed. A touch-mode capacitive pressure sensor, fabricated using the dissolved wafer process, transduces intraocular pressure into capacitance with a linear response and a sensitivity of 26 fF/mmHg. A new fabrication technique has been developed to embed vertical interconnects within a glass package containing the pressure sensor, a microbattery, readout circuitry, and an antenna. This enables the vertical stacking of these components and very efficient use of limited volume. The 1.5 mm x 2 mm x 0.5 mm transparent parylene-coated glass package enables solar cells to be placed on the circuit chip for power generation, trickle charging an on-board microbattery formed using standard cleanroom materials and a non-toxic electrolyte. Flooded-cell tests verified the electrochemistry and achieved a current capacity of 8 ”Ah/mm2. A simple integrated readout circuit consuming 35 pW in the idle mode implemented a finite-state machine and used an optical wakeup trigger to further reduce power. The microsystem has also been demonstrated with a microprocessor to autonomously gather and store data, reading it out on demand. Finally, a pulse-based ultrawideband wireless transmission technique is proposed using non-resonant antennas. The all-digital transmitter is expected to consume much less power than conventional encoded wireless transmitters and eliminates complex circuitry.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/89809/1/rhaque_1.pd
    • 

    corecore