8 research outputs found

    Electromagnetic wave scattering from layered structures with an arbitrary number of rough interfaces

    No full text
    Abstract—A closed-form first-order perturbative solution to the problem of electromagnetic scattering from a layered structure with an arbitrary number of rough interfaces is presented in this paper. Following the classical scheme employed to deal with a rough surface, a perturbative expansion of the fields in the rough-interface layered structure is performed, assuming that roughness heights and slopes are small enough. In this manner, in the first-order approximation, the geometric randomness of the corrugated interfaces is translated into random current sheets imposed on the unperturbed (flat) interfaces and radiating in the unperturbed (flat boundaries) layered media. The scattered field is then represented as the sum of up- and down-going waves, and a systematic approach that involves the use of matrix formalism and generalized reflection/transmission coefficients is employed. This approach permits us to avoid the necessity of the cumbersome Green function formalism. The demonstration of the consistency of the presented solution is analytically provided, showing that the proposed solution reduces to the corresponding existing ones when the stratification geometry reduces to the simplified ones considered by the other authors

    CHANNEL MODELING FOR FIFTH GENERATION CELLULAR NETWORKS AND WIRELESS SENSOR NETWORKS

    Get PDF
    In view of exponential growth in data traffic demand, the wireless communications industry has aimed to increase the capacity of existing networks by 1000 times over the next 20 years. A combination of extreme cell densification, more bandwidth, and higher spectral efficiency is needed to support the data traffic requirements for fifth generation (5G) cellular communications. In this research, the potential improvements achieved by using three major 5G enabling technologies (i.e., small cells, millimeter-wave spectrum, and massive MIMO) in rural and urban environments are investigated. This work develops SPM and KA-based ray models to investigate the impact of geometrical parameters on terrain-based multiuser MIMO channel characteristic. Moreover, a new directional 3D channel model is developed for urban millimeter-wave (mmW) small cells. Path-loss, spatial correlation, coverage distance, and coherence length are studied in urban areas. Exploiting physical optics (PO) and geometric optics (GO) solutions, closed form expressions are derived for spatial correlation. Achievable spatial diversity is evaluated using horizontal and vertical linear arrays as well as planar 2D arrays. In another study, a versatile near-ground field prediction model is proposed to facilitate accurate wireless sensor network (WSN) simulations. Monte Carlo simulations are used to investigate the effects of antenna height, frequency of operation, polarization, and terrain dielectric and roughness properties on WSNs performance

    Ultrasonic thickness structural health monitoring of steel pipe for internal corrosion

    Get PDF
    The naphthenic acid corrosion that can occur in oil refinery process plants at high temperature (400ÃÂðC) due to the corrosive nature of certain crude oils during the refining process can be difficult to predict. Therefore, the development of online ultrasonic thickness (UT) structural health monitoring (SHM) technology for high temperature internal pitting corrosion of steel pipe is of interest. A sensor produced by the sol-gel ceramic fabrication process has the potential to be deployed to monitor such pitting corrosion, and to help investigate the mechanisms causing such corrosion. This thick-film transducer is first characterized using an electric circuit model. The propagating elastic waves generated by the transducer are then experimentally characterized using the dynamic photoelastic visualization method and images of the wave-field are compared with semi-analytical modeling results. Next, the classic elastic wave scattering theory for an embedded spherical cavity is reviewed, results are compared with a newer scattering theory from the seismology community, that has been applied to a hemispherical pit geometry. This hemispherical pit theory is extended so as to describe ultrasonic Non-Destructive Evaluation (NDE) applications, for pitting corrosion, with the derivation of a far-field scattering amplitude term. Data from this new scattering theory is compared with experimental results by applying principals from the Thompson-Gray measurement model. The initial model validation provides the basis for a possible new hemispherical pit geometric reference standard for ultrasonic NDE corrosion applications. Next, UT SHM measurement accuracy, precision, and reliability are described with a new weighted censored relative likelihood methodology to consider the propagation of asymmetric uncertainty in quantifying thickness measurement error. This new statistical method is experimentally demonstrated and applied to thickness measurement data obtained in pulse-echo and pitch-catch configurations for various time-of-flight thickness calculation methods. Finally, the plastic behavior of a corroded steel pipe is modeled with analytical and finite element methods to generate prognosis information

    Electromagnetic wave scattering from rough layered interfaces: analysis with the small perturbation method and the small slope approximation

    No full text
    International audienceWe propose a theoretical study on the electromagnetic wave scattering from layered structures with an arbitrary number of rough interfaces by using the small perturbation method and the small slope approximation. The interfaces are characterized by Gaussian height distributions with zero mean values and Gaussian correlation functions. They can be correlated or not. The electromagnetic field in each medium is represented by a Rayleigh expansion and a perturbation method is used for solving the boundary value problem and determining the first-order scattering amplitudes by recurrence relations. The scattering amplitude under the first-order small slope approximation are deduced from results derived from the first-order small perturbation method. Comparison between these two analytical models and a numerical method based on the combination of scattering matrices is presented

    Passive Microwave Components and Antennas

    Get PDF
    corecore