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Abstract

Promising applications of wireless sensor networks (WSNs) and mobile ad hoc net-

works (MANETs) have stimulated growing interest to model and optimize their per-

formance in various environments. In most of these applications, nodes operate at

the ground level; however, near-ground channel models are scarce. In this research, a

new computationally tractable path loss model is proposed for WSNs working above

a dielectric rough terrain. Principles of the Fresnel zones are exploited to split the

proposed path loss model into three segments. The distances that define the edges of

each segment are derived theoretically. The effective reflection coefficients used in the

proposed model include the effect of higher order surface waves and are applicable

to grazing propagation when the surface roughness is less than a wavelength. Path

loss predictions offered by the proposed model are consistent with the measurement

results in rural and urban areas reported by independent researchers. Moreover, it is

verified that by adding an empirically modeled foliage loss to the proposed model, it

is possible to accurately evaluate the near-ground propagation in a foliage environ-

ment. Next, the proposed model is used to examine the influence of communication

and link parameters on coverage range and network connectivity.

In view of exponential growth in data traffic demand, the wireless communications

industry has aimed to increase the capacity of existing networks by 1000 times over

xxi



the next 20 years. A combination of extreme cell densification, more bandwidth,

and higher spectral efficiency is needed to support the data traffic requirements for

5G cellular communications. In this research, the improvements achieved by using

three major 5G enabling technologies (i.e., small cells, millimeter-wave spectrum,

and massive MIMO) in rural and urban environments are investigated. This work

develops SPM and KA-based ray models to investigate the impact of geometrical

parameters such as the TRx range and height, soil physical and electrical properties

such as roughness, textural composition, and moisture content. In addition, the

impact of antenna parameters such as polarization and radiation pattern on terrain-

based MU-MIMO channel characteristic parameters such as received power, power

delay and angular profiles, RMS delay and angular spread, coherence bandwidth, and

coherence distance are examined.

Moreover, Integrating Kirchhoff approximation (KA) and a ray-tracing (RT) algo-

rithm, a new directional 3D channel model is developed for urban millimeter-wave

(mmW) small cells. Path-loss, spatial correlation, coverage distance, and coherence

length for line-of-sight (LOS), obstructed LOS (OLOS), and non-LOS (NLOS) sce-

narios are studied in urban areas. Exploiting physical optics (PO) and geometric

optics (GO) solutions, closed form expressions for spatial correlation are derived. Co-

herence length is calculated for horizontal and vertical linear arrays as well as planar

2D arrays. It is deduced that LOS availability, frequency, and surface roughness scale

highly impact spatial diversity.

xxii



Chapter 1

Introduction

1.1 Motivation

Multiple-Input Multiple-Output (MIMO) communication systems exploit antenna ar-

rays at both the transmitter and receiver to offer parallel sub-channels to enhance

the system capacity and quality of service (QoS) without requiring additional band-

width or carrier power (see Figure 1.1) [1]-[3]. Nevertheless, realistic MIMO channels

suffer from significant degradation of diversity gain and MIMO capacity due to the

spatial correlation between the signals at different receiving antennas [4], [5]. The

performance of adaptation techniques such as power allocation and antenna selection

algorithms are also influenced by the spatial properties of the multipath channel.
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Figure 1.1: Schematic representation of a MIMO channel.

Spatial correlation is a measure of the similarity of signals at different antennas and

it is a function of the spacing between antenna elements, radiation patterns, mu-

tual coupling, array geometry, angular energy distribution of incoming waves, and

the frequency of operation [6]-[9]. Lower correlation coefficients are highly desired to

improve the performance of multiple antenna systems. In order to achieve a large

diversity order, both base station (BS) and mobile station (MS) antenna elements

should be separated sufficiently. There are practical limitations for accommodating

more antenna elements in small portable devices, while multiple antennas can be

readily implemented at the BS. For mobile terminals, ignoring the mutual coupling,

antenna spacing of about λ/2 is suggested, as they are usually surrounded by scat-

terers providing a rich multipath environment. For elevated base stations, however,

an inter-element separation of more than 10λ may be required to maintain a similar

correlation coefficient [10]-[12].

In a scattering environment, several waves arrive at the elements of an antenna array

2



through different angles with different phases which reduces the correlation of signals

received at antenna elements. In general, in order to have highly decorrelated signals

at two antenna elements, we need to maintain a large inter-element spacing compared

to the channel coherence distance. In addition, higher spacing reduces the mutual

coupling [1], [13]. The correlation across antenna elements can be analytically calcu-

lated assuming a certain angle of arrival (AoA) distribution for the incoming waves

at the elements of the multiple antenna system. Derivation of these statistical models

is fairly simple, but to gain a physical insight into the propagation characteristics of

a realistic environment, it is imperative to develop a geometry-based spatial MIMO

channel model [14]-[17].

Surface roughness generates incoherent scattering, a.k.a. diffuse scattering, which

results in correlation across spatially distributed antenna elements in a MIMO sys-

tem. In-depth investigation into diffuse scattering effects on communication systems

operating over a rough terrain is crucial to characterize a wireless channel [18]. Elec-

tromagnetic scattering models are divided into three categories that are empirical,

numerical and analytical. Empirical solutions are based on measurement results and,

hence, are site-specific and inflexible and do not provide an understanding of the var-

ious scattering mechanisms. In addition, development of a measurement campaign

can be very costly. Numerical solvers can be categorized as frequency domain, such

as method of moments (MoM), and time domain, e.g., finite difference time domain

(FDTD) method. These techniques do not rely on simplifying assumptions and can

3



provide reliable results for any random roughness distribution and scale. However,

the insurmountable computational burden of realistic scattering problems limits their

usage to relatively small computational domains. Analytical solutions offer fast ap-

proximate results using certain simplifying assumptions. These powerful methods can

provide physical insight into the scattering mechanisms with much lower computa-

tional cost and can be readily integrated with ray tracing algorithms to solve large

three dimensional scattering problems [19]-[22].

Ray-tracing routines are used extensively in wave propagation modeling in outdoor

and indoor environments. Surface roughness results in the scattering of the energy

into the coherent and incoherent components. The coherent component is the mean

value of the scattered energy while the incoherent component is the fluctuation around

this mean value [23], [24]. To include the effects of the diffuse scattering compo-

nent, a suitable scattering model should be implemented into the ray tracing routine.

Kirchhoff approximation (KA) and SPM are the oldest and most common analytical

treatments in scattering from random rough surfaces that address different scattering

regimes. KA does not consider the curvature effects; hence, it is only applicable to

smoothly undulating surfaces and it is only valid for surfaces with a large correlation

length [25]. SPM is a low frequency approximation to the electromagnetic scattering

from rough surfaces. SPM performs well for small roughness and slopes [25]-[29].

Because of the presence of scatterers in the environment, multipath propagation is

4



Figure 1.2: Delay spread in a multipath channel.

(a) (b)

Figure 1.3: Frequency flat versus frequency selective channels.

inherent in realistic radio channels. Multipath not only decorrelates the signals at var-

ious receivers, but also induces delay spread which results in frequency-selective fading

(see Figure 1.2 and Figure 1.3). Delay spread determines the maximum distortion-free

data rates that can be transmitted via a wireless channel. Another critical parame-

ter that is inversely proportional to delay spread is called the coherence bandwidth

which quantifies the frequency variations of the channel [1]. Therefore, additional

parameters such as delay spread and coherence bandwidth are required to describe

the wireless channel.
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Figure 1.4: Near-ground sensor networks have many applications such as
environmental monitoring, planetary explorations, disaster relief operations,
and battlefield surveillance.

1.2 Channel modeling for near-ground wireless

sensor networks

Wireless sensor networks (WSNs) have found a wide variety of applications in envi-

ronmental, security, and infrastructure monitoring as well as location-based services

(see Figure 1.4) [30]. In most of these emerging applications, sensor nodes work at or

slightly above the ground level. However, there is a lack of accurate and computation-

ally efficient radio models tailored for near-ground communications. In most available

channel models antennas are assumed to be far above the ground [31]. Near-ground

models proposed in the literature are few and they are mainly based on measurement

6



Figure 1.5: Impact of wireless channel modeling on wireless radio design.

campaigns that offer limited simulation scalability and are only accurate for certain

environments [32-34].

As shown in Figure 1.5, channel parameters are vital for the design of wireless systems

in different near ground WSN and localization applications. In sensor network appli-

cations, the height of the antennas above ground is usually low and it may approach

zero. We call these situations, positive height or H+. In some scenarios, ground

laying antennas might be used where the antenna height is zero and it is represented

by H0. In some conditions, a wireless device and accordingly its antenna might be

(slightly) buried under the ground, water, ice or snow. Thus, the antenna height

might be slightly negative which we refer to as H−.

In this research, a new computationally tractable path loss model is proposed for

WSNs working above a dielectric rough terrain. Principles of the Fresnel zones are

exploited to split the proposed path loss model into three segments. The distances

7



that define the edges of each segment are derived theoretically. The effective reflection

coefficients used in the proposed model include the effect of higher order surface waves

and are applicable to grazing propagation when the surface roughness is less than a

wavelength. Path loss predictions offered by the proposed model are consistent with

the measurement results in rural and urban areas reported by independent researchers.

Moreover, it is verified that by adding an empirically modeled foliage loss to the

proposed model, it is possible to accurately evaluate the near-ground propagation in

a foliage environment. Next, the proposed model is used to examine the influence of

communication and link parameters on coverage range and network connectivity.

1.3 Channel modeling for fifth generation (5G)

cellular networks

Exponentially growing demand for higher wireless data throughput motivates explor-

ing new technologies and investigating higher frequency spectrum [35]. Modulation

techniques and channel coding are exploited to enhance spectral efficiency up to the

Shannon limit. However, by exploiting higher carrier frequencies, higher data rates

and service quality can be achieved [36]. Moreover, reducing access point coverage

areas shortens the average distance between the base station and the device and im-

proves the spatial frequency reuse. Hence, deployment of wide scale small cell access
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points is another prevailing trend to improve the area spectral efficiency as well as

energy efficiency [37]. Millimeter wave (mmW) frequencies between 30 GHz and 300

GHz have been proposed for outdoor small cells [38]. These frequencies provide much

greater spectrum allocations and enable the placement of a large number of antenna

elements in small form factors [37].

Massive MIMO, aka Multiuser MIMO (MU-MIMO), is a promising technology that

uses a large excess of base station (BS) antennas to serve several user terminals in

parallel in the same time-frequency resource. When MIMO channel matrix entries are

sufficiently independent, multiple spatial dimensions become accessible for signaling,

which offers capacity and multiplexing gain. However, to achieve such a decorre-

lation, large inter-element spacing and a rich scattering environment are required.

MU-MIMO pulls together the distributed antennas at the user terminals to enjoy

the advantages of MIMO in a much larger scale, even under difficult propagation

conditions. Hence, MU-MIMO is an ideal candidate 5G technology for highway and

rural macrocell deployments where there is limited infrastructure and unfavorable

propagation conditions. MU-MIMO can drastically increase the capacity by aggres-

sive spatial multiplexing. It can also increase the energy efficiency by several orders

of magnitude by concentrating power into small regions in space via beamforming.

Such high energy efficiency makes it possible to power the base stations using solar

or wind energy in areas where electricity grids are unavailable. The maximum num-

ber of orthogonal pilot sequences is proportional to coherence time and bandwidth.
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Fortunately, microwave MU-MIMO channels in open and rural environments exhibit

high temporal stability and large coherence bandwidth, which increases the number

of available orthogonal pilots and reduces the sounding process overhead.

This work develops SPM and KA-based ray models to investigate the impact of ge-

ometrical parameters such as the TRx range and height, soil physical and electrical

properties such as roughness, textural composition, and moisture content. More-

over, the impact of antenna parameters such as polarization and radiation pattern on

terrain-based MU-MIMO channel characteristic parameters such as received power,

power delay and angular profiles, RMS delay and angular spread, coherence band-

width, and coherence distance are examined. In this study, random terrain roughness

is assumed Gaussian with an exponential correlation function. The proposed ray

models enable us to study the impact of soil textural composition in terms of sand,

silt, and clay fractions and soil water content by adjusting the terrain dielectric con-

stant. Different types of soil are considered and it is realized that the soil particle

fractions and, more importantly, its volumetric moisture content can make a notable

difference on the electrical properties of the terrain and, hence, the scattered power.

Moreover, Integrating Kirchhoff approximation (KA) and a ray-tracing (RT) algo-

rithm, a new directional 3D channel model is developed for urban millimeter-wave

(mmW) small cells. Path-loss, spatial correlation, coverage distance, and coherence
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length for line-of-sight (LOS), obstructed LOS (OLOS), and non-LOS (NLOS) sce-

narios are studied in urban areas. Exploiting physical optics (PO) and geometric

optics (GO) solutions, closed form expressions for spatial correlation are derived. Co-

herence length is calculated for horizontal and vertical linear arrays as well as planar

2D arrays. It is deduced that LOS availability, frequency, and surface roughness scale

highly impact spatial diversity. In addition, using antenna arrays of moderate gain at

both sides of the link, even under NLOS conditions, a typical urban cell size of 200m

is achievable.

1.4 Overview of dissertation

A versatile near-ground field prediction model is proposed in chapter 2 to facilitate

accurate WSN simulations. Path loss is split into three segments using the principles

of the Fresnel zones. The distances that define the edges of each segment are derived

theoretically. The model is validated against several experimental data sets obtained

in different environments. It is observed that the proposed model has higher accuracy

compared to existing near-ground analytical propagation models. This improvement

is due to careful assessment of the impact of first Fresnel zone obstruction, terrain

irregularities and dielectric properties on the direct, specularly reflected and higher

order waves. Effects of antenna height, frequency of operation, polarization and
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terrain electrical and geometrical properties on the range and connectivity of low-

altitude WSNs are studied through Monte Carlo simulations.

In chapter 3, small perturbation method (SPM) and Kirchhoff approximation (KA)

are incorporated into ray-tracing (RT) routines to model multiuser multi-input multi-

output (MU-MIMO) channels formed on a rough dielectric terrain. The effect of sur-

face roughness and correlation length, solid soil fractions, moisture content, link range,

antenna height, polarization, radiation pattern, and carrier frequency are examined

on received power, power delay and angular profiles, root mean square (RMS) delay

and angular spread, coherence bandwidth, and coherence distance. Quantitative and

qualitative analyses reveal that antenna directionality and terrain undulation and

textural composition have significant impacts on the received signal power and chan-

nel multipath parameters and, hence, the performance of MU-MIMO terrain-based

communication systems.

In chapter 4, integrating Kirchhoff approximation (KA) and a ray-tracing (RT) algo-

rithm, a new directional 3D channel model for urban millimeter-wave (mmW) small

cells is developed. Path-loss, spatial correlation, coverage distance, and coherence

length for line-of-sight (LOS), obstructed LOS (OLOS), and non-LOS (NLOS) sce-

narios are studied in urban areas. Exploiting physical optics (PO) and geometric

optics (GO) solutions, closed form expressions for spatial correlation are derived. It

is deduced that LOS availability, frequency, and surface roughness scale highly impact

12



spatial diversity. In addition, using antenna arrays of moderate gain at both sides of

the link, even under NLOS conditions, a typical urban cell size of 200m is achievable.

Chapter 5 concludes the dissertation and offers possible future work.
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Chapter 2

Near-Ground Channel Modeling

for Wireless Sensor Networks

2.1 Introduction

Wireless sensor networks (WSNs) have found a wide variety of applications in envi-

ronmental, security, and infrastructure monitoring as well as location-based services.

In most of these emerging applications, sensor nodes work at or slightly above the

ground level [39]. However, there is a lack of accurate and computationally efficient

radio models tailored for near-ground communications. In most available channel

models antennas are assumed to be far above the ground [40], [41]. There are few
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near-ground models proposed in the literature that are mainly based on measurement

campaigns. These models offer limited simulation scalability and are only accurate for

certain environments [31], [34], [41]-[48]. In this study, a versatile theoretical model

is developed to predict the feasible transceiver (TRx) range and node connectivity

for WSNs deployed for diverse applications. The applicability of the proposed model

is verified by comparing the results with the near-ground measurements carried out

by independent researchers in rural, forested and urban settings.

Promising applications of WSNs and mobile ad hoc networks (MANETs) have stim-

ulated growing interest to model and optimize their performance in various environ-

ments [31], [49]. Based on the measurement results reported by several researchers,

it is known that lowering the antennas altitude significantly decreases the signal

strength, hence, reducing the system range. This effect is addressed in [31] by propos-

ing a two-slope log-normal path loss model for a WSN at 868 MHz in an open area.

In [42], the impact of foliage on near-ground radiowave propagation is studied for bat-

tlefield sensor networks operating at 300 MHz and 1900 MHz. Measurement results

for ground-based UHF band communicators in urban terrain are reported in [43] for

both line-of-sight (LOS) and non-line-of-sight (NLOS) links. Numerical solvers are

prescribed in [44] and [45] to characterize near-ground long range propagation but

their computational complexity limits the number of nodes in the simulated network.

In [46], a simple mathematical path loss model for near-ground links is introduced.

Nonetheless, a flat perfectly conducting ground is assumed in the derivation of the
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model which overlooks the significant impact of terrain roughness and electrical prop-

erties on the channel transfer characteristics. In addition, the break point distance

after which, according to the two-ray propagation model, the path loss increases at

the rate of 40dB per decade is set too far which results in underestimation of the path

loss at larger distances.

According to the plane-earth model, at small range, strong oscillations take place

around the direct ray level. However, the median power falloff rate obtained through

regression fits is roughly the same as in free space and the total loss can be approx-

imated by the free space loss [50]. The distance where the last maximum in the

received wave pattern occurs is called the break distance, dB, that is a function of an-

tenna heights and operating frequency. At this distance, the first Fresnel zone touches

the ground and the direct and ground-reflected waves, collectively called the space

waves, only combine destructively beyond this range. Owing to destructive interfer-

ence between the space waves, the power falloff rate increases from 20 dB/decade

before dB to 40 dB/decade after it. At almost three times the break distance, we

will reach the critical distance, dC . This is the distance where almost 57% of the

first Fresnel zone is still clear of obstruction. If we move farther than the critical

distance, ground turns into a significant obstruction for the transmitted energy and

diffraction loss should also be included in the total loss. As explained in [51], using

the two-ray analysis, we can make out another distinct region. At distances smaller

than the transmitter height (d < ht), space waves only combine constructively and

17



the received signal strength increases slowly. However, this region does not have any

practical importance for near-ground WSNs and will be neglected in this work.

Plane-earth propagation model offers a simple but useful path loss model which prop-

erly predicts the rise of the falloff rate at the break distance. However, in order to

arrive at a more accurate model suitable for sensor network design, we shall also

consider the geometrical and electrical properties of terrain. For propagation above

an irregular terrain, the physical statistical properties of the ground surface have a

considerable impact on the statistics of the received signal by decreasing the ground

reflectivity and generating local surface waves. For rough surfaces, an equivalent

reflection coefficient can be derived by multiplying the plane surface reflection coef-

ficient by a scattering loss factor to account for the reduction in the reflected signal

amplitude. Two commonly used approximations for the scattering loss factor are

derived by Ament and Boithias [52], [53].

In WSNs, due to low heights of the sensor nodes, propagation often approaches the

grazing condition. In this scenario, according to the Rayleigh criterion, the surface

appears electrically smooth and the space waves cancel each other, leaving only the

higher order surface waves. It is shown in [54] that as long as the TRx altitude is low

in terms of the wavelength, these surface waves are dominant regardless of frequency

of operation. Nevertheless, the traditional loss factors found by Ament and Boithias

disregard the effects of terrain self-shadowing and surface waves which render them
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inadequate for near-ground propagation.

In this chapter, a new computationally tractable path loss model is proposed for

WSNs working above a dielectric rough terrain. Principles of the Fresnel zones are

exploited to split the proposed path loss model into three segments. The distances

that define the edges of each segment are derived theoretically. In the first region, the

line-of-sight ray dominates the signal transmission while in the second region both the

direct and ground-reflected signals impact the received energy. In the third region,

diffraction loss caused by insufficient path clearance is also added to the reference

loss. The effective reflection coefficients used in the proposed model include the effect

of higher order surface waves and are founded on the perturbation approach applied

to a volumetric integral equation and are applicable to grazing propagation when the

surface roughness is less than a wavelength [55], [56]. Path loss predictions offered by

the proposed model are consistent with the measurement results in rural and urban

areas reported by independent researchers. Moreover, it is verified that by adding an

empirically modeled foliage loss to the proposed model, it is possible to accurately

evaluate the near-ground propagation in a foliage environment. Finally, the proposed

model is used to examine the influence of communication and link parameters on

coverage range and network connectivity.
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Figure 2.1: Family of Fresnel zones. An imaginary plane perpendicular to
the LOS cuts the successive Fresnel ellipsoids in concentric circles.

2.2 Derivation of the break points

The locus of all points having a constant value of excess path length, ∆d, as compared

to the direct path, forms an ellipsoid of revolution with the two terminals at the foci

and the LOS path as the axis of revolution. A family of such ellipsoids in which

∆d varies in integer multiples of half-wavelengths, nλ2 with n an integer and λ the

wavelength, is called the Fresnel zones [50]. As shown in Figure 2.1, the intersection

of these Fresnel ellipsoids with an imaginary plane perpendicular to the LOS path

constructs a family of concentric circles with radii

rn =

√
nλd1d2

d1 + d2

(2.1)

where d1 and d2 are the distances of the plane from the transmitter and the receiver,

respectively [50]. Equation (2.1) is valid if d1, d2 � rn. The radii of the circles depend
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Figure 2.2: Schematic representation of the first Fresnel zone and the
diffraction zone in a radio link as the distance between two terminals in-
creases. (a) First Fresnel zone is clear of obstructions; (b) First Fresnel zone
touches the ground surface; (c) Diffraction zone is tangent to the ground
surface.

on the location of the plane and reach their maximum of rn,max =
√
nλd/2 when the

plane is midway between the terminals where d = d1 + d2.

Most of the radio energy is concentrated in the first Fresnel zone; hence, to prevent

the blockage of energy, we site the antennas such that the first Fresnel zone is clear of

obstacles. As sketched in Figure 2.2, when one terminal moves away from the other,

the radius of the first Fresnel zone increases until it touches the earth surface at the

break distance, dB. dB divides the LOS propagation path into two distinct near and

far regions. In the near region, mean signal attenuation is equivalent to free space
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Figure 2.3: Path loss versus terminal separation for free space model and
two-ray model. Depiction of the break distance and dual-slope piece-wise
linear regression fit in a microcellular propagation scenario assuming a flat
perfectly conducting ground plane.

wavefront spreading loss, whereas beyond dB, obstruction of the first Fresnel zone

also contributes to attenuation loss which results in a steeper falloff rate of the signal

strength.

Figure 2.3 illustrates the concept of the near/far regions using the two ray model.

In the near region, regression fits about the oscillatory pattern of the received signal

result in a path loss exponent of two which corresponds to free space loss. However,

in the far region, destructive interference of the direct and reflected signals leads to a

path loss exponent of four. Break distance indicates the position where the gradual

transition from square law to fourth law begins. This phenomenon serves as the basis

for the well-known dual-slope piecewise linear path loss model for microcellular LOS

topographies.

Specularly reflected ray travels the shortest path among all the rays scattered by
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the ground for any given transmitter and receiver heights and separation. Therefore,

when the range increases, any ellipsoid with the transmitter and receiver as the foci

first touches the ground on the specular point. Referring to Figure 2.2(b), at the

break distance, the first Fresnel zone is tangent to the ground and the excess path

length equals

∆d = lr − ld =
λ

2
(2.2a)

ld =

√
d2
B + (ht − hr)2 (2.2b)

lr =

√
d2
B + (ht + hr)

2 (2.2c)

in which ld and lr are the direct and reflected path lengths, respectively, and ht and

hr are the transmitter and receiver heights, respectively. If we multiply both sides of

(2.2a) by (ld + lr) and substitute (2.2b) and (2.2c) into the resulting equation, after

simple algebraic manipulations we will find

ld + lr =
8hthr
λ

. (2.3)

Adding (2.2a) and (2.3), we can find the break distance as

dB =

√(
4hthr
λ

+
λ

4

)2

− (ht + hr)
2. (2.4)
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Alternatively, subtracting (2.2a) from (2.3), we can write

dB =

√(
4hthr
λ
− λ

4

)2

− (ht − hr)2. (2.5)

We can rewrite (2.5) as

dB =
4hthr
λ

√
1− λ2 (h2

t + h2
r)

(4)2h2
th

2
r

+

(
λ2

(4)2hthr

)2

≈ 4hthr
λ

. (2.6)

The approximate value in (2.6) is valid if ht, hr � λ and is famously known as the

break distance in the microcellular propagation scenario. However, in near-ground

sensor network channel modeling, this approximation is no longer accurate as the

condition does not hold. Hence, in this work, the exact formula in (2.5) will be used

for the break distance. Using the notations in Figure 2.1 and Figure 2.2, we can write

p1 =
√
d2

1 + h2 ≈ d1 +
h2

2d1

, h� d1 (2.7a)

p2 =
√
d2

2 + h2 ≈ d2 +
h2

2d2

, h� d2 (2.7b)

in which d1 and d2 are the horizontal distances between the transmitter-obstacle and

obstacle-receiver, respectively. h is the obstruction height which is always a negative
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value in LOS topographies and can be expressed as

h = −
[
hr + (ht − hr)

d2

d

]
, 0 ≤ d2 ≤ d (2.8)

where d = d1 + d2 is the horizontal distance between the transmitter and receiver.

As mentioned earlier, the point where the ellipsoid touches the surface of the earth is

the specular reflection point which can be used to find d2 and d in a more convenient

form given by

d2 =

(
hr

ht + hr

)
d (2.9a)

h =
−2hthr
ht + hr

. (2.9b)

Now, we can write

∆d = lr − ld = (p1 + p2)− (d1 + d2) ≈ h2

2

(
d

d1d2

)
. (2.10)

We can express the phase difference between the LOS and the reflected paths as

∆ϕ =
2π∆d

λ
=
π

2
υ2. (2.11)

ν is the dimensionless Fresnel-Kirchhoff diffraction parameter that corresponds to [51]

υ = h

√
2d

λd1d2

=
h

rn

√
2n. (2.12)

25



h/rn is called the Fresnel zone clearance. According to the Fresnel knife-edge diffrac-

tion model, when ν is approximately -0.8 or less, there is sufficient LOS path clearance

and the diffraction loss is minimal. Substituting ν=-0.8 in (2.12), it is found that

h=-0.566 which implies that as long as almost 57% of the first Fresnel zone is kept

clear of obstacles, diffraction loss can be neglected. To find the critical distance, dC ,

we first substitute ν=-0.8 in (2.11) and find ∆d=0.16 λ is the path lengths difference

at the critical distance. Therefore, using the same approach as was employed to derive

the break distance,

lr − ld = ∆d = 0.16λ (2.13a)

lr + ld =
25hthr
λ

. (2.13b)

Adding (2.13a) and (2.13b), we can find the critical distance as

dC =

√(
12.5hthr

λ
+

λ

12.5

)2

− (ht + hr)
2. (2.14)

Alternatively, subtracting (2.13a) from (2.13b), we can write

dC =

√(
12.5hthr

λ
− λ

12.5

)2

− (ht − hr)2. (2.15)
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We can rewrite (2.15) as

dC =
12.5hthr

λ

√
1− λ2 (h2

t + h2
r)

(12.5)2h2
th

2
r

+

(
λ2

(12.5)2hthr

)2

≈ 12.5hthr
λ

. (2.16)

However, the approximate value in (2.16) is valid as long as ht, hr � λ that does not

apply to near-ground WSN scenario. Therefore, in this study, the exact formula in

(2.15) will be used for the critical distance. As witnessed in [57], dual-slope piece-

wise linear path loss model based on Fresnel zone clearance can predict the LOS

microcellular propagation loss as accurately as a minimum mean square error (MMSE)

regression fit on the measured data in open, urban and suburban areas. This work will

inspect the accuracy and adequacy of such models for near-ground sensor networks.

2.3 Near-ground path loss model

2.3.1 Short-range communication

As shown in Figure 2.2(a), when d < dB, the first Fresnel zone is clear of obstacles.

In this region, reflected field from the ground interferes with the direct signal causing

the signal level to oscillate widely. However, the attenuation of the median received

signal with distance is almost the same as that of free space. Hence, attenuation is

entirely due to the spreading of wavefront which corresponds to the free-space path
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loss,

Lfs = (2kd)2 (2.17)

in which k = ω
√
µε0 = 2π/λ is the free space wavenumber, ω is the angular frequency,

ε0 is the free space permittivity, µ is the permeability, and λ is the wavelength in free

space.

2.3.2 Medium-range communication

As shown in Figure 2.2(b), when d > dB, part of the energy in the first Fresnel

zone is intercepted by the ground. Therefore, attenuation results from both spherical

wavefront spreading and obstruction of the first Fresnel zone which leads to a more

pronounced decay rate. Plane-earth propagation model offers a good prediction of

signal attenuation in this region; however, assuming a flat perfectly conducting ground

leads to an overestimation of the destructive interference between the direct and the

geometrical-optics (GO) reflection fields which gives an imprecisely high power falloff

rate. As found in [58], disregarding the electrical properties of the terrain can lead to

grave errors as large as 10 dB which is unacceptable in designing energy-constrained

wireless sensor networks. Moreover, according to [56], including the physical statistics

of the terrain roughness in the model may attenuate the ground wave by up to 6 dB

for realistic ground surfaces.
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To investigate the impact of roughness statistics on the signal transmission, the Fres-

nel reflection coefficient of a flat surface is modified using a correction factor to create

an effective reflection coefficient. Traditional correction factors such as those proposed

by Ament and Boithias [56] are simple to implement and are sufficiently accurate for

remote sensing and microcellular applications. However, for sensor network design,

they have fundamental shortcomings which stem from the near-grazing propagation

condition. At low grazing angles, in conformity with the Rayleigh criterion, since the

incident waves are almost parallel to the surface of the plane, the direct and ground

reflected components cancel each other even for larger roughness heights. Therefore,

the surface waves which are smaller in magnitude and are highly localized to the

ground boundary become the dominant propagation mechanism. However, surface

waves are not considered in the conventional correction factors. They also overlook

the impacts of polarization of the incident wave and roughness correlation length.

The effective reflection coefficients used in our model address the impacts of surface

waves, incident polarization, and surface correlation distance and are founded on the

perturbation theory applied to a volumetric integral equation originally prescribed in

[55], [56]. They are valid for low grazing propagation as far as the surface roughness

height is less than a wavelength. The two-ray model over rough dielectric terrain is

given by

Ltr = Lfs.Lex (2.18)
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in which Lfs is the free-space attenuation and Lex is the excess loss factor due to

obstruction of the Fresnel zone which corresponds to

Lex =

∣∣∣∣1 +
ld
lr
Reff
α e(−j∆ϕ)

∣∣∣∣2 (2.19)

where ld, lr, and ∆φ can be calculated using (2.2b), (2.2c), and (2.11), respectively.

Reff
α is the effective reflection coefficient where α = v, h denotes the vertical or hori-

zontal incident polarization, respectively. Then,

Reff
v = Rv +

σ2

2

(
k2

1 − k2
) (
R2
v − 1

)
−σ2 k2

ix (k2
1 − k2)

k2 (ε1kiz + k1zi)
[(Rv − 1) kiz − (Rv + 1) k1zi]

−σ2 (k2
1 − k2)

2

2πk4 (ε1kiz + k1zi)
[(Rv − 1) kizAx (kx) + (Rv + 1) kixAz (kx)] (2.20a)

Reff
h = Rh −

σ2

2

(
k2

1 − k2
) (
R2
h − 1

)
− σ2 (k2

1 − k2)
2

2π (kiz + k1zi)
(Rh + 1)Ay (kx) (2.20b)

where

Ax (kx) =

∫ ∞
−∞

k′1z (k1zik
′
z + kixk

′
x)

(ε1k′z + k′1z)
W (k′x − kix) dk′x (2.21a)

Ay (kx) =

∫ ∞
−∞

1

k′z + k′1z
W (k′x − kix) dk′x (2.21b)

Az (kx) =

∫ ∞
−∞

k′x (k1zik
′
z + kixk

′
x)

(ε1k′zk′1z)
W (k′x − kix) dk′x. (2.21c)

k is the wavenumber in the air and k1 is the wavenumber in the dielectric. kiu/ku
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stands for the wavenumber components in the incident (scattered) direction where

u = x, z. We have kx = k sin θ and kz = k cos θ in which θ is the elevation angle. The

rough surface is characterized by a random height function z = f(x), in which f(x)

is a random function with zero mean, i.e., 〈f(x)〉 = 0. Statistics of the roughness

are included in the model using surface RMS height, σ, and roughness correlation

length, L, which is incorporated in the Gaussian spectral density function W (kx) =

√
πLe(−k

2
xL

2/4 ). Electrical properties of the terrain are taken into account using the

effective permittivity, ε1, of the underlying dielectric layer. Integrals in (2.21) are fast

converging and are evaluated numerically. Most of their contribution comes from a

narrow angular range centered on the specular direction (k = kix), which expands by

increasing the roughness height. Rv and Rh are the Fresnel reflection coefficients of

a flat surface for vertical and horizontal polarizations, respectively,

Rv =
k2

1kiz − k2k1zi

k2
1kiz + k2k1zi

(2.22a)

Rh =
kiz − k1zi

kiz + k1zi

(2.22b)

At this point, it is worth noting that a 1D surface model is adopted to derive the effec-

tive reflection coefficients. A 1D rough surface refers to a surface with protuberance

along one horizontal coordinate and constant profile along the other, whereas a 2D

rough surface has variations along both horizontal coordinates. As verified throughout

our simulations, assuming a 1D rough surface in the construction of a path loss model
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leads to tremendous computational savings while being perfectly adequate for the fol-

lowing reasons: (1) Surfaces under study are assumed to be geometrically isotropic.

Examples of anisotropic surfaces are some wind-driven and cultivated lands; (2) in

a path loss model, we are only interested in scattering effects in the plane of inci-

dence. Scattering outside the plane of incidence cannot be accurately predicted using

a 1D model unless the roughness under consideration is truly 1D [59]. On the other

hand, off the plane scattering becomes critical when dealing with 3D spatial channel

characterization; and (3) it is well-known that cross-polarized fields are only created

by 2D surfaces. However, the amplitude of the cross-polarized fields generated by

realistic rough surfaces is generally several orders of magnitude smaller than that of

the co-polarized fields. Hence, cross-polarized components do not serve an important

role in the transmission of energy and can be ignored in the path loss model.

2.3.3 Long-range communication

In cellular communications, cell radii are much smaller than dB to reduce the trans-

mit power and increase the capacity. However, in WSNs, antenna heights are very

low and a significant part of the first Fresnel zone is always occupied by the ground;

therefore, in most applications, the link range by far exceeds dC . For example, at the

frequency of 915 MHZ if we consider the antenna heights are 7 cm then, according

to (2.5) and (2.15), the break distance, dB, is only 2.2 cm and the critical distance,
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dC , is roughly 16 cm. Hence, computing the diffraction loss, that can attenuate the

transmitted signal by up to 6 dB, is integral to WSN channel characterization. Here,

total path attenuation is the sum of the loss due to an ideal knife-edge diffraction

and an additional reference loss that takes account of the diffractor (rough terrain)

parameters such as permittivity and roughness statistics which are discussed in the

previous subsection. The path loss associated with knife-edge diffraction is calcu-

lated by assuming an asymptotically thin diffracting object half-way between the

transmitter and receiver, which corresponds to [50]

Lke =

(
0.5 +

0.877 (ht + hr)√
λd

)2

(2.23)

Finally, the proposed near-ground WSN path loss model in decibel is summarized as

LNG (dB) =



Lfs if d ≤ dB

Lfs + Lex if dB ≤ d ≤ dC

Lfs + Lex + Lke if d ≥ dC

(2.24)
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where

Lfs (dB) = −27.56 + 20log10(f) + 20log10(d) (2.25a)

Lex(dB) = 20log10

∣∣∣∣1 +
ld
lr
Reff
α e(−j∆ϕ)

∣∣∣∣ (2.25b)

Lke(dB) = 20log10

(
0.5 +

0.877 (ht + hr)√
λd

)
(2.25c)

and dB and dC have been introduced in (2.4) and (2.14), respectively. Here, f is in

MHz and d, ht, hr, and λ are all in meters.

2.3.4 Added features in urban settings

LOS urban propagation, for instance an in urban canyon, can be well predicted using

the proposed model because the canyon only rises the spatial fading but the average

trend do not change noticeably [43]. However, in NLOS scenario, an additional term

in the model is required to account for the steeper falloff rate. Here, to include the

excess NLOS loss, we exploit an empirical formula originally derived for ground-based

communicators in an L-shaped urban path at UHF [43],

LNLOS(dB) = 8 + 10nNLOSlog10

d

dL
(2.26)
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in which nNLOS is the NLOS path loss factor given by

nNLOS =
[
4.27× 10−5 (f − 225)− 8.22× 10−4 (W − 17) + 0.033

]
dL + 2.7. (2.27)

Here, f is the frequency in MHz, W is the width of the NLOS route in meters, and

dL is the length of the LOS route in meters prior to turning into the NLOS route.

As we turn from the LOS street to the NLOS street, a discontinuity in the received

power level occurs which is referred to as the corner loss in [43] and is set to 8 dB

based on averaging the measurement results which is included in (2.26).

2.3.5 Foliage loss

WSNs deployed in wild environments often undergo an excess attenuation due to

signal transmission through a depth of foliage. We shall add an empirically modeled

foliage loss to our model in order to assess its prediction accuracy in forested envi-

ronments. Foliage induced excess loss is generally represented in mathematical form

Lfo(dB) = uf vdwfo, where f is the frequency of operation typically in MHz or GHz and

dfo is the propagation distance through foliage in meters. u, v, and w are numerical

values evaluated using least squared error fitting on the measured data. Table 2.1

summarizes some of the well-known foliage loss models in the literature [34], [60]-[63].
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Table 2.1
Summary of foliage loss models

2.4 Model validation and WSN connectivity anal-

ysis

In this section, prediction ability of the proposed model is verified by comparing it

to the near-ground measurements in open, urban, and forested areas reported by

independent researchers. Next, the influence of terrain electrical and geometrical

properties on the range and connectivity of low-altitude WSNs are discussed.
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2.4.1 Model validation and discussion

Here, the prediction results of our model are validated against available near-earth

measurement campaigns. Many empirical models in the literature are provided with-

out stating the dielectric and roughness properties of the terrain over which the

measurements are performed. In these cases, we consider ε = εr − j60κλ where for

average ground the dielectric constant is εr=15, conductivity is κ=0.005 mhos/m,

σ=1.13 cm is the roughness RMS height, and surface correlation length is L=7.39 cm

[50], [64]. Moreover, transceiver antenna gains are removed from the received power

to find the path loss, whenever necessary.

Figure 2.4(a) compares the proposed model predictions with the LOS stationary mea-

surements at distance of 75 m using monopole antennas working at 300 MHz [42].

Model predictions match the measurements closely. It is noted that path loss is largely

dependent on the terminal heights. Therefore, any model that does not explicitly in-

clude the impact of antennas altitude is ineffective in WSN design. Figure 2.4(a) also

inspects the path loss prediction accuracy of the proposed model in comparison with

the near-ground analytic models reported in the literature. Since our model takes

account of the impact of terrain irregularities and dielectric properties on the GO re-

flection and higher order fields, it achieves remarkably higher accuracy in predicting

the path loss compared to previous analytic models which neglect one or several of
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the aforementioned propagation features.

In Figure 2.4(b), measurements at 868 MHz are carried out in three different quasi-flat

open environments, namely, a ground plain, a yard, and a grass park. λ/4 Monopole

antennas are employed at height of 13 cm [31]. There is a vast disparity between the

measurements especially at long range which are attributed to uneven terrain and

presence of large scatterers in proximity of the measurement setup. Nevertheless, it

is observed that the proposed model together with the model in [48] lie between and

follow the slope of the measured curves along their entire range while the model in

[46] deviates at longer distances.

WSN nodes deployed in urban and suburban settings are generally much closer to

the ground (usually asphalt) than to the building facades which implies that the

break distances formulated in this study apply to LOS urban topographies as well.

Moreover, this model also works for NLOS scenario provided it is supplemented by

the excess loss term in (2.26). Figure 2.5 shows the path loss along an L-shaped

urban route measured using omnidirectional wideband discone antennas at 225 MHz

along with the model predictions [43]. Antennas height is 2 m and the width of the

NLOS route is 17 m. Each result is piecewise linear with three distinct segments that

correspond to a LOS segment, a corner loss segment, and a NLOS segment. Since the

measured LOS data are fitted into a single slope line, it appears that the measured

and predicted results are diverging up to the break distance which does not have a
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(a)

(b)

Figure 2.4: Comparison of the near-ground models predictions with mea-
sured data in open area. (a) Stationary measurements at distance of 75 m at
300 MHz ([42], Figure 12). Plots for ht=0.87 m, ht=1.15 m, and ht=1.55 m
are offset by 30 dB, 20 dB, and 10 dB, respectively, for illustration purposes;
(b) Measurements at 868 MHz recorded in three diverse open environments
([31], Table 1).
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Figure 2.5: Model predictions versus measured path loss along an L-shaped
urban route at 225 MHz ([43], Figures 5-7). Plots for dL=265 m and dL=132
m are offset by 10 dB and 20 dB, respectively, for illustration purposes.

factual basis. It is observed that the LOS path loss, the discontinuity in the signal

level due to corner loss, and the NLOS steeper falloff rate are all predicted with a

reasonable accuracy.

It is very common for wireless sensors to communicate through a depth of foliage.

Several empirical models are proposed to account for the excess loss caused by the

foliage. These models are generally based on experimental data acquired over a

shallow depth of a specific type of vegetation. This suggests that they do not address

the impact of density and texture of foliage as well as the propagation of lateral waves

on the canopy-air interface. However, the latter phenomenon is only dominant at very

large foliage depth which does not apply to WSN usage.

In Figure 2.6, some well-known empirical foliage loss models are added to near-ground
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path loss model to evaluate their performance in low-altitude deployments. In Figure

2.6(a), measurements are recorded using discone antennas in a deciduous forest at

the frequency of 300 MHz. Antennas height is 0.75 m [42]. Another measurement

campaign is conducted in a tropical palm plantation using omnidirectional antennas

at height of 2.15 m [34]. Measurements are taken at the frequencies of 240 MHz and

700 MHz and are depicted in Figure 2.6(b) and Figure 2.6(c), respectively. It is found

that at a short range, predicted values of all the models are in good agreement with

measured data. Nevertheless, Weissburger and ITU-R models predictions diverge

sharply from the measured data as the range in the foliage increases. Predicted path

loss using the FITU-R and LITU-R models match the measured data closely, espe-

cially at the lower antenna height of 0.75 m, which demonstrates their applicability

to WSN design in forested areas.

2.4.2 Connectivity in near-ground WSNs

In this subsection, the near-ground path loss model is used in WSN design by evalu-

ating the maximum transmission range of nodes and studying network connectivity

via Monte Carlo simulations. Sensor motes in our simulations have a maximum

transmission power of 10 dBm and receiver sensitivity of -101 dBm for a maximum

dynamic range of 111 dB that are typical values for popular Mica2 motes [67]. Center

frequency is 915 MHz unless otherwise specified.
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(a)

(b) (c)

Figure 2.6: Measured and predicted path loss in forested areas. (a)
ha=0.75 m, f=300 MHz ([42], Figure 10(a)); (b) ha=2.15 m, f=240 MHz
([34], Figure 4(a)); (c) ha=2.15 m, f=700 MHz ([34], Figure 4(b)).

Maximum link range is found by equating the path loss and the dynamic range of

motes. When path loss exceeds the dynamic range, the communication between

nodes is lost. Evaluation of the coverage range is critical in sensor deployment to

find the optimum node density for which the quality of service (QoS), scalability, and

reliability requirements are met while the cost is minimized.
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In Figure 2.7(a), coverage range is evaluated using different models introduced in

section III, namely, the free-space model, the two-ray model and the near-ground

model. Free-space model gives the unrealistically long coverage range of 4640 m in-

dependent of the terminals height and is not shown on the plot. The antenna height,

ha, is observed to have a prominent role in confining the coverage area and the max-

imum link range increases drastically when the antenna is elevated from the ground

level. Comparing the results from the two-ray and the near-ground models, it is re-

alized that incorporating the diffraction loss can significantly impact the link range,

especially at lower altitudes. Closer to the ground level, antenna polarization also

becomes important and it is seen that vertically-polarized antennas can communicate

over longer distances. According to the plane-earth model, loss has no frequency

dependence when d� ht, hr [49]. However, it is shown in Figure 2.7(b) that lowering

the antenna height undermines the frequency independence. To explain this observa-

tion, we note that in (2.20), with all the geometrical parameters fixed, the amplitude

of higher order waves rise as the wavelength increases; hence, in order to improve

network connectivity, we should lower the operating frequency which increases the

communication range.

Figure 2.7(c) depicts the influence of soil volumetric water content (VWC) on the

communication range. Water content has a major impact on the electrical properties

of soil [68]. Silt loam with 17.16% sand, 63.84% silt, and 19% clay represents the
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(a) (b)

(c)

Figure 2.7: Mote transmission range: (a) versus antennas height using dif-
ferent models; (b) versus antennas height at different frequencies; (c) versus
VWC over flat and rough ground.

terrain dielectric in this simulation and the antenna height is 10 cm. Using the well-

known semi-empirical dielectric mixing model in [69, 70], we find that as the moisture

content changes from 0 to 0.5 cm3/cm3, the dielectric constant of soil changes from

ε=2.39 to ε=33.83-3.24i. This steep increase in the dielectric constant, however, only

slightly alters the Fresnel reflection coefficient at grazing incidence. The amplitude
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of the reflection coefficient will decrease (increase) slowly for vertical (horizontal) po-

larization as VWC increases it will remain very close to -1 which warrants the near

cancellation of the direct and specularly reflected waves. It is perceived that even

slight variation in the reflection coefficient causes a noticeable change in the coverage

radius. Moreover, the plane-earth model tends to overestimate the coverage range

compared to the near-ground model that takes surface irregularities into considera-

tion.

In high-node-count applications such as environmental or security monitoring, a large

number of low-cost autonomous sensors are spatially distributed to cooperatively

monitor certain physical or environmental conditions. Here, mesh connectivity and

the number of neighbors in range per node have a crucial influence on network perfor-

mance, reliability and power conservation. In order to assess the average number of

single-hop neighbors in range (average degree of a node) in the network, Monte Carlo

simulations are used. In each iteration, 100 nodes are randomly distributed in the

two-dimensional plane of 1000 ft×1000 ft (304.8 m×304.8 m) and average number of

neighbors is calculated as the ratio of the total number of links within range to the

number of nodes in the network. In Figure 2.8(a), different loss models are used to

predict the average number of neighbors. Free-space model predicts full mesh con-

nectivity, i.e., each node has 99 single-hop neighbors independent of terminals height.

Vertical polarization yields far better connectivity at lower altitudes in comparison

to horizontal polarization. It is also found that connectivity has high sensitivity to
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(a) (b)

(c)

Figure 2.8: Average number of neighbors for a 100-node network with
uniform topology: (a) versus antennas height using different models; (b)
versus antennas height at different frequencies; (c) versus VWC over flat
and rough ground.

terminal height and almost spans full range as height increases from the ground level

to 0.8 m. Particularly, closer to the ground level, the height effect exacerbates. Fig-

ure 2.8(b) shows the impact of frequency on average number of neighbors. At lower

frequencies, network connectivity is improved. In Figure 2.8(c), we study the effect

of soil VWC on network connectivity. It is noticed that a fluctuating terrain degrades
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network connectivity in contrast with a flat one. An interesting observation is that as

soil moisture content increases, e.g. as a result of precipitation, connectivity enhances

if the antennas are vertically polarized but deteriorates if the antennas are horizon-

tally polarized. However, horizontally polarized antennas are minimally affected by

change in roughness and dielectric properties of the ground.

2.5 Conclusion

An improved computationally feasible near-ground field prediction model is presented

to facilitate highly accurate WSN simulations. The model is validated against pub-

lished measured data in open, urban, and forested areas. It is observed that the

proposed model has higher accuracy compared to existing near-ground analytical

models. The increased precision is due to careful assessment of the impact of first

Fresnel zone obstruction, terrain irregularities, and dielectric properties of the ground

on the LOS, specular reflection and higher order waves. It is realized that the near-

ground model applies to LOS urban topographies as well. Moreover, this model also

works for NLOS urban scenario provided it is supplemented by a proper NLOS ex-

cess loss term. Various empirical foliage loss models are added to near-ground path

loss model and compared to measured data in near-ground foliage environments to

determine which one is more suitable for low-altitude applications.
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The proposed model is also used to evaluate the effects of radio link and terrain

parameters on the transmission range and network connectivity of WSNs. Some

practical implications of this study include: (a) the critical distance is very small

in WSN applications and, therefore, the diffraction loss is integral to WSN channel

characterization; (b) at grazing angles, Fresnel reflection coefficient displays a very

low sensitivity to terrain dielectric constant; (c) provided the geometrical parame-

ters are fixed, higher order waves intensify as the wavelength increases; (d) antenna

height is by far the most influential geometrical parameter to link range and network

connectivity; (e) coverage radius and connectivity are fairly sensitive to the reflection

coefficient when antennas are placed near the ground; (f) terrain roughness degrades

the accessible range and connectivity; (g) lowering the frequency of operation, en-

hances the reachable communication distance and network connectivity; (h) close to

the ground level, vertically polarized antennas outperform their horizontally polarized

counterparts in terms of coverage range and connectivity; (i) precipitation boosts/re-

duces the maximum link range and network connectivity when motes are equipped

with vertically/horizontally polarized antennas.
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Chapter 3

Multiuser MIMO Channel

Characterization over Random

Rough Dielectric Terrain

3.1 Introduction

Effective deployment of wideband wireless technologies such as multi-input multi-

output orthogonal frequency division multiplexing (MIMO-OFDM) systems requires

proper understanding of spatial and temporal characteristics of wireless channels [1],

[71]. The transceivers (TRx) in these systems do not have any information about the
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power, delay, and direction of arrival of each individual path and instead require the

aggregate descriptions of the propagation environment including the received power,

power delay spread (DS) and power angular spread (AS). Angular dispersion has

a major impact on capacity and diversity gain in multi-antenna systems, while it

adversely affects the performance of beamforming techniques [72], [73]. In [74], the

performance of space-frequency coded MIMO-OFDM is quantified as a function of

propagation parameters. The length of cyclic prefix (CP) and fast Fourier transform

(FFT) blocks are directly related to the channel delay spread [75]. In underspread

channels, the size of CP and FFT can be decreased, which reduces latency and peak-

to-average power ratio (PAPR) and increases power and bandwidth efficiency [76]. In

[77], it is illustrated that for a given quality of service (QoS) in an OFDM system, as

the channel delay spread increases, the required transmit power decreases. In addi-

tion, the authors in [78] prove that for most power allocation and scheduling schemes,

OFDM network throughput increases at higher channel delay spread. In [79], a ray

tracing (RT) simulator is utilized in an indoor setting, and it is verified that MIMO

channel spatial dispersion can be well predicted using the angular spread. Moreover,

channel capacity and spatial diversity order of antenna array systems improve by

increasing the angle spread [80]. The study in [71] reveals that larger delay spread

introduces a lower block error rate (BLER) and higher angular spread improves the

BLER performance in a Long-Term Evolution (LTE) system. In [81], wideband chan-

nel measurements in two urban test sites are presented and compared to the results
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of a commercial ray tracer and errors in the prediction of DS and AS are mainly

attributed to limitations in the modeling of surface irregularities.

Multiuser MIMO (MU-MIMO) is a promising technology that uses a large excess

of base station (BS) antennas to serve several user terminals in parallel in the same

time-frequency resource [82]-[88]. When MIMO channel matrix entries are sufficiently

independent, multiple spatial dimensions become accessible for signaling, which of-

fers capacity and multiplexing gain. However, to achieve such a decorrelation, large

inter-element spacing and a rich scattering environment are required [82]. MU-MIMO

pulls together the distributed antennas at the user terminals to enjoy the advantages

of MIMO in a much larger scale, even under difficult propagation conditions [35].

Hence, MU-MIMO is an ideal candidate 5G technology for highway and rural macro-

cell deployments where there is limited infrastructure and unfavorable propagation

conditions. MU-MIMO can drastically increase the capacity by aggressive spatial

multiplexing. It can also increase the energy efficiency by several orders of magnitude

by concentrating power into small regions in space via beamforming [85], [89]. Such

high energy efficiency makes it possible to power the base stations using solar or wind

energy in areas where electricity grids are unavailable [90]. The maximum number

of orthogonal pilot sequences is proportional to coherence time and bandwidth [87].

Fortunately, microwave MU-MIMO channels in open and rural environments exhibit

high temporal stability and large coherence bandwidth, which increases the number
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of available orthogonal pilots and reduces the sounding process overhead. Simula-

tions at the personal communication services (PCS) band (1900 MHz) show that a

billboard-sized base station array can provide 20 Mb/s service to 1000 rural homes

[90]. In [88], a set of over the air experiments were conducted to evaluate the potential

of UHF-band MU-MIMO to equip rural areas with high-speed WiFi over unused TV

bands.

RT models are extensively used for indoor and outdoor propagation modeling [7],

[18], [91], [92]. Conventional ray tracers render path loss well but neglect the diffuse

component, which leads to inaccurate assessment of delay and angular profiles [93].

Rough surfaces diffusely scatter the incident power, which should be accounted for

in channel characterization [18], [91]. Surface roughness has a random nature that

is described using statistical techniques. Various techniques have been proposed to

incorporate the dispersive effect of surface roughness in deterministic propagation

prediction models [7], [18], [24], [27], [73], [94]. Analytical scattering formulations

such as Kirchhoff approximation (KA) and small perturbation method (SPM) are

two attractive options, which are readily implemented in a RT routine and offer fast

approximate solutions under certain simplifying assumptions [25]. These powerful

methods are capable of solving large three dimensional (3D) scattering problems with

minimal computational cost and lend physical insight into the underlying scattering

mechanisms [20], [22], [25], [28]. KA performs well for smoothly fluctuating surfaces

with a large correlation length while SPM applies to surfaces with small roughness
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and slopes [7], [20], [25], [28].

In [95], a one-dimensional (1D) rough surface is adopted to incorporate the effect of

terrain irregularities on a near-ground link. [7] considers a 1D roughness to study

the impact of diffuse scattering on inter-user and intra-user correlation of pair-wise

channel coefficients in a MIMO system. However, using a 1D rough surface is inad-

equate when scattering outside the plane of incidence is desired [59]. In [18], KA is

integrated into a ray model to derive the coverage maps in an office setting. Rough

surfaces are modeled as perfect electric conductor (PEC), which disregards the elec-

trical properties of indoor materials.

This chapter develops SPM and KA-based ray models to investigate the impact of

geometrical parameters such as the TRx range and height, soil physical and electrical

properties such as roughness, textural composition, and moisture content. More-

over, the impact of antenna parameters such as polarization and radiation pattern on

terrain-based MU-MIMO channel characteristic parameters such as received power,

power delay and angular profiles, RMS delay and angular spread, coherence band-

width, and coherence distance are examined. In this study, random terrain roughness

is assumed Gaussian with an exponential correlation function. The proposed ray

models enable us to study the impact of soil textural composition in terms of sand,

silt, and clay fractions and soil water content by adjusting the terrain dielectric con-

stant. Different types of soil are considered and it is realized that the soil particle
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Figure 3.1: Basic geometry of scattering at a 2-D dielectric rough surface.

fractions and, more importantly, its volumetric moisture content can make a notable

difference on the electrical properties of the terrain and, hence, the scattered power.

3.2 Mobile channel characterization

3.2.1 Small perturbation scattering model

The general scattering geometry from a dielectric rough surface is shown in Figure

3.1. Scattered power is divided into coherent and incoherent components. The co-

herent component dominates for small surface roughness. For large roughness, the

coherent component vanishes and the incoherent part becomes more significant. Im-

portance of diffuse scattering in multidimensional channel propagation modeling is

highlighted in a recent study [91]. SPM is one of the most employed rough surface

scattering solutions, which can be integrated in ray tracing models [20], [22], [25],
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[28]. Derivation of the small perturbation theory is based on perturbative expansion

of unknown scattering amplitude to an arbitrary order with respect to a small height

parameter. Complexity of SPM solution increases steeply as the order of expansion

increases but the accuracy of the predictions also improves [20], [28].

Here, SPM is applied to a 2D random rough surface in a 3D scattering geometry. The

analyses includes bistatic scattering amplitudes up to the first order. SPM formulation

used in this work is based on the extinction theory. Derivation details can be found

in [20].

Consider a plane electromagnetic wave of the general form

Êi = êie
(ikk̂ir) = êie

(ikixx+ikiyy−ikizz) (3.1)

is incident on a 2D dielectric rough surface. In (3.1), k̂i is the incident wave direction

that is perpendicular to the electric field direction,êi. k = ω
√
µε = 2π/λ is the

wavenumber in which ω is the angular frequency, µ is the permeability, ε is the

permittivity, and λ is the wavelength. The position vector is r = xx̂ + yŷ + zẑ.

Components of the wavenumber in the incident direction are kix = k sin θi cosφi,

kiy = k sin θi sinφi, and kiz = k cos θi. The rough surface is characterized by a random

height function z = f(x, y) in which f(x, y) is a random function with zero mean,

i.e., 〈f(x, y)〉 = 0.
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In SPM, rough surface profile, f(r⊥) where r⊥ = xx̂ + yŷ, and its deriva-

tives are considered small parameters. These assumptions can be expressed as

kzf(r⊥), k1zf(r⊥) � 1 and df/dx, df/dy � 1. The first expression ensures that

surface variations are small compared to wavelength, while the latter guarantees that

slopes are slight. Here, k1 is the wavenumber of region 1 related to ε1 (see Figure

3.1).

First, we consider the incident wave to be horizontally polarized, i.e., êi = ê(−kiz).

The zeroth-order scattered field is

E(0)
s (r) = Rhê(kiz)e

(iki⊥·r⊥+ikizz) (3.2)

In (3.2), Rh is the Fresnel reflection coefficient of TE waves:

Rh =
(kiz − k1iz)

(kiz + k1iz)
(3.3)

k is the wavenumber of region 0, where the source is located, and k1 is the wavenumber

of region 1 (see Figure 3.1). We also have ki⊥ = kixx̂+kiyŷ. For the case of vertically

polarized incident wave, i.e., êi = ĥ(−kiz), zeroth-order solution is
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E(0)
s (r) = Rvĥ(kiz)e

(iki⊥·r⊥+ikizz) (3.4)

where Rv is the Fresnel reflection coefficient of TM waves:

Rv =
(k2

1kiz − k2k1zi)

(k2
1kiz + k2k1zi)

(3.5)

From (3.2) and (3.4) it is noticed that the zeroth-order solutions are the reflected

waves from a flat surface.

For the case of horizontally and vertically polarized incident waves, the first order

solutions are, respectively, derived as

E(1)
s (r) =

∫
dk⊥e

(ik⊥·r⊥·+ikzz)iF (k⊥ − ki⊥)

+[ê(kz)f
(1)
ee (k⊥, ki⊥) + ĥ(kz)f

(1)
he (k⊥, ki⊥)] (3.6a)

E(1)
s (r) =

∫
dk⊥e

(ik⊥·r⊥·+ikzz)iF (k⊥ − ki⊥)

+[ê(kz)f
(1)
eh (k⊥, ki⊥) + ĥ(kz)f

(1)
hh (k⊥, ki⊥)] (3.6b)

where F (k⊥) is the Fourier transform of the rough surface profile, f(r⊥). Furthermore,

f
(1)
αβ in which α, β = e, h are the first order scattering terms provided in [28]. First

order solution also evaluates the depolarization of the received fields due to inclination
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of the scattered rays. Thus, whenever non-local effects are negligible, first-order SPM

(SPM1) is fairly accurate and higher-order expansions, which sharply increase the

complexity of solutions, are unnecessary. We can find the total scattered electric field

corresponding to a horizontally polarized incident wave by adding (3.2) and (3.6a).

Similarly, adding (3.4) and (3.6b) leads to the total scattered field for a vertically

polarized incident wave.

3.2.2 Kirchhoff approximation

KA is also known as tangent plane approximation (TPA) or physical optics (PO)

theory. KA together with SPM are the oldest and the most prominent analytical

approaches to study wave scattering from rough surfaces. SPM is suitable for small

roughness heights at arbitrary low lateral scale of roughness, whereas KA is valid for

any roughness height as long as the lateral scale of roughness is much larger than the

wavelength, i.e., large curvature radii. In KA, tangent plane approximation is applied

to calculate the surface fields, which results in relatively simple expressions for the

scattering field intensities. Here, we briefly discuss the main properties of the model

and derivation details can be found in [59].

The KA angular factor that incorporates the incidence and scattering angles as well

as the reflection coefficient of the underlying surface into the scattered field equations
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is defined as

F (θi, θk, φ) =
υxξx
υzξz

+
υyξy
υzξz

+ 1 (3.7)

in which

υx = k(sin θi − sin θk cosφ) (3.8a)

υy = −k(sin θk sinφ) (3.8b)

υz = −k(cos θi + cos θk) (3.8c)

ξx = sin θi(1−Rα) + sin θk cosφ(1 +Rα) (3.8d)

ξy = sin θk sinφ(1 +Rα) (3.8e)

ξz = cos θk(1 +Rα)− cos θi(1−Rα)· (3.8f)

φ = φk − φi and Rα is the Fresnel reflection coefficient of the flat surface where

α = v, h denotes the vertical or horizontal incident polarization, respectively, given

by (3.3) and (3.5). For a Gaussian surface, the expression derived for the scattering

field intensity corresponds to [59]

〈ρρ∗〉 = e−g

[
ρ2

0 +
πL2F 2

A

∞∑
m=1

gm

m!m
e−

υ2xyL
2

4m

]
(3.9)

where 〈〉 denotes statistical expectation. A=lxly is the area of the mean scattering

surface. Surface dimensions are assumed much larger than the surface correlation
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length for statistical stationarity that is necessary for stochastic handling of the scat-

tering problem. ρ0=sincυxlxsincυyly is the scattering coefficient of a plane surface of

extent A in which sinc(x)= sin(x)/x. L is the correlation length of the roughness and

υxy=
√
υ2
x + υ2

y . g=σ2υ2
z is called the Ament coherent scattering loss factor that can

be used to divide surfaces into three broad categories, namely, slightly, moderately,

and very rough surfaces. Next, for each of these categories, the series solution in (3.9)

is examined.

Slightly rough surfaces have g � 1, for which the series solution in (3.9) converges

quickly and only the first term needs to be considered. Surfaces for which g ≈ 1 are

categorized as moderately rough. The series converges relatively slowly and several

terms should be taken into consideration to obtain a solution. Surfaces for which

g � 1 are regarded as very rough. This limit is sometimes referred to as deep phase

modulation because the surface roughness drastically alters the phase of the scattered

waves. In this case, series solution in (3.9) is of minimal use and the results in this

limit may be obtained by considering geometrical optics (GO) theory as follows [20]

〈ρρ∗〉 = e−g
[
ρ2

0 +
πL2F 2

Ag
eg−

υ2xyL
2

4g

]
(3.10)

To derive the scattering field expression, it is assumed that surface has no infinite

gradient and surface dimensions are much larger than surface correlation length, L,
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which is in turn much larger than λ. Shadowing effect is also included in our model

using a shadowing function that has been widely used to modify the bistatic scattering

coefficients [96]

S(θi, θk) = [1 + Λ(θi, s) + Λ(θk, s)]
−1 (3.11)

in which

Λ(θ, σ) =
1

2

[√
2

π

s

cot θ
exp(−cot2 θ

2s2
)− erfc(

cot θ√
2s

)

]
(3.12)

s is the mean surface slope defined as s =
√

2σ/l for a Gaussian rough surface [20].

erfc is the complementary error function.

3.2.3 Ray tracing simulations

Two self-programmed ray tracing routines based on SPM and KA are developed in

this study. Evaluation of the diffuse energy is subject to the following assumptions:

(1) incident electric field is plane and linearly polarized; (2) antennas are located in

the far-field of the rough terrain; (3) antenna elements are omni-directional point

radiators; (4) side lengths of the scattering tiles are much larger than the roughness

correlation length to ensure statistical stationarity, i.e., lx, ly � L [18], [28]; (5) rough

surface profile has a Gaussian height distribution; (6) surface roughness is statistically

isotropic; (7) surface slopes are gentle, i.e., df/dx, df/dy � 1; (8) for SPM, terrain

irregularities are assumed small, i.e., |kzf(r⊥)|, |k1zf(r⊥)| � 1 [20], [28]; (9) for KA,
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correlation length is much larger than the wavelength, i.e., L � λ [20], [28]; (10)

in SPM, impact of multiple scattering and shadowing are neglected, while in KA

shadowing is included.

As shown in Figure 3.2, to implement the scattering formulation in the RT model,

the computational domain is divided into small tiles whose side lengths are 20 surface

correlation lengths. Now, the wave propagated from the point source can locally be

assumed plane. Amplitude of the plane incident wave is calculated at the center of

each tile and maintained constant over the entire surface of the tile. This represen-

tation reduces the spherical wavefront to a locally plane one so that the formulation

of SPM and KA can be applied to calculate the diffusely scattered energy from each

tile. Next, to find the total scattered field, the contribution from all segments with

different phases and directions of arrival are summed at the observation point.

Both RT tools generate 2D random rough surfaces with normal height distribution.

They can deal with vertical and horizontal incident polarizations. The proposed mod-

els consider a dielectric terrain instead of a PEC that is an important improvement

compared to similar tools, e.g., [7], [18]. Furthermore, the depolarization of scattered

waves is taken into account. Thus, impact of electrical properties of the terrain on

the communication channel that has been underestimated in the previous studies can

be closely investigated.

Scattering tiles are characterized by their lengths in x and y directions, lx and ly,
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Figure 3.2: Calculation of geometric parameters of each scattering tile such
as the center point location, distance from Tx/Rx, and incidence/emergence
angles.

respectively, surface RMS height, σ, roughness correlation length, L, and effective

permittivity, εr, of the underlying dielectric layer. σ represents the standard deviation

of the height of the rough surface irregularities in terms of wavelength. L is the

distance between two statistically independent points on the surface and is a measure

of the density of the surface variations. εr is a function of the soil texture, moisture

content, frequency, and temperature.

3.2.4 Soil parameters

To study the impact of soil textural composition and moisture content on the wireless

channel parameters, a dielectric mixing model is required to describe the macroscopic
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dielectric behavior of the soil system. The soil mixture is comprised of solid soil

particles, water and air voids. Depending on the particle size, soil solids are classified

as sand for particles with diameters in the range of 0.05 and 2.0 mm, silt including

the soil particles of diameters in the 0.002 to 0.05 mm range, and clay for particles

with diameters smaller than 0.002 mm [97]. Textural composition refers to soil solids

fractions. The water contained in the soil is divided into bulk water and bound water.

Bound water molecules are held firmly by the soil particles and are located in the first

few molecular layers adjacent to the particle surfaces referred to as the Stern layer.

Bulk water or free water molecules are located in the so-called Gouy layer and are far

enough from the soil particles to freely move within the soil medium. Due to the forces

acting on a bound water molecule, it exhibits a distinct dielectric dispersion spectrum

from a free water molecule, which leads to dissimilar interaction with electromagnetic

waves. The ratio of the bound water to free water is proportional to soil specific

surface area As. Clayey soil has a higher As and, therefore, higher bound water

quotient, whereas sandy soil has a lower As and, thus, a higher free water quotient.

The model exploited in this work is a widely used semi-empirical dielectric mixing

model of the form [98], [99]:

ε = ε
′ − iε′′ = 1.15

[
1 +

ρb
ρs

(εαs − 1) +mβ′

υ ε
′α
fw −mυ

]1/α

−0.68− i
[
mβ′′

υ ε
′′α
fw

]1/α

(3.13)

64



in which

εs = (1.01 + 0.44ρs)
2 − 0.062 (3.14a)

β
′
= 1.2748− 0.519S − 0.152C (3.14b)

β
′′

= 1.33797− 0.603S − 0.166C (3.14c)

ε
′

fw = εω∞ +
εω0 − εω∞

1 + (2πfτω)2 (3.14d)

ε
′′

fw =
2πfτω(εω0 − εω∞)

1 + (2πfτω)2 +
σeff (ρs − ρb)
2πfε0ρsmυ

(3.14e)

σeff = 0.0467 + 0.2204ρb − 0.4111S + 0.6614C (3.14f)

τω = 1.768× 10−11 − 6.086× 10−13T

+1.104× 10−14T 2 − 8.110× 10−17T 3 (3.14g)

where ε is the relative dielectric constant of the soil mixture with real part ε
′

and

imaginary part ε
′′
; mυ=ρbmg is the volumetric moisture content; mg=Ww/Wd is the

gravimetric moisture content; ρb=Wd/V is the bulk density of the dry soil in grams per

cubic centimeter, which can be found using [39]; ρs is the specific density of solid soil

particles; Wd, Ww, and V are the weight of the dry soil, weight of water, and volume of

soil mixture sample, respectively; εs is the dielectric constant of the soil solids; α=0.65

is an empirically determined constant; β
′

and β
′′

are texture-dependent empirically

determined constants; S and C are the mass fractions sand and clay, respectively;

εfw is the relative permittivity of water with real part ε
′

fw and imaginary part ε
′′

fw;

εω0=80.1 is the static dielectric constant of water; εω∞=4.9 is the optical limit of
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dielectric constant of water; f is the frequency in Hertz; ε0 = 8.854 × 10−12 F/m is

the permittivity of free space; σeff is the effective conductivity of the soil mixture; τω

is the relaxation time of water that is equal to 9.231 × 10−12 at room temperature,

20◦C; T is the temperature in Celsius.

3.3 Results and discussion

In this section, the proposed SPM ray model is used to analyze the effects of surface

statistical and electrical properties on the received power, power azimuth spectrum,

RMS delay and angle spread, coherence bandwidth, and coherence distance. Next,

KA ray model is used to study the impact of antenna directivity and polarization,

and carrier frequency in a terrain-based MU-MIMO communication system.

A typical scattering environment is presented in Figure 3.2. Here, the rough surface

is Gaussian with exponential correlation function. The computational domain is

typically 500× 500L2, in which L is the correlation distance that is segmented into a

total of 25× 25 tiles in x and y directions. Side lengths of each tile is 20L, which is

large enough to provide a locally planar phase-front for the incident wave and ensures

the stationarity of the rough surface [28].
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(a) (b)

Figure 3.3: (a) Scattered power versus sand (clay) fraction; (b) Scattered
power versus volumetric moisture content.

The simulation parameters for SPM ray model are as follows, unless otherwise spec-

ified: 100 random rough surfaces are generated for Monte Carlo simulations; TE

polarization is assumed; Tx antenna height is 50λ while Rx element height is 10λ

and both are isotropic radiators; silt loam with 17.16% sand, 63.84% silt, and 19.00%

clay represents the terrain dielectric. Typically, a dry silt loam with 0.05 cm3/cm3

volumetric moisture content corresponding to a relative permittivity of ε=3.7+0.3i at

900 MHz and a wet one with 0.3 cm3/cm3 volumetric moisture content corresponding

to a relative permittivity of ε=16.8 + 1.8i at 900 MHz are used in the simulations.

In Figure 3.3(a), we study the effect of soil solids composition on the power scattered

from the terrain. Here, TM polarization is assumed. Dry soil solids exhibit the same

dielectric features while wet soil systems show very distinct dielectric properties [97];
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hence, relatively high water content of 0.3 cm3/cm3 is assumed so that the impact of

altering soil solid fractions on scattered power manifests itself better. Soil textural

composition impacts scattered energy at Rx via changing the macroscopic dielectric

behavior of the soil medium. In the simulation setup, silt fraction is fixed at 40%,

while sand and clay fractions sweep an identical range of 5% to 55%. As the sand

content increases from 5% to 55%, dielectric constant of the soil system changes from

ε=16.12 + 2.93i to ε=22.55 + 1.48i. It is observed that increasing the sand content,

increases the scattered power. Moreover, we notice that the scattered power increases

by increasing the undulations height or increasing the surface correlation length.

Figure 3.3(b) depicts the influence of moisture content on the received power. The

scenario is similar to the latter case but here we choose a specific soil particle distri-

bution and alter the volumetric moisture content. A textural class with a higher As

and, therefore, a higher clay fraction is picked so that the effect of adding water to the

soil system is clearly observed. Silty clay with 5.02% sand, 47.60% silt, and 47.38%

clay represents the terrain dielectric in this case. As the moisture content changes

from 0.1 to 0.5 cm3/cm3, the dielectric constant of soil changes from ε=5.02 + 0.87i

to ε=32.60 + 4.50i. Increasing the moisture content noticeably boosts the scattered

power [100]. It is illustrated that increasing the water content from 0.1 to 0.5 cm3/cm3

leads to an almost 10 dB increase in the scattered power. At this point it becomes

clear that considering the impact of dielectric soil system is crucial and any result

derived from a PEC ground is subject to major errors. It is also observed that the
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(a) (b)

Figure 3.4: (a) Normalized relative received power versus the excess delay
for different correlation distances and undulation heights; (b) Power azimuth
spectrum for various correlation distances and surface roughness heights.

scattered power increases by increasing the undulations height and increasing the

surface correlation length, which is in agreement with the previous result.

To study the effects of surface undulation height and correlation length on power

delay profile, polynomial regression fits of the normalized received power are plotted

versus excess delay in Figure 3.4(a). Here, TRx distance is 100λ, Tx height is 50λ

and Rx height is 10λ. The received power from the LOS path is normalized to 0

dB and all other multipath components including the reflected power are normalized

accordingly. The Plot suggests that as surface roughness and surface correlation

length increase, the power of multipath components augments, which is attributed to

the wider spread of the scattered power on the rough terrain [7].

In Figure 3.4(b), power azimuth spectrum of a rough terrain is evaluated. Here, the
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set up is similar to Figure 3.4(a); the power received from the direct path is suppressed

because we are merely interested in the effect of surface roughness on power azimuth

spread. The received power from the specular reflection path is normalized to 0

dB and all other multipath components are normalized accordingly. It is observed

that as roughness increases, more energy is received from incoherent paths, which

is in agreement with our observation in Figure 3.4(a). Moreover, it is noted that

the contribution of non-specular components in the total received power increases as

undulation height increases. It is found that increasing surface roughness increases

the RMS delay and angular spread, while it decreases the coherence bandwidth.

The direct path component has a significant impact on decreasing the RMS delay

and angular spread, and increasing the coherence bandwidth. Further, varying the

surface correlation length exercises a weaker influence on the RMS delay spread and

coherence bandwidth compared with varying the undulation height [101]. Figure 3.5

demonstrates the effect of TRx distance on LOS azimuth angular spread at the mobile

station (MS) side. Advantages of MIMO technology lies in the addition of spatial

diversity. Inspecting the AS is vital as it determines the coherence distance that

in turn specifies the antenna spacing required to achieve higher rank gain matrices

in multi-antenna systems. In Figure 3.5(b), as the TRx distance increases, angular

spread decreases. It is also observed that higher roughness height always leads to

higher angular spread. When TRx distance increases, the scattered power decreases

much faster than the direct power. Hence, the mean value of K increases with
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(a)

(b)

(c)

Figure 3.5: Impact of TRx position on azimuth angular spread. (a) Sim-
ulation setup; (b) mυ = 5%; (c) mυ = 30%.
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distance, in which K is the ratio of the direct power to diffuse power, leading to

reduction of the angular spread. Figure 3.5(c) reveals the impact of soil moisture on

the AS. It is realized that increasing mυ from 5% to 30% widens the AS by almost

two-fold, which is mainly attributed to the amplification of the scattered field strength

from rough terrain. Figure 3.6 illustrates the impact of Rx height on LOS azimuth

angular spread at the MS side for two different water volume contents. The distance

is 50λ. As Rx height increases, AS decreases. This effect is brought about by an

increase in K similar to the previous case. Table 3.1 offers a qualitative summary of

the impacts of geometrical and electrical parameters on channel properties that are

examined in this study. It is noted that electrical properties of the soil system modifies

the phase angle of the scattered field as well as the ratio of the energy received from

direct and indirect paths that in turn alters the temporal and angular distribution of

power in the LOS scenario.

In the next step, KA ray model is used to simulate a terrain-based MU-MIMO com-

munication system. Antenna arrays are simulated using directional horn antennas.

The transmit array is either isotropic or directional with a directionality of 25 dBi

and horizontal beamwidth of 10 degrees. The receive antenna is assumed isotropic.

Transmit and receive beams are assumed perfectly aligned. Terrain dielectric is

ε=εr− i60κλ where for average ground the dielectric constant is εr=15, conductivity
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(a)

(b)

(c)

Figure 3.6: Impact of Rx height on azimuth angular spread. (a) Simulation
setup; (b) mυ = 5%; (c) mυ = 30%.
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Table 3.1
Summary of effects of radio link and terrain parameters on channel

properties

is κ=0.005mhos/m, σ=1.13 cm is the roughness RMS height, and surface correla-

tion length is L=7.39 cm [50], [64]. Simulation frequencies are 300 MHz, 900 MHz,

and 2.6 GHz; access point height is 10 m unless otherwise stated; user equipment

height is 1.5 m. Figure 3.7(a) studies the effect of antenna directionality and carrier

frequency on the received power. TM polarization is assumed. Directional beam-

forming antennas at the base station have a directionality of 25 dBi, while the receive

antenna is isotropic. Beamforming not only decreases the path loss, but also reduces

the power fluctuations around the median received signal especially for shorter links.
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This is because when directional antennas are used, most of scatterers fall outside

the antennas beamwidth and, therefore, transceivers do not see them. Moreover, at

lower frequencies, path loss median and oscillations are diminished. Figure 3.7(b)

shows that the dips and valleys are larger for TE polarization, which indicates higher

scattered power (see [102], page 221). Increasing antenna heights also flattens the

received power curve, as depicted in Figure 3.7(c). At lower angles, in conformity

with Rayleigh criterion, the terrain surface appears electrically smoother that leads

to higher reflection and larger interference with the direct component.

Figure 3.8 demonstrates the impact of antenna polarization, carrier frequency, and

base station height on the chip power in NLOS links versus separation of the terminals.

First column in each plot represents the power received from the specular direction,

whereas the remainder of power is received from scatterers around the specular di-

rection. Figure 3.8(a) serves as our reference and in each of the subsequent plots one

of the simulation parameters is altered while the others are kept unchanged to study

the impact of each parameter individually. When terminals are moved away from

each other, both the reflection and scattered powers decrease. However, the scattered

power falls off much faster because it is inversely proportional to the squared product

of distances between scatterers and terminals while the reflected power is inversely

proportional to the squared addition of those distances [103]. As the carrier frequency

decreases, the surface appears electrically smoother, so the specular power increases,
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while the diffuse power decreases. Lowering the access point height increases the in-

cidence angles on the rough terrain, which reduces the scattered power. Nonetheless,

at small ranges, this reduction is compensated by bringing the scatterers closer to

the Tx. Figure 3.8(d) shows that the scattered power is less for TM polarized an-

tennas compared to TE polarized antennas (see [68], page 437). The Brewster effect

along the specular direction is also noticeable. Power delay profile (PDP) is used to

compute the RMS delay spread, which is an important measure that impacts inter

symbol interference (ISI) and determines achievable frequency diversity of wireless

channels. Figure 3.9 illustrates the non-line-of-sight RMS DS versus range for various

antenna directionalities and polarizations. The directional link is equipped with a

transmit array with a directionality of 25 dBi. Most of scatterers, especially those

located at shorter distances, fall outside the beamwidth of the directional transmit

antenna. This drastically reduces the RMS DS and hence increases the channel co-

herence bandwidth. Moreover, at higher frequencies and higher access points, the

RMS DS increases.

3.4 Conclusion

In this work, SPM and KA are implemented in a ray tracing algorithm to study the

effect of terrain physical properties and antenna radiation pattern and polarization

on the propagation loss, delay and angular spread, and bandwidth of a MU-MIMO
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channel. Dielectric properties of the underlying surface are also included in the pro-

posed model to further improve the accuracy of ray tracing simulations. The main

conclusions of this study are as follows: (a) Higher surface RMS height increases the

incoherent component of the scattered field and decreases the coherent component;

(b) increasing TRx distance decreases the received power; (c) as the height of Tx

and/or Rx increases, effect of surface roughness on the received power diminishes;

(d) increasing the fraction of larger particles in the soil mixture boosts the scattered

power; (e) increasing the soil moisture content augments the scattered power; (f) in-

creasing undulations height has a noticeable impact on increasing the RMS delay and

angular spread that increases the channel frequency selectivity and decreasing the

coherence distance; (g) channel bandwidth has a higher sensitivity to the variation

of surface roughness height rather than surface correlation distance; (h) directional

antennas boost the received power and coherence bandwidth; (i) increasing the car-

rier frequency reduces the received power and coherence bandwidth; (j) the scattered

power and the delay spread are larger for TE polarized antennas.

This study highlights the significance of diffuse scattering in multiuser multi-antenna

communication channels with applications in highway and rural macrocells, wireless

sensor networks for environmental monitoring, near ground communication between

TRx working above a dielectric rough terrain, and body surface to external device

channel modeling. Future work will investigate the impacts of multilayer dielectric

roughness and ground proximity on the performance of multi-antenna systems.
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(a)

(b)

(c)

Figure 3.7: Path loss versus terminal separation for directional and
isotropic antennas. (a) Effect of carrier frequency; (b) effect of polariza-
tion; (c) effect of base station height.
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Figure 3.8: The sequence of NLOS PDPs (in dBm) versus the range. First
columns represent the specularly reflected power. (a) Reference plot: TE po-
larization, fc = 2.6GHz, ht = 20m; (b) frequency reduced to fc = 300MHz;
(c) Base station height is lowered to ht = 10m; (d) TM polarization. Note
the Brewster effect along the specular reflection.
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(a) (b)

Figure 3.9: NLOS RMS DS versus range for various antenna directionalities
and polarizations. (a) At different carrier frequencies; (b) for different Tx
heights.
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Chapter 4

Millimeter Wave Directional

Channel Modeling for Small Cells

4.1 Introduction

Fifth generation (5G) wireless communication networks are envisaged to support

exponentially higher traffic volumes by exploiting ultra-dense small cell deployments,

large spectrum allocations, and highly directional antennas [35], [90]. Modulation

and channel coding techniques can be used to increase spectral efficiency up to the

Shannon limit. However, by exploiting higher carrier frequencies, higher data rates

and service quality can be achieved [36]. Moreover, reducing the access point coverage
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area decreases the average distance between base station (BS) and user equipment

(UE) and improves spatial frequency reuse. Hence, deployment of wide scale small

cell access points is a prevailing trend toward improving the area spectral efficiency

and enhancing energy efficiency [104].

Millimeter wave (mmW) frequencies between 30GHz and 300GHz have been pro-

posed for outdoor small cells [37], [38], [105]. These frequencies offer much greater

spectrum allocations and enable the placement of a large number of antenna ele-

ments in small form factors [89]. Extensive research has been conducted to model

indoor propagation for mmW frequency ranges [18], [106]-[108], but minimal data

exists concerning wide area outdoor propagation [38], [105], [109], [110]. In [109]-

[111], simple ray-tracing (RT) models are developed to analyze mmW multi-input

multi-output (MIMO) capacity for outdoor mesh backhaul in picocellular networks.

However, wireless propagation is supposed to be dominated by a line-of-sight (LOS)

component and a few strong specular reflections and LOS blockage and scattering

effects are neglected. Measurements at 28 GHz in New York City confirm that even

in non-LOS (NLOS) scenarios, mmW picocellular networks offer more than 30 times

higher capacity compared to current cellular LTE systems [37]. In a theoretical study,

average data rate for mmW systems is predicted to be 50 times more compared to mi-

crowave systems [112]. Measurements conducted in suburban Austin, Texas at 38GHz

confirms that cell sizes in the order of 200 m is achievable for mmW communications,

particularly at lower BS heights [36]. Signal penetration and reflection properties of
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common building materials are studied via measurements at 28 GHz in [113]. It is

observed that common indoor materials such as clear glass and drywall cause lower

attenuation while penetration loss of mmWs through outdoor building materials such

as brick and tinted glass is high. Hence, the interference between indoor and outdoor

mmW networks is minimal.

Surface roughness generates diffuse scattering that reduces specular reflectivity and

results in angular dispersion of radio waves. Diffuse scattering effects are particularly

important in characterization of wireless channels at mmW frequency spectrum. Note

that in mmW range, an undulation height in the order of millimeters is electrically

very rough. Several approaches have been proposed to incorporate dispersive effects

of surface roughness in deterministic propagation prediction models [7], [18], [38],

[92], [114]. To include the diffusely scattered fields, an efficient surface scattering

formulation should be employed in a ray tracing model. Kirchhoff approximation

(KA) is a widely used analytical method in the study of wave scattering from random

rough surfaces [20], [25], [28]. Impact of surface roughness on the performance of open-

area terrain-based communication systems are investigated in [92], [115]. The authors

in [7] propose a simple MIMO channel model in which scatterers are modeled as one-

dimensional (1D) random rough surfaces. However, scattering and reflection from the

ground plane as well as multiple wall reflections are ignored and antennas are assumed

omnidirectional. In addition, in three-dimensional (3D) channel characterization it

is important to evaluate the scattering outside the plane of incidence; a 1D model

83



is not accurate in off-plane directions unless the roughness under study is truly 1D

[115]. In [18], surface roughness is integrated into a ray model to study the impact of

diffuse scattering in indoor environments at THz frequencies.

Full-dimension MIMO (FD-MIMO) uses two-dimensional (2D) arrays to house large

number of antennas in a small form factor [90]. To exploit these antennas efficiently,

accurate 3D channel models are needed to address the impact of elevation angles.

Prospect of deploying multi-antenna techniques such as beamforming and spatial

multiplexing in the elevation dimension requires further study. All realistic wire-

less channels experience multipath propagation. In a scattering environment, several

waves arrive at the elements of an antenna array through different angles with differ-

ent phases, which reduces the correlation of signals received across antenna elements

[1]. Uncorrelated channel responses are essential for spatial diversity to combat fading

and for spatial multiplexing to improve bit rate in multi-antenna systems [14].

4.2 Problem definition

4.2.1 Geometry

Figure 4.1 depicts the scattering environment in a typical multiuser scenario where

an access point (AP) is simultaneously transmitting symbols to UE1 and UE2. Here,
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Figure 4.1: Outdoor small cell scenario.

(a) (b)

Figure 4.2: Scattering from a rough ground. (a) Comparison of reflected
and scattered power; (b) scattered power versus surface roughness height.

access points are deployed on lampposts and transmit data to users within their

coverage area.
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At mmW frequencies, diffuse scattering has a significant impact on the channel be-

havior and should be taken into account. Figure 4.2 depicts the scattered power from

a rough ground that is calculated using an advanced surface scattering model known

as the integral equation method (IEM) [116]. Figure 4.2(a) compares the amplitude

of specularly reflected and diffusely scattered powers from the rough ground at three

frequencies within the mmW range. For the dielectric, we consider ε = εr − j60κλ

where the dielectric constant is εr=15, conductivity is κ=0.005 mhos/m, and λ is

wavelength at the simulation frequency. The normally distributed roughness is char-

acterized by its rms height σ=1.00 mm and correlation length T=25 λ. It is noted

that as the frequency increases, the scattered power becomes comparable to and even

exceeds the reflected power. Figure 4.2(b) suggests that the diffuse power increases

with the roughness height. Diffuse power is especially prominent at higher frequencies

and lower ranges, which are attributes of mmW small cells.

4.2.2 Ray tracing algorithm

In this work, Kirchhoff approximation is included in the ray tracing routine to cal-

culate the diffusely scattered power from rough urban surfaces. To implement the

Kirchhoff scattering theory in ray tracing algorithm, the surface is partitioned into

scattering tiles or scatterers with equal side length of 10 times the surface correlation
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length, as schematically represented in Figure 4.3. Therefore, the incident wave radi-

ated from a point source is considered locally plane with invariable amplitude over the

whole surface of a scatterer. Segmentation of the rough surface reduces the spherical

wave emitted from the source to a locally plane one that can be handled by Kirchhoff

equations to calculate the diffuse field scattered from each segment. Choosing the

number of tiles is a compromise between accuracy and computational burden. To

our advantage, energy scattered by the rough surface is mainly confined to a narrow

angle around the specular direction, which in turn bounds the computational domain

on the rough surface [20]. The scattering tiles are symmetrically placed about the

specular reflection point. For isotropic roughness, it is reasonable to lay an equal

number of tiles in both directions. Next, to find the diffusely scattered component,

the contribution from all segments are summed at the observation point.

In addition, in the KA-based ray model multiple wall reflections up to 20th order are

incorporated. Reflected components will be modified by antenna gain patterns, the

Fresnel reflection coefficient, and the Ament loss factor, which will be discussed later.
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Figure 4.3: Schematic implementation of Kirchhoff formulation in a ray-
tracing model.

4.2.3 LOS and NLOS channel matrices

NLOS channel matrix is represented as [117]

HNLOS
1 = [er (φr1) · · · er (φrP )]×


a1 · · · 0

...
. . .

...

0 · · · aP

×

eTt (φt1)

...

eTt (φtP )


=

P∑
p=1

apGr (φrp, θrp)Gt (φtp, θtp) er (φrp) e
T
t (φtp) (4.1)

in which p denotes a multipath component (MPC) with coefficient ap that forms the

angles of departure (AoD) φtp and θtp with the transmit antenna array and angles of
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arrival (AoA) φrp and θrp with the receive antenna array. In addition, et (φtp) and

er (φrp) are, respectively, the transmit array and receive array phase shift vectors for

the pth MPC, which depend on the array configurations. Effects of antenna directivi-

ties are included in Gt (φtp, θtp) and Gr (φrp, θrp). As an example, for the special case

of horizontal uniform linear arrays with inter-element spacing dt and dr (normalized

to λ) at the Tx and Rx, respectively, channel coefficients from BS antenna element l

to UE1 antenna element k under NLOS and LOS conditions correspond to

hNLOS1,(kl) =
P∑
p=1

apgrp (φrp, θrp) gtp (φtp, θtp)× e−i2π(dr(k−1) sinφrp+dt(l−1) sinφtp) (4.2)

hLOS1,(kl) = a0 + hNLOS1,(kl) (4.3)

respectively. Here, a0 = λe−2π/λd1 /(4πd1) is the LOS coefficient and d1 is the

distance between BS and UE1. In terms of the Rice factor, K, which is the ra-

tio of the LOS power to the NLOS power, the LOS coefficient is expressed as

a0 =

√
K1E

[∣∣∣hNLOS1,(kl)

∣∣∣2]e−2π/λd1 . The latter expression for a0 is particularly useful

in evaluating the impact of partial blockage of LOS energy on channel parameters.

E[·] denotes statistical expectation and | · | is absolute value. Similar quantities can

be derived for UE2. Channel matrix for UE2 can be written as

HNLOS
2 =

P∑
p=1

bpGr (ψrp, αrp)Gt (φtp, θtp) er (ψrp) e
T
t (φtp) (4.4)
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To analyze inter-user spatial correlation, it is conventional to assume that the two

users are co-located and share the same scattering landscape. Thus, the scatterers

contributing to the transmission between BS and UE1 are also contributing to the

transmission between BS and UE2. Note that HNLOS
1 and HNLOS

2 share the same

AoD, φtp and θtp, because signal is directed from BS to the same scatterers. However,

scattered energy reaches UE1 and UE2 at different angles with distinct amplitudes,

therefore, their path coefficients and their AoA differ. Here, the normalized pair-wise

intra-user and inter-user spatial correlation coefficients are respectively defined as

follows: Intra-user

RNLOS
1,(kl,mn) =

E
(
hNLOS1,(kl) h

NLOS
1,(mn)

∗
)

E
(∣∣∣hNLOS1,(kl)

∣∣∣) · E (∣∣∣hNLOS1,(mn)

∣∣∣) (4.5)

RLOS
1,(kl,mn) =

E
(
hLOS1,(kl)h

LOS
1,(mn)

∗
)

E
(∣∣∣hLOS1,(kl)

∣∣∣) · E (∣∣∣hLOS1,(mn)

∣∣∣) (4.6)

Inter-user

RNLOS
1,2,(kl,mn) =

E
(
hNLOS1,(kl) h

NLOS
2,(mn)

∗
)

E
(∣∣∣hNLOS1,(kl)

∣∣∣) · E (∣∣∣hNLOS2,(mn)

∣∣∣) (4.7)

RLOS
1,2,(kl,mn) =

E
(
hLOS1,(kl)h

LOS
2,(mn)

∗
)

E
(∣∣∣hLOS1,(kl)

∣∣∣) · E (∣∣∣hLOS2,(mn)

∣∣∣) (4.8)

When the extent of scatterers is much greater than the surface correlation length,

X, Y � T , their surface height distributions become independent, which leads to
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uncorrelated scattering [28], i.e.,

E
[
aia
∗
j

]
= 0, E

[
bib
∗
j

]
= 0, E

[
aib
∗
j

]
= 0,

For i 6= j i, j = 1, 2, · · · , P (4.9)

As an example, for the special case of horizontal uniform linear arrays, using (4.2)

and assuming uncorrelated scattering, we can write

E
(
hNLOS1,(lk) h

NLOS
1,(mn)

∗)
=

P∑
p=1

E
[
apa

∗
p

]
g2
rp (φrp, θrp) g

2
tp (φtp, θtp)× e−i2π(dr(k−m) sinφrp+dt(l−n) sinφtp) (4.10)

E
(
hNLOS1,(lk) h

NLOS
2,(mn)

∗)
=

P∑
p=1

E
[
apb
∗
p

]
grp (φrp, θrp) grp (ψrp, αrp) g

2
tp (φtp, θtp)

× e−i2π(dr((k−1) sinφrp−(m−1) sinψrp)+dt(l−n) sinφtp) (4.11)

Similar expressions can be found for other terms in (4.5)-(4.8). Next, intra-user and

inter-user spatial correlation coefficients, E
[
apa

∗
p

]
and E

[
apb
∗
p

]
, will be evaluated.
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Figure 4.4: Basic geometric notations for incidence and emergence angles
from a scattering tile.

4.3 Theoretical evaluation

This section examines the diffuse field statistics from a random rough surface to

analytically evaluate the correlation of the field scattered by scatterer p at two distinct

directions, E
[
apb
∗
p

]
. Next, E

[
apa

∗
p

]
is evaluated as a special case when the two

directions coincide. In this work, KA is applied to a 3D problem with 2D random

rough surfaces. To evaluate the statistics of the scattered field amplitude, a statistical

description of the scattering surface is required. Rough surfaces are characterized by

a random height function z = h(x, y), in which h(x, y) is a Gaussian random function

with zero mean and r̄ = xx̂+ yŷ + zẑ is the position vector on the surface.

As shown in Figure 4.4, a rectangular scattering tile extends over −X ≤ x ≤ X

92



and −Y ≤ y ≤ Y centering at O. A = 4XY is the mean scattering surface area.

Surface dimensions are assumed much larger than the surface correlation length to

maintain statistical stationarity (surface rms height may be taken as stationary) that

is necessary for stochastic handling of the scattering problem. Source is located at

S in the far field from all points on the scattering surface, i.e., R1 � A/λ [118].

Hence, the incident wave is assumed a plane electromagnetic wave with electric field

of the form E1 = E0e
−ikR1 where k = ω

√
µε = 2π/λ is the incident wavevector. The

angle of incidence is represented by θ1. We also assume observation points, P1 and

P2, are located in the far field of the scattering tile, i.e., R2, R
′
2 � A/λ . The path

coefficient at P1 is represented by ap and the angles θ2 and φ denote its scattering

angle relative to the z axis and its azimuth angle relative to the incidence plane,

respectively. Similarly, the path coefficient at P2 is represented by bp and the angles

θ′2 and φ′ specify the corresponding scattering direction. Hereafter, primed quantities

are associated with P2 and can be determined by replacing appropriate angles.

KA angular factor, which incorporates the incidence and scattering angles as well

as reflection coefficient of the underlying surface into the scattered field equations is

defined as [28]

F (θ1, θ2, φ) =
vxξx
vzξz

+
vyξy
vzξz

+ 1 (4.12)
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in which

vx = k (sin θ1 − sin θ2 cosφ) (4.13a)

vy = −k (sin θ2 sinφ) (4.13b)

vz = −k (cos θ1 + cos θ2) (4.13c)

ξx = sin θ1 (1−Rα) + sin θ2 cosφ (1 +Rα) (4.14a)

ξy = sin θ2 sinφ (1 +Rα) (4.14b)

ξz = cos θ2 (1 +Rα)− cos θ1 (1−Rα) (4.14c)

Rα is the Fresnel reflection coefficients of a flat surface where α = v, h denotes vertical

and horizontal incident polarizations, respectively, given by

Rv =
k2

1kiz − k2k1zi

k2
1kiz + k2k1zi

(4.15a)

Rh =
kiz − k1zi

kiz + k1zi

(4.15b)

k is the wavenumber in the air and k1 is the wavenumber in the dielectric. kiz/kz

is the normal component of the wavenumber in the incident/scattered direction with

kz = k cos θ. The normalized scattering coefficient corresponding to ap is defined as

ρ = ap/ap0 , where ap0 is the field reflected specularly by a flat surface of the same
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extent with the same angle of incidence at the same distance, which corresponds to

ap0 =
ike−ik(R1+R2)Aξz

4πR2

=
ie−ik(R1+R2)Aξz

2λR2

(4.16)

Hence, we can write the scattered field in terms of the scattering coefficient

ap =
ike−ik(R1+R2)Aξz

4πR2

ρ =
ie−ik(R1+R2)Aξz

2λR2

ρ (4.17)

Similarly, the relationship between the scattered field bp and its coefficient ρ′ is ex-

pressed as

bp =
ike−ik(R1+R′2)Aξ′z

4πR′2
ρ′ =

ie−ik(R1+R′2)Aξ′z
2λR′2

ρ′ (4.18)

To simplify the subsequent derivations, we study the statistics of the scattering coef-

ficients instead of ap and bp. Using (4.17) and (4.18), we write

E
[
apb
∗
p

]
=
e−ik(R2−R′2)A2ξzξ

′
z

4λ2R2R′2
E
[
ρ(ρ′)

∗]
(4.19)

E
[
apa

∗
p

]
=

4A2ξ2
z

λ2R2
2

E
[
|ρ|2
]

(4.20)

ρ is calculated using the general Kirchhoff solution for the field and its derivative on

the surface in the Helmholtz formulation of rough surface scattering

ρ =
F

A

∫∫
A

eiv̄.r̄dxdy (4.21)
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where F is the angular factor, A is the area of the mean scattering surface, and

v̄ = (vxx̂, vyŷ, vz ẑ)T . The assumptions made in deriving (4.21) are: 1) Source and

observation points are in the far field of the surface; 2) the incident wave is plane and

linearly polarized; 3) coupling between different wave polarizations are neglected; 4)

no point on the surface has infinite gradient; 5) mutual interaction of the roughness

irregularities are disregarded. Now, we intend to evaluate

E
[
ρ(ρ′)

∗]
= cov (ρ, ρ′) + E [ρ]E∗ [ρ′] (4.22)

cov (ρ, ρ′) is the covariance of ρ and ρ′. Substituting (4.21) in (4.22) and assuming a

Gaussian roughness, we have

cov (ρ, ρ′) =
FF ′

A

∫ ∞
0

∫ 2π

0

eivxτ cosφ+ivyτ sinφ

× [χ2 (vz,−v′z)− χ (vz)χ
∗ (v′z)] τdτdφ (4.23a)

E [ρ]E∗ [ρ′] = χ (vz)χ
∗ (v′z) ρ0ρ

′
0 = e−g1ρ0ρ

′
0 (4.23b)

where F = F (θ1, θ2, φ) and F ′ = F (θ1, θ
′
2, φ
′) are are the angular factors correspond-

ing to observation points P1 and P2, respectively. χ (vz) is the characteristic function

of a rough surface that is defined as the Fourier transform of its probability density

function. For a Gaussian surface,

χ (vz) = exp (−g/2 ) (4.24)
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where g = σ2v2
z is called the Ament coherent scattering loss factor [28]. χ2 (vz,−v′z)

is the 2D characteristic function. For a stationary Gaussian surface,

χ2 (vz,−v′z) = exp (−g1 + g2C (τ)) (4.25)

in which C(τ) = exp (−τ 2/T 2 ) is the surface correlation length, g1 = (g + g′)/2 =

σ2 (v2
z + v2′

z )/2 and g2 =
√
gg′ = σ2vzv

′
z. ρ0 = sinc vxX sinc vyY is the scattering

coefficient of a plane surface of extent A and sinc(x) = sin(x)/x . To obtain (4.23a),

isotropic surface statistics is assumed to allow evaluation of the surface integration in

spherical coordinates. Making the substitution

eg2C(τ) =
∞∑
m=0

gm2
m!

[C(τ)]m (4.26)

χ2 may be expanded as

χ2 (vz,−v′z) = e−g1
∞∑
m=0

gm2
m!
e−

mτ2

T2 (4.27)

The series in (4.26) only converges when the argument of the exponential is less than

unity that sets restrictions upon utility of the expansion in (4.27), which will be

discussed shortly. Note that the term of order zero in (4.27) equals χ (vz)χ
∗ (v′z).
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Substituting (4.27) into (4.23a) yields

cov (ρ, ρ′) =
FF ′

A
e−g1

×
∞∑
m=1

gm2
m!

∫ ∞
0

∫ 2π

0

ei(vx cosφ+ivy sinφ)τe−
mτ2

T2 τdτdφ (4.28)

Applying ∫ θ+2π

θ

e±ix cosφ±iy sinφdφ = 2πJ0

(√
x2 + y2

)
(4.29)

to (4.28) leads to

cov (ρ, ρ′) =
2πFF ′

A
e−g1 ×

∞∑
m=1

gm2
m!

∫ ∞
0

J0 (vxyτ) e−
mτ2

T2 τdτ (4.30)

where J0(.) is the zeroth-order Bessel function of the first kind and vxy =
√
v2
x + v2

y.

Integral in (4.30) may be evaluated using

∫ ∞
0

J0 (ax) e−p
2x2xdx =

1

2p2
e
− a2

4p2 (4.31)

Hence, (4.30) may be written as

cov (ρ, ρ′) =
πT 2FF ′

A
e−g1

∞∑
m=1

gm2
m!m

e−
v2xyT

2

4m (4.32)
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Substituting (4.23b) and (4.32) into (4.22), we find

E
(
ρ(ρ′)

∗)
= e−g1

[
ρ0ρ
′
0 +

πT 2FF ′

A

∞∑
m=1

gm2
m!m

e−
v2xyT

2

4m

]
(4.33)

In the special case when the two observation points coincide, (4.33) reduces to the

autocorrelation equation,

E (ρρ∗) = e−g

[
ρ2

0 +
πT 2F 2

A

∞∑
m=1

gm

m!m
e−

v2xyT
2

4m

]
(4.34)

Parameter g2 is proportional to σ2/λ2 . Therefore, it can be used to divide surfaces

into three broad categories, namely, slightly, moderately, and very rough surfaces.

Slightly and moderately rough surfaces are handled using the physical optics (PO)

model while geometric optics (GO) solution is used for very rough surfaces [68]. Next,

for each of these categories, the series solution in (4.31) is examined.

Slightly rough surfaces have g2 � 1, for which the series solution in (4.33) converges

quickly and only the first term needs to be considered. Therefore,

E
(
ρ(ρ′)

∗)
= e−g1

[
ρ0ρ
′
0 +

πg2T
2FF ′

A
e−

v2xyT
2

4

]
(4.35)

Surfaces for which g2 ≈ 1 are categorized as moderately rough. The series converges

relatively slowly and several terms should be taken into consideration to obtain a

solution. Surfaces for which g2 � 1 are regarded as very rough. In this case, series
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solution in (4.33) is of little use and we need to revisit the integral in (4.23a). Noting

that for g2 � 1, χ (vz)χ
∗ (v′z) ≈ 0 and using (4.29), we find

cov (ρ, ρ′) =
2πFF ′

A
e−g1

∫ ∞
0

J0 (vxyτ) eg2e
−τ2/T2

τdτ (4.36)

Significant contributions to this integral only come from small τ where the argument

of the exponential is small; Hence, the surface correlation function may be approxi-

mated by the first two terms of its series expansion, i.e., exp (−τ 2/T 2 ) = 1−τ 2/T 2 .

Substituting in (4.36) and applying (4.31) leads to

cov (ρ, ρ′) =
πT 2FF ′

Ag2

e
g2−g1−

v2xyT
2

4g2 (4.37)

We find from (4.22), (4.23b), and (4.37)

E
(
ρ(ρ′)

∗)
= e−g1

[
ρ0ρ
′
0 +

πT 2FF ′

Ag2

e
g2−

v2xyT
2

4g2

]
(4.38)

Under the GO limit, we modify (4.38) to incorporate the shadowing effects,

E
(
ρ(ρ′)

∗)
= e−g1

[
ρ0ρ
′
0 +

πT 2FF ′S

Ag2

e
g2−

v2xyT
2

4g2

]
(4.39)

where S = S (θi, θs) is the shadowing function in which θi = θ1 is the incidence angle

and θs ≈ (θ2 + θ′2)/2 is the scattering angle. A widely used shadowing function is
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reported by Sancer [96] to modify the bistatic scattering coefficients,

S (θi, θs) = [1 + Λ (γi) + Λ (γs)]
−1 (4.40)

in which γα = (T cot θα)/(2σ) and α = i, s. For the Gaussian random rough surface,

Λ (θ) =
1

2

[
e−γ

2

√
πγ
− erfc(γ)

]
(4.41)

erfc is the complementary error function.

4.4 Numerical results and discussion

A mmW outdoor urban link is considered in which the access points are mounted

on the lampposts below the rooftops of the surrounding buildings. Buildings are

assumed to form a continuum on both sides of the street. Here, we study the path

loss, spatial correlation, coverage distance, and coherence length for LOS, OLOS, and

NLOS situations, which are typical of an urban street with foliage and vehicular and

pedestrian traffic.

Antenna arrays are simulated using directional horn antennas. Both vertically and

horizontally polarized antennas are considered. The transmit array is either isotropic

or directional with a directionality of 25 dBi and horizontal beamwidth of 10 degrees.
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The receive array is either isotropic or directional with a directionality of 15 dBi and

horizontal beamwidth of 40 degrees. Transmit and receive beams are assumed per-

fectly aligned. Concrete is assumed for the building exteriors with dielectric constant

ε=4.17+0.36i, roughness height σ=0.2 mm, and surface correlation length T=38.6

mm [119]. Road dielectric is asphalt for which the dielectric constant is ε=3.18+0.1i,

σ=0.34 mm is the roughness rms height, and surface correlation length is T=4.2 mm

[66], [119]. Simulation frequencies are 30 GHz, 60 GHz, 94 GHz, 120 GHz, and 300

GHz. Unless otherwise stated, access point height is 5 m, UE height is 1.5 m, and the

street width is 18 m. Access point is installed 4 m away from one side of the street

while the UE is considered in the middle of the street.

To calculate the total received field at the observation point, the direct and reflected

fields from ground and multiple bounces from walls up to the 20th order, and sin-

gle scattering from ground and walls are included in the KA-based ray model. To

implement the Kirchhoff scattering theory in a ray tracing algorithm, on each sur-

face, 20×20 scattering tiles with equal side length of 10 times the surface correlation

length are placed around the specular reflection point. Figure 4.5 represents the

relative received power at different distances from the BS in an urban canyon. In

the case of directional transceivers, the transmit array has a directionality of 25 dBi

and horizontal beamwidth of 10 degrees. The receive array has a directionality of 15

dBi and horizontal beamwidth of 40 degrees. Antennas at both sides are vertically

polarized. It is realized that higher directionality increases the received power and
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(a) (b)

Figure 4.5: Path loss versus range: (a) directional antennas compared
to isotropic radiators; (b) effect of increasing the carrier frequency 10 fold.
Black lines present the local average of the received power.

reduces the shadow fading. This is because when directional antennas are used, most

of the reflectors and scatterers will fall outside the antennas beamwidth. Moreover, it

is noticed that increasing the carrier frequency by one order of magnitude decreases

the received power by almost 2 orders of magnitude. It is also observed that the

LOS median power falloff rate is roughly equivalent to free space wavefront spreading

loss and, therefore, the total loss can be approximated by the free space loss. That

is because at mmW frequencies, the first Fresnel zone radius is very small. In our

simulations, the break distance, dB = 4hthr/λ at which the first Fresnel zone touches

the ground and the gradual transition from square law to fourth law begins, is several

kilometers.

In order to find the dominant propagation mechanism in mmW links, we compared
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(a) (b)

Figure 4.6: Coverage range versus combined antenna gains. (a) Coverage
range at different mmW frequencies; (b) coverage range for various values
of Rician K parameter.

the contribution of separate components throughout our simulations. It was deduced

that for relatively short LOS links (in the order of 20 meters or less), only the direct

wave needs to be considered. However, at larger distances, waveguiding effects due

to multiple reflections also become important and cannot be overlooked. In fact, in

NLOS links these multiple reflections dominate the propagation. Scattering effect is

only notable in short NLOS links, especially when less directive antennas are used.

As a function of distance, the scattered power decay rate is -40 dB/decade while the

direct and reflected powers fall off at the rate of -20 dB/decade [103]. Moreover, at a

longer range, the normal component of the wave vector falls, kzσ decreases, and the

surface appears electrically smoother. Shadowing effect, however, is always negligible

in our simulations. Shadowing is prominent when the mean square surface slope is

high and/or the beam approaches the grazing angle. It is intuitive to compare the
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propagation features in mmW small cells to those of microwave macrocells based on

the Walfisch-Ikegami model [120]. In this model, the buildings in the vertical plane

between the Tx and Rx are taken into account and the waveguiding effects are ignored.

This is because in urban macrocells, base stations are usually mounted above the

rooftop levels and multiple diffractions over the rooftops dominate the propagation.

On the other hand, in mmW small cells due to below-rooftop deployment, waveguiding

effects are pronounced but diffraction around obstacles is low.

Figure 4.6(a) represents the effect of antenna directivity on coverage distance. A

moderate value of 100 dB is selected as the maximum path loss dynamic range [36].

By assuming a low measurable path loss range, we are effectively accounting for the

signal attenuation due to random blocking objects such as foliage, cars and people

which, on average, will not exceed 20 dB in such short links [121]. Typical coverage

distance recommended for mmW small cells is in the order of 200 m, which is also

indicated on the plots. It is noted that even at 300 GHz this range is achievable by a

combined antenna gain of 25 dBi, which can easily be realized at one side of the link,

typically the BS.

The scenario of OLOS or NLOS is considered in Figure 4.6 (b) using the Ricean factor,

K. At 60 GHz, it is noticed that the desired range is readily achievable via moderately

directive antenna arrays. It is also concluded that vertically polarized antennas attain

a larger coverage distance. Here, depolarization effects are not examined; but mmW
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measurements in [122] show a cross-polar discrimination (XPD) of at least 10 dB.

Thus, based upon the realizable coverage range and XPD in mmW small cells, two

stream multiplexing over orthogonal polarizations is readily practicable.

To analyze intra-user and co-located inter-user spatial correlation versus inter-element

spacing, a simple scenario is considered in which a BS is simultaneously transmitting

to receive antenna 1 and receive antenna 2. In these simulations, baseline parameters

are as follows, unless indicated otherwise: fc=60 GHz, nodes distance is d=50 m, and

antennas are vertically polarized. For directional links, the Tx directionality is 25

dBi while that of the Rx is 15 dBi. Correlations at the AP and UE sides were found

to follow similar trends; thus, only the results at the UE side are represented. Here,

the BS height and distance from the reference side of the street are fixed at 5m and

4 m, respectively. Height of the Rx antenna pair is uniformly distributed over the

interval [1m, 3m] and the distance of the pair from the walls at each side of the street

is uniformly selected over [4m, 14 m]. 10000 realizations of the canonical randomized

geometry are used to compile the correlation statistics for two cases of isotropic and

directional antennas. Spatial correlation in azimuth (the horizontal plane) is studied

in Figure 4.7. Isotropic transceivers experience richer scattering, thus, the correla-

tion is generally lower when isotropic antennas are used. It is also observed that

higher carrier frequencies lead to lower correlations at the same element spacing, as

expected. At larger distances, angular spread of the incoming energy decreases, which
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Azimuth correlation versus inter-element spacing. (a,b) cor-
relation at different frequencies; (c,d) correlation at different ranges; (e,f)
correlation for different antenna polarizations in the presence and absence
of a LOS component.

is inversely proportional to the correlation. Therefore, in an urban canyon, correla-

tion coefficients increase with Tx-Rx distance. Moreover, it is observed that vertical

polarization leads to better signal decorrelation. Another interesting point is that
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Elevation correlation versus inter-element spacing. (a,b) cor-
relation at different frequencies; (c,d) correlation at different ranges; (e,f)
correlation for different antenna polarizations in the presence and absence
of a LOS component.

LOS component correlates the received signals that in turn increases the correlation

coefficients. Figure 4.8 depicts the spatial correlation in elevation (the vertical plane).

Compared to the latter simulation, the only difference is that the Rx antenna pair is
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Figure 4.9: 2D array correlation versus inter-element spacing. Reference
plot: Directional, LOS, TM, fc=60 GHz, d=50 m; (b) Isotropic antennas;
(c) NLOS scenario; (d) TE polarization; (e) frequency increased to 300 GHz;
(f) Range decreased to 10 m.

vertical. The elevation spatial correlation follows exactly the same trends; however,

the coherence length is much longer in the vertical plane. Hence, in planar 2D arrays,

the horizontal dimension is well-suited for spatial multiplexing to generate degrees of

freedom to transmit parallel data streams and improve the spectral efficiency. The

vertical dimension, on the other hand, is better exploited for beamforming gain to

amplify the signal power and alleviate the interference. To examine the 2D intra-user

spatial correlation, a 20 cm×20 cm planar 2D array is considered. Receive antenna 1

is placed at the center of the array while receive antenna 2 is moved in 1 mm steps on

a square grid laid on the array. The baseline parameters are similar to linear array
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simulations. Figure 4.9(a) serves as our reference result and in each of the subsequent

plots, only one of the reference parameters are altered to study the impact of that

particular parameter. Due to location of the lampposts and users, simulation geom-

etry is unsymmetrical; thus, the correlation values are also unsymmetrical. This is

more pronounced in shorter links. Some interesting observations are: a) beamforming

increases the correlation and the coherence length, which manifests itself better in

the azimuth dimension (comparing Figure 4.9(a) and Figure 4.9(b)); b) in relatively

short links, the direct wave dominates the correlation value, while in longer links the

waveguiding effects do; since multiple reflections amplitude are comparable with the

direct component amplitude at longer distances. That is why at relatively long sim-

ulation distance of d=50 m, eliminating the direct component only modestly alters

the correlation; c) horizontally polarized antennas (compared to vertically polarized

ones) increase the correlation in horizontal dimension and slightly decrease the cor-

relation in vertical dimension; d) when the carrier frequency increases, correlation

declines steeply; e) correlation increases with distance; this is because the angular

spread of the incoming energy decreases at longer ranges. Azimuth spread is wider

than elevation spread that leads to shorter coherence length in horizontal dimension.

It also reduces faster with distance compared to the elevation spread. To achieve

higher rank gain matrices in multi-antenna systems, antenna spacing should exceed

the coherence length. Typical coherence length values for range and frequencies of

interest in mmW small cells are presented in Table 4.1. Directivity is 25 dBi at the BS
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Table 4.1
Coherence length (mm) versus antennas directivity and range

side and 15 dBi at the UE side. Coherence length is directly related to the antenna

directionality and link range, and inversely related to the carrier frequency.

4.5 Conclusion

This chapter proposes an approach to investigate the path loss, spatial correlation,

coverage distance, and coherence length in multiuser wireless communication systems

for promising mmW frequency ranges. Closed form expressions for multiuser correla-

tion of co-located receive antennas are derived theoretically and numerically evaluated

for an urban environment under a range of variations in the propagation geometry.
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We concluded that scattering effects must be taken into account in any mmW chan-

nel model because, especially in NLOS conditions, the diffuse power is significant

at higher frequencies and lower transceiver distances, which are typical attributes of

mmW small cells. Overall, it is realized that the assumption of favorable propagation

for mmW massive MIMO is perfectly valid and both access points and user terminals

can enjoy the advantages of MIMO via beamforming and spatial multiplexing. We

observed that the target coverage range of 200 meters is easily achievable using direc-

tional antennas at the BS and user terminals. Even if only the BS is equipped with

directional antennas, the target range is achievable throughout the mmW frequency

range. Possible future work include studying the effect of multiscale roughness and

incorporating stochastic models to account for blockage effects.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

A computationally feasible near-ground field prediction model is presented in chap-

ter 2 to facilitate more accurate WSN simulations. The model is validated against

published measured data in open areas. Model precision is due to careful assessment

of the impact of first Fresnel zone obstruction, terrain irregularities, and dielectric

properties of the ground on the LOS, specular reflection and higher order waves. The

proposed model is also used to evaluate the effects of radio link and terrain param-

eters on network connectivity of WSNs. Some practical implications of this study

include: (a) the critical distance is very small in WSN applications and, therefore,
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the diffraction loss is integral to WSN channel characterization; (b) at grazing angles,

Fresnel reflection coefficient displays a very low sensitivity to terrain dielectric con-

stant; (c) provided the geometrical parameters are fixed, higher order waves intensify

as the wavelength increases; (d) antenna height is by far the most influential geo-

metrical parameter to network connectivity; (e) connectivity is fairly sensitive to the

reflection coefficient when antennas are placed near the ground; (f) terrain roughness

decreases the accessible neighbors; (g) lowering the frequency of operation, enhances

the network connectivity; (h) close to the ground level, vertically polarized antennas

outperform their horizontally polarized counterparts in terms of coverage range and

connectivity; (i) precipitation boosts/reduces the network connectivity when motes

are equipped with vertically/horizontally polarized antennas.

In chapter 3, small perturbation method (SPM) and Kirchhoff approximation (KA)

are incorporated into ray-tracing (RT) routines to model multiuser multi-input multi-

output (MU-MIMO) channels formed on a rough dielectric terrain. The effect of sur-

face roughness and correlation length, solid soil fractions, moisture content, link range,

antenna height, polarization, radiation pattern, and carrier frequency are examined

on received power, power delay and angular profiles, root mean square (RMS) delay

and angular spread, coherence bandwidth, and coherence distance. Quantitative and

qualitative analyses reveal that antenna directionality and terrain undulation and

textural composition have significant impacts on the received signal power and chan-

nel multipath parameters and, hence, the performance of MU-MIMO terrain-based
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communication systems. The main conclusions of this study follows: (a) Higher

surface roughness height leads to lower relative received power and lower spatial

correlation between the elements of the antenna array; (b) increasing the receiving

elements distance reduces the spatial correlation between them; (c) higher surface

RMS height increases the incoherent part of the scattered field and decreases the co-

herent component; (d) angular spread of the incoming waves increases as the surface

roughness height increases; (e) increasing the transmitter and receiver array distance

decreases the received power and the spatial correlation; (f) as the height of transmit-

ter and/or receiver increases, effect of the surface roughness on the received power and

spatial correlation decreases; (g) increasing the undulation heights has a noticeable

impact on increasing the RMS delay spread and correspondingly increasing the chan-

nel frequency selectivity; (h) increasing the correlation length, decreases the scattered

power; (i) channel bandwidth has a higher sensitivity to variation of surface roughness

height rather than variation of surface correlation distance; (j) LOS signal reduces

the frequency selectivity of the channel and leads to higher coherence bandwidth.

This study highlights the significance of diffuse scattering in MIMO communication

channels with applications in wireless sensor networks for environmental monitor-

ing and near ground communication between transceivers working above a dielectric

rough terrain, and body surface to external device channel modeling.
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Chapter 4 proposes an approach to investigate the spatial correlation and cover-

age distance in massive MIMO communication systems for mmW frequency ranges.

Closed form expressions for multiuser correlation of co-located receive antennas are

derived theoretically and numerically evaluated for an urban environment under a

range of variations in the propagation geometry. We found that scattering effects

must be taken into account in any mmW channel model because, especially in NLOS

conditions, the diffuse power is significant at higher frequencies and lower transceiver

distances which are typical attributes of mmW small cells. It is observed that for the

lamppost based implementation of the mmW small cell, a moderate antenna separa-

tion is sufficient to offer spatial diversity. We observed that the target coverage range

of 200 meters is easily achievable using directional antennas at the base station and

user terminal. Even if only the base station is equipped with directional antennas,

the target range is achievable throughout the mmW frequency range.
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5.2 Future work

5.2.1 Channel modeling for wireless sensor networks in lay-

ered media with rough boundaries

Layered structures with rough boundaries represent many naturally occurring struc-

tures. Electromagnetic (EM) scattering from layered structures with rough bound-

aries have key applications in environmental monitoring, geology and soil mechanics,

hydrology, oil and gas exploration, civil engineering, detection of improvised explo-

sive devices (IED), planetary explorations, and medical imaging [123], [140]. However,

very limited modeling and measurements have been carried out on links working in-

side or above multi-layered dielectric structures with rough boundaries such as layered

soil, rivers, lakes, and multi-year ice.

Another key set of problems falling into this group is the deployment and optimization

of Underground WSN. WUSN is a promising technology which enables a wide variety

of new applications that include monitoring of underground soil conditions such as

water and mineral content for intelligent irrigation and fertilization, underground

infrastructure monitoring such as electrical wiring, pipes and liquid storage tanks,

and border patrol and security monitoring using sensors to detect the presence of a
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person or an object [141], [143]. WUSN have many advantages over the conventional

wired sensor networks such as reliability, ease of deployment, and concealment[142].

Underground wireless channel are hostile mediums for wireless communications. Here,

EM waves suffer much higher loss compared to air, which complicates their charac-

terization. Indeed, a comprehensive channel model for such an environment does not

exist. WUSN deployed near the surface of the ground are able to communicate with

both under and above ground nodes so that a communication link exists partially in

the air and partially in the soil. Therefore, investigation of the impacts of ground

inhomogeneity on the communication channel operating in low altitude or subsurface

is crucial.

5.2.2 Channel modeling for WSN in inhomogeneous media

with volumetric stratification

Even though there are several models for path attenuation in forested environments

from HF to millimeter-waves range, the spatial, temporal, and spectral characteriza-

tion of these channels are an under-explored area. WSN deployed in foliage environ-

ment experience multipath fading due to scattering, diffraction, energy absorption

and shadowing caused by tree trunks and leaves. Moreover, WUSN deployed in such

environments suffer scattering resulting from vegetation roots, which have distinct
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dielectric properties from the soil. Sensor motes in these systems do not have any in-

formation about the power, delay and direction of arrival of each individual path and

instead require the aggregate descriptions of the propagation environment including

the received power, power delay spread and power angular spread. Due to the presence

of scatterers in the environment, multipath propagation is inherent in realistic radio

channels. The multipath not only decorrelates the signal outputs at various anten-

nas, but also induces delay spread, which results in frequency-selective fading. Delay

spread determines the maximum distortion-free data rates that can be transmitted

via a wireless channel. Another critical parameter that is inversely proportional to

delay spread is called the coherence bandwidth which quantifies the frequency varia-

tions of the channel [1]. Similarly, different angles of departure (AoD) and angles of

arrival (AoA) in a multipath environment lead to power angular spread, which de-

termines the coherence distance. In general, wider angular spread and larger spacing

between the array elements entail less spatial correlation and vice versa. Coherence

distance establishes the minimum antenna spacing required to achieve uncorrelated

channel responses. Therefore, effects of additional parameters such as delay spread

and angular spread are necessary to accurately describe the wireless channel.

Another important media that belongs to this category is human body. Body area

links can be grouped into several classes based on the location of the communicators

with respect to the body, namely, implant, on body, and external. Scenarios in which

one or both sides of the link are implants are not easily amenable to experimental
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measurements [144]. In these scenarios, full-wave simulation tools should be developed

to study the propagation environment. However, it is possible to make measurements

using communicating nodes to develop empirical models when the transceivers are

all on the surface or external to the body. Both theoretical and empirical models

will be developed to study path attenuation, shadowing statistics, power delay and

angular profiles, RMS delay and angular spread, coherence bandwidth, and coherence

distance which will facilitate the design of optimal body area communication systems

and the development of body-aware localization algorithms.
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