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1. Introduction    
 

Each region of the Earth’s crust can be morphologically modeled as a suitable layered 
structure, in which some amount of roughness is presented by every interface. Actually, 
propagation in stratified soil, sand cover of arid regions, forest canopies, urban buildings, 
snow blanket, snow cover ice, sea ice and glaciers, oil flood on sea surface, and other natural 
scenes can be modeled referring to most likely discrete (piecewise-constant) systems, rather 
than continuous, with some amount of roughness presented by every interface. Moreover, a 
key issue in remote sensing of other Planets is to reveal the content under the surface 
illuminated by the sensors: also in this case a layered model is usually employed.  
The aim of this chapter is to provide a structured presentation of the main theoretical and 
conceptual foundations for the problem of the electromagnetic wave interaction with 
layered rough media. In the first part, special emphasis is on the analytical models 
obtainable in powerful framework of the perturbation approach. The comprehensive 
scattering model based on the Boundary Perturbation Theory (BPT), which permits to 
systematically analyze the bi-static scattering patterns of 3D multilayered rough media, is 
then presented highlighting the formal connections with all the previously existing 
simplified perturbative models, as well as its wide relevance in the remote sensing 
applications scenario. The polarimetric Scattering Matrix of a multilayered medium with an 
arbitrary number of rough interfaces is also provided. The second part is devoted to a 
mathematical description which connects the concepts of local scattering and global 
scattering. Consequently, a functional decomposition of the BPT global scattering solution in 
terms of basic single-scattering local processes is rigorously established. The scattering 
decomposition gives insight into the BPT analytical results, so enabling a relevant physical-
revealing interpretation involving ray-series representation. Accordingly, in first-order limit, 
the way in which the character of the local scattering processes emerges is dictated by the 
nature of the structural filter action, which is inherently governed by the series of coherent 
interactions with the medium boundaries. As a result, the phenomenologically successful 
BPT model opens the way toward new techniques for solving the inverse problem, for 
designing SAR processing algorithms, and for modelling the time-domain response of 
layered structures.  
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Fig. 1. Geometry for an N-rough boundaries layered medium 

 
2. Problem definition  
 

When stratified media with rough interfaces are concerned, the possible approaches to cope 
with the EM scattering problem fall within three main categories. First, the numerical 
approaches do not permit to attain a comprehensive understanding of the general functional 
dependence of the scattering response on the structure parameters, as well as do not allow 
capturing the physics of the involved scattering mechanisms. Layered structures with rough 
interfaces have been also treated resorting to radiative transfer theory (RT). However, coherent 
effects are not accounted for in RT theory and could not be contemplated without 
employing full wave analysis, which preserves phase information. Another approach relies 
on the full-wave methods. Although, to deal with the electromagnetic propagation and 
scattering in complex random layered media,  several analytical formulation involving some 
idealized cases and suitable approximations have been conducted in last decades, the 
relevant solutions usually turn out to be too complicated to be generally useful in the remote 
sensing scenario, even if simplified geometries are accounted for. The proliferation of the 
proposed methods for the simulation of wave propagation and scattering in a natural 
stratified medium and the continuous interest in this topic are indicative of the need of 
appropriate modelling and interpretation of the complex physical phenomena that take 
place in realistic environmental structures. Indeed, the availability of accurate, sound 
physical and manageable models turns out still to be a strong necessity, in perspective to 
apply them in retrieving of add-valued information from the data acquired by microwave 
sensors. For instance, such models are high desirable for dealing with the inversion problem 
as well as for the effective design of processing algorithms and simulation of Synthetic 
Aperture Radar signals. Generally speaking, an exact analytical solution of Maxwell 
equations can be found only for a few idealized problems. Subsequently, appropriate 
approximation methods are needed. Regarding the perturbative approaches, noticeable 
progress has been attained in the investigation on the extension of the classical SPM (small 
perturbation method) solution for the scattering from rough surface to specific layered 
configurations. Most of previous existing works analyze different layered configurations in 
the first-order limit, using procedures, formalisms and final solutions that can appear of 

  

 

difficult comparison (Yarovoy et al., 2000), (Azadegan and Sarabandi, 2003), (Fuks, 2001). 
All these formulations, which refer to the case of a single rough interface, have been recently 
unified in (Franceschetti et al, 2008). On the other hand, solution for the case of two rough 
boundaries has also been proposed in (Tabatabaeenejad and Moghaddam, 2006).  
Methodologically, we underline that all the previously mentioned existing perturbative 
approaches, followed by different authors in analyzing scattering from simplified geometry, 
imply an inherent analytical complexity, which precludes the treatment to structures with 
more than one (Fuks, 2001) (Azadegan et al., 2003) (Yarovoy et al., 2000) or two 
(Tabatabaeenejad er al., 2006) rough interfaces.  
The general problem we intend to deal with here refers to the analytical evaluation of the 
electromagnetic scattering by layered structure with an arbitrary number of rough interfaces 
(see Figure 1). As schematically shown in Figure 1, an arbitrary polarized monochromatic 
plane wave 
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is considered to be incident on the layered medium at an angle i

0  relative to the ẑ  
direction from the upper half-space, where in the field expression a time factor exp(-jt) is 
understood, and where, using a spherical frame representation, the incident vector wave 
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where ykxk i

y
i
x

i ˆˆ k  is the two-dimensional projection of incident wave-number vector on 
the plane z=0. The parameters pertaining to layer m with boundaries –dm-1 and -dm are 
distinguished by a subscript m. Each layer is assumed to be homogeneous and characterized 
by arbitrary and deterministic parameters: the dielectric relative permittivity m, the magnetic 
relative permeability μm and the thickness m=dm-dm-1. With reference to Figure 1, it has been 
assumed that in particular, d0=0. In the following, the symbol  denotes the projection of the 
corresponding vector on the plan z=0. Here  z, rr , so we distinguish the transverse 
spatial coordinates  yx,r  and the longitudinal coordinate z. In addition, each mth rough 
interface is assumed to be characterized by a zero-mean two-dimensional stochastic process 

)(  rmm   with normal vector mn̂ . No constraints are imposed on the degree to which 
the rough interfaces are correlated.  
A general methodology has been developed by Imperatore et al. to analytically treat EM 
bistatic scattering from this class of layered structures that can be described by small 
changes with respect to an idealized (unperturbed) structure, whose associated problem is 
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exactly solvable. A thorough analysis of the results of this theoretical investigation (BPT), 
which is based on perturbation of the boundary condition, will be presented in the 
following, methodologically emphasizing the development of the several inherent aspects. 
 

    
Fig. 2. Geometry for a flat boundaries layered medium 
 
3. Preliminary notation and definitions 
 

This section is devoted preliminary to introduce the formalism used in the following of this 
chapter. The Flat Boundaries layered medium (unperturbed structure) is defined as a stack of 
parallel slabs (Figure 2), sandwiched in between two half-spaces, whose structure is shift 
invariant in the direction of x and y (infinite lateral extent in x-y directions). With the notations 

p
mmT 1 and p

mmR 1 , respectively, we indicate the ordinary transmission and reflection coefficients at 

the interface between the regions (m-1) and m, with the superscript p{v, h} indicating the 
polarization state for the incident wave and may stand for horizontal (h) or vertical (v) 
polarization (Tsang et al., 1985) (Imperatore et al. 2009a). In addition, we stress that: 
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take into account the multiple reflections in the mth layer. On the other hand, the generalized 
transmission coefficients in downward direction can be defined as: 
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where p {v, h}. The generalized transmission coefficients in upward direction are then given by: 
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which formally express the reciprocity of the generalized transmission coefficients for an 
arbitrary flat-boundaries layered structure (Imperatore et al. 2009b). In addition, with 
reference to a layered slab sandwiched between two half-space, we consider the generalized 
transmission coefficients in upward direction for the layered slab between two half-spaces (m,0), 
which are defined as 
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The generalized transmission coefficients in downward direction for the layered slab between 
two half-spaces (m,0), can be defined as 
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On the other hand, it should be noted that the p
m0  are distinct from the coefficients )(

0
slabp

m , 

because in the evaluation of p
m0  the effect of all the layers under the layer m is taken into 

account, whereas )(
0

slabp
m  are evaluated referring to a different configuration in which the 

intermediate layers 1...m are bounded by the half-spaces 0 and m. In the following, we 
shown how the employing the generalized reflection/transmission coefficient notions not 
only is crucial in obtaining a compact closed-form perturbation solution, but it also permit 
us to completely elucidate the obtained analytical expressions from a physical point of view, 
highlighting the role played by the equivalent reflecting interfaces and by the equivalent slabs, so 
providing the inherent connection between local and global scattering responses. 

 
4. Spectral Representation of the Stochastic Geometry Description 
 

In this section, the focus is on stochastic description for the geometry of the investigated 
structure, and the notion of wide-sense stationary process is detailed. First of all, when the 
description of a rough interface by means of deterministic function )( rm is concerned, the 
corresponding ordinary 2-D Fourier Transform pair can be defined as  
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Let us assume now that )( rm ,  which describes the generic (mth) rough interface, is a 2-D 
stochastic process satisfying the conditions 
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where the angular bracket denotes statistical ensemble averaging, and where )(ρmB  is the 
interface autocorrelation function, which quantifies the similarity of the spatial fluctuations 
with a displacement . Equations (17)-(18) constitute the basic assumptions defining a wide 
sense stationary (WSS) stochastic process: the statistical properties of the process under 
consideration are invariant to a spatial shift. Similarly, concerning two mutually correlated 
random rough interfaces m and n , we also assume that they are jointly WSS, i.e. 

  

 

  )()()( ρrρr nmBnm    ,   (19) 
 
where )(ρnmB  is the corresponding cross-correlation function of the two random processes.  
It can be readily derived that 
 

 )()( ρρ  mnnm BB  .    (20) 
 

The integral in (15) is a Riemann integral representation for )( rm , and it exists if )( rm  is 
piecewise continuous and absolutely integrable. On the other hand, when the spectral analysis 
of a stationary random process is concerned, the integral (15) does not in general exist in the 
framework of theory of the ordinary functions. Indeed, a WSS process describing an 
interface )( rm of infinite lateral extension, for its proper nature, is not absolutely integrable, 
so the conditions for the existence of the Fourier Transform are not satisfied. In order to 
obtain a spectral representation for a WSS random process, this difficulty can be 
circumvented by resorting to the more general Fourier-Stieltjes integral (Ishimaru, 1978); 
otherwise one can define space-truncated functions. When a finite patch of the rough 
interface with area A is concerned, the space-truncated version of (15) can be introduced as 
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is not an ordinary function. Nevertheless, we will 

use again the (15)-(16), regarding them as symbolic formulas, which hold a rigorous 
mathematical meaning beyond the ordinary function theory (generalized Fourier 
Transform). We underline that by virtue of the condition (17) directly follows also that 
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where the asterisk denotes the complex conjugated, and where the operations of average 
and integration have been interchanged. When jointly WSS processes m  and n are 
concerned, accordingly to (19), the RHS of (22) must be a function of   rr only; therefore, 
it is required that  
 

)()()(~)(~ *
  kkkkk  mnnm W , (23) 

 
where (·) is the Dirac delta function, and where )(κmnW  is called the (spatial) cross power 
spectral density of two interfaces m  and n , for the spatial frequencies of the roughness. 
Equation (23) states that the different spectral components of the two considered interfaces 
must be uncorrelated. This is to say that the (generalized) Fourier transform of jointly WSS 
processes are jointly non stationary white noise with average power )( kmnW . Indeed, by 
using (23) into (22), we obtain 
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The generalized transmission coefficients in downward direction for the layered slab between 
two half-spaces (m,0), can be defined as 
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On the other hand, it should be noted that the p
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because in the evaluation of p
m0  the effect of all the layers under the layer m is taken into 
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intermediate layers 1...m are bounded by the half-spaces 0 and m. In the following, we 
shown how the employing the generalized reflection/transmission coefficient notions not 
only is crucial in obtaining a compact closed-form perturbation solution, but it also permit 
us to completely elucidate the obtained analytical expressions from a physical point of view, 
highlighting the role played by the equivalent reflecting interfaces and by the equivalent slabs, so 
providing the inherent connection between local and global scattering responses. 
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where the angular bracket denotes statistical ensemble averaging, and where )(ρmB  is the 
interface autocorrelation function, which quantifies the similarity of the spatial fluctuations 
with a displacement . Equations (17)-(18) constitute the basic assumptions defining a wide 
sense stationary (WSS) stochastic process: the statistical properties of the process under 
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It can be readily derived that 
 

 )()( ρρ  mnnm BB  .    (20) 
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interface )( rm of infinite lateral extension, for its proper nature, is not absolutely integrable, 
so the conditions for the existence of the Fourier Transform are not satisfied. In order to 
obtain a spectral representation for a WSS random process, this difficulty can be 
circumvented by resorting to the more general Fourier-Stieltjes integral (Ishimaru, 1978); 
otherwise one can define space-truncated functions. When a finite patch of the rough 
interface with area A is concerned, the space-truncated version of (15) can be introduced as 
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where the asterisk denotes the complex conjugated, and where the operations of average 
and integration have been interchanged. When jointly WSS processes m  and n are 
concerned, accordingly to (19), the RHS of (22) must be a function of   rr only; therefore, 
it is required that  
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where (·) is the Dirac delta function, and where )(κmnW  is called the (spatial) cross power 
spectral density of two interfaces m  and n , for the spatial frequencies of the roughness. 
Equation (23) states that the different spectral components of the two considered interfaces 
must be uncorrelated. This is to say that the (generalized) Fourier transform of jointly WSS 
processes are jointly non stationary white noise with average power )( kmnW . Indeed, by 
using (23) into (22), we obtain 
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where the RHS of (24) involves an (ordinary) 2D Fourier Transform. Note also that as a 
direct consequence of the fact that )( rn  is real we have the relation )(~)(~ *

  kk nn  . 
Therefore, setting   rrρ in (24), we have  
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The cross-correlation function )(ρnmB   of two interfaces m  and n , is then given by the 
(inverse) 2D Fourier Transform of their (spatial) cross power spectral density, and Equation (25) 
together with its Fourier inverse 
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may be regarded as the (generalized) Wiener-Khinchin theorem. In particular, when n=m, (23) 
reduces to  
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where )(κmW is called the (spatial) power spectral density of nth corrugated interface m and 
can be expressed as the (ordinary) 2D Fourier transform of n-corrugated interface 
autocorrelation function, i.e., satisfying the transform pair: 
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which is the statement of the classical Wiener-Khinchin theorem. We emphasize the physical 
meaning of yxyxmm dκdκ,κκWdW )()( κκ : it represents the power of the spectral 
components of the mth rough interface having spatial wave number between x and x +dx  
and y and y +dy,  respectively, in x and y direction. Furthermore, from (20) and (26) it 
follows that  
 

   )()( * κκ nmmn WW  .    (30) 
 

This is to say that, unlike the power spectral density, the cross power spectral density is, in 
general, neither real nor necessarily positive. Furthermore, it should be noted that the 
Dirac’s delta function can be defined by the integral representation 
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By using in (27) and (23) the relation 2)2/();0(  AA  , we have, respectively, that the 
(spatial) power spectral density of nth corrugated interface can be also expressed as  
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and the (spatial) cross power spectral density of two interfaces m  and n  is given by  
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It should be noted that the domain of a rough interface is physically limited by the 
illumination beamwidth. Note also that the different definitions of the Fourier transform are 
available and used in the literature: the sign of the complex exponential function are 
sometimes exchanged and a multiplicative constant 2)2(  may appear in front of either 
integral or its square root in front of each expression (15)-(16). Finally, we recall that the 
theory of random process predicts only the averages over many realizations. 

 
5. Perturbative Field Formulation 
 

With reference to the geometry of Figure 1, in order to obtain a solution valid in each region 
of the structure, we have to enforce the continuity of the tangential fields: 
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where mmm EEE  1 , mmm HHH  1 , and the surface normal vector is given 
by: 
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with the slope vector mγ : 
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and where  is the nabla operator in the x-y plane. In order to study the fields mE  and mH  
within the generic mth layer of the structure, we assume then that, for each mth rough 
interface, the deviations and slopes of surface with respect to the reference mean plane z=-dm 
are small enough in the sense of (Ulaby et al, 1982) (Tsang et al., 1985), so that the fields can 
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available and used in the literature: the sign of the complex exponential function are 
sometimes exchanged and a multiplicative constant 2)2(  may appear in front of either 
integral or its square root in front of each expression (15)-(16). Finally, we recall that the 
theory of random process predicts only the averages over many realizations. 
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With reference to the geometry of Figure 1, in order to obtain a solution valid in each region 
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and where  is the nabla operator in the x-y plane. In order to study the fields mE  and mH  
within the generic mth layer of the structure, we assume then that, for each mth rough 
interface, the deviations and slopes of surface with respect to the reference mean plane z=-dm 
are small enough in the sense of (Ulaby et al, 1982) (Tsang et al., 1985), so that the fields can 
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be expanded about the reference mean plane. The fields expansion can be then injected into 
the boundary conditions (34)-(35), so that, retaining only up to the first-order terms, the 
following nonuniform boundary conditions can be obtained (Imperatore et al. 2009a)  
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where the field solution has been formally represented as:  
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Therefore, the boundary conditions from each mth rough interface can be transferred to the 
associated equivalent flat interface. In addition, the right-hand sides of Eqs. (38) and (39) can 
be interpreted as effective magnetic ( )1(p

HmJ ) and electric ( )1(p
EmJ ) surface current densities, 

respectively, with p denoting the incident polarization; so that we can identify the first-order 
fluctuation fields as being excited by these effective surface current densities imposed on the 
unperturbed interfaces. Accordingly, the geometry randomness of each corrugated 
interfaces is then translated in random current sheets imposed on each reference mean plane 
(z=-dm), which radiate in an unperturbed (flat boundaries) layered medium. As a result, 
within the first-order approximation, the field can be than represented as the sum of an 
unperturbed part )0()0( , nn HE  and a random part, so that ,),( )1()0(

nnn z EErE    
)1()0(),( nnn z HHrH  . The first is the primary field, which exists in absence of surface 

boundaries roughness (flat-boundaries stratification), detailed in (Imperatore et al. 2009a); 
whereas )1()1( , nn HE  can be interpreted as the superposition of single-scatter fields from each 
rough interface. In order to perform the evaluation of perturbative development, the 
scattered field is then represented as the sum of up- and down-going waves, and the first-
order scattered field in each region of the layered structure can be represented in the form: 
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Therefore, a solution valid in each region of the structure can be obtained from (42)-(45) 
taking into account the non uniform boundary conditions (38)-(39). In order to solve the 

  

 

scattering problem in terms of the unknown expansion coefficients )()1(


 kq
mS , we arrange 

their amplitudes in a single vector according to the notation: 
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Subsequently, the nonuniform boundary conditions (38)-(39) can be formulated by employing a 
suitable matrix notation, so that for the (q=h) horizontal polarized scattered wave we have 
(Imperatore et al. 2008a) (Imperatore et al. 2009a): 
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is the term associated with the effective source distribution, wherein the expressions of the 
effective currents )1(~ p

EmJ and )1(~ p
HmJ , imposed on the (flat) unperturbed boundary z = −dm, for 

an incident polarization p {v, h} are detailed in (Imperatore et al. 2009a); and where Z0 is 
the intrinsic impedance of the vacuum. Furthermore, the fundamental transfer matrix operator 
is given by:  
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with the superscripts q  {v, h} denoting the polarization. Moreover, it should be noted that 
on a (kth) flat interface Eq. (47) reduces to the uniform boundary conditions, thus getting: 
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We emphasize that Eqs. (47) states in a simpler form the problem originally set by Eqs. (38)-
(39): as matter of fact, solving Eq. (47) m implies dealing with the determination of 
unknown scalar amplitudes )()1(


 kq
mS  instead of working with the corresponding vector 

unknowns )1()1( , mm HE . Therefore, the scattering problem in each mth layer is reduced to the 
algebraic calculation of the unknown expansion scattering coefficients vector (46). As a 
result, when a structure with rough interfaces is considered, the enforcement of the original 
non uniform boundary conditions through the stratification (m=0, ..., N-1) can be addressed 
by writing down a linear system of equations with the aid of the matrix formalism (47)-(48) 
with m=0, ..., N-1. As a result, the formulation of non-uniform boundary conditions in matrix 
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be expanded about the reference mean plane. The fields expansion can be then injected into 
the boundary conditions (34)-(35), so that, retaining only up to the first-order terms, the 
following nonuniform boundary conditions can be obtained (Imperatore et al. 2009a)  
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where the field solution has been formally represented as:  
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Therefore, the boundary conditions from each mth rough interface can be transferred to the 
associated equivalent flat interface. In addition, the right-hand sides of Eqs. (38) and (39) can 
be interpreted as effective magnetic ( )1(p

HmJ ) and electric ( )1(p
EmJ ) surface current densities, 

respectively, with p denoting the incident polarization; so that we can identify the first-order 
fluctuation fields as being excited by these effective surface current densities imposed on the 
unperturbed interfaces. Accordingly, the geometry randomness of each corrugated 
interfaces is then translated in random current sheets imposed on each reference mean plane 
(z=-dm), which radiate in an unperturbed (flat boundaries) layered medium. As a result, 
within the first-order approximation, the field can be than represented as the sum of an 
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whereas )1()1( , nn HE  can be interpreted as the superposition of single-scatter fields from each 
rough interface. In order to perform the evaluation of perturbative development, the 
scattered field is then represented as the sum of up- and down-going waves, and the first-
order scattered field in each region of the layered structure can be represented in the form: 
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Therefore, a solution valid in each region of the structure can be obtained from (42)-(45) 
taking into account the non uniform boundary conditions (38)-(39). In order to solve the 
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Subsequently, the nonuniform boundary conditions (38)-(39) can be formulated by employing a 
suitable matrix notation, so that for the (q=h) horizontal polarized scattered wave we have 
(Imperatore et al. 2008a) (Imperatore et al. 2009a): 
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is the term associated with the effective source distribution, wherein the expressions of the 
effective currents )1(~ p

EmJ and )1(~ p
HmJ , imposed on the (flat) unperturbed boundary z = −dm, for 

an incident polarization p {v, h} are detailed in (Imperatore et al. 2009a); and where Z0 is 
the intrinsic impedance of the vacuum. Furthermore, the fundamental transfer matrix operator 
is given by:  
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with the superscripts q  {v, h} denoting the polarization. Moreover, it should be noted that 
on a (kth) flat interface Eq. (47) reduces to the uniform boundary conditions, thus getting: 
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We emphasize that Eqs. (47) states in a simpler form the problem originally set by Eqs. (38)-
(39): as matter of fact, solving Eq. (47) m implies dealing with the determination of 
unknown scalar amplitudes )()1(


 kq
mS  instead of working with the corresponding vector 

unknowns )1()1( , mm HE . Therefore, the scattering problem in each mth layer is reduced to the 
algebraic calculation of the unknown expansion scattering coefficients vector (46). As a 
result, when a structure with rough interfaces is considered, the enforcement of the original 
non uniform boundary conditions through the stratification (m=0, ..., N-1) can be addressed 
by writing down a linear system of equations with the aid of the matrix formalism (47)-(48) 
with m=0, ..., N-1. As a result, the formulation of non-uniform boundary conditions in matrix 
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notation (47)-(48) enables a systematic method for solving the scattering problem: For the N-
layer stratification of Figure 1, we have to find 2N unknown expansion coefficients, using N 
vectorial equations (47), i.e., 2N scalar equations. It should be noted that, for the considered 
configuration, the relevant scattering coefficients )(),( )1(

0
)1(





 kk qq
N SS are obviously 

supposed to be zero. The scattering problem, therefore, results to be reduced to a formal 
solution of a linear equation system. We finally emphasize that here we are interested in the 
scattering from the stratification; therefore, the determination of the unknown expansion 
coefficients )()1(

0 
 kqS  of the scattered wave into the upper half-space is required only. Full 

expressions for these coefficients are reported in (Imperatore et al. 2009a). 

 
6. BPT Closed-form Solution 
 

The field scattered upward in the upper half-space in the first-order limit can be written in 
the form (see (42)-(45)):  
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By employing the method of stationary phase, we evaluate the integral (51) in the far field zone, 
obtaining: 

 )(cos2)(ˆ)( )1(
0000

)1(
0

0
sq

rjk
ss S

r
ekjq 




  kkrΕ       (52) 

 
with q  {v, h} is the polarization of the scattered field. The scattering cross section of a 
generic (nth) rough interface embedded in the layered structure can be then defined as 
 

   




2
0

)1(
0

2
0

, )(ˆ)(4~ s
Ar

nqp q
A
rlimlim krΕ ,  (53) 

 
where < > denotes ensemble averaging, where q  {v, h} and p  {v, h} denote, respectively, 
the polarization of scattered field and the polarization of incident field, and where A is the 
illuminated surface area. The estimate of the mean power density can be obtained by 
averaging over an ensemble of statistically identical interfaces. Therefore, considering that 
the (spatial) power spectral density )(κnW of nth corrugated interface is defined as in (32), the 
scattering cross section relative to the contribution of the nth corrugated interface, according 
to the formalism used in [Franceschetti et al. 2008], can be expressed as: 
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with p, q  {v, h} denoting, respectively, the incident and the scattered polarization states, 
which may stand for horizontal polarization (h) or vertical polarization (v); the coefficients 

1,~ mm
qp are relative to the p-polarized incident wave impinging on the structure from upper 

  

 

half space 0 and to the q-polarized scattering contribution from structure into the upper half 
space, originated from the rough interface between the layers m, m+1: 
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where )(0  kp
m are the generalized transmission coefficients in upward direction (see (11)). 

Furthermore, we stress when the backscattering case ( 0ˆˆ  
is kk ) is concerned, our cross-

polarized scattering coefficients (55)-(58) evaluated in the plane of incidence vanish, in full 
accordance with the classical first-order SPM method for a rough surface between two 
different media (Ulaby et al, 1982) (Tsang et al., 1985). 
We now show that the solution, given by the expression (55)-(58), is susceptible of a 
straightforward generalization to the case of arbitrary stratification with N-rough 
boundaries. Taking into account the contribution of each nth corrugated interface, the global 
bi-static scattering cross section of the N-rough interface layered media can be expressed as: 
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with p, q  {v, h}, where the asterisk denotes the complex conjugated, where 1,~ ii

qp are given 

by (55)-(58), and where the cross power spectral density ijW , between the interfaces i and j, for 
the spatial frequencies of the roughness is given by (33). As a result, the scattering from the 
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notation (47)-(48) enables a systematic method for solving the scattering problem: For the N-
layer stratification of Figure 1, we have to find 2N unknown expansion coefficients, using N 
vectorial equations (47), i.e., 2N scalar equations. It should be noted that, for the considered 
configuration, the relevant scattering coefficients )(),( )1(

0
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
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 kk qq
N SS are obviously 

supposed to be zero. The scattering problem, therefore, results to be reduced to a formal 
solution of a linear equation system. We finally emphasize that here we are interested in the 
scattering from the stratification; therefore, the determination of the unknown expansion 
coefficients )()1(

0 
 kqS  of the scattered wave into the upper half-space is required only. Full 

expressions for these coefficients are reported in (Imperatore et al. 2009a). 

 
6. BPT Closed-form Solution 
 

The field scattered upward in the upper half-space in the first-order limit can be written in 
the form (see (42)-(45)):  
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By employing the method of stationary phase, we evaluate the integral (51) in the far field zone, 
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with q  {v, h} is the polarization of the scattered field. The scattering cross section of a 
generic (nth) rough interface embedded in the layered structure can be then defined as 
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where < > denotes ensemble averaging, where q  {v, h} and p  {v, h} denote, respectively, 
the polarization of scattered field and the polarization of incident field, and where A is the 
illuminated surface area. The estimate of the mean power density can be obtained by 
averaging over an ensemble of statistically identical interfaces. Therefore, considering that 
the (spatial) power spectral density )(κnW of nth corrugated interface is defined as in (32), the 
scattering cross section relative to the contribution of the nth corrugated interface, according 
to the formalism used in [Franceschetti et al. 2008], can be expressed as: 
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with p, q  {v, h} denoting, respectively, the incident and the scattered polarization states, 
which may stand for horizontal polarization (h) or vertical polarization (v); the coefficients 

1,~ mm
qp are relative to the p-polarized incident wave impinging on the structure from upper 

  

 

half space 0 and to the q-polarized scattering contribution from structure into the upper half 
space, originated from the rough interface between the layers m, m+1: 
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where )(0  kp
m are the generalized transmission coefficients in upward direction (see (11)). 

Furthermore, we stress when the backscattering case ( 0ˆˆ  
is kk ) is concerned, our cross-

polarized scattering coefficients (55)-(58) evaluated in the plane of incidence vanish, in full 
accordance with the classical first-order SPM method for a rough surface between two 
different media (Ulaby et al, 1982) (Tsang et al., 1985). 
We now show that the solution, given by the expression (55)-(58), is susceptible of a 
straightforward generalization to the case of arbitrary stratification with N-rough 
boundaries. Taking into account the contribution of each nth corrugated interface, the global 
bi-static scattering cross section of the N-rough interface layered media can be expressed as: 
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with p, q  {v, h}, where the asterisk denotes the complex conjugated, where 1,~ ii

qp are given 

by (55)-(58), and where the cross power spectral density ijW , between the interfaces i and j, for 
the spatial frequencies of the roughness is given by (33). As a result, the scattering from the 
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rough layered media is sensitive to the correlation between rough profiles of different 
interfaces. In fact, a real layered structure will have interfaces cross-correlation somewhere 
between two limiting situations: perfectly correlated and uncorrelated roughness. 
Consequently, the degree of correlation affects the phase relation between the fields 
scattered from each rough interface. Obviously, when the interfaces are supposed to be 
uncorrelated, the second term in (59) vanishes and, in the first-order approximation, the 
total scattering from the structure arises from the incoherent superposition of radiation 
scattered from each interface.  
As a result, an elegant closed form solution is established, which takes into account 
parametrically the dependence of scattering properties on structure (geometric and 
electromagnetic) parameters. In addition, as it will be shown in the following, the proposed 
global solution turns out to be completely interpretable with basic physical concepts, clearly 
discerning the physics of the involved scattering mechanisms.  

 
7. Generalized Scattering Matrix 
 

In this section, to emphasize the polarimetric character of the BPT solution, we introduce the 
generalized bistatic scattering matrix of the layered rough media, which can be then formally 
expressed by: 
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characterizes the polarimetric response of the generic (mth) rough interface of the layered 
structure, for a plane wave incident in direction ik  and for a given observation direction sk , 
with  
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where we have introduced the notation 
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It should be noted that (63)-(67) are obtained directly by (55)-(58) by making use of (11). 
Note also that the coefficients 1,~ mm

qp are expressible in a direct closed-form and depend 
parametrically on the unperturbed structure parameters. We also emphasize that the 
scattering configuration we have considered is compliant with the classical Forward 
Scattering Alignment (FSA) convention adopted in radar polarimetry. 
Denoting with the superscript T the transpose, it can be verified that the scattering matrix 
satisfies the following relationship (Imperatore et al. 2009b) 
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which concisely expresses the reciprocity principle of the electromagnetic theory, as 
expected. This is to say that the scattering experiment is invariant for interchanging the role 
of transmitter and receiver. Note that the inversion of the projections on the z=0 plane i

k  
and s

k  are directly related to the inversion of the incident and scattered vector wave 
zk i

z
ii ˆ0 kk  and zk s

z
ss ˆ0 kk , respectively.  

As a result, the presented closed-form solution permits the polarimetric evaluation of the 
scattering for a bi-static configuration, once the three-dimensional layered structure’s 
parameters (shape of the roughness spectra, layers thickness and complex permittivities), 
the incident field parameters (frequency, polarization and direction) and the observation 
direction are been specified. Therefore, our formulation leads to a direct functional 
dependence (no integral evaluation is required) and, subsequently, allows us to show that 
the scattered field can be parametrically evaluated considering a set of parameters: some of 
them refer to an unperturbed structure configuration, i.e. intrinsically the physical 
parameters of the smooth boundary structure, and others which are determined exclusively 
by (random) deviations of the corrugated boundaries from their reference position. 
Procedurally, once the generalized reflection/transmission coefficients are recursively evaluated, 
the (63-67) can be than directly computed, so that the scattering cross section (59) or the 
generalized scattering matrix (60) of a structure with rough interfaces can be finally 
predicted. Finally, it should be noted that the method to be applied needs only the classical 
gently-roughness assumption, without any further approximation. 

 
8. Unifying Perspective on Perturbation Approaches  
 

In this section, we first summarize and discuss the previous existing scattering models 
introduced to cope with simplified layered geometry with only one (or two) rough interface, 
whose derivation methods belong to the class of perturbative methods. In the perspective of 
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rough layered media is sensitive to the correlation between rough profiles of different 
interfaces. In fact, a real layered structure will have interfaces cross-correlation somewhere 
between two limiting situations: perfectly correlated and uncorrelated roughness. 
Consequently, the degree of correlation affects the phase relation between the fields 
scattered from each rough interface. Obviously, when the interfaces are supposed to be 
uncorrelated, the second term in (59) vanishes and, in the first-order approximation, the 
total scattering from the structure arises from the incoherent superposition of radiation 
scattered from each interface.  
As a result, an elegant closed form solution is established, which takes into account 
parametrically the dependence of scattering properties on structure (geometric and 
electromagnetic) parameters. In addition, as it will be shown in the following, the proposed 
global solution turns out to be completely interpretable with basic physical concepts, clearly 
discerning the physics of the involved scattering mechanisms.  

 
7. Generalized Scattering Matrix 
 

In this section, to emphasize the polarimetric character of the BPT solution, we introduce the 
generalized bistatic scattering matrix of the layered rough media, which can be then formally 
expressed by: 
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characterizes the polarimetric response of the generic (mth) rough interface of the layered 
structure, for a plane wave incident in direction ik  and for a given observation direction sk , 
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It should be noted that (63)-(67) are obtained directly by (55)-(58) by making use of (11). 
Note also that the coefficients 1,~ mm

qp are expressible in a direct closed-form and depend 
parametrically on the unperturbed structure parameters. We also emphasize that the 
scattering configuration we have considered is compliant with the classical Forward 
Scattering Alignment (FSA) convention adopted in radar polarimetry. 
Denoting with the superscript T the transpose, it can be verified that the scattering matrix 
satisfies the following relationship (Imperatore et al. 2009b) 
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which concisely expresses the reciprocity principle of the electromagnetic theory, as 
expected. This is to say that the scattering experiment is invariant for interchanging the role 
of transmitter and receiver. Note that the inversion of the projections on the z=0 plane i
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and s

k  are directly related to the inversion of the incident and scattered vector wave 
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As a result, the presented closed-form solution permits the polarimetric evaluation of the 
scattering for a bi-static configuration, once the three-dimensional layered structure’s 
parameters (shape of the roughness spectra, layers thickness and complex permittivities), 
the incident field parameters (frequency, polarization and direction) and the observation 
direction are been specified. Therefore, our formulation leads to a direct functional 
dependence (no integral evaluation is required) and, subsequently, allows us to show that 
the scattered field can be parametrically evaluated considering a set of parameters: some of 
them refer to an unperturbed structure configuration, i.e. intrinsically the physical 
parameters of the smooth boundary structure, and others which are determined exclusively 
by (random) deviations of the corrugated boundaries from their reference position. 
Procedurally, once the generalized reflection/transmission coefficients are recursively evaluated, 
the (63-67) can be than directly computed, so that the scattering cross section (59) or the 
generalized scattering matrix (60) of a structure with rough interfaces can be finally 
predicted. Finally, it should be noted that the method to be applied needs only the classical 
gently-roughness assumption, without any further approximation. 

 
8. Unifying Perspective on Perturbation Approaches  
 

In this section, we first summarize and discuss the previous existing scattering models 
introduced to cope with simplified layered geometry with only one (or two) rough interface, 
whose derivation methods belong to the class of perturbative methods. In the perspective of 
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providing a unifying insight for the different perturbative formulations, the aim is to 
reconsider the state of art in an organized mathematical framework, analytically 
demonstrating the formal consistency of BPT general scattering solution, which permits to 
deal with layered media with an arbitrary number of rough interfaces, with the previous 
existing perturbative models, whose relevant first-order solutions can appear already of 
difficult mutual comparison (Franceschetti et al 2003) (Franceschetti et a. 2008).  
In (Fuks, 2001) a model to calculate scattering from a rough surface on top of a stratified 
medium (see the geometry of Figure 3a) has been proposed. Expressions for scattering bi-
static cross section were obtained by using the plane wave expansion of scattered EM fields 
and an equivalent current method, without using to the Green’s function formalism. With 
reference to the geometry pictured in Figure 3b, an analytical small-perturbation-based model 
was developed to deal with a slightly rough interface boundary covered with a homogeneous 
dielectric layer (Azadegan et al., 2003) ( Sarabandi et al, 2000). Starting from a perturbation 
series expansion and by employing the Green’s function formalism, a solution to predict the 
first order bi-static scattering coefficients was found. On the other hand, the backscattering 
problem from the two-middle layer structure with one embedded corrugation, as schematized 
in Figure 3c, was investigated in (Yarovoy et al., 2000) in the first-order approximation, by 
using the small perturbation method combined with the Green’s function approach. This 
approach leads to some cumbersome analytical expressions for backscattering coefficients. 
As matter of fact, all these models, which refer to different simplified geometry, employ 
different perturbative procedures and different notations in the relative analytical 
derivation, so that the resulting solutions turn out mutually of difficult comparison. Besides, 
the finding of the connection between these existing functional forms is not a trivial task. 
With regard to these models, in (Franceschetti et al., 2008) it was essentially demonstrated 
the equivalence of the relevant analytical procedures and the consistency of the respective 
solutions. It should be mentioned that the models in (Fuks, 2001) and (Azadegan et al., 2003) 
(Sarabandi et al, 2000) are derived for a bi-static configuration. Conversely, the solution 
derived in (Yarovoy et al., 2000) with reference to the geometry of Figure 3c, which is even 
relatively more general since contemplates flat-boundaries stratification above and under 
the roughness, is given only in backscattering case. On the other hand, none of the pertinent 
configurations of these simplistic considered models is directly applicable to an actual 
remote sensing scenario. In fact, the natural stratified media are definitely constituted by 
corrugated interfaces, each one exhibiting a certain amount of roughness, whereas the 
flatness is an idealization which does not occur in natural media. More specifically, it can 
occur that, for a given roughness, one might consider an operational EM wavelength for 
which the roughness itself can be reasonably neglected. However, in principle, there is no 
defensible motivation, beyond the relevant limitation of the involved analytical difficulties, for 
considering the effect of only one interfacial roughness, neglecting the other relevant ones. 
This poses not only a conceptual limitation. In fact, in the applications perspective of retrieving 
geo-physical parameters by scattering measurements, whether there is a dominant interfacial 
roughness, and, in case, which the dominant one is, should be established after the remote 
sensing data are analyzed and, conversely, they cannot constitute a priori assumptions.  
Each of the existing first-order models referring to a simplified geometry with one (Fuks, 
2001) (Azadegan et al., 2003) (Sarabandi et al, 2000) (Yarovoy et al., 2000) or two 
(Tabatabaeenejad et al., 2006) rough interfaces, can be rigorously regarded as a particular 
case of our general model. Indeed, it can be analytically demonstrated that when the general 

  

 

geometry reduces to each simplified one, the consistency of the relevant solutions formally 
holds. In fact, when the (63)-(66) are specialized for the case of Figure 3a, the 
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equivalent solution in (Yarovoy et al., 2000) (Franceschetti et al., 2008).  
Analytically speaking, this allows us to obtain, in a unitary formal framework, a 
comprehensive insight into the first-order perturbation solutions formalism for scattering 
from stratified structure with rough interfaces.  
Finally, the Boundary Perturbation Theory results can be also regarded as a generalization of 
the classical SPM for rough surface (Ulaby et al., 1982) (Tsang et al., 1985) to layered media 
with rough interfaces.  
 

 
               a)       b)              c) 
Fig. 3. Simplified geometry considered by other Authors 

 
9. Wave Scattering Decomposition  
 

In this section, the focus is on the intrinsic significance of the global BPT scattering solution, 
getting more concrete insight into the physics of the problem of the scattering from rough 
interfaces of a layered media. In order to be able to express the solution in terms of readable 
basic physical phenomena, a key point is to exploit the local scattering concept, differently 
from (Yarovoy et al., 2000) and (Fuks, 1998) wherein the authors resort to the radar contrast. 
It should be noted that the exact analytic decomposition of the solution in terms of local 
interactions is rigorously feasible, since, in the first-order perturbative approximation, the 
scattering amplitude can be written as a single space integral with a kernel that depends 
only on the rough interface height and on its first-order derivatives at a given point. 
Moreover, since in the limit of first-order BPT solution the global response of a structure 
with all rough interfaces can be directly obtained considering the superposition of the 
response from each interface, we firstly focus our attention to a generic embedded rough 
interface. Afterwards, the general interpretation for a layered structure with an arbitrary 
number of rough interfaces can be addressed.  
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providing a unifying insight for the different perturbative formulations, the aim is to 
reconsider the state of art in an organized mathematical framework, analytically 
demonstrating the formal consistency of BPT general scattering solution, which permits to 
deal with layered media with an arbitrary number of rough interfaces, with the previous 
existing perturbative models, whose relevant first-order solutions can appear already of 
difficult mutual comparison (Franceschetti et al 2003) (Franceschetti et a. 2008).  
In (Fuks, 2001) a model to calculate scattering from a rough surface on top of a stratified 
medium (see the geometry of Figure 3a) has been proposed. Expressions for scattering bi-
static cross section were obtained by using the plane wave expansion of scattered EM fields 
and an equivalent current method, without using to the Green’s function formalism. With 
reference to the geometry pictured in Figure 3b, an analytical small-perturbation-based model 
was developed to deal with a slightly rough interface boundary covered with a homogeneous 
dielectric layer (Azadegan et al., 2003) ( Sarabandi et al, 2000). Starting from a perturbation 
series expansion and by employing the Green’s function formalism, a solution to predict the 
first order bi-static scattering coefficients was found. On the other hand, the backscattering 
problem from the two-middle layer structure with one embedded corrugation, as schematized 
in Figure 3c, was investigated in (Yarovoy et al., 2000) in the first-order approximation, by 
using the small perturbation method combined with the Green’s function approach. This 
approach leads to some cumbersome analytical expressions for backscattering coefficients. 
As matter of fact, all these models, which refer to different simplified geometry, employ 
different perturbative procedures and different notations in the relative analytical 
derivation, so that the resulting solutions turn out mutually of difficult comparison. Besides, 
the finding of the connection between these existing functional forms is not a trivial task. 
With regard to these models, in (Franceschetti et al., 2008) it was essentially demonstrated 
the equivalence of the relevant analytical procedures and the consistency of the respective 
solutions. It should be mentioned that the models in (Fuks, 2001) and (Azadegan et al., 2003) 
(Sarabandi et al, 2000) are derived for a bi-static configuration. Conversely, the solution 
derived in (Yarovoy et al., 2000) with reference to the geometry of Figure 3c, which is even 
relatively more general since contemplates flat-boundaries stratification above and under 
the roughness, is given only in backscattering case. On the other hand, none of the pertinent 
configurations of these simplistic considered models is directly applicable to an actual 
remote sensing scenario. In fact, the natural stratified media are definitely constituted by 
corrugated interfaces, each one exhibiting a certain amount of roughness, whereas the 
flatness is an idealization which does not occur in natural media. More specifically, it can 
occur that, for a given roughness, one might consider an operational EM wavelength for 
which the roughness itself can be reasonably neglected. However, in principle, there is no 
defensible motivation, beyond the relevant limitation of the involved analytical difficulties, for 
considering the effect of only one interfacial roughness, neglecting the other relevant ones. 
This poses not only a conceptual limitation. In fact, in the applications perspective of retrieving 
geo-physical parameters by scattering measurements, whether there is a dominant interfacial 
roughness, and, in case, which the dominant one is, should be established after the remote 
sensing data are analyzed and, conversely, they cannot constitute a priori assumptions.  
Each of the existing first-order models referring to a simplified geometry with one (Fuks, 
2001) (Azadegan et al., 2003) (Sarabandi et al, 2000) (Yarovoy et al., 2000) or two 
(Tabatabaeenejad et al., 2006) rough interfaces, can be rigorously regarded as a particular 
case of our general model. Indeed, it can be analytically demonstrated that when the general 
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Analytically speaking, this allows us to obtain, in a unitary formal framework, a 
comprehensive insight into the first-order perturbation solutions formalism for scattering 
from stratified structure with rough interfaces.  
Finally, the Boundary Perturbation Theory results can be also regarded as a generalization of 
the classical SPM for rough surface (Ulaby et al., 1982) (Tsang et al., 1985) to layered media 
with rough interfaces.  
 

 
               a)       b)              c) 
Fig. 3. Simplified geometry considered by other Authors 

 
9. Wave Scattering Decomposition  
 

In this section, the focus is on the intrinsic significance of the global BPT scattering solution, 
getting more concrete insight into the physics of the problem of the scattering from rough 
interfaces of a layered media. In order to be able to express the solution in terms of readable 
basic physical phenomena, a key point is to exploit the local scattering concept, differently 
from (Yarovoy et al., 2000) and (Fuks, 1998) wherein the authors resort to the radar contrast. 
It should be noted that the exact analytic decomposition of the solution in terms of local 
interactions is rigorously feasible, since, in the first-order perturbative approximation, the 
scattering amplitude can be written as a single space integral with a kernel that depends 
only on the rough interface height and on its first-order derivatives at a given point. 
Moreover, since in the limit of first-order BPT solution the global response of a structure 
with all rough interfaces can be directly obtained considering the superposition of the 
response from each interface, we firstly focus our attention to a generic embedded rough 
interface. Afterwards, the general interpretation for a layered structure with an arbitrary 
number of rough interfaces can be addressed.  
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To focus formally on the relations among local and global scattering concepts, the identified 
Wave Scattering Decomposition (Imperatore et al 2008c) (Imperatore et al. 2009c), for the global 
scattering response of the structure in terms of the four types of local interactions, can be 
expressed with a compact notation as: 
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captures the local response of the mth rough interface between two layer of 
permittivity 1, mm  respectively, and the transfer vector qp

mP  is related to the coherent 
propagation inside the stratification (Imperatore et al. 2009c). Specifically, four distinct types 
of local interaction with an embedded rough interface can be distinguished: two of them 
identifiable as local scattering through the relevant interfacial roughness and other ones as 
local scattering from the roughness. We emphasize that the corresponding coefficients 

1, mm
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,1  refer to cases in which both the observation and incidence directions 

are, respectively, above and under the roughness; whereas 1, mm
qp and mm

qp
,1 concern the 

local scattering contribution that cross the roughness in opposite directions. In addition, we 
stress that the local scattering coefficients are formally identical to the classical ones relative 
to a rough surface between two half-spaces (Ulaby et al., 1982) (Tsang et al., 1985). On the 
other hand, we emphasize that the transfer vector, which measures the influence of the 
stratification on the local scattering, whatever the roughness is, can be expressed in terms of 
the generalized transmission/reflection coefficients (Imperatore et al. 2009c). Once the local 
nature has been recognized, the solution can be suitably expanded, so that it can be 
expressed as a ray series or optical geometric series, where each term of the series is 
susceptible of a powerful physical interpretation (Imperatore et al. 2008c) as illustrated in 
the next section. 

 
10. Physical Interpretation  
 

In this section, we show in detailed the physical meaning of the wave scattering 
decomposition obtained in the previous section. The analytical solution (69), after suitable 
expansion of the elements of the transfer vector, is then susceptible of an expression in terms 
of an infinite sum of contributions (geometric power series). Consequently, the suitably 
expanded solution can be expressed as an optical geometric series, where each term of the 
series is susceptible of a direct physical interpretation. In particular, each individual term of 
the absolutely summable innite series can be physically identified as a wave propagating in 
the structure that experiences a single-scattering local interaction with the roughness.  
To this purpose, we introduce the following useful notations 
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and recognize that these factors correspond to a complete roundtrip in the intermediate 
layer with coherent reflections at the layer boundaries. Moreover, in order to provide a 
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evaluation of the former the effect of all the layers under the layer m is taken into account, 
whereas the latter is evaluated referring to a different configuration in which the 
intermediate layers 1...m are bounded by the half-spaces 0 and m.  
Furthermore, we focus our attention on the two layers just above (m) and under (m+1) the 
generic roughness. In Figure 4, the remaining part of the structure is visualized condensed 
in two equivalent slabs constituted, respectively, by the intermediate layers m+2,...,N-1 
(under the (m+1)th layer) and 1,...,m-1 (above the mth layer). Without loss of generality, 
since analogous considerations hold for the other polarization combinations, the analysis 
can be conducted for the hh case only. Consequently, four distinct families of rays can be 
recognized; each one associated to one type of local interaction, so that each term of the 
expansion of the (69) can be readily identified as follows (Imperatore et al. 2009c): 
a) Local upward scattered waves from rough interface: each of these waves (see Figure 4.a) 
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To focus formally on the relations among local and global scattering concepts, the identified 
Wave Scattering Decomposition (Imperatore et al 2008c) (Imperatore et al. 2009c), for the global 
scattering response of the structure in terms of the four types of local interactions, can be 
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captures the local response of the mth rough interface between two layer of 
permittivity 1, mm  respectively, and the transfer vector qp

mP  is related to the coherent 
propagation inside the stratification (Imperatore et al. 2009c). Specifically, four distinct types 
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local scattering contribution that cross the roughness in opposite directions. In addition, we 
stress that the local scattering coefficients are formally identical to the classical ones relative 
to a rough surface between two half-spaces (Ulaby et al., 1982) (Tsang et al., 1985). On the 
other hand, we emphasize that the transfer vector, which measures the influence of the 
stratification on the local scattering, whatever the roughness is, can be expressed in terms of 
the generalized transmission/reflection coefficients (Imperatore et al. 2009c). Once the local 
nature has been recognized, the solution can be suitably expanded, so that it can be 
expressed as a ray series or optical geometric series, where each term of the series is 
susceptible of a powerful physical interpretation (Imperatore et al. 2008c) as illustrated in 
the next section. 

 
10. Physical Interpretation  
 

In this section, we show in detailed the physical meaning of the wave scattering 
decomposition obtained in the previous section. The analytical solution (69), after suitable 
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of an infinite sum of contributions (geometric power series). Consequently, the suitably 
expanded solution can be expressed as an optical geometric series, where each term of the 
series is susceptible of a direct physical interpretation. In particular, each individual term of 
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evaluation of the former the effect of all the layers under the layer m is taken into account, 
whereas the latter is evaluated referring to a different configuration in which the 
intermediate layers 1...m are bounded by the half-spaces 0 and m.  
Furthermore, we focus our attention on the two layers just above (m) and under (m+1) the 
generic roughness. In Figure 4, the remaining part of the structure is visualized condensed 
in two equivalent slabs constituted, respectively, by the intermediate layers m+2,...,N-1 
(under the (m+1)th layer) and 1,...,m-1 (above the mth layer). Without loss of generality, 
since analogous considerations hold for the other polarization combinations, the analysis 
can be conducted for the hh case only. Consequently, four distinct families of rays can be 
recognized; each one associated to one type of local interaction, so that each term of the 
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Note also that when an arbitrary layered structure with all rough interfaces is concerned, 
since in the first-order limit the multiple scattering contributions are neglected, the relative 
physical interpretation can be obtained effortless by superposition of the several ray 
contributions obtained considering separately each rough interface.  
 

a) 

b) 

 c) 

d)  
Fig. 4. Physical interpretation for the scattering from an arbitrary layered structure with an 
embedded rough interface.  
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Note also that when an arbitrary layered structure with all rough interfaces is concerned, 
since in the first-order limit the multiple scattering contributions are neglected, the relative 
physical interpretation can be obtained effortless by superposition of the several ray 
contributions obtained considering separately each rough interface.  
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Fig. 4. Physical interpretation for the scattering from an arbitrary layered structure with an 
embedded rough interface.  
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Fig. 5. Physical Interpretation:  bistatic configuration 
 

 
Fig. 6. Physical Interpretation:  mono-static configuration 
 
As a result, the obtained interpretation (Figure 4) enables the global scattering phenomenon 
involved to be visualized as a superposition of local interactions, emphasizing the role of the 
interference effects in the structure as well (Imperatore et al. 2009c). It should be also noted 
that, despite the expansion is attained rigorously without any further approximation with 
respect to the solution proposed (see (54)-(58)), the resulting interpretation turns out to be 
extremely intuitive and surprisingly simple. In particular, when the configuration reduces to 
a rough interface covered by a dielectric layer, as the reader can easily verify, we obtain the 
interpretation (Franceschetti et al., 2008) for the bistatic and monostatic configuration 
illustrated in Figure 5 and Figure 6, respectively.  

 
11. Scattering patterns computation 
 

In this section, we present some numerical examples aimed at studying scattering 
coefficients (59). To this purpose, we consider the canonical layered media with three rough 
interfaces pictured in Figure 8, which is representative of several situations of interest. In 
common with classical theoretical studies of the scattering of waves from random surfaces, 
we assume that the interfaces constitute Gaussian 2D random processes with Gaussian 
correlations, whose spectral representation is given by 
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where, with regard to the nth interface, n and ln are the surface height standard deviation 
and correlation length, respectively. In order to perform a consistent comparison, we refer to 
interfaces with the same roughness. In addition, we suppose no correlation between the 
interfaces. For instance, we analyze the layered medium with three rough interfaces 
schematized in Figure 7, which can be parametric characterized as follows. We assume 
k0ln=1.5, k0σn=0.15 for n= 0, 1, 2. In addition, the considered vertical profile is characterized 
by the following parameters: 0=1, 1=3.0+j0.0, 2=5.5+j0.00055, 3=10.5+j1.55; Δ1/=1.50, 
Δ2/=2.80 (see Table 1). Once this reference structure has been characterized, we  study  the  
scattering cross  section  of the  structure as a  function of the  scattering direction  in  the  
upper half-space, assuming  fixed the  incident  direction. It should be noted that, also 
considering a limited number of layers, the number of parameters involved by the model 
makes difficult the jointly visualization of the multi-variables dependency. As matter of fact, 
once the structure has been parametrically defined and incident direction has been fixed, it 
is possible to visualize the scattering cross section of the structure as a function of the 
scattering direction in the upper half-space (Imperatore et al. 2008c). Therefore, to 
characterize the re-irradiation pattern of the structure in three-dimensional space, scattering 
cross-section distributions are represented (Figure 8) as function of zenithal and azimuthal 
angles and are treated as three-dimensional surfaces. To save space, only the case hh is 
considered. In addition, we assume fixed the incidence angle i

0 = 45 ( xk i ˆˆ  ). Therefore, 
to evaluate the effect on the global response of each rough interface, the several single 
contributions are shown in Figure 8a, Figure 8b, and Figure 8c, respectively. In addition, the 
total contribution is also pictured (Figure 8.d). It should be noted that to visualize the 
patterns an offset of +40dB has been considered for the radial amplitude, so that scattering 
coefficients less than -40dB are represented by the axes origin.  
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Fig. 8. Bi-static scattering coefficients hh for a three rough interfaces layered media: 0  
contribution (a), 1  contribution (b), 2 contribution (c), total contribution (d) (note that 
scattering coefficients values less than -40 dB are represented by the axes origin). 
 

 
 
 
 
 
 

 
 
 
Table 1. Parametric characterization of the layered media of Figure 7 

 

i
0  45 k0σ0 0.15 

Δ1/ 1.50 k0σ1 0.15 

Δ2/ 2.80 k0σ2 0.15 
f 1.0 GHz k0l0 1.5 
1 3.0 k0l1 1.5 

2 5.5+j 0.00055 k0l2 1.5 

3 10.5+j 1.55   

  

 

12. Conclusion 
 

A quantitative mathematical analysis of wave propagation in three-dimensional layered 
rough media is fundamental in understanding intriguing scattering phenomena in such 
structures, especially in the perspective of remote sensing applications. The results of the 
Boundary Perturbation Theory (BPT), as introduced by P. Imperatore and his coauthors in 
many different papers, essentially constitutes the content of this chapter in which the 
theoretical body of results is presented in organized manner, emphasizing the applications 
perspective. These formally symmetric and physically revealing analytical results are crucial 
and will contribute to innovatory applications in microwave remote sensing. For instance, 
they open the way toward new techniques for solving the inverse problem, for designing 
SAR processing algorithms, and for modelling the time-domain response of complex 
layered structures. 
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