75,958 research outputs found

    Electromagnetic Radiation

    Get PDF
    Electromagnetic radiation, commonly referred to as light, underpins all spectroscopic techniques, ranging from the highly energetic gamma rays, through x-rays, ultraviolet, visible, infrared, microwaves to the low-energy radio waves. The principles of wave- and particle-like behaviour determine the nature of the radiation and its interaction with matter, whether in the form of subatomic, atomic, molecular or macromolecular structures

    Interaction between gravitational radiation and electromagnetic radiation

    Get PDF
    In this review paper we investigate the connection between gravity and electromagnetism from Faraday to the present day. The particular focus is on the connection between gravitational and electromagnetic radiation. We discuss electromagnetic radiation produced when a gravitational wave passes through a magnetic field. We then discuss the interaction of electromagnetic radiation with gravitational waves via Feynman diagrams of the process graviton+graviton→photon+photongraviton + graviton \to photon + photon. Finally we review recent work on the vacuum production of counterpart electromagnetic radiation by gravitational waves.Comment: 34 pages, 4 figures. Review paper to be published in IJMPD. Comments, corrections, appropriate missed references welcome

    Conversion of relic gravitational waves into photons in cosmological magnetic fields

    Full text link
    Conversion of gravitational waves into electromagnetic radiation is discussed. The probability of transformations of gravitons into photons in presence of cosmological background magnetic field is calculated at the recombination epoch and during subsequent cosmological stages. The produced electromagnetic radiation is concentrated in the X-ray part of the spectrum. It is shown that if the early Universe was dominated by primordial black holes (PBHs) prior to Big Bang Nucleosynthesis (BBN), the relic gravitons emitted by PBHs would transform to an almost isotropic background of electromagnetic radiation due to conversion of gravitons into photons in cosmological magnetic fields. Such extragalactic radiation could be noticeable or even dominant component of Cosmic X-ray Background.Comment: 24 pages, 8 figures and 1 table; minor changes and more references have been adde

    Nonlinear interferometric vibrational imaging

    Get PDF
    A method of examining a sample, which includes: exposing a reference to a first set of electromagnetic radiation, to form a second set of electromagnetic radiation scattered from the reference; exposing a sample to a third set of electromagnetic radiation to form a fourth set of electromagnetic radiation scattered from the sample; and interfering the second set of electromagnetic radiation and the fourth set of electromagnetic radiation. The first set and the third set of electromagnetic radiation are generated from a source; at least a portion of the second set of electromagnetic radiation is of a frequency different from that of the first set of electromagnetic radiation; and at least a portion of the fourth set of electromagnetic radiation is of a frequency different from that of the third set of electromagnetic radiation

    Exponential beams of electromagnetic radiation

    Get PDF
    We show that in addition to well known Bessel, Hermite-Gauss, and Laguerre-Gauss beams of electromagnetic radiation, one may also construct exponential beams. These beams are characterized by a fall-off in the transverse direction described by an exponential function of rho. Exponential beams, like Bessel beams, carry definite angular momentum and are periodic along the direction of propagation, but unlike Bessel beams they have a finite energy per unit beam length. The analysis of these beams is greatly simplified by an extensive use of the Riemann-Silberstein vector and the Whittaker representation of the solutions of the Maxwell equations in terms of just one complex function. The connection between the Bessel beams and the exponential beams is made explicit by constructing the exponential beams as wave packets of Bessel beams.Comment: Dedicated to the memory of Edwin Powe

    Acceleration and Classical Electromagnetic Radiation

    Full text link
    Classical radiation from an accelerated charge is reviewed along with the reciprocal topic of accelerated observers detecting radiation from a static charge. This review commemerates Bahram Mashhoon's 60th birthday.Comment: To appear in Gen. Rel. Gra

    Simple dynamic electromagnetic radiation detector

    Get PDF
    Detector monitors gamma dose rate at particular position in a radiation facility where a mixed neutron-gamma environment exists, thus determining reactor power level changes. Device also maps gamma intensity profile across a neutron-gamma beam

    Electromagnetic radiation produces frame dragging

    Full text link
    It is shown that for a generic electrovacuum spacetime, electromagnetic radiation produces vorticity of worldlines of observers in a Bondi--Sachs frame. Such an effect (and the ensuing gyroscope precession with respect to the lattice) which is a reminiscence of generation of vorticity by gravitational radiation, may be linked to the nonvanishing of components of the Poynting and the super--Poynting vectors on the planes othogonal to the vorticity vector. The possible observational relevance of such an effect is commented.Comment: 8 pages RevTex 4-1; updated version to appear in Physical Review
    • …
    corecore