18 research outputs found

    Low-power emerging memristive designs towards secure hardware systems for applications in internet of things

    Get PDF
    Emerging memristive devices offer enormous advantages for applications such as non-volatile memories and in-memory computing (IMC), but there is a rising interest in using memristive technologies for security applications in the era of internet of things (IoT). In this review article, for achieving secure hardware systems in IoT, low-power design techniques based on emerging memristive technology for hardware security primitives/systems are presented. By reviewing the state-of-the-art in three highlighted memristive application areas, i.e. memristive non-volatile memory, memristive reconfigurable logic computing and memristive artificial intelligent computing, their application-level impacts on the novel implementations of secret key generation, crypto functions and machine learning attacks are explored, respectively. For the low-power security applications in IoT, it is essential to understand how to best realize cryptographic circuitry using memristive circuitries, and to assess the implications of memristive crypto implementations on security and to develop novel computing paradigms that will enhance their security. This review article aims to help researchers to explore security solutions, to analyze new possible threats and to develop corresponding protections for the secure hardware systems based on low-cost memristive circuit designs

    Physics inspired compact modelling of BiFeO3_3 based memristors for hardware security applications

    Full text link
    With the advent of the Internet of Things, nanoelectronic devices or memristors have been the subject of significant interest for use as new hardware security primitives. Among the several available memristors, BiFeO3\rm O_{3} (BFO)-based electroforming-free memristors have attracted considerable attention due to their excellent properties, such as long retention time, self-rectification, intrinsic stochasticity, and fast switching. They have been actively investigated for use in physical unclonable function (PUF) key storage modules, artificial synapses in neural networks, nonvolatile resistive switches, and reconfigurable logic applications. In this work, we present a physics-inspired 1D compact model of a BFO memristor to understand its implementation for such applications (mainly PUFs) and perform circuit simulations. The resistive switching based on electric field-driven vacancy migration and intrinsic stochastic behaviour of the BFO memristor are modelled using the cloud-in-a-cell scheme. The experimental current-voltage characteristics of the BFO memristor are successfully reproduced. The response of the BFO memristor to changes in electrical properties, environmental properties (such as temperature) and stress are analyzed and consistent with experimental results.Comment: 13 pages and 8 figure

    Synaptic Plasticity in Memristive Artificial Synapses and Their Robustness Against Noisy Inputs

    Get PDF
    Emerging brain-inspired neuromorphic computing paradigms require devices that can emulate the complete functionality of biological synapses upon different neuronal activities in order to process big data flows in an efficient and cognitive manner while being robust against any noisy input. The memristive device has been proposed as a promising candidate for emulating artificial synapses due to their complex multilevel and dynamical plastic behaviors. In this work, we exploit ultrastable analog BiFeO3 (BFO)-based memristive devices for experimentally demonstrating that BFO artificial synapses support various long-term plastic functions, i.e., spike timing-dependent plasticity (STDP), cycle number-dependent plasticity (CNDP), and spiking rate-dependent plasticity (SRDP). The study on the impact of electrical stimuli in terms of pulse width and amplitude on STDP behaviors shows that their learning windows possess a wide range of timescale configurability, which can be a function of applied waveform. Moreover, beyond SRDP, the systematical and comparative study on generalized frequency-dependent plasticity (FDP) is carried out, which reveals for the first time that the ratio modulation between pulse width and pulse interval time within one spike cycle can result in both synaptic potentiation and depression effect within the same firing frequency. The impact of intrinsic neuronal noise on the STDP function of a single BFO artificial synapse can be neglected because thermal noise is two orders of magnitude smaller than the writing voltage and because the cycle-to-cycle variation of the current–voltage characteristics of a single BFO artificial synapses is small. However, extrinsic voltage fluctuations, e.g., in neural networks, cause a noisy input into the artificial synapses of the neural network. Here, the impact of extrinsic neuronal noise on the STDP function of a single BFO artificial synapse is analyzed in order to understand the robustness of plastic behavior in memristive artificial synapses against extrinsic noisy input

    Synaptic Plasticity in Memristive Artificial Synapses and Their Robustness Against Noisy Inputs

    Get PDF
    Emerging brain-inspired neuromorphic computing paradigms require devices that can emulate the complete functionality of biological synapses upon different neuronal activities in order to process big data flows in an efficient and cognitive manner while being robust against any noisy input. The memristive device has been proposed as a promising candidate for emulating artificial synapses due to their complex multilevel and dynamical plastic behaviors. In this work, we exploit ultrastable analog BiFeO 3 (BFO)-based memristive devices for experimentally demonstrating that BFO artificial synapses support various long-term plastic functions, i.e., spike timing-dependent plasticity (STDP), cycle number-dependent plasticity (CNDP), and spiking rate-dependent plasticity (SRDP). The study on the impact of electrical stimuli in terms of pulse width and amplitude on STDP behaviors shows that their learning windows possess a wide range of timescale configurability, which can be a function of applied waveform. Moreover, beyond SRDP, the systematical and comparative study on generalized frequency-dependent plasticity (FDP) is carried out, which reveals for the first time that the ratio modulation between pulse width and pulse interval time within one spike cycle can result in both synaptic potentiation and depression effect within the same firing frequency. The impact of intrinsic neuronal noise on the STDP function of a single BFO artificial synapse can be neglected because thermal noise is two orders of magnitude smaller than the writing voltage and because the cycle-to-cycle variation of the current–voltage characteristics of a single BFO artificial synapses is small. However, extrinsic voltage fluctuations, e.g., in neural networks, cause a noisy input into the artificial synapses of the neural network. Here, the impact of extrinsic neuronal noise on the STDP function of a single BFO artificial synapse is analyzed in order to understand the robustness of plastic behavior in memristive artificial synapses against extrinsic noisy input

    Redox memristors with volatile threshold switching behavior for neuromorphic computing

    Get PDF
    The spiking neural network (SNN), closely inspired by the human brain, is one of the most powerful platforms to enable highly efficient, low cost, and robust neuromorphic computations in hardware using traditional or emerging electron devices within an integrated system. In the hardware implementation, the building of artificial spiking neurons is fundamental for constructing the whole system. However, with the slowing down of Moore’s Law, the traditional complementary metal-oxide-semiconductor (CMOS) technology is gradually fading and is unable to meet the growing needs of neuromorphic computing. Besides, the existing artificial neuron circuits are complex owing to the limited bio-plausibility of CMOS devices. Memristors with volatile threshold switching (TS) behaviors and rich dynamics are promising candidates to emulate the biological spiking neurons beyond the CMOS technology and build high-efficient neuromorphic systems. Herein, the state-of-the-art about the fundamental knowledge of SNNs is reviewed. Moreover, we review the implementation of TS memristor-based neurons and their systems, and point out the challenges that should be further considered from devices to circuits in the system demonstrations. We hope that this review could provide clues and be helpful for the future development of neuromorphic computing with memristors

    Tuning resistive switching in complex oxide memristors

    Get PDF
    The continuous demand of lightweight portable, cheap and low-power devices has pushed the electronic industry to the limits of the current technology. Flash memory technology which represents the mainstream non-volatile memories has experienced an impressive development over the last decade. This led their fabrication down to a 16 nm node and implementation of high-density 3D memory architectures. Due to the scaling limit of Flash technology, the need of new memories that combine the characteristics of a Flash but overcome the scaling limits is increasing. In this surge, oxide-based resistive memories – also called memristors – have emerged as a new family of storage-class memory. The extremely simple physical structure fast response, low cost and power consumption render resistive memories as a valid alternative of the Flash technology and an optimal choice for the next generation memory technology. The nanoscale resistive memories have demonstrated a variety of memory characteristics which depends on the electrochemical properties of the oxide system and several physical parameters including device structure and electrical biasing conditions. This indicates a complex nature of the underlying microscopic switching mechanisms which require a thorough understanding in order to fully benefit from the virtue of this technology. The work presented in this Doctoral Dissertation focuses on the realization and fine tuning the memory characteristics of SrTiO3 based resistive switching memories. A novel synthesis route is adopted to realize highly complementary metal oxide semiconductor (CMOS) compatible nanoscale memristive devices and engineer the composition of the functional SrTiO3 perovskite oxide. By following the novel synthesis approach, SrTiO3 memristive devices with different stoichiometry such as different concentration of oxygen vacancies, metallic dopant species and physical structures are fabricated to achieve multifunctional characteristics of these devices. Rigorous electrical and material characterizations are carried out to analyze the resistive switching performance and understand the underlying microscopic mechanisms. Stable multi-state resistive switching is demonstrated in donor (Nb) doped oxygen-deficient amorphous SrTiO3 (Nb:a-STOx) memories. The dynamics of multi-state switching behavior and the effect of Nb-doping on tuning the resistive switching are investigated by utilizing a combination of interfacial compositional evaluation and activation energy measurements. Furthermore, multiple switching behaviors in a single acceptor (Cr) doped amorphous SrTiO3 (Cr:a-STOx) memory cell are demonstrated. A physical model is also suggested to explain the novel switching characteristics of these versatile memristive devices. A highly transparent and multifunctional SrTiO3 based memory system is fabricated which offers a reliable data storage and photosensitive platform for further transparent electronics. Also a unique photoluminescence mapping is presented as an identification technique for localized conduction mechanism in oxide resistive memories. Finally, SrTiO3 resistive memories are engineered to mimic biological synapses. A hybrid CMOS-memristor approached is presented to demonstrate first implementation of higher order time and rate dependent synaptic learning rules. Furthermore, these artificial synapses are tuned for energy-efficient performance to highlight their potential for the future neuromorphic networks
    corecore