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Abstract 

 

The continuous demand of lightweight portable, cheap and low-power devices has 

pushed the electronic industry to the limits of the current technology. Flash memory 

technology which represents the mainstream non-volatile memories has experienced an 

impressive development over the last decade. This led their fabrication down to a 16 nm 

node and implementation of high density 3D memory architectures. Due to the scaling 

limit of Flash technology the need of new memories that combine the characteristics of 

a Flash but overcome the scaling limits is increasing. In this surge, oxide based resistive 

memories � also called memristors � have emerged as a new family of storage-class 

memory. The extremely simple physical structure fast response, low cost and power 

consumption render resistive memories as a valid alternative of the Flash technology 

and an optimal choice for the next generation memory technology.  

The nanoscale resistive memories have demonstrated a variety of memory 

characteristics which depends on the electrochemical properties of the oxide system and 

several physical parameters including device structure and electrical biasing conditions. 

This indicates a complex nature of the underlying microscopic switching mechanisms 

which require a thorough understanding in order to fully benefit from the virtue of this 

technology.  

The work presented in this Doctoral Dissertation focuses on the realization and fine 

tuning the memory characteristics of SrTiO3 based resistive switching memories. A 

novel synthesis route is adopted to realize highly complementary metal oxide 

semiconductor (CMOS) compatible nanoscale memristive devices and engineer the 

composition of the functional SrTiO3 perovskite oxide. By following the novel 

synthesis approach, SrTiO3 memristive devices with different stoichiometry such as 

different concentration of oxygen vacancies, metallic dopant species and physical 

structures are fabricated to achieve multifunctional characteristics of these devices. 

Rigorous electrical and material characterizations are carried out to analyze the resistive 

switching performance and understand the underlying microscopic mechanisms.  

Stable multi-state resistive switching is demonstrated in donor (Nb) doped oxygen-

deficient amorphous SrTiO3 (Nb:a-STOx) memories. The dynamics of multi-state 

switching behavior and the effect of Nb-doping on tuning the resistive switching are 

investigated by utilizing a combination of interfacial compositional evaluation and 



activation energy measurements. Furthermore, multiple switching behaviors in a single 

acceptor (Cr) doped amorphous SrTiO3 (Cr:a-STOx) memory cell are demonstrate. A 

physical model is also suggested to explain the novel switching characteristics of these 

versatile memristive devices.  

A highly transparent and multifunctional SrTiO3 based memory system is fabricated 

which offers a reliable data storage and photosensitive platform for further transparent 

electronics. Also a unique photoluminescence mapping is presented as an identification 

technique for localized conduction mechanism in oxide resistive memories.  

Finally, SrTiO3 resistive memories are engineered to mimic biological synapses. A 

hybrid CMOS-memristor approached is presented to demonstrate first implementation 

of higher order time and rate dependent synaptic learning rules. Furthermore, these 

artificial synapses are tuned for energy efficient performance to highlight their potential 

for the future neuromorphic networks. 
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Chapter 1: Introduction 

   1 

1 Introduction 

The enormous progress in the traditional memory technology and storage hierarchy over 

the past three decade is facing challenges in the design of large-scale and high 

performance systems. The gap between the memory space and performance is 

continually widening. Also the energy consumption and cost of the storage systems 

pose significant doubts on achieving even higher performance. This has driven a strong 

innovation in the current memory technology but it has also motivated for the 

development of alternative memory technologies as well, in anticipation of its scaling 

limitations.  

Among several potential candidates for alternative memory, resistive random access 

memories (ReRAMs) have been recognize as a viable option due to their simple 

physical structure, scalability potential and reliable characteristics. The recent research 

on ReRAMs is focused on optimizing the performance of these devices through 

material and structural engineering and realizing large scale integration of memristive 

devices in hybrid CMOS-memristor systems.  

In this context, the research in oxide based nano-electronics gained a significant 

attention due to their technological relevance.[1] The fascinating properties of complex 

oxides, such as perovskite oxides, arising from their atomic structure and interfaces (i.e., 

oxide/oxide or metal/oxide) are the gateway to novel devices with potential to surpass 

their semiconductor predecessors, both in performance and scale.[2] Recently, 

perovskite oxide SrTiO3 based ReRAMs have shown an immense potential for the 
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future high density memory systems.[3-5] Its self-doping tendency with oxygen 

vacancies subject to electrical or thermal stress can transform its electronic structure 

from a band insulator to a metallic conductor and facilitate electro-resistive switching 

suitable for two-terminal memory devices.[6, 7] The resistive switching in SrTiO3-

based devices is generally attributed to highly localized accumulation of oxygen 

vacancies (i.e., nano-filaments) along the extended defect structures, which results in 

the local bypassing of the depletion layer at the metal�oxide interfaces.[6, 8] 

Additionally, the defect structure of STO can be directly manipulated via doping with a 

donor or acceptor type transition metal, which can be employed to modulate the 

electronic structure at local (e.g., grain boundaries and point defects) and bulk levels.[8] 

This can be used as a tool to engineer the arrangement and electronic/ionic transport 

properties of nano-filaments, and therefore, the memristive devices. 

 

1.1 Context and objective  

The motivation of this Doctoral dissertation aligns with the demands of the on-going 

research in oxide resistive memories. The control of resistive switching characteristics 

with full understanding of the underlying mechanisms is highly required. This can lead 

to the realization of highly customable and multifunctional memories for the future high 

density memory systems and efficient neuromorphic networks. The research outlined 

herein addresses the following research questions (RQs): 

 

1. How do the resistive switching characteristics change by introducing the oxygen 

vacancies and metal (acceptor and donor) dopant species in the prototypical 

SrTiO3 oxide system? 

2. What are the underlying conduction mechanisms in the oxygen deficient and 

doped amorphous SrTiO3 resistive memories?  

3. What are the switching characteristics of multi-layered SrTiO3 resistive memory 

architectures?  

4. Explore the capability of SrTiO3 resistive memories to implement biological 

synaptic functions for the applications of brain-inspired neuromorphic 

computation and networks?  
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These RQs are systematically investigated and research findings are presented in the 

chapters of this dissertation.  

1.2 Original Contributions 

The scientific achievements and original contributions through this research work are 

listed below: 

· In literature, perovskite oxide based resistive memories are reported either on 

substrates or thin films which are fabricated at high temperatures (more than 

650 !C). This makes them incompatible with conventional CMOS technology, 

as such limiting their applications for future electronics.  

Herein, a room temperature synthesis route based on physical deposition (i.e., 

sputtering) is developed to achieve perovskite oxide thin films with a control 

over their stoichiometry. It is demonstrated that by following this synthesis 

method CMOS compatible amorphous SrTiO3 (a-STO) based resistive 

memories are fabricated on conventional substrates (e.g., Si and SiO2/Si). 

Furthermore, the control over synthesis parameters allowed engineering the 

resistive switching behaviour in resistive memories. In the context of 

composition of synthesized thin films, a-STO thin films with different 

compositions are demonstrated, as listed below: 

o In case of undoped a-STO thin films, different ratios of oxygen 

deficiencies (i.e., oxygen vacancies) in the oxide system are achieved by 

using RF magnetron sputtering from a single ceramic source.  

o Acceptor and donor doped a-STO thin films with control over the 

concentration of dopant species are realized via co-sputtering of ceramic 

and metal targets. It is demonstrated that by engineering the composition 

of a-STO thin films allows the tuning of corresponding memory 

characteristics.  

· Multi-state resistive switching behavior is achieved in donor doped Nb:a-STO 

resistive memories. A combination of electrical and composition analysis 

techniques are employed to identify the dynamics of charge transport in these 

novel resistive memories. 

· First realization of a acceptor doped Cr:a-STO memory system exhibiting 

multiple resistive switching behaviours in a single memory cell which can be 
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selectively induced by a single parameter before their application. Thus offering 

a versatile resistive memory system capable of tuning its behaviour according to 

the demand by application. Furthermore, a thorough investigation is carried out 

to explain the underlying mechanism. 

· First realization of a highly transparent a-STO based resistive memories with a 

transient response to a range of optical wavelengths. Indicating a multifunctional 

memory system with potential to operate as a non-volatile memory and at the 

same time as a photo-detector.  

· A unique photoluminescence mapping is demonstrated to pinpoint the location 

of localized conductive paths in the transparent resistive oxide memories. Unlike 

the conventional cross-sectional methods to analyse the nature of localized 

defect structures in the oxide resistive memories, which require a tedious sample 

preparation and complex tools, this mapping technique is simple and non-

destructive. Furthermore, it allows analysing the real-time applied field driven 

compositional changes in the functional oxides to understand the resistive 

switching mechanisms.  

· The electroforming process (a soft breakdown of oxide under applied electric 

field) is regarded as the energy consuming and highly uncontrolled process to 

achieve resistive switching behaviour in any oxide based resistive memories. It 

may induce high device-to-device variability which limits the reliability of the 

memory system. Herein, a-STO based resistive memories are engineered to 

exhibit electroforming free resistive switching behaviour. Through the electrical 

and nano-compositional characterization, insights into the nanoscale nature of 

electroforming free behaviour are achieved. 

· First experimental implementation of the higher order time and rate-dependent 

synaptic functions is demonstrated. The comparison of results obtained from 

in-vivo and in-vitro biological synapses (reported in literature) and a-STO 

resistive memories show a very close match. This imply that the a-STO memory 

can mimic the synaptic functionalities, hence an artificial neuro-synapse. 

Furthermore, a hybrid CMOS-memristor approach is presented to implement a 

variety of synaptic functions. This indicates the potential of a-STO based 

resistive memories for application in the future neuromorphic networks. 
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1.3 Thesis Outline 

This dissertation covers the research work carried out to tune the resistive switching 

characteristics of a-STO based resistive. In order to effectively represent the scientific 

findings, each chapter addresses a specific research question (or questions). The 

structure of the thesis is outlined as follows: 

Chapter 2 covers a brief literature review and background on the recent research into 

the perovskite oxide systems, memristive devices and resistive switching mechanisms. 

Chapter 3 presents the multi-state resistive switching in Nb-doped a-STO memories. 

The role of donor dopants in modulating the switching behaviors is investigated by 

utilizing a combination of interfacial compositional evaluation and activation energy 

measurements. In this chapter RQ 1 and 2 are addressed. 

Chapter 4 details the multiple resistive switching behaviors in a single cell of Cr-doped 

a-STO memories. Several comprehensive characterizations are employed to understand 

the underlying nanoscale mechanisms responsible for such a versatile switching 

behavior. This chapter addresses RQ 1 and 2. 

Chapter 5 demonstrates a highly transparent and multifunctional a-STO based memory 

system. The transparent memory devices are fabricated in a multi-layer stacked 

configuration and their switching characteristics are evaluated. Transient photoresponse 

of these devices to a range of wavelengths is also presented. Furthermore, a unique PL 

mapping technique is showcased to identify the localized conduction in oxide based 

transparent resistive memories. This chapter provides research findings to answer RQ 3. 

Chapter 6 shows the practical application of electroforming free a-STO resistive 

memories for the future highly efficient neuromorphic networks. A highly flexible 

hybrid CMOS-memristor approach is utilized to implement a variety of brain-inspired 

synaptic learning rules. This chapter addresses RQ 4.  

1.4 Publications 

1.4.1 Patent 

1. T. Ahmed, S. Walia, M. Bhaskaranand and S. Sriram �Multifunctional and 

multi-bit storage resistive memories� Australian Provisional Patent, 

2016902654 (2017). 
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1.4.2 First-authored papers 

2. T. Ahmed, S. Walia, J. Kim, H. Nili, R. Ramanathan, E. L. H. Mayes, D. W. 

M. Lau , O. Kavehei, V. Bansal, M. Bhaskaran, S. Sriram �Transparent 

amorphous strontium titanate resistive memories with transient photo-

response� Nanoscale 9 (38) (2017). 

3. T. Ahmed, H. Nili, S. Walia, R. Ramanathan, S. Rubanov, J. Kim, O. 

Kavehei, V. Bansal, M. Bhaskaran, S. Sriram �Microstructure and dynamics 

of vacancy-induced nanofilamentary switching network in donor doped 

SrTiO3-x memristors� Nanotechnology 4 (50) (2016). 

4. T. Ahmed, S. Balendhran, M. N. Karim, E. L. H. Mayes, M. R. Field, R. 

Ramanathan, M. Singh, V. Bansal, S. Sriram, M. Bhaskaran, S. Walia, 

�Degradation of black phosphorus is contingent on UV�blue light exposure� 

npj 2D Materials and Applications 1(1) (2017). Not included in this 

dissertation 

1.4.2.1 In Progress 

5. T. Ahmed, S. Walia, E. L. H. Mayes, R. Ramanathan, Paul Guagliardo, V. 

Bansal, M. Bhaskaran, J. J. Yang and S. Sriram �Creating multiple switching 

behaviors in strontium titanate based resistive memories� in review. 

6. T. Ahmed, S. Walia, E. L. H. Mayes, R. Ramanathan, V. Bansal, M. 

Bhaskaran, S. Sriram and O. Kavehei �A neuro-inspired imitation of higher 

order synaptic learning using complex oxide memristors� in review. 

1.4.3 Co-authored papers 

7. J. Kim, T. Ahmed, H. Nili, J. Yang, D. S. Jeong, P. Beckett, S. Sriram, D. C. 

Ranasinghe, O. Kavehei �A physical unclonable function with redox-based 

nanoionic resistive memory� IEEE Transactions on Information Forensics 

and Security, DOI:10.1109/TIFS.2017.2756562 (2017). 

8. F. Rahman, T. Ahmed, S. Walia, E. L. H. Mayes, S. Sriram, M. Bhaskaran, 

S. Balendhran �Two-dimensional MoO3 via a top-down chemical thinning 

route� 2D Materials 4 (3) (2017). 

9. S. Walia, S. Balendhran, T. Ahmed, M. Singh, C. El Badawi, M. D 

Brennan, P. Weerathunge, M. Karim, F. Rahman, A. Rassell, J.Duckworth, 

R. Ramanathan, G. E. Collis, C. J. Lobo, M. Toth, J. C. Kotsakidis, B. 
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Weber, M. Fuhrer, J. M. Dominguez Vera, M. J.S. Spencer, I. Aharonovich, 

S. Sriram, M. Bhaskaran, V. Bansal �Ambient Protection of Few Layer 

Black Phosphorus via Sequestration of Reactive Oxygen Species� Advanced 

Materials 29 (2017). 

10. M. Singh, E. D. Gaspera, T. Ahmed, S. Walia, R. Ramanathan, J. Embden, 

E. Mayes, V. Bansal �Soft Exfoliation of 2D SnO with size-dependent 

optical properties� 2D Materials DOI:10.1088/2053-1583/aa6efc (2017). 

11. C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. 

Ahmed, M. Bhaskaran, S. Sriram, M. Gu, C. Fumeaux �Metal Loaded 

Dielectric Resonator Metasurfaces for Radiative Cooling� Advanced Optical 

Materials DOI: 10.1002/adom.201700460 (2017). 

12. M. C Siu, S. R. Anderson, M. Mohammadtaheri, T. Ahmed, S. Walia, R. 

Ramanathan, V. Bansal �Role of Water in the Dynamic Crystallization of 

CuTCNQ for Enhanced Redox Catalysis (TCNQ= 

Tetracyanoquinodimethane)� Advanced Materials Interfaces 4 (15) (2017). 

13. R. M. Clark, J. C. Kotsakidis, B. Weber, K. J. Berean, B. J. Carey, M. R. 

Field, H. Khan, J. Z. Ou, T. Ahmed, C. J. Harrison, I. S. Cole, K. Latham, 

K. Kalantar-zadeh, T. Daeneke �Exfoliation of quasi-stratified Bi2S3 crystals 

into micro-scale ultrathin corrugated nanosheets� Chemistry of Materials 28 

(24) (2016). 

14. S. Walia, Y. Sabri, T. Ahmed, M. R. Field, R. Ramanathan, A. Arash, S. K. 

Bhargava, M. Bhaskaran, S. Sriram, V. Bansal, S. Balendhran �Defining the 

role of humidity in the ambient degradation of few-layer black phosphorus� 

2D Materials 4 (1) (2016). 

15. H. Nili, S. Walia, A. E. Kandjani, R. Ramanathan, P. Gutruf, T. Ahmed, S. 

Balendhran, V. Bansal, D. B. Strukov, O. Kavehei, M. Bhaskaran, S. Sriram 

�Donor-induced performance tuning of amorphous SrTiO3 memristive 

nanodevices: Multistate resistive switching and mechanical tunability� 

Advanced Functional Materials 25 (21) (2015). 
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2 Literature!Review 

The approaching scaling limit of the conventional semiconductor memory 

technology motivated surge for alternative non-volatile memories with 

properties of high scaling, low power and low cost. Oxide based memories 

have shown potential to fulfil the demands of future memory technology. 

This chapter presents a brief introduction of the prototypical SrTiO3 

pervoskite oxide and its technological relevance for non-volatile memory 

technology. 

 

2.1 Prototypical perovskite oxide: SrTiO3 

Over the past few decades, perovskite ABO3 oxides have attracted great interest due to 

their dynamic (semiconducting, electro-chromic, magneto-resistive, dielectric and 

multi-ferroic) properties.[9] This can be attributed to the intrinsic flexibility they offer 

to change their electronic structure via localized or distributed changes in the valance 

states and a vast variety of compositional engineering. Furthermore, the BO6 oxygen 

octahedron provides a large degree of freedom to tailor the material system for any 

specific application. Specifically, the polarization, ionic conductivity and self-doping 

tendency with oxygen vacancies make perovskite oxides useful for sensing and memory 
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devices.[10-12] As such, the perovskite oxides have been topic of intense studies for the 

realization of novel nanoscale oxide electronics. 

2.1.1 Fundamentals of SrTiO3 

The bulk prototypical SrTiO3 (STO) perovskite oxide is an ionic crystal with a cubic 

crystal structure at room temperature with a lattice constant of 3.9 Å.[13] It consists of 

SrO and TiO2 layers stacked in [001] direction and also corner-shared TiO6 octahedra 

form a framework with Sr ions. The undoped single crystal STO is an insulator with 

experimentally determinded indirect band-gap of 3.25 eV and direct band-gap of 

3.75 eV.[14] As such, it is commonly used as a gate oxide or a substrate in oxide 

electronics due to its high dielectric constant. However, controlled engineering of the 

STO electronic structure and composition allows it to exhibit a vast variety of functional 

properties, such as superconductivity,[15] ferroelectricity,[16] magnetoresistance,[17] 

photoluminescence,[18] metal-insulator transition[19] and resistive switching.[4, 6, 20] 

 

 

Figure 2.1 The calculated total and partial density of states (DOS) of pristine STO and 

O, Ti and Sr sites, respectively. Reproduced from Ref.[19] 

 

From the electronic perspective, the conduction band edge of STO is composed of 

mainly Ti 3d states and followed at higher energies by the Sr 4d states. While the upper 

valence band is mainly dominated by O 2p states hybridized with Ti and Sr states.[14] 
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Figure 2.1 shows the site projected density of states where it is clearly shown that the 

bottom of the conduction band is dominated by the Ti states while the top of the valance 

band is mainly formed by the O states.  

2.1.2 Defect chemistry of SrTiO3 

The densely packed crystal structure of STO can accommodate a variety of intrinsic and 

externally induced defects. The most significant defects include anion and cation 

vacancies on all three sub-sites (i.e., Sr, Ti and O sites), and externally doped 

substitutional impurities. The interplay of these defects can be described by considering 

the defect chemistry of the STO.  

The presence of vacancy-type defects in STO have been extensively studied by the 

electrical conductivity measurements as a function of temperature and analysed by the 

defect chemistry models.[21-23] Also based on the theoretical models, a good 

understanding has been developed to model the formation of intrinsic vacancy-type 

defects.[23-25] It is shown that the full Schottky defects  have 

lower formation energy than the Frenkel-type defects which involve interstitial antisite-

like disorders. However, the SrO partial Schottky defects  have even lower 

formation energy than the TiO2 partial Schottky defects .[23, 24] 

In the context of conductivity and ionic mobility in STO, the cation vacancies have 

negative charge and act as acceptor centres. At lower temperatures (<1300 K), the 

cation vacancies are immobile and considered as frozen-in defects due to their very low 

mobility.[26] On the other hand, oxygen vacancies are highly mobile even at room 

temperature and contribute in the ionic conductivity in STO rendering the carrier 

concentration in the rage from 1017 to 1019 cm-3.[27] 

In the bulk STO, the equilibrium point defect concentration of oxygen vacancies is 

controlled by the interaction of oxygen in the atmosphere, above a threshold exchange 

temperature (>700 K).[28] It is shown that the Joule heating can induce the localized 

temperature gradient higher than the threshold oxygen exchange temperature which can 

lead to the formation and mobility of oxygen vacancies (also discussed in the next 

chapters).[3] According to the oxygen exchange reaction:[28] 

 

 (2.1) 
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Where  represents neutral oxygen ions on the regular lattice sites and  denotes 

oxygen vacancies, in the Kr!ger-Vink notation. The Equation 2.1 shows the oxygen 

evolution and incorporation reaction. Also the oxygen vacancies act as donor sites in 

STO by generating electrons during the evolution reaction.  

The Equation 2.1 indicates that the formation of an oxygen vacancy introduces two 

electrons into the conduction band of STO. Since the conduction band edge of STO is 

mainly occupied by the Ti 3d states (as discussed above), the effect of formation and 

recombination of oxygen vacancies may be studied by the Ti valance change, between 

Ti4+ and Ti3+ oxidation states, as shown in Equation 2.2: 

 

 (2.2) 

 

The electronic structure of STO can also be modified by substitutional doping of 

heterovalent cations. A deep understanding of variations in the characteristics of the 

STO associated with the carrier doping may be instrumental in engineering it properties 

for oxide based electronics. 

 

2.1.3 Doping in SrTiO3 

The stoichiometric STO allows the doping of a variety of iso and heterovalent 

substitutions at its Sr and Ti sites. Depending on the charge of the dopant species, they 

can induce p-type or n-type conduction in STO. If the charge of dopants is less than the 

host cation they act as acceptors and induce p-type conduction. However, if the charge 

is higher than the host cation they behave like donors. The ionization equilibria are 

represented as:[28] 

 

 (2.3) 

 (2.4) 

 

where  and  are the neutral acceptor and donor dopants, respectively, while  and 

 are the ionic acceptor and donor species with single negative and single positive 

chage, respectively. Also,  are holes and  are electrons.  
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2.1.3.1 Electron doping 

At room temperature STO is an insulator, however a slightly n-type or p-type doped 

STO can undergo an insulator-to-metal transition.[29, 30] As explained above, the 

presence of oxygen vacancies introduce electrons in the conduction band of STO which 

make the oxygen vacancies as donor sites and induce n-type conduction in the oxide. 

The oxygen non-stoichiometry in the STO can be achieved by annealing at temperatures 

higher than the threshold oxygen-exchange reaction (i.e., >700 K, Equation 2.1).[31] 

However, in the case of STO thin films it has been shown that the oxygen non-

stoichiometry can be controlled during the synthesis processes.[32, 33] Also, STO 

oxides with different compositions are synthesized in this dissertation via sputtering and 

their composition is extensively analysed.  

 

 

Figure 2.2 Band structure (upper panels) and total density of states (lower panels) of (a) 

stoichiometric SrTiO3 and (b) oxygen deficient SrTiO3. Reproduced from Ref.[14] 

 

Figure 2.2 shows the density function theory (DFT) simulations of a stoichiometric and 

electron doped (i.e., oxygen deficient) STO.[29] The band structure and density of state 
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(DOS) calculated for the stoichiometric STO show that it is an indirect band-gap 

insulator (Figure 2.2a). While, the oxygen vacancy doping shifts the Fermi level into the 

conduction band and the DOS at the Fermi level is not at zero due to the electrons 

introduced into the conduction band (Figure 2.2b). This induces to the metal-like 

conduction in the doped STO. However, the conduction can be controlled by the 

defining the concentration of oxygen vacancies, as will be shown in the following 

chapters.  

2.1.3.2 A-site doping in SrTiO3 

It is well known that the doping in insulating STO may induce large changes in the 

lattice parameters. It is reported that the substitution of A-site Sr2+ cation by isovalent 

ions (such as Pb2+, Ba2+, Ca2+ and Mn2+) induce polar state for the ferroelectric behavior 

in STO.[34] While no polar states are reported for La3+ doped at Sr2+ site.[34] This 

indicates that depending on the doping site and dopant species, a wide variety of phases 

(and hence physical properties), ranging from dipolar glass to relaxor and ferroelectric, 

can be achieved in STO. 

Figure 2.3 shows the influence of chromium (Cr) doping at Ti and Sr on the band 

structure and electronic properties of the STO, estimated by the first principle DFT 

calculations.[35] 

 

Figure 2.3 The effect of Cr doping on (a) the band structure, (b) total and partial DOS, 

(c) partial DOS of the Cr 3d states doped at Ti site and (d) Cr 3d states doped at Sr site 

in STO. Reproduced from Ref.[35] 
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The partial DOS calculated (Figure 2.3b) show that the conduction band is formed by 

Ti 3d and Cr 3d states while valence band is composed of O 2p states. However, the in-

gap states appear are composed of the Cr 3d states, regardless of the Cr doping site 

(Figure 2.3c,d).[35]  

In this dissertation, Cr-doped oxygen deficient STO thin films are synthesized and their 

electronic/micro structure is experimentally characterized, as discussed in Chapter 4. 

Through XPS and PL analyses, it is shown that Cr-doping via co-sputtering of Cr metal 

ions and oxygen deficient STO thin films, Cr cations mainly replace Ti ions at B-site. 

This induces the in-gap states and modifies the conductivity of the oxygen deficient 

STO thin films. As such, multiple resistive switching behaviours are observed.  

 

2.1.3.3 B-site doping in SrTiO3 

Generally in the perovskite oxides, the electronic conduction is through the B-site 

network especially when B-site cations exhibit multiple oxidation states, such as 

Ti4+/Ti3+, Mn4+/Mn3+ and Nb5+/Nb4+ etc. This conduction is most likely due to the 

hopping of electrons from B(n-1)+ cations to Bn+ cations via the O-bridges. This indicates 

that with the higher concentration of B(n-1)+ cations the electronic conductivity ( ) will 

be higher too, given by the following relation: 

 

 (2.5) 

 

where  denotes the electronic mobility. However, the mobility of electrons depends 

on several parameters, such as concentration of ions, symmetry/distortion of in the unit 

cell and microstructure of the oxide etc.  

The physical properties and electronic structure of the STO with B-site doped cations 

have been studied, theoretically and experimentally.[29, 35-37] The niobium (Nb) 

doped STO has shown a lot of interest due to its stability at high temperatures (>500 K) 

and oxidizing atmospheres.[36] It is shown that in Nb-doped STO, Nb5+ cations replace 

Ti4+ B-site cations and induces n-type conduction. [36, 37]  

Figure 2.4 shows the band structure and DOS for the Nb-doped STO, calculated by 

using first principles DFT simulations.[37] The band structure of Nb-doped STO 

(Figure 2.4a) shows that the Fermi-level shifts into the conduction band due to the 

carrier generation by the Nb substitutional doping. On the other hand, the total and 
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partial DOS of constituting ions (i.e., O, Sr, Ti and Nb) shows that the bottom of the 

conduction band is formed by the Ti 3d and Nb 4d states (Figure 2.4b), while the top of 

the valence band is dominated by the O 2p states. As such, the Nb-doing induces 

insulator-to-metal transition. However, it is shown that the conductivity of the doped 

STO can be controlled from 10-7 to 104 S/cm by changing the doping concentration of 

Nb.[36] 

 

 

Figure 2.4 (a) The band structure, (b) total and partial density of states of Nb-doped 

STO. Reproduced from Ref.[37] 

 

In this dissertation amorphous Nb-doped oxygen deficient STO thin films are 

synthesised by the RF sputtering technique. Also, the effect of Nb substitutional doping 

on the electronic structure of STO and dynamics of resistive switching behaviour are 

studied, as discussed in Chapter 3.  

 

2.2 Memrisitve devices and systems 

Memristor are resistive switching devices which remember their previous state: 

memory-resistors. The concept of memristor was first proposed by L. Chua in 1971 as a 

result of symmetry considerations in theoretical electronics. It was regarded as a resistor 

with memory element and theoretically completed the characteristic relation between 

the four fundamental electronic variables, i.e., charge (q), voltage (v), current (i) and 

flux (�), defining the memristance (M) by the relation: 
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 (2.6) 

 

Later L. Chua and S. M. Kang proposed the models for memristive systems which were 

defined by the following two equations: 

 

 
(2.7) 

 

 

where  denotes the system inputs (such as voltage and current),  denotes the system 

output (such as current or voltage, respectively) and the function  yields either 

resistance or conductance of the system, respectively. While the function  explains 

how the internal states  evolve. As such, these set of equations (Equation 2.7) describe 

a highly non-linear resistor whose state of resistance depends on the previous history of 

the input signals and also on time. 

In 2008, D. B. Strukov et al.[38] demonstrated a simple model to describe the 

memristance (M) as coupled with the ionic-electronic carrier transportation in a 

nanoscale system. Based on the model defined in Equation 2.7, they defined a charge-

dependent state variable of the system which is subjected to the history of carrier 

distribution in the nanoscale system and related resistance (R) of the system with the 

memristance as:[38] 

 

 (2.8) 

 

where  is the charge-dependent memristance,  and  are the OFF and ON 

state resistances, respectively,  is the charge carrier mobility and D is the thickness of 

the employed solid-state device.  

2.2.1 Resistive switching memories 

The ionic mobility is a field-dependent property in solid state devices such as two-

terminal metal-oxide memristive devices.[39] It is shown that an external applied 

electric field (>1 MV/cm) induces non-linear exponential-type characteristics in a few 

tens of nanometer thin metal-oxide based device. This indicates the solid-state devices 

exhibiting coupled ionic-electronic conduction have potential to show large memristive 
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response on very small time scales (<10 ns) and also the state retention time over years. 

This is mathematically modelled by the equation:[39] 

 

 (2.9) 

 

Where  and  are the state retention and response time, respectively, L is the 

ionic diffusion length, a is the periodicity in the ionic crystal, E is the applied external 

field and  is the characteristic field for a particular mobile atom in 

the crystal. 

This indicates that the memristive devices exhibit inherently non-volatile characteristic 

which makes them suitable for the memory applications.[28, 38-40] Furthermore, their 

simple two-terminal capacitor-like structure renders potential for the future ultra-dense 

memory and computational technologies by overcoming the limitation of the 

conventional CMOS memory technology. The fabrication and characterization of the 

resistive memories with different characteristics are the focus of this dissertation.  

2.2.2 Resistive switching mechanism and types 

Over the past decade, a wide variety of memristive devices and materials have been 

developed to improve the overall resistive switching characteristics of these novel 

devices. Along the course, different physical mechanisms have been reported to explain 

the switching behaviors of different functional materials.[41-44] Based on the 

functional switching materials and induced physical mechanisms, R. Waser et al.[28] 

have categorized the memory effects, as shown in Figure 2.5.  

It has been largely accepted that the resistive switching in most of the binary and 

complex transition metal oxides is due to the field induced anionic transportation. The 

anions diffuse through the defect structure of the functional transition metal oxides 

which can be described as a valence change mechanism (VCM). These anionic species 

are mostly oxygen related defects, such as oxygen vacancies, exhibiting high mobility 

under the influence of the external electric fields. However, several other mechanisms 

have also been reported.[43, 44] 
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Figure 2.5 Classification of resistive switching mechanisms. Reproduced from Ref.[28] 

 

2.3 Resistive switching in SrTiO3 

As mentioned in the previous section, different nanoscale mechanisms can induce 

resistive switching behaviors in different types of functional materials. However, this 

dissertation is focused on the VCM based resistive switching in STO based devices. 

This switching mechanism is widely associated with the oxygen ions migration and 

subsequent nanoscale redox reactions.[28, 45, 46] The STO is capable to harbour 

oxygen vacancies which may exist as point and line defects (depending on their 

concentration). Where these oxygen vacancies can be generated by thermal or electrical 

reduction of the stoichiometric STO or oxygen-deficient thin films can also be 

synthesized with as-grown oxygen vacancies.  

In the STO based MIM devices, the as-grown thin films (with thickness >30 nm) 

usually exhibit high resistance. To induce the resistive switching in the MIM devices, 

typically a current-limited electroforming process is required. This initial electroforming 

step results in the localized accumulation of oxygen vacancies extending between the 

opposite electrodes through the perovskite oxide. The extended oxygen vacancy defect 

structures act as conductive nano-filamentary pathways for the fast electronic charge 
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transportation across the MIM device. A simplified description of the electroforming 

process can be considered as following; 

In the pristine MIM devices, oxygen vacancies are randomly distributed in the STO 

oxide and the charge transport is governed by the interfaces between oxide and metallic 

electrodes. If the electrodes have low work-function and capable to form oxygen bonds 

with STO via localized redox reactions (as in the case of Ti electrodes), the distribution 

of oxygen vacancies will not change significantly under the influence of small applied 

voltages. However, if the electrodes have high work-function and block the ionic 

current, a non-linear concentration gradient builds up upon the applied electric field (as 

in the case of Pt electrodes). At higher applied voltages, the distribution of oxygen 

vacancies changes significantly and depending on the bias polarity, oxygen vacancies 

start to accumulate at the electroforming cathode. This process may evolve oxygen gas 

and more oxygen vacancies are formed, as described by the oxygen exchange reaction 

(Equation 2.1). At the electroforming voltages, the oxygen vacancies extend between 

the electroforming cathode and anode as a nano-filament and the current abruptly jumps 

to have values resulting in the low resistive state (i.e., LRS or SET) of the MIM device.  

Contrary to the electroforming or SET process, opposite polarity bias re-oxidizes the 

nano-filament via oxygen recombination reaction. This results in annihilation of the 

nano-filamentary path and high resistive state (i.e., HRS or RESET) is achieved.  

Throughout this thesis, detailed discussions (based on experimental evidences) have 

been provided to explain formation and dynamics of nano-filamentary pathways, and 

their influence on the resistive switching characteristics of different STO oxide based 

devices.  
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3 Dynamics!of!resistive!

switching 

Doping of perovskite oxides has emerged as an attractive technique to 

create high performance and low energy non-volatile analog memories. 

This chapter examines the origins of improved switching performance and 

stable multi-state resistive switching in Nb-doped oxygen-deficient 

amorphous SrTiO3 (Nb:a-STOx) memories. The role of dopants in 

modulating the switching behaviors in a-STOx devices is investigated by 

utilizing a combination of transmission electron microscopy, 

photoluminescence emission properties, interfacial compositional 

evaluation and activation energy measurements. 

3.1 Introduction 

The rapidly advancing memristive (RRAM) technology has found its foothold in 

multitude of novel applications ranging from high density memory architectures[47-49] 

to adaptive/neuromorphic computing[50-55] and security primitives[56-58]. Among 

most technologically relevant resistive switching phenomena, valence-change 
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mechanisms (VCM) are based on the drift diffusion of oxygen vacancies in binary and 

ternary metal-oxides subject to large electrical gradients.[59-63] The complete picture 

of switching mechanisms in VCM devices is likely more complex.[61, 64-68] 

Nevertheless, control over oxide stoichiometry (e.g., oxygen deficiency gradient and 

substitutional dopants), metal-oxide interface quality and interfacial barriers has proven 

to be instrumental in fine tuning the device performance.[63, 69-75] As such, on-going 

technological issues such as the forming voltage, power consumption, and device yield 

and uniformity are likely to be addressed through structural and compositional 

engineering. 

Recently, Nili et al. reported on the excellent switching performance of amorphous 

SrTiO3-x (a-STOx) based devices and highlighted oxygen deficiency and substitutional 

donor doping as reliable pathways for improving and modulating their memristive 

performance.[69, 70] However, the exact nature of electrochemical redox processes and 

microstructure of the filamentary pathways in the disordered a-STOx structure are still 

unclear. 

This chapter presents the microstructure of the nano-filamentary conduction in a-STOx. 

The impact of substitutional dopant (i.e., Nb) in modulating the electronic structure and 

subsequent switching performance is probed by through microstructural analyses. 

Temperature stability and bias/time dependence of the switching behaviour are also 

used to ascertain the role of substitutional dopants and highlight their utility to modulate 

volatile and non-volatile behaviour in a-STOx devices for adaptive and neuromorphic 

applications. 

3.2 Microstrucutre of Nb:a-STOx memories 

3.2.1 Composition of Nb:a-STOx MIM devices 

Figure 3.1a shows the cross-sectional TEM view of a virgin Nb:a-STOx device. The 

selected-area electron diffraction (SAED) patterns collected from multiple regions in the 

oxide layer (inset of Figure 3.1a) exhibit a halo pattern, confirming the uniform and 

amorphous nature of room temperature sputtered films.[70] While the low-

concentration introduction of Nb species (Nb/Ti ! 0.025) does not alter the 

microstructure and relative concentration of sub-oxide (Ti(3±")+) species (see 

Appendix A). However, it does change the electronic structure of a-STOx oxide as 
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demonstrated in broad blue-light emission (centered at 425 nm) under excitation from a 

325 nm source (Figure 3.1b). In crystalline STO, room-temperature blue-light emission 

is believed to originate from in-gap self-trapped exciton (STE) states centered around 

oxygen deficient sites.[76] In the context of amorphous titanates, a broad emission peak 

centered at around 530 nm is associated with localized dynamic energy levels due to the 

large number of defect states in the severely disordered phase.[77-79] The characteristic 

amorphous emission peak appears in pristine a-STOx spectrum and appears to shift 

towards higher energies upon niobium doping. This indicates that the evolution of 

photoluminescence spectra in Nb:a-STOx is correlated with the increased density of 

localized defects and conduction electrons. 

 

 

Figure 3.1 (a) Cross-sectional TEM micrograph of a Pt/Ti/Nb:a-STOx/Pt 

(50/10/100/50 nm) device. The inset shows the SAED pattern acquired from the oxide 

region. (b) Room temperature photoluminescence (PL) spectrum of a-STOx thin films 

under 325 nm excitation source. 

 

The high resolution TEM (HR-TEM) and the electron energy loss spectroscopy (EELS) 

analysis are employed to complete the picture of nano-filamentary redox based 

conduction in a-STOx devices. Representative FIB-cut specimens were prepared from 

the central region of virgin and switched (pulsed ON/OFF for at least 100 cycles) 

pristine as well as Nb:a-STOx devices, and were used for successive EELS analysis and 

HR-TEM imaging. For area and line-scan surveys of EELS spectra in the switching 

devices, regions of interest (ROIs) in the cross-sections were identified as markedly 
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higher contrast regions in bright field STEM images. On the other hand, cross-sections 

of virgin devices were uniformly amorphous with no indication of crystallization or 

deformation. As such, random sample areas are chosen across the specimen to evaluate 

their composition and fine structure. (Appendix A). 

3.2.2 Electronic structure of Nb:a-STOx MIM devices 

Figure 3.2a and 3.2b show the relative oxygen ratio from survey scans in representative 

ROIs in virgin and switching devices. The relative compositions are determined through 

integrating the area under Ti-L2,3 and O-K edges in EELS spectra.[80-82] The oxygen 

ratio is relatively uniform across the bulk of the oxide in virgin ROIs and oxygen 

deficient regions are spatially scattered (with the exception of largely reduced top 

Ti/a-STOx interface and isolated hotspots at the vicinity of bottom a-STOx/Pt interface). 

In switching ROIs, reduced top interface propagates through the oxide (by an average of 

~10 nm). Additionally, oxygen deficient regions appear more prominently in and 

around the high-contrast regions and align vertically toward the bottom interface to 

form highly oxygen deficient region with an average width of 35 nm. 

 

 

Figure 3.2 Relative oxygen ratio maps for representative scan areas in (a) virgin and (b) 

switching a-STOx device cross-sections. The ratio was calculated from the area under 

Ti-L2,3 and O-K ionization edges for each pixel in survey scan images. 

 

3.2.3 Composition of nano-filamentry networks 

For HR-TEM investigations, ROIs were chosen based on the similar contrast profile in 

STEM-EELS studies. Virgin cross-sections were found to be uniform and amorphous 

with no evidence of crystalline grains. In contrast, switching cross-sections exhibited 
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distinct localized crystalline grains, especially in the high-contrast regions, scattered 

within the amorphous oxide (Figure 3.3). The crystal structure of these vertically 

aligned regions (Figure 3.4a and 3.4b) is complex and varying strong and reflections in 

respective fast Fourier transform (FFT) exist throughout the region. Assuming a 

predominant crystallization to the perovskite phase,[80, 83, 84] several strong and 

recurrent reflections can be assigned to the cubic STO phase (Figure 3.4b).  

 

Figure 3.3 (a) HR-TEM micrograph of a possible filamentary region in a switching 

Nb:a-STOx device cross-section. (b) FFT image for the crystalized region enclosed in 

blue dashed line in (a); blue and red circles denote reflections that can be assigned to 

STO cubic phase based on their d-spacing. (c) Magnified micrograph of a crystallized 

region near the bottom interface and (d) the corresponding FFT image for the region 

enclosed in red dashed line in panel (c); green circles denote un-identified (possibly 

titanium oxide subspecies) phases. 
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However, there exist several secondary reflections (recurring more frequently at the 

bottom interface vicinity) that cannot be resolved based on current information. 

Considering secondary phase and compositional evidence from XPS and EELS 

investigation, these reflections might indicate the formation of segregated titanium 

oxide phases within the disordered a-STOx network. However, current measurements 

did not signal any segregation of A-site and B-site cations in Nb:a-STOx devices and 

more refined studies are required to unambiguously ascertain the nature of secondary 

phases. 

These results help complete the picture of localized nano-filamentary switching 

processes in Nb:a-STOx devices and provide further support for their scalability 

prospects. During the electroforming step, Joule-heating assisted electrochemical redox 

processes, form a network of highly reduced and (at least partially) crystallized 

conductive filamentary pathways through the amorphous oxide phase. Field-dependent 

oxygen vacancy migration across the nano-filamentary network determines the resistive 

switching processes in Nb:a-STOx devices. While oxide phase and compositional 

engineering ensures an improved and reliable switching performance, engineering 

switching interface properties to control interfacial defect hotspots is crucial for 

achieving low variation and uniform device performance.  

 

3.3 Electrical characterization of Nb:a-STOx devices 

3.3.1 Temperature dependent switching performance of Nb:a-STOx 
devices 

Although the structural and compositional effects of Nb dopant species could not be 

confirmed in TEM studies due to their extremely low concentrations, temperature 

dependence of switching characteristics can provide valuable insights into the role of 

substitutional species. Figure 3.4a and 3.4b show the bipolar switching and resistive 

state retention of Nb:a-STOx devices, respectively, in the temperature range of 300-

398 K. Maximum low resistance state (LRS) conductivity loss is 3.1% over 105 s at 

398 K (Figure 3.4b) with a minimum switching ratio of 32. The evolution of LRS 

conductivity under READ bias (100 mV) over a wide temperature range up to 398 K 

closely follows typical Arrhenius behaviour, as depicted in Figure 3.4c. On the other 
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hand, a biphasic Arrhenius behavior for high resistance state (HRS) conductivity 

indicates a temperature-dependent increase in electronic conduction at the donor sites, 

similar to that observed in acceptor-doped STO ceramics at elevated temperatures.[85-

87]. 

 

Figure 3.4 (a) Bipolar switching behavior of electroformed Nb:a-STOx devices in the 

temperature range of 300-398 K (log-linear plot). (b) Room and elevated temperature 

HRS and LRS stressed retention over 105 seconds. (c) Arrhenius plots of the evolution 

of cell current under READ (100 mV) bias and (d) Arrhenius plots of HRS conductivity 

under increasing biases in the temperature range of 148-398 K. 

 

To further investigate the origin of the biphasic behavior and its correlation with the 

stable multi-state OFF transition in Nb:a-STOx devices, temperature-dependent HRS 

conductivity measurements are repeated under different forward bias (Figure 3.4d). 

Except for 10 mV bias, which essentially falls in the linear sub-threshold region of the 

rectifying Pt/Nb:a-STOx barrier in HRS regime, cell conductivities exhibit similar 

thermal activation energies in the lower temperature range for all bias values. The 
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conduction in this regime is mainly governed by the electronic transport across the 

rectifying barrier,[69, 70, 88] where the barrier inhomogeneities and short range trap 

sites have insignificant impact on the cell conductivity.  

The non-linear deviation in the higher temperature regime is likely to originate from 

conduction enhancement along highly resistive donor sites.[70, 85, 86] The onset of 

biphasic behavior in Nb:a-STOx has a clear field dependency, shifting to lower 

temperatures and exhibiting lower thermal activation energies for higher biases. 

Although the origins of highly resistive grain boundaries in heavily donor- and 

acceptor-doped STO are different,[87, 89] the current transport across donor dislocation 

sites with small concentrations in electroformed Nb:a-STOx devices can be explained in 

a similar manner. The thermally-activated enhancement in conduction across the donor 

sites is assumed to originate from an increased electron concentration.[85, 87] The field 

dependence of the onset temperature and activation energies in the higher temperature 

range can be explained in terms of a reduction in the barrier potential at localized donor 

sites. Large barrier drops (due to higher electrical fields) reduce the energy requirement 

for carrier transport across the donor sites which explains the lower onset temperature 

and activation energies in the Nb:a-STOx devices.[85, 90] A more extensive analysis of 

the interplay between applied energy and current transports across the oxygen vacancy 

related defect sites can therefore be instrumental in outlining the external stimulus 

criteria for an effective control over the current transport in switching cells. 

These results further clarify the origin of stable intermediate resistive states during the 

RESET transition in Nb:a-STOx devices.[70] The RESET transition involves rupture of 

the filamentary conduction network at the vicinity of the switching interface. An 

instantaneous partial RESET bias (greater than ~55% of the full RESET threshold) 

should result in partial degradation of the filamentary network. In the absence of deep 

level donor trap sites, an increase in the overall RESET stress ultimately results in the 

full rupture of conduction network at the interfacial region. On the other hand, at the 

core of donor-induced dislocation sites, the initial high field induced barrier drop at the 

grain boundary facilitates the injection and accumulation of oxygen vacancies which 

re-stabilizes the localized donor-induced barrier and limits further redox reactions at its 

vicinity [85, 86, 91] Therefore, a more robust control over these equilibrium energy 

states (and consequently the number and relative ratios of intermediate states) can be 

achieved via increasing the quality of switching interface and/or tuning the 

concentration and distribution of donor dislocations. 
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3.3.2 Charge transportation in Nb:a-STOx devices 

The complex electronic structure of Nb:a-STOx devices and stability of their switching 

processes can provide a powerful toolbox for a wide range of applications from high 

density memory structure to adaptive and neuromorphic computation. To access the 

intermediate switching states and charge transport mechanism in the Nb:a-STOx 

devices, an approach to probe the bias and time dependence of the SET transition is 

adopted.[70] A partial SET voltage with (>40% of the average SET bias) was held 

constant on devices in their HRS state for 60 min steps, as shown in Figure 3.5a. After 

each step, the state retention was monitored for 104 seconds (plotted in Figure 3.5b). For 

partial SET biases below 65% of the average SET threshold, the conductance versus 

time characteristics represent a decay function ( ) and the device 

conductance eventually settles to stable HRS levels. For voltages greater than 70% of 

the SET threshold, the initial  regime, characterized as the SET 

transition,[92] saturates to a stable level ( ). It should be noted that the SET 

transition is triggered by the bias dependent drift diffusion of charged ionic species (i.e., 

vacancies) under a large electrical gradient and is characterized by ( ). Since 

the bias dependent ionic diffusion accelerates under increasing bias, the slope of 

positive current differential in the SET transition increases with increased bias. 

Furthermore, the utility of bias/time dependence together with dynamically tunable 

states in Nb:a-STOx devices is demonstrated via a simple routine illustrated in 

Figure 3.5c. The device is first set to an intermediate HRS level by applying a partial 

(65% - 90%) 500 #s RESET pulse, and then undergoes three 500 #s SET pulses with an 

amplitude of 0.7 V (about 65% of the average SET bias). Following each pulse, the 

device conductance is monitored for a period of 100 s. The results clearly show the 

bias/time and state dependence of conductance and transient behaviors in Nb:a-STOx 

devices. These results suggest the utility of energy (bias/time) dependent non-volatile 

and semi-volatile transitions in a-STOx based devices for implementation of adaptive 

computation and bio-inspired plasticity functions.[55, 93] As such, detailed 

investigations of dynamic switching behaviors and implied plasticity in a-STOx devices 

are extensively studied in the following chapters. 
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Figure 3.5 (a) Long bias partial SET measurements on Nb:a-STOx devices in complete 

OFF state. Partial bias amplitudes are varied from 40-95% (shown as various colors) of 

the average SET voltage (1.1 V). (b) Current retention at READ bias over 104 s after 

each long bias step, where colors correspond to the bias steps in (a). (c) Device 

excitation response at different conductance levels to 500 #s pulses with 0.7 V 

amplitude.  
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4 Multiple!switching!

behaviors 

The adaptation of a single memory cell to exhibit different switching 

characteristics is an important step in harnessing the full suite of 

capabilities that resistive memories have to offer. This chapter presents the 

multiple (threshold and bipolar) switching behaviors achieved in selectively 

chromium-doped a-STOx memory cells. Extensive electrical and material 

characterizations are carried out to investigated the switching kinematics of 

the multiple resistive switching behaviors.  

4.1 Introduction 

Transition metal oxides are known to exhibit valance change mechanism (VCM) and 

have demonstrated diverse switching behaviors � namely, unipolar, bipolar (BP) and 

complementary resistive switching (CRS) � which highlights the complex nature of 

VCM.[94-100] Among the transition metal oxides, the STO-based resistive memories 

are known to exhibit bipolar (BP) resistive switching behavior, [3, 28, 98, 101, 102] but 

there are few reports demonstrating the transition between unipolar and BP resistive 
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switching behaviors in a single STO-based memory cell.[103, 104] Moreover, no clear 

and direct evidence is available that elaborates the driving mechanisms for this versatile 

functionality. Therefore, to achieve and precisely control the existence of more than one 

switching behaviors in the perovskite STO-based systems, insights into the structural 

and electrochemical factors are important to understand the multifunctional switching 

behaviors.  

In this chapter, the presence of BP (clockwise and counter-clockwise) and threshold 

(CRS and �peculiar� CRS) resistive switching behaviors in single units of chromium-

doped a-STOx (Cr:a-STOx) memories are presented. The distinct resistive switching 

behaviors are permanently induced by the current compliance limit and applied bias 

polarity during the initial electroforming step. Through detailed compositional and 

electrochemical analyses of the Cr:a-STOx MIM devices, the observed multiple resistive 

switching behaviors are attributed to the distribution and concentration of oxygen 

vacancies generated, and their drift/diffusion under the influence of set current 

compliance. It is also observed that the locally-created crystalline regions (formed by 

the Joule heating) provide a localized conductive path for the anionic-electronic 

transport across the asymmetric switching MIM cell. Finally, based on the electrical and 

material characterization, a physical mechanism is suggested to interpret the switching 

kinematics of the presented multiple resistive switching behaviors. 

 

4.2 Characterization of Cr:a-STOx thin films  

Figure 4.1a illustrates a schematic of the Cr:a-STOx based MIM device fabricated in a 

cross-point structure where a stack of Ti (8 nm)/Cr:a-STOx (25 nm) is sandwiched 

between Pt electrodes. In order to evaluate the chemical composition of sputtered Cr:a-

STOx thin films, comparative compositional analysis is carried out between Cr-doped 

and un-doped a-STO thin films by using high resolution X-ray photoelectron 

spectroscopy (XPS)(Appendix E). The core-level XPS spectra of Ti 2p from Cr:a-STOx 

(Figure 4.1b) show two spin-orbit pairs (with splitting of ~5.3 eV) and reveal the 

presence of two oxidation states i.e., Ti4+ and Ti3+ corresponding to the binding energies 

of 458.23 eV and 456.22 eV (both 2p3/2), respectively.[70, 105] In addition, the core-

level spectra of O 1s and Sr 3d show the presence of O2- and Sr2+ oxidation states, 

respectively (Appendix B). The resolved spectra of Cr 2p3/2 (Figure 4.1c) show two 
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peaks at 576.72 eV and 579.91 eV which can be assigned to Cr3+ and Cr6+ oxidation 

states, respectively.[106-108] It has been reported that doping of Cr in STO can either 

incorporate the Cr ions at Ti or Sr sites.[107, 108] In the Cr:a-STOx thin films, a shift in 

the Ti 2p peaks (Figure 4.1b) towards lower binding energies (by ~0.16 eV), as 

compared to the un-doped oxygen deficient a-STOx (Appendix B), together with the 

presence of Cr6+ species suggest that the Cr doping mainly affects the Ti sites in Cr:a-

STOx.[107, 108] Also, the Cr6+ prefers to accommodate at the Ti-site instead of Sr-site. 

This is because the ionic radius of Cr6+ (0.0440 nm) is similar to that of Ti4+ 

(0.0605 nm). In contrast, the ionic radius of Sr2+ (0.1180 nm) is much larger, which 

does not satisfy the limits of tolerance factor defined by Goldshmidt to retain the 

structure of an ABO3-type complex oxide.[108] Furthermore, the substitutional Cr 

doping in a-STOx with a low concentration (Cr/Ti ! 0.025) is not expected to distort the 

chemical structure of a-STOx perovskite oxide.[109] 

 

 

Figure 4.1 Device structure and functional oxide characterization. (a) Schematic 

illustration of a cross-point Cr:a-STOx MIM device. The XPS core-level spectra of (b) 

Ti 2p and (c) Cr 2p3/2. (d) Photoluminescence spectra of Cr:a-STOx collected at an 

excitation wavelength of 325 nm. 
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The electronic structure of Cr:a-STOx is assessed by obtaining the photoluminescence 

(PL) spectra at room temperature using a 325 nm (3.82 eV) laser excitation source. 

Figure 4.1d shows the PL spectra obtained from bare Cr:a-STOx thin films. A high 

intensity broad peak, centered at 535 nm (2.32 eV) was observed which could be de-

convoluted into multiple emission bands. Such a broad emission at room temperature is 

characteristic of doped[110, 111] and un-doped a-STO thin films.[112-114] In un-

doped a-STO thin films, room temperature PL emission is associated with the presence 

of TiO5 defects.[111, 113, 114] On the other hand, Cr is known to modify the electronic 

structure of STO by forming CrO5 defect structures with Vos and introducing in-gap 

electronic states above the valance band edge.[108, 111, 115-117] The emission energy 

of 2.32 eV in Cr:a-STOx (Figure 4.1d) is comparatively lower than that of the un-doped 

a-STOx (by 0.94 eV) at the same excitation energy[110] which indicates the presence of 

in-gap electronic states in Cr:a-STOx. The XPS and PL analyses suggest that a low 

concentration Cr doping (Cr/Ti ! 0.025) in a-STOx, primarily influences the Ti sites, 

resulting in oxygen deficient [TiO5Vo] and [CrO5Vo] complexes that give rise to the in-

gap electronic states.[111] Consequently, the introduction of these additional states can 

offer the possibility of manipulating the switching behaviors of the Cr:a-STOx MIM 

devices using different applied electric fields, which is discussed later in the manuscript.   

4.3 Resistive switching in Cr:a-STOx MIM devices 

In order to activate the resistive switching in the STO based MIM devices, usually an 

initial high voltage sweep (higher than the subsequent switching threshold voltages) is 

required as an electroforming step which creates extended defects (i.e., nanofilament) 

through redox processes in the oxide.[6, 28, 70, 98] In Cr:a-STOx MIM devices, the 

multiple resistive switching characteristics have been achieved (regardless of the device 

area) by controlling the initial bias polarity and current compliance during the 

electroforming process (Appendix B). 

4.3.1 Threshold switching 

4.3.1.1 Complementary resistive switching 

The complementary resistive switching (CRS) is considered as one of the possible 

solutions to eliminate the sneak currents in a passive crossbar array for high density 

memory integration.[118] The Cr:a-STOx MIM devices electroformed at low current 
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compliances (in the range 1-5 µA, see Appendix B) exhibit CRS behavior, as depicted 

in Figure 4.2.  

 

 

Figure 4.2 Complementary resistive switching behavior of the Cr:a-STOx MIM 

devices. (a) The CRS characteristics are repeated for 1000 cycles, while 1st, 10th, 100th, 

and 1000th cycles (green, magenta, blue, and red lines, respectively) are highlighted. 

Inset shows the biasing scheme during CRS switching cycles. (b) Statistic histograms of 

the CRS threshold voltages, under positive (VTH,1, orange bars) and negative (VTH,3, cyan 

bars) voltages for 1000 cycles.  

 

A commonly known CRS cell comprises of two BP switching cells connected 

anti-serially through an intermediate electrode (in a tri-layer structure) and each cell can 

be reversibly switched between low resistive state (LRS) and high resistive state (HRS) 

under opposite applied voltage polarities. Unlike bipolar characteristics where two 

resistive states (HRS and LRS) define the device state, three states HRS-1, HRS-0, and 

ON represent the different configurations of the resistive states in the CRS 

operation.[99, 118] Both HRS-1 and HRS-0 states give high resistance at low READ 

voltages (VREAD) than a certain threshold voltage (which is an intrinsic property of the 

CRS mechanism to suppress sneak currents in a memory array) while ON state gives 

low device resistance at high VREAD. 

In Cr:a-STOx MIM devices, transition of resistive states from HRS-1 to ON and from 

ON to HRS-0 occurs at positive threshold voltages during cyclic voltage sweeps and are 

denoted by VTH,1 and VTH,2, respectively, as shown in Figure 4.2a. Similarly, the 

transition from HRS-0 to ON and from ON to HRS-1 occurs at negative threshold 

voltages as denoted by VTH,3 and VTH,4, respectively. In CRS, both HRS-1 and HRS-0 
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are regarded as HRS at low VREAD (between VTH,3 and VTH,1) whereas ON is a transition 

state (between HRS-1 and HRS-0) that separates resistive states at higher VREAD (such as 

VTH,1 < VREAD < VTH,2 or VTH,3 < VREAD < VTH,4)[99, 118]. Figure 4.2b shows the statistical 

distribution of VTH,1 and VTH,3 for 1000 cycles and the average values are calculated to 

be 1.43 V and -1.65 V, respectively. 

4.3.1.2 Peculiar complementary resistive switching 

In a conventional readout operation of CRS devices, generally a higher VREAD (than 

transitional thresholds VTH,1 and VTH,3) is required, as the stored states (HRS-1 and 

HRS-0) cannot be distinguished at lower VREAD. This can change the resistive state of 

the CRS device and re-writing of the resistive state is required as a result of the 

destructive readout operation.[119, 120] Interestingly, the Cr:a-STOx MIM devices, 

electroformed at moderate current compliance limits (in range 10-15 µA, Appendix B), 

show a reproducible �peculiar� CRS (p-CRS) behavior Figure 3a., where the stored 

resistive states can be distinguished at lower read voltage (i.e., VREAD,1) in a 

non-destructive readout. The prominent feature of p-CRS (as compared to the 

conventional CRS) is the possibility of three-level memory states where LRS, HRS and 

ON can be distinctively stored in a single cell and the inherent switchable diode 

characteristics of p-CRS can facilitate the implementation of complete logic 

operations.[121] As depicted in Figure 4.3a, the devices switch the states from LRS to 

ON at VTH,1 and from ON to HRS at VTH,2. Also the transition from HRS to ON occurs 

at VTH,3 and ON to LRS at VTH,4. The average values of transition thresholds VTH,1 and 

VTH,3 are calculated to be +1.45 V and -1.35 V, respectively, from their statistical 

distribution (Figure 4.3b) and the values of VTH,2 and VTH,4 are +1.8 V and -1.8 V, 

respectively.  

Figure 4.3c shows the retention of the p-CRS regime for 105 s. A constant VREAD,1  of 

+0.2 V and VREAD,2 of +1.6 V are used to measure the HRS/LRS and ON state 

resistances, respectively. Distinguishable HRS and LRS with an average switching ratio 

(HRS/LRS) of ~9 suggests the capability and stability of bi-level storage of the p-CRS 

behavior in Cr:a-STOx MIM devices. Figure 4.3d shows the endurance characteristics of 

the p-CRS regime for <5000 switching cycles. The loss of resistive states after 

4.3×103 cycles can be attributed to the cycling-induced degradation due to relatively 

higher VREAD,2 and dual VSET pulses in each cycle (as depicted inset of Figure 4.3d).[122, 

123] During the endurance measurements, a train of short pulses with a duration of 
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50 �s are used to WRITE/ERASE/READ the devices (inset of Figure 4.3d) For each 

complete WRITE/ERASE/READ cycle, a positive pulse with an amplitude of +2.3 V 

switches the devices to HRS followed by a VREAD,1 pulse with an amplitude of +0.2 V. A 

negative pulse of -2.3 V amplitude switches the devices to LRS/ON followed by VREAD,1 

(+0.2 V) and VREAD,2 (+1.6 V) pulses to READ the LRS and ON states, respectively. 

Finally, a second negative pulse of -2.3 V is required to restore the LRS/ON states, prior 

to the next cycle. The p-CRS characteristics are evaluated for more than 15 devices 

which reveal that Cr:a-STOx MIM devices exhibit reproducible p-CRS behavior 

(Section S2, Appendix B). 

 

 

Figure 4.3 Peculiar complementary resistive switching of the Cr:a-STOx MIM devices. 

(a) Characteristic I�V sweeps for 100 cycles. 1st, 10th, and 100th cycle (green, blue, and 

red lines, respectively) are highlighted. Inset shows I�V sweeps of 100 cycles on a 

linear scale along with the bias scheme. (b) Statistic histograms of VTH,1 (orange bars) 

and VTH,3 (cyan bars) for 100 p-CRS switching cycles. (c) The retention performance of 

LRS and HRS measured at constant VREAD,1 of +0.2 V and ON resistive state measured 

at constant VREAD,2 of +1.6 V for 105 s. (d) The endurance of p-CRS threshold switching 

for <5000 cycles. Inset shows a train of pulses in a complete switching cycle where 

each pulse has duration of 50 �s. 
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4.3.2 Bipolar resistive switching 

As depicted in Figure 4.4, two different electroforming-polarity dependent BP resistive 

switching behaviors (see Appendix B) are observed in Cr:a-STOx MIM devices. Both 

BP resistive switching behaviors are induced at higher current compliances than the 

CRS and p-CRS during the initial electroforming step. While applying positive bias on 

the top electrode, the electroforming processes with current compliance in 40-100 µA 

range, sets the Cr:a-STOx MIM devices into the clockwise BP (CW-BP) resistive 

switching regime. 

 

 

Figure 4.4 Electroforming polarity-dependent bipolar resistive switching behavior of 

the Cr:a-STOx MIM devices. (a) Characteristic I�V sweeps of CW-BP resistive 

switching for 100 cycles, where the representative 1st, 10th, and 100th cycle (green, blue, 

and red line, respectively) are highlighted. Inset shows the biasing scheme and I�V 

sweeps for 100 cycles on a linear scale. (b) Retention performance of CW-BP resistive 

switching behavior for 105 s under a constant VREAD of +0.2 V. (c) Endurance of CW-BP 
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resistive switching for 104 switching cycles. Inset depicts a schematic of a switching 

cycle where VRESET of +3 V, VSET of -2.7 V and VREAD of +0.2 V are applied as short 

pulses each with the duration of 50 �s. (d) The characteristic I�V sweeps of CCW-BP 

resistive switching for consecutive 100 cycles, the representative 1st, 10th and 100th 

cycle (green, blue and red line, respectively) are highlighted. Inset shows the biasing 

scheme and I�V sweeps for 100 cycles on a linear scale. (e) Retention performance of 

CCW-BP resistive switching behavior for 105 s under a constant VREAD of +0.2 V and (f) 

endurance of CCW-BP resistive switching for 104 switching cycles. Inset depicts a 

schematic of a switching cycle where pulses of 50 �s duration (as VSET of +2.4 V, VRESET 

of -3 V and VREAD of +0.2 V) are applied. 

 

Figure 4.4a shows repeatable and well-defined CW-BP switching cycles which are a 

signature of a-STO devices (RESET on positive bias and SET on negative bias).[70, 98] 

Figure 4b show stable retention characteristics for 105 s with an average switching ratio 

(HRS/LRS) of ~19 at a constant VREAD of +0.2 V. Figure 4.4c the endurance of the MIM 

devices (preset into CW-BP switching behavior) for 104 cycles. On the other hand, 

applying positive bias on the bottom electrode during the electroforming process (with 

current compliance in 40-100 µA range) induces a counter-clockwise BP (CCW-BP) 

resistive switching (Figure 4.4d). The retention of CCW-BP switching behavior is 

measured for 105 s (Figure 4.4e) and shows no degradation with an average switching 

ratio of ~25 at a constant VREAD of +0.2 V. Figure 4.4f shows endurance of CCW-BP 

switching behavior for 104 cycles. 

The existence of multiple resistive switching behaviors (in identical MIM devices) 

suggests that the intrinsic Schottky contact at the bottom Cr:a-STOx/Pt interface[5, 124] 

and an expected Ohmic contact at the top Pt/Ti/Cr:a-STOx interface [125] are modified 

under the influence of different current compliance limits and applied polarities during 

the electroforming step.[126] The oxidation of the top Ti layer into a sub-stoichiometric 

titanium oxide (as discussed in the following sections) introduces another functional 

switching layer at the top interface which contributes in defining and executing the 

multiple resistive switching behavior. In order to understand the role of the top Ti layer, 

symmetric Pt/Cr:a-STOx/Pt MIM devices were fabricated (Appendix B). Regardless of 

the current compliance and applied polarity during the initial electroforming, no 

significant and well defined resistive switching characteristics are observed. This further 
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indicates that the presence of Ti at the top interface renders Cr:a-STOx MIM devices 

with the asymmetry which is responsible for the observed multiple resistive switching 

behaviors. 

4.4 Spectroscopic analyses of the Cr:a-STOx MIM devices 

4.4.1 Secondary ion mass spectroscopy (SIMS) 

In the electroforming process, isolated incomplete filaments can simultaneously be 

formed over the electroforming cathode along with a fully extended nanofilament in a 

MIM device (Appendix B). A depth profile analysis can indicate the switching 

mechanism through the distribution of principal elements, without distorting their 

oxidation states, throughout the thickness of MIM device. The dynamic secondary ion 

mass spectroscopy (SIMS) depth profiles are used to assess the distribution of principal 

elements across the Cr:a-STOx MIM devices.. The raw depth profile data, shown in 

Figure 4.5, depicts the distribution of O-, TiO-, SrO- and CrO- species across three 

different MIM devices in three different states, namely � pristine, LRS and HRS, as a 

function of sputtering time during analyses. Also, the switching MIM devices were pre-

set to exhibit CW-BP resistive switching behavior and subjected to I�V switching cycles 

(at least 100 cycles). An increase in signals for the O- and TiO- species at the top 

Ti/Cr:a-STOx interface of the pristine MIM device indicates the partial oxidation of the 

Ti layer. This is consistent with cross-sectional compositional analyses (discussed in the 

following section) and earlier XPS depth profile analyses of the switching MIM 

devices.[70] The O- profile in the pristine and LRS shows a uniform distribution of 

oxygen across the Cr:a-STOx layer. However, for the device set in the HRS, the O- 

profile clearly shows that the oxygen content drops at the bottom Cr:a-STOx/Pt 

interface. This indicates that in HRS relatively more Vos accumulate at the vicinity of 

the bottom electrode than the top interface. The relative differences in LRS and HRS 

profiles suggest that the drift of Vos under the reverse bias polarities and nano-redox 

reactions induce the change in resistive states.[28, 38, 127, 128] 
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Figure 4.5 Nano-SIMS depth profile of the pristine and CW-BP resistive switching 

Cr:a-STOx MIM devices. The elemental profiles are obtained across the MIM devices in 

their pristine state (green lines), HRS (red lines), and LRS (blue lines). 

 

4.4.2 Cross-sectional structural and compositional analyses 

In order to establish the resistive switching mechanism in the Cr:a-STOx MIM devices, 

high resolution transmission electron microscope (HR-TEM) and electron energy loss 

spectroscopic (EELS) analyses are carried out. As expected, the TEM micrographs of 

the pristine MIM device show an amorphous microstructure of the functional oxide 

layer along the length of the device cross-sections, owing to the room temperature 

sputtering of Cr:a-STOx thin film (Appendix B). Also, the cross-sectional EELS 

analysis of the pristine MIM device reveals the partial oxidation of the top Ti layer and 
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presence of a sub-stoichiometric titanium oxide layer at the top Ti/Cr:a-STOx interface 

(Appendix B).  

The HR-TEM micrographs of the MIM devices exhibiting BP resistive switching 

characteristics illustrate the presence of localized crystalline regions in the functional 

Cr:a-STOx layer. To analyze the structure and composition of these localized crystalline 

regions and the metal/oxide interfaces, regions of interest (ROIs) were identified in the 

lamellae prepared from MIM devices preset into LRS. In the MIM devices exhibiting 

CCW-BP resistive switching behavior, a distinguishable high contrast ROI in the bulk 

amorphous functional oxide layer (highlighted in Figure 4.6a) is selected, which 

contains a crystalline region emanating from the bottom Pt electrode. Similar localized 

crystalline regions are also observed in MIM devices set to HRS of CW-BP behavior 

prior to TEM sample preparation (Appendix B). The fast Fourier transform (FFT) 

diffraction pattern (Figure 4.6b) of the ROI shown in Figure 4.6a is generated to 

determine the constituent phases of the crystalline structures. The high intensity 

diffraction spots marked as spot 1 and spot 2 in Figure 4.6b can be assigned to the cubic 

STO phase. Spot 1 with the d-spacing of 0.19 nm is used to generate the inverse FFT 

(Figure 4.6c) of the ROI which outlines the predominant existence of the [200] cubic 

STO phase in the Cr:a-STOx layer. Spot 2 with the d-spacing of 0.21 nm matches the 

inter-planar spacing of [111] cubic STO and has a relatively less volume ratio. It should 

be noted that due to the instrumental limitations and experimental conditions we cannot 

exclude the presence of other sub-stoichiometric STO phases in the ROI [65, 129] 

(Appendix B). 

Now, we assess the top interface. The ROI shown in Figure 4.6d depicts a crystalline 

region at the top Ti/Cr:a-STOx interface of the switching MIM device set in a LRS prior 

to sample preparation. The respective FFT diffraction patterns (Figure 4.6e) are used to 

index the existing phase in the ROI. The highest intensity diffraction spot marked as 

spot 3, with the d-spacing of 0.21 nm, is used to outline the crystalline region in the 

inverse FFT micrograph (Figure 4.6f) and could be indexed to a [200] rhombohedral 

Ti2O3 phase. This suggests that the top Ti layer changes its microstructure from as-

deposited amorphous to crystalline after the MIM devices are subjected to the 

electroforming (Appendix B) and subsequent switching cycles.[130, 131] Moreover, the 

electric field induced oxygen evolution in the Cr:a-STOx layer and its diffusion into the 

Ti layer during continuous cyclic switching and electrical stress results in a gradual 

increase in the thickness of the sub-stoichiometric phase (such as Ti2O3) at the top 
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Ti/Cr:a-STOx interface.[110, 132, 133] The formation of Ti2O3/Cr:a-STOx oxide 

heterostructure explains the observed threshold resistive switching behavior in MIM 

devices, as discussed in the next section. 

 

 

Figure 4.6 Morphological analyses of a representative Cr:a-STOx MIM device cross-

section from a device exhibiting CCW-BP resistive switching behavior and preset to 

LRS . (a) TEM micrograph of the MIM device subjected to at least 100 switching 

cycles and set to LRS prior to the lamella preparation. ROI is enclosed in the box. (b) 

The FFT diffraction patterns generated from the ROI in (a). (c) The inverse FFT 

obtained from spot 1 in (b) and highlighted on ROI in (a). (d) TEM micrograph of the 

top Pt/Ti/Cr:a-STOx interface with ROI enclosed in the box. 

 

To assess the relative differences in the electronic structure of the bulk amorphous and 

the locally crystalline ROIs, EELS spectra from cross-sectional line and area scans were 

acquired from switching devices. The fine structures of Ti�L2,3 and O�K edges are used 
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to analyze the oxidation states of titanium and the distribution of oxygen content, 

respectively, across the MIM devices. Considering the instrument limitations, a 

qualitative analysis is carried out instead of quantifying the relative changes in the 

electronic structure. Figure 4.7a shows the EELS area map of the locally crystalline 

ROI (indicated in Figure 4.6a) to highlight the relative distribution of oxygen content 

across the MIM device after the cyclic CCW-BP switching. The EELS area map is 

generated by considering the O�K edge intensities of the collected spectra (at each 

pixel) after pre-edge background subtraction. It reaffirms the observations of the FFT 

analysis which showed that the Ti layer at the top Ti/Cr:a-STOx interface (Figure 4.6e) 

oxidizes to sub-stoichiometric Ti2O3 phase due to the electrochemical redox reactions. 

The relatively lower oxygen concentration in the upper region of the ROI indicates the 

sub-stoichiometric nature (oxygen-deficient) of the top Ti/Cr:a-STOx interface relative 

to the bottom Cr:a-STOx/Pt interface. Furthermore, the oxygen deficient regions (i.e., 

Vos) extending from top Pt electrode (acting as cathode), through the Cr:a-STOx layer 

towards the bottom Pt electrode (acting as anode), indicate the filamentary path across 

the MIM structure in the LRS. Spatially isolated oxygen deficient hotspots in the bulk 

Cr:a-STOx layer, identified in the EELS map, indicate the oxygen deficient 

stoichiometry of the functional oxide which is explained earlier in the XPS analysis 

(Figure 4.1). The presence of oxygen content within the top and bottom Pt electrodes 

can be attributed to the out-diffusion of oxygen ions along the Pt grain boundaries 

during the cyclic switching.[134, 135] In order to assess the distribution of Vos in the 

HRS of CW-BP behavior, the EELS area map of the ROI (Appendix B) shows the 

accumulation of Vos at the anode without their extension to the cathode (Appendix B). 

Based on the observed distribution of Vos in LRS and HRS, it can be inferred that the 

bias polarity induced migration of Vos and the associated formation and rupture of the 

oxygen deficient path is responsible for the switching in Cr:a-STOx MIM devices. In the 

following section, we provide further evidence that indicates that these oxygen deficient 

pathways are the conductive routes for the charge transportation due to the change of Ti 

valance from Ti4+ to Ti3+. 
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Figure 4.7 Electronic structure and compositional analysis of the filamentary path 

induced by CCW-BP resistive switching. (a) The EELS O�K edge area map of the 

conductive filament. The area map is collected over the ROI indicated in Figure 6a. 

Scale bar: 10 nm. (b) The Ti�L2,3 and O�K edge profiles along a line scan across the 

MIM structure, passing over the conductive filamentary path in (a). 

 

Figure 4.7b depicts the relative change in the fine structures of the background-

subtracted Ti�L2,3 and O�K edges along the EELS cross-sectional line scans passing 

over the locally crystalline ROI highlighted in Figure 4.6a. The edge profiles at the 

distinct points such as the top Pt/Ti interface, Ti/Cr:a-STOx interface, centre of the 

oxide layer and at the bottom Cr:a-STOx/Pt interface are highlighted. The gradual 

evolution of the Ti oxidation states from the top Pt/Ti interface to the bottom Pt 

electrode are clearly observed in the Ti�L2,3 edge profiles. On the other hand, O�K and 

Cr�L2,3 edge spectra collected from the EELS line scan are weak and exhibit low signal-

to-noise ratio which can be associated with the resolution limit of the instrument and 

low doping concentration of Cr (Cr/Ti ! 0.025). So we rely on the Ti�L2,3 edge profiles 

to qualitatively analyze the electronic structure of the locally crystalline ROI. Since 

each Vo introduces two electrons into the Ti 3d orbital, the resulting change in the Ti 

valence band can be observed from the Ti�L2,3 edge.[128, 136] At the top Pt/Ti 

interface, the Ti�L2,3 profiles with broad peaks and relatively weak intensities indicate 

the presence of mixed Ti2+ and Ti3+ oxidation states.[132, 137, 138] At the Ti/Cr:a-

STOx interfacial region, the crystal-field splitting of the Ti�L3 and Ti�L2 peaks into t2g 

and eg peaks which can be attributed to the presence of Ti3+ and Ti4+ oxidation 
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states.[132, 137, 139] However, away from the top interface and towards the bottom, 

more pronounced t2g and eg peaks indicate the dominant presence of the Ti4+ oxidation 

state. The change in Ti oxidation states across the MIM device suggest that the top 

Pt/Ti/Cr:a-STOx interface is more oxygen deficient compared to the bottom Cr:a-

STOx/Pt interface which is consistent with the EELS O�K area map of the ROI 

(Figure 4.7a). 

4.5 Mechanism of resistive switching in Cr:a-STOx MIM 

devices 

Based on the extensive material and interfacial characterization as well as the electrical 

characteristics, a mechanism for the unique behaviour of Cr:a-STOx MIM devices is 

suggested. The inherent Vos in the Ti�O6 octahedra that are created by preferentially 

removing the oxygen atoms due to the heavy Ar+ ion bombardment during the 

sputtering process,[70] generate conduction band electrons in the Ti 3d states. However, 

doping with Cr (via co-sputtering from a metallic Cr target) localizes the conduction 

band electrons by trapping them at Cr sites, which reduces the Cr from Cr4+ to Cr3+ 

species.[140, 141] Consequently, no conduction electrons are introduced in the Ti 3d 

states and therefore the pristine Cr:a-STOx oxide exhibits an insulating nature.[140] Prior 

to the electroforming, all Cr:a-STOx MIM devices exhibit device resistances of >1 G#. 

It is widely accepted that the electroforming process generates Vos and alters their 

distribution in metal oxides through subsequent electrochemical redox processes.[28, 

40, 45, 127] Consequently, a localized channel for current flow through the oxide 

system is created which is essentially an oxygen deficient filamentary pathway. 

Moreover, the subsequent resistive switching is attributed to the rapture and formation 

of the filamentary path at its weakest part, most likely close to the electroforming 

anode,[95] through the Joule heating and drift of Vos under the influence of applied 

bias.  

In the Cr:a-STOx MIM devices, Cr doping further increases the concentration of Vos 

which facilitates the formation of a conductive filamentary path during the 

electroforming process.[46] The locally confined current flow through the filamentary 

pathway may induce local Joule heating causing the formation of locally extending 

crystalline regions in the bulk amorphous Cr:a-STOx layer. Also, the top Ti layer (that 
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develops into a sub-stoichiometric Ti2O3 layer) introduces an additional switching layer 

that is electrochemically different to the Cr:a-STOx. This causes a change in the 

mobility [142] and formation energies of Vos.[7, 143, 144] Ti2O3 is known to exhibit 

semiconductor-metal transition at an elevated temperature and is potentially responsible 

for the threshold resistive switching in MIM devices. During the switching cycles, the 

Joule heating produced by the electrical bias switches the Ti2O3 to its conducting phase 

resulting in a minimal electric field drop on Ti2O3 and as such it sustains the electrical 

bias without further reduction. Therefore, the current compliance and bias polarity 

dependent generation of Vos and the formation of filamentary paths in the 

Ti2O3/Cr:a-STOx oxide heterostructure govern the multiple resistive switching 

behaviors in Cr:a-STOx MIM devices. When the electroforming bias is applied across 

the MIM devices the applied electric field initializes the generation of Vos which is 

driven by the movement of oxygen ions towards the anode and several localized spots, 

including Cr doped sites, becoming oxygen deficient.[145] Under the influence of 

applied electroforming bias, the positively charged Vos drift towards the electroforming 

cathode and start to accumulate at its vicinity whereas their density extends towards the 

anode, forming an extended oxygen deficient filamentary pathway.  

At lower current compliances (i.e., 1-15 µA) during the electroforming, relatively less 

density of Vos are generated.[145] Also the insufficient driving force for their migration 

prohibits the complete formation of the filamentary pathway across the 

Ti2O3/Cr:a-STOx interface. This results in the formation of two distinctive filamentary 

paths in the Ti2O3 and Cr:a-STOx layers. Depending on the bias polarity, each layer 

switches (to LRS and HRS) individually to define the resistive state of the MIM device. 

Under these conditions, we explain the threshold switching behavior in MIM devices by 

the repetition of processes schematically depicted in the bottom panel of Figure 4.8. 

Post-electroforming electrical characteristics of the CRS and p-CRS behaviors suggest 

that both resistive switching behaviors follow a similar switching mechanism in terms 

of Vo distribution and migration in Ti2O3 and Cr:a-STOx layers. 
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Figure 4.8 Schematic illustrations of the possible resistive switching mechanisms 

induced by variation in the current compliances during initial electroforming. The top 

panel depicts the changes during and after electroforming in the MIM devices exhibiting 

CCW-BP switching behavior. The lower panel illustrates the threshold resistive 

switching mechanism. The red spheres represent the Vos and dark structures in the 

center of schematics represent crystalline regions. 

 

On the other hand, electroforming at higher current compliances (40-100 µA) generate a 

higher density of Vos and sufficient driving force is available for their migration across 

the Ti2O3/Cr:a-STOx interface. The top panel in Figure 4.8 schematically depicts the 

subsequent mechanism of the CCW-BP resistive switching behavior where the 

complete formation of extended oxygen-deficient filamentary path across the 

Ti2O3/Cr:a-STOx corresponds to the LRS and ruptured filamentary path (under reverse 

bias) set the HRS in MIM devices. Similar switching mechanism with opposite bias 

polarities can be applied to explain the CW-BP resistive switching behavior. 
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5 Bilayer!Resistive!

Memories 

Transparent non-volatile memory devices are desirable for realizing 

visually-clear integrated systems for information storage. This chapter is 

dedicated to the fabrication and characterization of the transparent a-STOx 

based memory cells. In order to highlight the potential of these transparent 

memories for future multifunctional transparent and wearable electronics, a 

transient response to optical excitations is demonstrated. 

5.1 Introduction 

Transparent electronics is of increasing interest for the next generation of smart 

electronic circuitry that can enable devices capable of displaying information on 

surfaces such as glass windows. For a fully transparent integrated circuit, high 

transparency is also desirable in its important circuit element: the memory unit. For 

optical transparency without compromising memory density, inherent transparency is 

needed in a single memory unit. That raises the requirement of both the active switching 

material and the electrodes being transparent. In the past, a variety of materials and 
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microstructures including metal oxides,[146-148] nanotubes/rods [149, 150] and 

graphene based hybrid structures [151-153] have been studied separately as either opto-

tunable or transparent memory systems. However, it is still challenging to achieve 

optical/electrical tunability and transparency on a single memory cell that is capable of 

high density data storage. 

As the mechanisms governing many resistive switching systems are not yet fully 

understood and well-established, they are still part of ongoing research. Thus, 

assessment of any potential application in transparent electronics depends on the actual 

demonstration of a working system. This chapter demonstrates a-STO based fully 

transparent resistive random-access memories (t-ReRAMs) that feature high 

transparency (>85% including the substrate). The t-ReRAM cells are implemented in a 

stacked configuration with a bilayer structure comprising two a-STO layers with 

varying concentrations of Vos. It has been previously reported that a bilayer structure 

with each layer having different stoichiometry exhibits better switching performances 

compared to a single layer.[154-157] This is mainly because a combination of two 

layers, each with an intrinsic Schottky barrier, eliminates the need for using an 

additional element (generally a transistor or diode) to remove stray leakage current 

paths in high-density memory arrays.[155] Indium tin oxide (ITO), a well-known 

transparent conductor is used as the top and bottom electrode. The entire memory 

system is fabricated on glass, rendering all constituent elements of the memory unit to 

be optically transparent. 

5.2 Optical transmission of t-ReRAMs 

A schematic of the fabricated cross-point t-ReRAM cell is shown in Figure 5.1a, where 

the cell area (marked inside a rectangle on the cross-point structure) is magnified for a 

clear illustration of the multilayer cell structure. A homojunction of functional a-STO 

oxides with different concentration of Vos is achieved by sputtering STO in different 

O2/Ar flow rates while keeping the deposition pressure constant at 3.5×10-3
 Torr. A thin 

a-STO layer, as a base layer (BL) of the stack, is sputtered in 5% of oxygen (i.e., 

O2:Ar::5%:95%) on the bottom ITO electrode. This base layer is denoted as a-STOy
 for 

further discussions. Following the a-STOy sputtering, a second a-STO layer is sputtered 

(on a-STOy/ITO) in a pure Ar environment (0% oxygen), denoted by a-STOx. The 

stoichiometry of each a-STO layer is explained in the following section. As a top 
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electrode, a thin film of Ti (5 nm) is DC sputtered in a pure Ar environment on the 

oxide homojunction and capped with an ITO (40 nm) electrode. The Ti layer is 

expected to act as a sink for oxygen ions that evolve during electric field induced redox 

reactions resulting in the partial oxidation of Ti layer to Ti2O3 at the top interface. The 

role of top Ti/Ti2O3/a-STOx interface in resistive switching, in the t-ReRAM cells, is 

further discussed in the following sections. 

 

 

Figure 5.1 Physical structure and optical transmission characterization of t-ReRAM 

cells. (a) Schematic illustrations of the fabricated cross-point devices. Area enclosed in 

rectangle (presented with black dashed outline) on the cross-point structure, represents 

the active ITO/Ti/a-STOx/a-STOy/ITO/substrate region of the t-ReRAM cell. (b) The 

UV-Vis transmission spectra of Device BL15 and Device BL5 in the 325-800 nm 

optical range. The spectra are collected from the device area highlighted by �A� in (a). 

Inset shows the optical microscope images of cross-points with different sizes (scale bar 

300 µm) and a 14×14 mm2 sample placed on the RMIT University logo. 
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Two types of devices with varying BL (a-STOy) thicknesses (15 nm and 5 nm) are 

synthesized, referred as Device BL15 (with the bilayer stack of a-STOx/a-STOy 

(10 nm/15 nm)) and Device BL5 (with the bilayer stack of a-STOx/a-STOy 

(10 nm/5 nm)). These devices are characterized optically and electrically. The optical 

transmission characteristics of the t-ReRAM cells are obtained from the area 

schematically indicated by a marker �A� in Figure 5.1a. To assess the optical properties 

of each component constituting a t-ReRAM cell, the transmission and reflectance 

characteristics of the sputtered oxides are also acquired (Appendix C). The UV-Vis 

transmission spectra of the fabricated t-ReRAM cells (Figure 5.1b) for both devices 

show >80% transmission for visible optical wavelengths. Compared to Device BL5, a 

slightly lower transmission (by 3-5%) is observed in Device BL15, which can be 

attributed to the difference in the thickness of the functional oxide stack. 

5.3 Compositional analyses of a-STO oxides 

To evaluate the chemical composition of the sputtered a-STO oxides, XPS analysis is 

carried out on the uncapped bare a-STOx and a-STOy thin films. For elemental analysis, 

the as-obtained spectra are resolved by using a non-linear least square fitting method 

followed by background correction carried out using Shirley algorithm.[158] The core 

level spectra of O 1s and Sr 3d (Appendix C) do not show any significant shift in their 

respective binding energies (except for intensities) and are within the margin of error for 

the instrument resolution (±0.1 eV). The analyses of the de-convoluted spectra of the 

core level binding energies of Ti 2p are shown in Figure 5.2a. Both a-STOx and a-STOy 

spectra are fitted with two distinct components, namely � Ti4+ and Ti(4-!)+. It is known 

that the presence of solely a Ti4+ component corresponds to a fully stoichiometric STO 

oxide, while the Ti(4-!)+ species (such as Ti3+ and Ti2+) represent the presence of Vos in 

the oxide system. However, Ti3+ and Ti2+ components cannot be resolved without 

ambiguity.[159] Therefore to avoid any doubt in assigning the oxidation states to these 

reduced species, we fit with only one component at the lower binding energies and 

denote as Ti(4-!)+ (Figure 5.2a). In the a-STOx and a-STOy oxides, the peaks at Ti2p3/2 

binding energies of 458.4 eV are assigned to Ti4+ oxidation state while the peaks at 

456.2 eV and 456.5 eV are assigned to Ti(4-!)+ species.[70, 105, 133, 160] The relative 

concentration of the individual Ti4+ and Ti(4-!)+ species are calculated by integrating the 

fitted peaks. The relative concentrations of Ti4+ and Ti(4-!)+ in a-STOx are calculated to 
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be 72.9% and 27.1%, respectively. On the other hand, the relative concentrations of 

Ti4+and Ti(4-!)+ species in a-STOy are calculated to be 75.2% and 24.8%, respectively. It 

is seen that the concentration of Ti(4-!)+ species in a-STOx is comparatively higher than 

in the a-STOy. This is expected, as the formation of a Ti(4-!)+ (i.e., an oxygen vacancy) 

due to the broken Ti�O bond in the sub-lattice results in the donation of extra electrons 

into the Ti 3d conduction band.[161, 162] 

 

 

Figure 5.2 Material characterization of the sputtered a-STO oxide thin films. (a) The 

resolved core-level X-ray photoelectron spectra of Ti 2p of the sputtered a-STO thin 

films. (b) The resolved photoluminescence emission spectra of a-STO thin films, 

obtained at 300 nm excitation wavelength. 

 

As such, the conduction process through the oxygen-deficient oxides is expected to take 

place through the Ti sub-oxide defect structures.[163] This indicates that the sputtering 

of a-STO in an oxygen depleted environment results in a relatively higher concentration 

of Vos than in the presence of oxygen. To explore the electronic structure of the 

deposited a-STO, photoluminescence (PL) emission spectra are obtained at room 

temperature using excitation at 300 nm (Figure 5.2b). Both oxides reveal a broad 

emission spectra which is characteristic of amorphous (doped and un-doped) STO.[111-

113, 164-166] It is known that sputter deposition in a controlled oxygen environment 
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leads to the reduction of the inherent oxygen vacancy related defect structures (i.e., Ti(4-

!)+ species),[70] which is confirmed with the XPS analysis (as explained earlier). 

Therefore, a-STOx is expected to show PL emission at lower wavelengths compared to 

a-STOy, which is indeed the case in our observations. De-convolution of the collected 

emission spectra from both a-STO films reveals multiple in-gap electronic states in a-

STO oxides.[76, 113, 114] The a-STOx thin film exhibits a broad emission spectrum 

between 340 nm and 500 nm with a maximum intensity at 376 nm (~3.3 eV). On the 

other hand, the a-STOy thin film shows emission peaks between 360 nm to 480 nm with 

maximum intensity centered at 401 nm (~3.1 eV). The observed red shift (of 25 nm) in 

the main PL emission peak of a-STOy (as compared to a-STOx) can be associated with 

the re-organization of defect levels in the a-STOy oxide.[112, 163] 

5.4 Resistive switching performance 

The typical bipolar resistive switching characteristics of Device BL15 (with a-STOx 

(10 nm)/a-STOy (15 nm) functional oxide stack) are shown in Figure 5.3. In their virgin 

state, the memory cells show a highly insulating nature (virgin state resistance of at least 

0.5 G" measured at 0.5 V) and require an irreversible electroforming sweep to initialize 

the resistive switching behavior (see Appendix C). The current�voltage (I�V) 

characteristics of Device BL15 show a reproducible cyclic bipolar resistive switching 

(Figure 5.3a). Figure 5.3b shows the statistical distribution of threshold voltages for the 

onset transition of SET (transition from HRS to LRS, VSET) and RESET (transition from 

LRS to HRS, VRESET) during the cyclic bipolar resistive switching (Figure 5.3a), 

respectively. The distribution of VSET ranges from -1 to -2.7 V with a mean at -1.7 V 

while VRESET ranges from 1.6 to 4.9 V with a mean of 2.8 V. 
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Figure 5.3 Electrical characterization of Device BL15 with 10×10 µm2 cell area. (a) 

The post-electroforming bipolar I�V characteristics of 100 consecutive cycles on a 

semi-logarithmic scale. (b) Statistical distribution of VSET and VRESET for 100 

consecutive switching cycles, shown in (a). (c) Retention of both LRS and HRS over 

105 s under a constant positive VREAD of 0.5 V. (d) Endurance over 104 switching cycles. 

Inset shows the voltage pulse train used for VRESET (6.2 V), VREAD (0.5 V) and VSET (-

3.7 V) during the endurance measurement where each pulse has a duration of 150 µs. 

 

 

Although there are minor fluctuations in both LRS and HRS, the average switching 

ratio (HRS/LRS) is ~119 over a period of 105 s under a constant positive VREAD of 0.5 V 

(Figure 5.3c). The endurance of Device BL15 is measured for 104 switching cycles by 

using pulsed WRITE/READ/ERASE cycles, as shown in Figure 5.3d. During each 

switching cycle, short pulses (with duration of 150 µs) are used to RESET (6.2 V), 

READ (0.5 V) and SET (-3.7 V) the t-ReRAM cell. 
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The observed bipolar I�V characteristics in Figure 5.3a reveal that Device BL15 

exhibits a linear LRS behavior under the measurement conditions. For large scale 

memory integration, such as crossbar ReRAM arrays, a linear LRS behavior makes the 

memory cells prone to the sneak paths and compromises the reliability of read 

data.[167] However, this problem can be overcome by introducing non-linearity into the 

LRS.[168] In the bilayer t-ReRAM cells it is expected that the a-STOy layer plays a 

significant role in defining the resistive switching behavior.[70] Therefore, to illustrate 

the role of the a-STOy layer in our bilayer t-ReRAM cells, another device (designated as 

Device BL5) with three times less thickness of a-STOy (5 nm in this case, instead of 

15 nm) as compared to Device BL15 is fabricated and characterized. 

Figure 5.4 shows the bipolar resistive switching characteristics of Device BL5. The I�V 

characteristics (Figure 5.4a and 5.4b) reveal an asymmetric bipolar resistive switching 

behavior. The peculiar I�V crossing during the negative SET sweeps (at approximately -

2.5 V) is explained in the later section. The non-linearity in on-state for Device BL15 

and Device BL5 has been obtained by calculating the corresponding slopes of the I�V 

curves between 0-3 V (where the devices are in LRS). This slope for Device BL5 and 

Device BL15 is calculated to be 2 V/decade and 2.7 V/decade, respectively. This 

implies that Device BL5 exhibits relatively more non-linear characteristics than 

Device BL15. 

The reliability characterization of Device BL5 reveals stable LRS and HRS retention 

(Figure 5.4c) for 105 s under a constant positive VREAD of 0.5 V. The average switching 

ratio is calculated to be ~114 over a period of 105 s. The endurance characteristics 

(Figure 5.4d) measured for 104 switching cycles show no device failure under a VREAD 

of 0.5 V. The non-linear LRS behavior observed in Device BL5 (Figure 5.4a and 4.4b) 

is preferable to alleviate the sneak currents in their large scale ReRAM array 

integration.[169] Generally, the memory cells responsible for sneak paths in an array 

experience lower voltage drop than VREAD applied to a target cell. Thus, the non-linear 

dependence of read current on voltage can significantly reduce the contribution of sneak 

currents. 
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Figure 5.4 Electrical characterization of Device BL5 with 10×10 µm2 cell area. (a) The 

post-electroforming bipolar I�V characteristics on a linear scale and (b) on a semi-log 

scale for 100 consecutive switching cycles. (c) Retention of both LRS and HRS over 

105 s under a VREAD of 0.5 V. (d) Endurance over 104 switching cycles. Inset shows the 

voltage pulse train used for VRESET (13.8 V), VREAD (0.5 V) and VSET (-12.7 V) during 

the endurance measurement where each pulse has a duration of 500 µs. 

 

5.5 Microstructure of t-ReRAMs 

To analyze the physical structure of the t-ReRAM cells, cross-sectional TEM 

micrographs of virgin and electroformed memristive cells are obtained. Figure 4.5a 

shows the cross-sectional TEM micrograph of Device BL5 in its virgin state. A high-

resolution TEM (HRTEM) micrograph reveals an amorphous structure of the a-STO 

stack in the virgin t-ReRAM cell (inset of Figure 5.5a). The selected area electron 

diffraction (SAED) pattern collected from the top ITO electrode and the Ti/a-STOx 
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interface shows a diffused ring (Figure 5.5b), indicative of an amorphous structure 

whereas, the SAED patterns of the post-deposition annealed bottom ITO electrode 

showed discrete diffraction spots (Figure 5.5c). The diffraction patterns in Figure 5.5c 

can be indexed to the cubic bixbyite structure of In2O3.[170-173] The polycrystalline 

structure of the post-deposition annealed ITO thin films is also identified by X-ray 

diffraction (Appendix C).  

 

 

Figure 5.5 Structural analysis of the t-ReRAM cells. (a) The cross-sectional TEM 

micrograph of a virgin Device BL5 t-ReRAM cell (scale bar 20 nm). Inset shows the 

HRTEM image of a-STOx layer (scale bar 2 nm). The SAED patterns collected from the 

top as-deposited ITO electrode (b) and the bottom annealed ITO electrode (c). (d) The 

cross-sectional HRTEM micrograph of an electroformed Device BL5 t-ReRAM cell 

(scale bar 10 nm). (e) The FFT of a region of interest selected and highlighted in (d). (f) 

The inverse FFT of the region of interest obtained from the diffraction spot 

corresponding to 121 in (e). (g) The EELS oxygen K-edge spectra of a virgin and (h) an 

electroformed t-ReRAM cell, recorded along a line scan across the cells. 

 

The cross-sectional HRTEM micrograph of an electroformed Device BL5 t-ReRAM 

cell (Figure 5.5d) reveals the presence of a polycrystalline layer at the top Ti/a-STOx 

interface. For the compositional analyses of this polycrystalline layer, a region of 

interest (ROI) is selected (highlighted by a box in Figure 5.5d) at the top Ti/a-STOx 

interface. Figure 5.5e shows the Fast Fourier transform (FFT) diffraction pattern 
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obtained from the ROI. The diffraction spots with the d-spacing of 0.18 nm and 0.27 nm 

are indexed to [322] and [121] planes of rhombohedral Ti2O3. The [121] diffraction 

spots are used to generate the inverse FFT (Figure 5.5f) which highlights the dominant 

existence of Ti2O3 [121] in the ROI. This indicates that during the electroforming 

process, the applied electric field induced Joule heating and diffusion of evolved oxygen 

ions into the Ti layer result in the formation of a polycrystalline Ti2O3 layer. 

The observed brighter contrast at the top ITO/Ti/a-STOx interface (in Figure 5.5a) and 

the distribution of oxygen content across the virgin and electroformed t-ReRAM cells is 

assessed by the electron energy loss spectroscopy (EELS). The oxygen K-edge 

spectrum (Figure 5.5g) collected along a line scan across the virgin t-ReRAM cell 

reveals the partial oxidation of Ti to a oxygen depleted titanium oxide layer (i.e., Ti2O3) 

at the top Ti/a-STOx interface. This observation is consistent with our earlier XPS 

analysis of virgin memory cells.[70] On the other hand, the oxygen K-edge spectrum of 

the electroformed t-ReRAM cell (Figure 5.5h) shows an increase in the thickness of 

polycrystalline Ti2O3 layer at the top Ti/a-STOx interface and a decrease in the oxygen 

content at the bottom a-STOy/ITO interface as compared to rest of the a-STO stack. It 

can be inferred that relatively higher concentration of Vos are present at the vicinity of 

bottom interface due to the reversible redox reactions (under the influence of 

electroforming bias). Furthermore, the Ti L2,3-edge spectrum collected from the 

electroformed cell showed relatively higher morphological ordered in a-STO than the 

virgin t-ReRAM cell (Appendix C). A detailed description of the electronic structure of 

the a-STO layers and switching mechanism of the t-ReRAM cells is explained in rest of 

this chapter. 

5.6 Resistive switching mechanism in t-ReRAMs 

In order to assess the resistive switching mechanism in the bilayer t-ReRAM cells, a 

room-temperature PL mapping technique is employed due to its non-destructive 

analysis nature (unlike cross-sectional TEM analyses) and sensitivity to the defect or 

impurity states.[164] It is well-known that the intrinsic oxygen related defects (such as 

[TiO5· ] and [TiO5· ] complexes, where  and denote single and double 

positively charged oxygen vacancies, respectively) in a-STO introduce localized in-gap 

states above the valence band and are responsible for the room temperature PL 

emission.[111, 112, 114, 162] Also, the PL emission is correlated with the concentration 
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of oxygen related defects (i.e., Vos) such that the PL response can be modulated by 

changing the density of Vos.[76, 164, 174] By exploiting the high sensitivity of PL 

emission to the Vos, a direct observation of oxygen deficient regions and conductive 

filament is demonstrated (Figure 5.6) via submicron high spatial resolution PL maps, 

under a 405 nm excitation source (Appendix E). As observed in XPS and PL analyses 

of the sputtered a-STO thin films (Figure 5.2) both as-grown oxides (a-STOx and a-

STOy) are oxygen deficient. So, the identification of oxygen deficient regions by PL 

signals is expected in a virgin t-ReRAM cell. However, diffuse scattering in ITO/glass 

substrate hinders the identification of oxygen deficient regions in the virgin cell 

(Figure 5.6a). On the other hand, a switching cell shows the distribution of oxygen 

deficient regions over the cell area in both HRS and LRS with different PL emission 

intensities (Figure 5.6b and 5.6c, respectively). This indicates that the overall 

concentration of Vos increased in the bilayer stack after the electroforming and 

subsequent switching cycles. The intensity thresholds are kept the same to enable a 

direct comparison of the PL response in different resistive states. 

 

Figure 5.6 Photoluminescence mapping of the bilayer t-ReRAM cell. The PL maps 

(top-view) of a 4×4 #m
2 Device BL15 t-ReRAM in its (a) virgin state, (b) HRS and (c) 

LRS, under 405 nm excitation source. Scale bar corresponds to 1 #m. (d) The PL 

emission spectra collected from different regions of the cell in its virgin, HRS and LRS 
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marked in (a), (b) and (c), respectively. Inset of (d) shows a schematic of a t-ReRAM 

cell highlighting the region of interest used for PL maps in (a)-(c). 

 

On comparing the PL maps, relatively more oxygen deficient regions are observed at 

the edges of the top electrode after a virgin cell is subjected to the electroforming 

process. This can be attributed to the applied electric field induced generation of higher 

concentration of Vos in these regions during the electroforming.[40, 45] Figure 5.6d 

shows broad peaks of the PL emission spectra around 600 nm (2.1 eV), collected from 

different regions of the t-ReRAM cell in its virgin, HRS and LRS marked as �A�, �B�, 

and �C� in Figure 5.6a, b and c, respectively. Comparatively, the highest PL intensity 

observed for location �C� (Figure 5.6c) can be ascribed to the accumulation of Vos at 

this hotspot under the influence of the applied LRS bias. This localized intense PL 

emission compared to its vicinity indicates the presence of a conducting filament 

comprising of accumulated VoS in the LRS. While relatively lower PL emission (�B�) 

from the same region, indicates a change in the distribution of Vos in HRS. By using 

different spectroscopic and nano-contact studies, Nili et al. have shown the existence of 

nano-filaments in a-STO based resistive memories.[70, 98, 110] However, this PL 

mapping technique further highlights the primary role of Vos in disordered a-STO 

oxides and clearly indicates the filamentary based resistive switching in the a-STO 

bilayer t-ReRAMs. 

5.7 Mechanism of resistive switching in t-ReRAMs 

Based on the electrical and material characterization of our bilayer homojunction 

t-ReRAM cells, a possible resistive switching mechanism in these devices is suggested. 

It is well known that mixed electronic/ionic charge transport and reversible redox 

reactions are mainly responsible for the resistive switching in STO based ReRAMs.[20, 

28, 70, 98] In the presence of an externally applied electric field, reversible redox 

reactions increase the concentration of as-grown Vo based defect structure in the Ti�O 

sub-lattice and consequently nanoionic charge transportation occurs along the Ti3+ 

suboxide.[45, 163] As evident from the XPS analysis, the relative concentration of as-

grown Ti(4-!)+ species is higher in a-STOx (27.1%) than a-STOy (24.8%); therefore, the 

charge carriers (e.g., oxygen ions and free electrons) are expected to drift across the a-
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STO bilayer stack under the influence of an applied bias. So the proposed resistive 

switching model in the bilayer t-ReRAM cells is based on the extension and rupture of 

Vo based defect structure (i.e., localized conductive filament) through the a-STO 

layers.[28, 95] 

Figure 5.7 schematically illustrated the possible resistive switching mechanism in the 

bilayer homojunction (Device BL15 and Device BL5) t-ReRAM cells. In its virgin 

state, a t-ReRAM cell (regardless of the device type) has higher concentration of as-

grown Vos in a-STOx than a-STOy layer (Figure 5.7a1 and b1). As observed from the 

TEM analysis (Figure 5.5) of a virgin t-ReRAM cell, the top Ti layer partially oxidizes 

in the vicinity of a-STOx and a thin layer of amorphous Ti sub-oxide (such as Ti2O3) is 

formed at Ti/a-STOx interface. However, this interfacial Ti sub-oxide layer is oxygen 

depleted and therefore the carrier transport can still take place across the top 

interface.[70, 133] When the bottom ITO electrode of a virgin t-ReRAM cell is 

negatively biased (Figure 5.7a2 and b2), the localized Ti�O sites become oxygen 

depleted due to the electrochemical redox process and the oxygen ions (O2-) drift 

towards the top ITO electrode (acting as anode) through the a-STOx layer. At the anode, 

O2- discharge to evolve oxygen gas due to the oxidation reaction.[40, 45] In the 

presence of neutral oxygen and applied electric field induced Joule heating, the 

thickness of Ti2O3 layer increases and its microstructure changes to polycrystalline (as 

observed in cross-sectional TEM analyses, Figure 5.5d-f). Simultaneously, with an 

increasing negative bias at the bottom electrode, the concentration of Vos increases in 

the bilayer oxide stack (as observed in PL maps Figure 5.6). When the applied bias 

reaches the level of forming voltage for a virgin (or VSET for an electroformed) t-

ReRAM cell, the concentration of Vos extends toward the anode.26, 27 As a result the 

bilayer a-STOx/a-STOy stack provides a localized conductive path for the electronic 

transport between opposite electrodes thereby, significantly changing virgin state 

resistance (or HRS for an electroformed t-ReRAM cell) to LRS. Also the Joule heating 

effect can increase the microstructural order of the amorphous oxides,[131, 175] as 

observed in our EELS analysis of the electroformed cell (Appendix C). On the other 

hand, a negative bias on the top ITO electrode (acting as a cathode, Figure 5.7a3 and 

b3) drifts the O2- from the top Ti2O3/a-STOx interface towards the a-STOx layer. As the 

bias increases to VRESET, the O2- recombine with the Vos and produces neutral oxygen 

ions ( ). Consequently, a partially ruptured conductive path remains in 

the bilayer a-STOx/a-STOy stack and the t-ReRAM cell switches to HRS. 
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Figure 5.7 Schematic illustrations of the possible resistive switching mechanisms in the 

t-ReRAM cells of (a1-a3) Device BL15 and (b1-b3) Device BL5. Transformation of the 

t-ReRAM cell from (a1, b1) a virgin state to a repeatable (a2, b2) LRS and (a3, b3) 

HRS. The red and blue spheres represent oxygen vacancies (Vos) and oxygen ions (O2-), 

respectively, whereas the blue arrows show the direction of O2- drift under the influence 

of applied electric field. 

 

Despite the similar top and bottom interfaces (Ti2O3/a-STOx and a-STOy/ITO, 

respectively), the observed difference in the resistive switching behaviors in 

Device BL15 (linear switching) and Device BL5 (non-linear switching) can be 

explained by considering the distribution of Vos in the a-STOx and a-STOy layers. The 

Device BL15 electroforms at relatively higher voltages than Device BL5 (Appendix C) 

which results in higher concentration of Vos in the a-STOx layer, as depicted in 

Figure 5.7a2. Consequently, the a-STOx layer is more conductive than a-STOy layer 

which translates into higher resistances in both LRS and HRS of Device BL15 (even at 

comparatively lower SET/RESET voltages than Device BL5). On the other hand, 

comparatively higher SET voltages of Device BL5 result in a drift of Vos from the a-

STOx layer to the vicinity of bottom a-STOy/ITO interface (as depicted in Figure 5.7b2). 
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This explains the relatively higher conductivity of the a-STOy layer of Device BL5 

(than a-STOy layer of Device BL15) and also its lower LRS/HRS resistances. 

Furthermore, a plausible explanation for the peculiar I�V crossing during the negative 

SET sweeps of Device BL5 (Figure 5.4a and b), can be presented by considering the 

Joule heating induced electrochemical modification of the top Ti2O3/a-STOx interface. 

Under a relatively high SET bias, the localised temperature around the filamentary 

region can be significantly higher than the rest of device (due to the Joule heating). This 

can induce a repeatable electro-thermal negative differential resistance (NDR) effect 

which explains the decrease in current at -8.2±0.5 V (Figure 4.4a). Since the Ti sub-

oxide phase (such as Ti4O7) is known to exhibit the Joule heating induced NDR 

phenomenon,[168, 176] the top Ti/Ti2O3/a-STOx interface is likely to be 

electrochemically modified (to a sub-stoichiometeric interfacial layer) during the cyclic 

SET sweeps. This possibly underpins the peculiar I�V crossing at approximately -2.5 V 

in Device BL5. 

5.8 Photo-response of t-ReRAMs 

To fully benefit from the transparency of the t-ReRAM cells, it is essential to explore 

the optical tunability of their resistive states. We studied the photo-response of our t-

ReRAM cells via a sequential exposure to different illumination wavelengths. As 

observed in the PL spectra (Figure 5.2b), the presence of Vos induced in-gap electronic 

states result in a photo-response of a-STO oxides in a wide wavelength window 

(ranging between 365 nm to 530 nm). This suggests that the t-ReRAM cells will be 

optically responsive to the excitation wavelengths in this range. 

Figure 5.8 shows the time-resolved photo-electronic response of our t-ReRAM cells 

with varying active areas to different wavelengths in their virgin and HRS states. It can 

be observed that regardless of their active cell area and resistive states, both 

Device BL15 (Figure 5.8a) and Device BL5 (Figure 5.8b) show higher photocurrent 

under ultraviolet (UV, 365 nm) as compared to the blue (455 nm) under equal power 

densities of 2.5±0.2 mW/cm2. This is consistent with the observed PL spectra from 

a-STO oxides and indicates that more photo-induced carriers are generated as the 

illumination wavelength decreases towards the corresponding bandgap (<390 nm).[177-

179] Both Device BL15 and Device BL5 show an area dependent photocurrent in their 

virgin state. This can be explained by considering the area dependent density of Vos in 
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virgin t-ReRAM cells and also relatively lower density of Vos (than electroformed cells) 

where they act as trapping sites for injected electrons under a low VREAD.[180-182] 

Light illumination de-traps the electrons into the conduction band which are driven 

through the device by VREAD.[147, 183-185] On the other hand, no obvious relation 

between the active cell size and photocurrent is found in HRS of both Device BL15 and 

Device BL5 t-ReRAM cells. In HRS, low electrical conduction is usually attributed to 

the transportation of electronic carriers through the oxide/electrode interfacial 

barrier.10,41 While the area independent HRS photo-response in the t-ReRAM cells can 

be associated with the transportation of photo-excited electrons through the localized 

variation of ITO/a-STO interfacial barrier at the conductive filament without affecting 

the remaining interfacial barrier,[186] it should be noted that photo-electronic response 

is only observed in HRS of the t-ReRAM cells. In the LRS however, the presence of 

electrically induced conductive filamentary path (as discussed in the preceding section) 

provides a fast route for the transportation of charge carriers;[45] hence, diminishing the 

photo-response of the t-ReRAM cells. Such an area independent optical and electrical 

properties of t-ReRAMs highlight the scalability potential of these devices. 

Regardless of the cell area, relatively higher average UV response (IUV/IDark) of 

Device BL15 (8.7±0.1) than Device BL5 (4.1±0.2), can be attributed to the higher Vo 

concentration owing to the thickness of a-STO stack.[182, 187, 188] Furthermore, a fast 

photocurrent modulation (10 Hz) of Device BL15 is achieved under the UV 

illumination (Appendix C), indicating a fast response time, a required feature for photo-

electronic devices such as optoelectronic switches and memories.[187, 189] In addition, 

to assess the contribution of ITO electrodes in the photo-response, each electrode is 

exposed to the illumination and no significant photo-response is observed (Appendix 

C). As a result, the role of ITO can be neglected. These results reveal that the a-STO t-

ReRAMs, with attractive features such as fast and area independent photo-response, 

demonstrate a multifunctional storage system where memory states can be optically 

read by using a specific light irradiation. Moreover, the reported memory design is also 

capable of enabling memory cells to work as light sensors. 
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Figure 5.8 Photo-response of ITO/Ti/a-STOx/a-STOy/ITO structured t-ReRAM cells in 

virgin and HRS. (a) The measured photocurrent of Device BL15 and (b) Device BL5 

upon exposure to the blue and UV illuminations with wavelengths of 455 and 365 nm, 

respectively, at a VREAD of 0.5 V. The t-ReRAM cells with active area of 10×10, 40×40 

and 100×100 µm2 are sequentially exposed to the illuminations with an incident power 

of 2.5±0.2 mW/cm2 for 20 s. 
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6 Memories!as!artificial!

synapses 

Memristors have been recognized as potential building blocks for the future 

versatile neuromorphic architectures due to their non-volatility, scalability, 

low-power consumption, fast response time and homologous regulatory 

mechanisms with biological synapses. However, despite their desirable 

characteristics, the complex drive circuitry, electroforming process, device-

to-device variability and stochastic nature of resistive switching are 

hindering the realization of efficient neuromorphic networks. Furthermore, 

the implementation of several higher order synaptic functions observed in 

biological neural systems has not been explored in the previous studies. 

This chapter presents the practical implementation of time and rate-

dependent synaptic learning rules on the a-STO memristors.  
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6.1 Introduction 

The functionality of a brain is attributed to the activity-dependent synaptic weight 

change, enabling principal cognitive functions.[190] Although the underlying precise 

biological mechanism of the synaptic functionality is still under debate,[191] it is well 

established that in vivo neurons follow Hebbian synaptic learning through spike-time-

dependent-plasticity (STDP).[192-196] Conventional complementary metal oxide 

semiconductor (CMOS) circuits have been employed to mimic the biological synaptic 

learning,[197] but with no intrinsic learning capability, high energy consumption and 

limited scalability restrain the CMOS neuromorphic systems to achieve similar 

efficiency and density as a brain (108-1014 mm3).[198] Significant reduction in 

complexity, energy consumption, intrinsic non-volatility and high scalability of a 

nanoscale memristor qualify it as a basic element for any versatile artificial 

neuromorphic architectures.  

It has been shown that a nanoscale memristor can function as an artificial synapse due 

to its similar activity dependent nonlinear conductance modulation.[167, 199-201] 

However, memristors require integration with the driving CMOS subsystems to 

successfully execute the memory/computation operations and emulate synaptic 

functions. To date, several hybrid CMOS-memristor architectures have been reported to 

achieve high density memory systems and neuromorphic computing paradigm.[169, 

202, 203] But inefficient complex CMOS circuitry, inexorable electroforming process 

causing a high device-to-device variability and stochastic nature of resistive switching 

are hampering the realization of extremely efficient neuromorphic networks.[44, 167, 

202] A hybrid architecture implementing a simple dynamic CMOS circuitry to comply 

with any type of memristors and an energy efficient electroforming-free memristor 

would enable to imitate versatile neuromorphic functions. 

In this study, we demonstrate such a hybrid CMOS-memristor approach to practically 

emulate the synaptic functions. This approach employs CMOS-compatible amorphous 

oxygen deficient SrTiO3-x (a-STOx) memristors as artificial synapses.[70, 102, 110] 

These synaptic devices exhibit electroforming-free characteristics which is a desired 

feature for energy efficient neuromorphic networks. Although, synaptic functions 

including pair-based STDP (p-STDP) have been implemented on different types of 

memristors;[204, 205] however, higher order time-dependent and rate-dependent 

learning rules (discovered in the biological synapses) such as triple-STDP (t-STDP) and 
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Bienenstosk Cooper Munro (BCM)[206-208] have not been experimentally 

demonstrated on artificial synaptic devices. We acknowledge that a few memristive 

models and circuits are recently proposed to reproduce these synaptic learning 

rules.[209-211] However, a physical emulation of these essential biological learning 

rules will signify the potential of exotic memristors for future neuromorphic 

computation. Herein, we employ electroforming-free a-STOx synaptic devices to 

experimentally implement these STDP learning rules and benchmark the results against 

the biological dataset. Furthermore, a simple yet highly flexible CMOS drive circuit is 

adapted rendering its capability to implement a variety of synaptic functions. As such, 

we exploit the room temperature CMOS-compatible synthesis, electroforming-free 

characteristics of a-STOx memristors and flexible design of the CMOS drive circuitry to 

demonstrate the realization of an efficient and reliable neuromorphic system. 

6.2 Material Characterization 

The chemical composition of the as-sputtered a-STOx thin film is analysed by the X-ray 

photoelectron spectroscopy (XPS). In order to evaluate the stoichiometry, the core-level 

elemental spectra of the as-sputtered a-STOx thin film are compared with the spectra 

collected from a reference stoichiometric STO (100) substrate, as shown in Figure 6.1. 

The Sr 3d and O 1s spectra of both samples show similar binding energies which are 

within the margin of measurement error (±0.1 eV). The Sr 3d spectra of stoichiometric 

STO and a-STOx (Figure 6.1a) is fitted into a doublet where the binding energies of 

Sr 3d5/2 at 132.94 eV and 132.97 eV, respectively, can be attributed to Sr2+ state.[212, 

213] The O 1s spectra of stoichiometric STO and a-STOx (Figure 6.1b) is fitted with 

two distinct peaks. The peaks at binding energies of 529.45 eV (for stoichiometric STO) 

and 529.47 eV (for a-STOx) correspond to O2- ions[212] while peaks at higher binding 

energies can be associated to the adventitious C�O bonds [70, 212, 213] on the surfaces. 

On the other hand, the Ti 2p spectra of the both stoichiometric STO substrate and our a-

STOx are shown in Figure 6.1c. The Ti 2p spectra of the stoichiometric STO suggest 

that Ti is present in its single oxidation state, i.e. Ti4+ with Ti 2p3/2 peak at 

458.37 eV.[160, 213, 214] However, the resolved Ti 2p spectra of the sputtered a-STOx 

thin film show two distinct oxidation states with Ti 2p3/2 peaks at binding energies of 

457.9 eV and 456.2 eV which correspond to the Ti4+ and Ti3+ oxidation states, 

respectively.[70, 212] The relative concentration of Ti4+ and Ti3+ is calculated by 
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integrating the respective fitted peaks. The ratios of Ti/Ti4+ and Ti/Ti3+ in a-STOx are 

calculated to be 70.6% and 29.4%, respectively. This indicates that the STO thin films 

sputtered for a-STOx synaptic devices are comparatively more oxygen deficient than our 

previously reported oxide films (with Ti/Ti3+ ratios ranging from 24.8% to 27.1%).[102] 

This can be associated with the sputtering conditions of STO in a pure argon 

environment where Ar+ ion bombardment results in the preferential removal of oxygen 

atoms and creates inherent oxygen vacancies (Appendix E).[76] It is expected that by 

controlling the defect chemistry of a-STO oxide structure, the energy requirements and 

resistive switching characteristics can be tuned.[70] 

 

 

Figure 6.1 Material characterization of SrTiO3. The resolved core-level XPS spectra of 

(a) Sr 3d (b) O 1s and (c) Ti 2p collected from a reference stoichiometric SrTiO3 (100) 

substrate and the sputtered a-STOx thin film. 

 

6.3 Resistive switching characteristics of the synaptic devices 

The a-STOx synaptic devices are fabricated in metal-insulator-metal (MIM) 

configuration as a bilayer stack of Ti/a-STOx sandwiched between top and bottom Pt 

electrodes. The a-STOx MIM devices are fabricated with different active cell area 

ranging from 4×4 µm2 to 100×100 µm2 to analyse its effect on the resistive switching 

characteristics (Appendix E). Unlike our previously reported STO memristors,[70, 98, 

102, 110] where an initial electroforming is required to activate the resistive switching, 

herein fabricated a-STOx synaptic devices exhibit bipolar resistive switching without 

initial electroforming step. The as-fabricated MIM devices are in their high resistive 



Tuning Resistive Switching in Complex Oxide Memristors 

70   

states (HRS) as the measured pristine resistances are close to the normal variance of the 

HRS achieved during the subsequent cyclic switching. However, the pristine state 

resistances are device area dependent (Appendix D). Furthermore, the statistical 

analysis of the as-fabricated devices show that the average SET and RESET voltages 

(i.e., VSET and VRESET, respectively) during the first I�V sweeps are also area dependent 

(Appendix D). This electroforming-free characteristic of the a-STOx synaptic devices 

can be associated with the higher concentration of as-grown oxygen vacancies,[40, 215] 

as discussed in the XPS analysis. Unlike our previously reported a-STO memristors,[70, 

102] it is possible that during the first SET sweep the higher concentration of as-grown 

oxygen vacancies reduces their migration distance and electrical energy to form the 

nano-filament. Figure 6.2a shows a clockwise bipolar switching behavior which is 

typical for a-STO devices (i.e., RESET on positive bias and SET on negative bias).[70, 

98, 110] 

 

Figure 6.2 Electrical characterization of the a-STOx synaptic devices. (a) The I�V 

characteristic sweep of a 10×10 µm2 
a-STOx MIM device. (b) The retention time vs 

1/kT plot to evaluate the state stability of the a-STOx devices. The inset plot shows 

retention of LRS and HRS at different high temperatures ranging from 150 to 250 !C. 

(c) Endurance of the devices, where VRESET of -1.6 V, VSET of +1.4 V and VREAD of 
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+0.1 V are applied as a train of short pulses. (d) The dependence of HRS and LRS on 

the active cell area. 

 

As depicted in Figure 6.2a, a negative triangular DC voltage sweep with amplitude of -

1 V (as VSET) switches the MIM device from its high resistance state (HRS) to a low 

resistance state (LRS). While an opposite polarity triangular DC voltage sweep with an 

amplitude of +1.3 V (as VRESET) switches the device to its HRS. To evaluate the 

retentions of the MIM devices, the resistive states are measured at elevated temperatures 

ranging from 150 to 250 !C, as shown in the inset of Figure 6.2b. The retention of HRS 

measured for 30 hours at 250 !C shows no failure, indicating the stability of HRS. 

However, retention characteristics of LRS are temperature sensitive. This high 

temperature LRS retention failure can be associated with the thermally assisted 

reduction in the concentration of oxygen vacancies in the nano-filament and eventually 

its rupture.[216] The LRS retention failure time at different temperatures (where 

resistance jumps higher than the HRS) is plotted in an Arrhenius plot, as shown in 

Figure 2b, to calculate the oxygen vacancy migration activation energy and estimate the 

retention characteristics of the a-STOx memristors. The extrapolation of the fitting line 

in Figure 6.2b estimates the retention time of ca. 7.6 years at room temperature. Even 

though, this retention is suitable for memory and neuromorphic applications, it can be 

improved by preventing the reoxidation of a-STOx oxide layer through inserting a thin 

film exhibiting slow oxygen diffusion coefficient, such as Al2O3.[139] On the other 

hand, an active energy of ca. 0.29 eV is extracted from the linear fitting of the 

experimental data points in Figure 6.2b. This lower LRS activation energy, as compared 

to the other oxide systems [142, 216, 217] (e.g., 1-1.6 eV reported for a-Al2O3, a-Ta2O5, 

a-Nb2O5 and TiO2), suggests the hopping conduction mechanism in our a-STOx MIM 

devices.[218] This hopping conduction refers to the electronic transport through the 

localized states where these states are provided by the oxygen vacancies in the nano-

filament. To evaluate the switching repeatability of the a-STOx synaptic devices 

(Figure 6.2c), short pulses with 1 �s duration and amplitude of -1.4 V and +1.6 V are 

applied for SET and RESET operations, respectively. While READ pulses with 

amplitude of +0.1 V and duration of 200 ns are used to measure the SET/RESET 

currents. The effect of pulse width on the switching performance is also evaluated 

(Appendix D). The endurance characteristics, for more than 104 switching cycles 
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(Figure 2c), indicate that the synaptic devices exhibit repeatable bipolar switching 

behavior. Generally in transition metal oxides, the bipolar resistive switching behavior 

is attributed to the inhomogeneous conduction mechanisms through the localized 

filamentary pathways and associated redox processes.[5, 28, 219, 220] As such, the 

resistance states (i.e., HRS and LRS) are expected to be independent of the lateral 

dimensions of the MIM devices. Figure 6.2d reveals no appreciable area-dependency in 

our a-STOx synaptic devices for either resistance state. This further supports our earlier 

statement regarding the formation of nano-filament in the synaptic MIM devices. We 

have conducted detailed characterization of filamentary conductive pathway through the 

cross-sectional microstructural analyses, as discussed in the following section. 

6.4 Microstructural analysis of the synaptic devices 

The physical structure of the a-STOx synaptic devices and their compositional analysis 

is characterized with a cross-sectional transmission electron microscope (TEM). The 

electron energy loss spectroscopy (EELS) spectra are used to assess the distribution of 

oxygen content in the devices. The TEM micrograph and EELS spectra of a pristine 

device reveal an amorphous microstructure of the STOx layer and a partial oxidation of 

the top Ti layer at the Ti/a-STOx interface (Appendix D). The amorphous and oxygen 

deficient structure of STOx layer is attributed to the room temperature sputtering in a 

pure argon environment which is consistent with our XPS analysis (Figure 6.1). Also, 

the partial oxidation of the top Ti layer to sub-oxide at Ti/a-STOx interface can be 

associated with the interfacial oxygen diffusion and Ti#O bonding between deposited Ti 

and a-STOx oxygen ions.[132, 221] Figure 6.3a shows an annular dark-field scanning 

TEM (STEM) image of a switching a-STOx memristive device in its LRS. High color 

contrast regions are observed in the a-STOx layer and along the top Ti/a-STOx interface 

which indicate the applied electric field induced compositional changes in a-STOx. To 

analyse the composition of the a-STOx layer, a region of interest (ROI) is selected 

across the device, highlighted in Figure 3a. The EELS O�K edge area map (Figure 3b) 

shows the relative distribution of oxygen content in the ROI where the area map is 

generated by taking the O�K edge intensities of the collected spectra (at each pixel) 

after pre-edge background subtraction. The O�K edge area map reveals the presence of 

an oxygen deficient region extending between the top and bottom Pt electrodes. This 
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indicates a localized accumulation of oxygen vacancies and formation of filamentary 

path across the MIM structure.[110]  

 

 

Figure 6.3 Microstructural and compositional analyses of the a-STOx synaptic devices. 

(a) STEM cross-section of a switching device in its LRS. Scale bar 20 nm. (b) The 

EELS O�K edge area map of the enclosed region of interest in (a). (c) The EELS Ti�L2,3 

and O�K edge profiles along a line scan across the filamentary region shown in (b). 

 

The electronic character of the filamentary path is assessed by evaluating the oxidation 

state of Ti across the MIM structure. The generation of each oxygen vacancy in STO 

introduces two electrons into the Ti 3d orbital, and the resulting change in the Ti 

valence can be observed in the EELS Ti�L2,3 edge profile.[136, 137] Figure 6.3c shows 

the background corrected Ti�L2,3 and O�K spectra acquired along the EELS cross-

sectional line scan passing over the filamentary region (indicated in Figure 6.3a). The 

gradual evolution of the Ti�L2,3 fine structures in their intensity and position (from top 

Pt/Ti interface to the bottom Pt electrode) is clearly observed which indicates the 

change in Ti valence across the filamentary region. The O�K edge spectra are weak in 

intensity and exhibit low signal to noise ratio. Due to these resolution limitations we 
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evaluate only the Ti�L2,3 edge profiles to qualitatively analyze the electronic structure of 

the filamentary region. The broad and relatively low intensity peaks at the top Pt/Ti 

interface indicate the presence of mixed Ti2+ and Ti3+ oxidation states.[132, 137, 138] 

At the Ti/a-STOx interfacial region and in the a-STOx layer, the crystal-field splitting of 

the Ti�L3 and Ti�L2 peaks (into t2g and eg peaks) and their shift can be attributed to the 

presence of Ti3+ and Ti4+ oxidation states.[222-224] It is well known that, in transition 

metal oxide based resistive memories, the resistive switching is attributed to the 

migration of oxygen vacancies and associated valence change in the transition metal 

cations.[28, 42] Our cross-sectional TEM analyses show that the extended oxygen 

deficient region with mixed Ti valence provides a conductive filamentary pathway for 

the charge transportation across the MIM structure 

6.5 Implementation of the synaptic functions 

Though the classical p-STDP model helped to establish fundamental understanding of 

the Hebbian synaptic plasticity (i.e., time dependent pre- and post-synaptic spiking 

induces long- and short-term potentiation) in several neural systems but it is not 

sufficient to accurately model all biological experimental results produced by multiple 

(triplet and quadruplet) spikes.[206, 225] This can be associated with deficiencies in the 

classical p-STDP model, such as excluding non-linear integration of spike pairs and 

their repetition frequency to quantify the synaptic modification.[207, 225] This infers 

the classical p-STDP model cannot elicit the BCM synaptic learning rule, which is 

regarded as a possible explanation of experience-dependent synaptic plasticity.[207] On 

the other hand, the t-STDP model is believed to be comprehensive enough to explain 

the biological experimental results produced by multiple spikes. So implementation of 

the t-STDP rule on a-STOx synaptic devices can highlight the capability of these 

artificial synapses to mimic the biological synaptic functionalities.  

A typical biological synapse consists of a pre-synaptic neuron and a post-synaptic 

neuron connected through a synapse, as schematically illustrated in Figure 6.4a. In an 

artificial memristor based synaptic device, the bottom and top electrodes work as 

neurons and the switching layer acts as a synaptic connection. The electrical 

conductivity of the device interprets the synaptic weight, while its increase or decrease 

translates to potentiation or depression, respectively, in response to the applied voltage 

spikes. Figure 6.4b shows an experimental implementation of simplified t-STDP 
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learning rules as described in Ref.[206, 207] and also in Equation 6.1, using our a-

STOx memristor. Synaptic changes reported here (Figure 6.4b) are collected using 

application of different pulse magnitudes with fixed pulse widths. A time-to-digital-to-

voltage circuitry (shown in Figure 6.6a and discussed later) is simulated to generate 

magnitude of the voltage pulses corresponding to the spike-timing information (  and 

). To verify the capability of this scheme to implement a wide range of learning 

rules, including p-STDP and t-STDP, we have applied a series of 100 pulses for each 

voltage magnitude that is chosen by the programming circuitry. The amplitude of 

applied voltage pulses for the corresponding spike-timing is listed in Table D1, 

Appendix D These experiments demonstrate a simple analog time-multiplexing 

implementation of artificial memristive synapses with shared peripheral circuitry. A 

simplified t-STDP learning rule,[206, 207] mentioned in Equation 6.1, suggests that 

synaptic depression is produced by spiking pairs with time interval of  (as in 

classical p-STDP rule), while synaptic potentiation takes a triplet of spikes into account. 

Here we consider post-pre-post configuration of the triplet spikes, all details can be 

similarly applied for a pre-post-pre configuration. 

It is also important to note that the asymmetry of the STDP window, shown in 

Figure 6.4b, is due to the asymmetry in potentiation and depression rates of the a-STOx 

memristors and is consistent with several in vivo and in vitro STDP studies conducted 

on different types of biological synapses.[194]  

A simplified t-STDP learning rule can be shown as,[207] 

 

 

 

 , 

 , 

 

 
(6.1) 

 

where  and  are time differences. and  

are constant amplitudes of each exponential term in potentiation ( ) and depression 

( ) equations. The values of these amplitudes extracted from curve fitting (in 

Figure 6.4b) are  and  0.60. Also,  and  are time constants of 

 and , respectively, and obtained from the fitting parameters as 8.2 ms 

and  2.5 ms. While the time constant  indicates the exponential correlation 

between  and , and extracted as 80 ms. To reproduce the t-STDP window, 
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the values of  are fixed at 10, 80 and 160 ms during the experiments (as shown in 

Figure 6.4). 

 

 

Figure 6.4 Triplet-based STDP window implemented on a-STOx synaptic devices. (a) 

An illustration of two biological neurons connecting via synapses. (b) Artificial 

implementation of STDP learning rules using a-STOx synaptic devices. Each data point 

and its deviation from mean (represented by bars) are collected by applying 100 cycles 

of identical pulses, where each cycle contains a RESET (for potentiation experiments) 

or SET (for depression experiments) pulse.  

 

In order to demonstrate that our a-STOx synaptic devices are capable to imitate the 

biological synaptic plasticity, we implement the t-STDP model (Equation 6.1) by 

following the experimental protocols reported by Pfister and Gerstner[206] and compare 

the results with the electrophysiological experiments performed in hippocampal 

culture[226] and visual cortex.[208] Two different triplet spiking patterns, namely post-
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pre-post (i.e., 1-pre-2-post) and pre-post-pre (i.e., 2-pre-1-post), are used in 

hippocampal culture experiments,[226] each consists of 60 triplet of spikes and repeated 

at a given rate (1 Hz). The weight change as a function of timing difference between 

pre- and post-synaptic spikes in both triple patterns is graphically presented in Figure 

6.5a and Figure 6.5b. The best fit is calculated by a normalized mean-square error 

function ( ) represented as,[206] 

 

 (6.2) 

 

where , ,  and  are the number of data points in a dataset, mean 

weight change (in electrophysiological and a-STOx memristor experiments) and the 

standard error mean (SEM) of  for a given data point , respectively. In the 

hippocampal culture, 13 data points are used, which includes 2 pairing and 3 quadruplet 

data points. To compare our experimental results with hippocampal culture, we use only 

8 triplet data points, 4 for pre-post-pre triplet spiking pattern and 4 for post-pre-post 

triplet spiking pattern. The comparison of our a-STOx memristor experimental results 

and hippocampal culture (Figure 5a and 5b) shows a very close match in the weight 

change associated to the respective time differences. The weight change corresponding 

to the both triplet pairing configurations is listed in Table D2, Appendix D. 

Figure 6.5c shows the implementation of BCM learning rule where the synaptic weight 

changes as a function of the given frequency, . The comparison of our experimental 

results with the visual cortex data set (Figure 6.5c) shows that a-STOx memristors 

closely follow the BCM behavior for  $ 30 Hz while for high frequencies our 

experimental results are within the variation limits of visual cortex data set. The values 

of synaptic weight change corresponding to different frequencies are listed in Table D3, 

Appendix D. This indicates that like time-dependent learning rules (i.e., p-STDP and t-

STDP); the BCM rule can also be implemented by our a-STOx synaptic devices.  
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Figure 6.5 Reproduction analyses of the time- and rate-dependent learning rules. The 

reproduction of weight change induced by (a) pre- post- pre and (b) post- pre- post 

triplet spike patterns. (c) The synaptic weight change as a function of spike rate. 



Chapter 6: Memories as artificial synapses 

   79 

6.6 Design of CMOS drive circuitry 

The available literature reports either extensive peripheral circuitry to generate suitable 

pre- and post-synaptic spike shapes (similar to the biological action potentials) or 

special circuits designed for a specific type of memristive system.[202, 227] 

Additionally, the direct interfacing between CMOS drive circuitry and memristive 

devices/array can expose them to CMOS circuit non-idealities.[228] Herein, we utilize a 

well-established CMOS circuit, called forward body biasing,[229-232] in combination 

with a time-to-digital converter to implement not only time dependent synaptic rules but 

also demonstrate the potential of implementing a wide variety of synaptic learning rules. 

Figure 6.6a shows a schematic of the proposed CMOS drive circuit which is a 

modification of the body-bias generator,[230, 231] and converts differences in input 

spike-timing into voltage amplitudes. The time-to-digital (T2D) module is responsible 

for the pre- and post-synaptic event digitization and includes a timing control unit and a 

decoder (Appendix D). The timing control unit is a fully digital unit that receives pre- 

and post-spikes and generates a binary code according to the timing intervals and works 

based on a number of counters that are triggered and stopped with spikes. It can be 

configured for multiple protocol implementation and  detection.[229] As depicted in 

Figure 6.6a, a finely tuned voltage ( ) is generated to modify the weight of a 

memristor and is connected to a memristor array via a voltage follower (VF) and an 

array of transmission gates (TGs) that are connected to the top-electrodes (TEs) and 

bottom-electrodes (BEs) of the memristor array. It is worth mentioning that we focus on 

design of the peripheral circuitry for memristive artificial synapses, while modifications 

in the neuron designs may also be necessary to consider online-learning aspects of the 

learning rules discussed above. Each device in the array is individually accessible via an 

addressable top-electrode (TE) and bottom-electrode (BE) connections. Selections are 

mandated externally and also partially include some internal data. These selection 

signals are represented with two digital vectors for rows (R) and columns (C), i.e.,  

and  respectively, in Figure 6.6a. Note that  is a constant reference current that 

is supplied through a digital to analog converter (DAC), while  and  represent 

analog voltage supply and ground of the drive circuit, respectively. The proposed drive 

circuitry disconnects timing scales from the voltage level generation. Also the T2D 
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module is fully programmable and is capable of mapping any spike-timing to any binary 

code which can be translated to the corresponding voltage amplitude, via the DAC. 

 

 

Figure 6.6 The CMOS drive circuitry. (a) A schematic of the proposed CMOS drive 

circuit which converts difference in input spike-timing into voltage amplitudes to 

modify the synaptic weight of a target memristor in the array. (b) Simulated resolution 

of the DAC circuitry to generate the weight changing voltage, i.e., Vw. 

 

As revealed in Figure 6.4b, near exponential relationship exists between the 

programming voltage amplitude ( ) and synaptic weight change ( ). This implies 

that a small variation in  can cause a significant deviation in .Therefore, it is 

essential to estimate the programming efficiency of the proposed CMOS drive circuit. 

Figure 6.6b shows the Cadence simulation of the DAC circuitry using 90 nm CMOS 

technology. A 15.6 mV resolution of the for a total 1 V supply is achieved. 

Figure 6.6b and Table D1 (Appendix D), shows overall mapping of spike-timing to 

DAC code and then to an equivalent voltage (  in this case). It has been reported that 

variation in  is less than 5 mV.[230, 231] Although the 15.6 mV increase in applied 
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voltage magnitudes even higher than the VREAD (i.e., 0.5 V) do not necessarily switch 

the device, it is observed that such an increase makes a significant statistical change in 

. 

This shows that the forward transistor body biasing circuit is suitable for hybrid 

CMOS-memristor neuromorphic applications. Furthermore, by adopting this approach 

to experimentally emulate the t-STDP and BCM learning rules, it demonstrates a 

universal neuro-inspired programming scheme to implement a number of synaptic 

learning rules. 
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7 Conclusions!and!Future!

Work 

The research work carried out in this dissertation aimed to engineer 

perovskite SrTiO3 based resistive memories with dynamic switching 

characteristics and establish a comprehensive understanding of the 

underlying mechanisms. This chapter provides a brief summary of the 

significant outcomes of this research work and outlines the scope of future 

work in the field. 

7.1 Conclusions 

7.1.1 Controlled engineering of complex oxides 

A novel methodology is established to synthesize CMOS compatible a-STO based 

resistive memories, on conventional substrates (e.g., Si and SiO2/Si). The control over 

synthesis parameters allowed engineering a variety of resistive switching behaviors in 

a-STO resistive memories.The a-STO thin films with control over their composition are 

successfully synthesized.  
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The un-doped a-STO thin films are tailored with different ratios of as-grown oxygen 

vacancies. This enabled to fabricate multi-layered oxide structures with distinct oxide-

oxide interfaces. Moreover, acceptor and donor doped a-STO thin films with optimum 

concentration of dopant species are also realized. This allowed fabricating doped a-STO 

resistive memories to exhibit multi-state and multiple switching performances.  

7.1.2 Realization of multi-state resistive switching 

A detailed account of the structural and compositional properties of nano-filamentary 

resistive switching in the donor doped Nb:a-STOx based devices. The role of 

substitutional Nb species in modulating the electronic structure and subsequent 

switching characteristics of these devices are provided. Key effects of dopant species 

are identified in bias/time and state dependence of volatile and non-volatile transport 

effects which can be instrumental for neuromorphic and adaptive computation 

applications. Overall, these results highlight the potential of disordered complex oxides 

as building blocks for memory and computing platforms. Also they provide guidelines 

for application specific engineering of memristive characteristics via structural and 

compositional design. 

7.1.3 Multiple resistive switching behaviors 

The presence of bipolar and threshold resistive switching behaviors in a single 

Pt/Ti/Cr:a-STOx/Pt memory device have been shown. The multiple switching behaviors 

are defined by the current compliance limit during the initial electroforming step. The 

electroforming polarity-dependent bipolar and threshold resistive switching behaviors 

are also presented. In order to understand the existence of multiple resistive switching 

behaviors, rigorous compositional and micro/nano-structural analyses are carried out on 

the bare Cr:a-STOx oxide and cross-sectional MIM devices. It is established that top Ti 

layer oxidized to a sub-stoichiometric oxide under the applied bias and introduces a 

Ti2O3/Cr:a-STOx heterostructure in the MIM devices. Joule heating created local 

crystalline regions, provide a route for the migration of oxygen vacancies across the 

oxide heterostructure. Finally, to explain the observed multiple switching behaviors, a 

physical mechanism is proposed where current compliance during electroforming 

defines the concentration and distribution of oxygen vacancies in the heterostructure 

and the subsequent switching behaviors are combined effect of local redox reactions and 

Joule heating. The existence of multiple resistive switching behaviors in a Cr:a-STOx 
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based memory cell and their addressability through a single physical parameter, i.e., the 

current compliance during electroforming, opens new pathways for incorporation of 

memristors in ultra-dense memory architectures and conventional/non-conventional 

computation. 

7.1.4 Multifunctional transparent resistive memories 

Highly transparent ReRAM cells with bipolar switching behaviour are demonstrated. A 

bilayer stack of amorphous STO is utilized as the memory element sandwiched between 

transparent ITO electrodes. Comprehensive optical, electrical and compositional 

characterizations are conducted to propose a switching mechanism for the devices. The 

thickness of the bilayer stack is also varied to study its influence on the switching 

performance and to control the linearity in the switching behavior. Devices can be 

designed to exhibit a non-linear LRS which highlights their potential for large scale 

integration of t-ReRAM array. Additionally, the memory devices are shown to exhibit a 

transient photo-response in their HRS using a range of illumination wavelengths. 

Combining memristive properties with optically modulated HRS indicates the versatile 

functionality of such t-ReRAMs for optoelectronic applications such as photo-

detectors/sensors. 

7.1.5 Emulation of synaptic rules 

A hybrid CMOS-memristor approach is demonstrated to practically emulate the 

synaptic functions. The CMOS-compatible a-STOx memristors are used as artificial 

synapses. These synaptic devices exhibit electroforming-free characteristics. Higher 

order time-dependent and rate-dependent learning rules (discovered in the biological 

synapses) such as triple-STDP (t-STDP) and Bienenstosk Cooper Munro (BCM) have 

not been experimentally demonstrated on these artificial synaptic devices. Furthermore, 

a simple yet highly flexible CMOS drive circuit is presented rendering its capability to 

implement a variety of synaptic functions.  

As such, the room temperature CMOS-compatible synthesis, electroforming-free 

characteristics of a-STOx memristors and flexible design of the CMOS drive circuitry to 

demonstrate the realization of an efficient and reliable neuromorphic system are 

exploited. 
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7.2 Future Work 

The research work carried out in this thesis has presented significant amount of insights 

into the fabrication and characteristics of novel perovskite oxide based resistive 

memories. But still there are several aspects remaining for the further investigations. A 

few significant research topics are listed below: 

7.2.1 High performance memristive arrays 

The micro-scale cross-point memristive devices with a variety of characteristics are 

fabricated and rigorously tested in this research work. All devices have shown reliable 

resistive switching performances and scaling potential as they exhibit nano-filamentary 

switching phenomena. Furthermore, the presence of multiple switching behaviors 

(bipolar and threshold resistive switching) in a single memory cell highlights the 

potential of these devices for large scale memory array. So the downscaling of these 

devices (to <100 nm device size) and integration into a large scale memory array is an 

opportunity to investigate the effect of physical parameters on the efficiency of their 

performance.  

7.2.2 Multi-stimuli resistive memory 

Transparent resistive memories with a transient photo-response have been demonstrated 

in this research work. The development of a resistive memory where its resistive states 

are optically, electrically and thermally tuneable will offer a versatile memory system 

with an extra degree of control over the switching characteristics. Moreover, the 

investigation of interplay between different stimuli will provide insights into the 

complex multifunctional properties of the perovskite oxides.  

7.2.3 Efficient neuromorphic networks 

A variety of synaptic learning rules have been implemented on the electroforming-free 

a-STO memristive devices. The comparison of experimental results with the biological 

data set shows that the a-STO memristive devices can successfully mimic the complex 

neural activities. As such, the development of an efficient neuromorphic network based 

on these memristive devices will serve as a step forward to realize a brain-on-chip.  
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Appendix!A:!Supporting!Information!for!Chapter!3 

 

Figure A1 shows the core level binding energy spectra of Ti 2p and Nb 3d in virgin 

Nb:a-STOx oxide layer. This illustrates the partially reduced titanium sub-oxide 

network and the substitutional doping of niobium species (at a 5+ ionization state) in the 

oxygen-deficient oxide structure. The relative concentration of Ti3+/Ti4+ species in 

Nb:a-STOx is only slightly lower than that of pristine a-STOx (34% and 40%, 

respectively) as estimated from the integrated peak area for respective fits. This slight 

difference falls within the margin of error for background correction and peak fitting 

procedures. Therefore, it appears that low concentrations of donor species do not 

significantly alter the sub-oxide species within the amorphous phase. 

 

 

Figure A1 Core-level binding energy spectra of Ti 2p and Nb 3d in as-grown Nb:a-

STOx thin films. 

 

Figure A2 depicts TEM micrographs of an as-grown MIM device obtained from a FIB-

cut cross-section. No evidence of crystalline regions was found in the as-grown sample. 

At the interface, the redox reaction between the metal and oxide sides results in a 

partially reduced/oxidized region that is highlighted as a uniformly bright region (the 

area between the dashed lines in figure A2b). 



Tuning Resistive Switching in Complex Oxide Memristors 

100   

 

Figure A2 (a) TEM micrograph of a representative random area in virgin Nb:a-STOx 

device corss-section. (b) HR-TEM micrograph of the interfacial Ti/Nb:a-STOx region. 

Dashed lines indicate the partially reduced interfacial region. 

 

Figure A3 depicts a wide-view and a magnified TEM micrograph of represntative area 

in switching MIM device cross-section. The regions with distinctly contrast variations 

are expected to show significant structural and compositional variations and are targeted 

form HR-TEM and STEM-EELS studies.  

 

 

Figure A3 (a) Low and (b) high magnification TEM micrographs of a representative 

area in switching Nb:a-STOx device cross-section. The areas with distinct contrast 

variations are targeted for detailed studies. 
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Appendix!B:!Supporting!Information!for!Chapter!4 

 

B1. Characterization of functional Cr:a-STOx thin films 

Figure B1 shows the core-level XPS spectra of O 1s and Sr 3d in the sputtered Cr:a-

STOx thin films. The O 1s spectra (Figure B1a) can be de-convoluted into two 

components centered at 529.5 eV and 531.24 eV which can be associated with O2- ions 

and C-O bond on the surface.[B1,B2] The core-level spectra of Sr 3d (Figure B1b) is de-

convoluted into a single component indexed to Sr2+ with Sr 3d5/2 and Sr 3d3/2 peaks at 

132.89 eV and 134.66 eV binding energies, respectively.[B1-3] 

 

 

Figure B1 The XPS spectra from Cr:a-STOx thin films. The core-level spectra of (a) 

O 1s and (b) Sr 3d of the sputtered thin films. 

 

Figure B2 shows the core-level XPS spectra of principal elements acquired from the 

un-doped a-STOx thin films sputtered in a pure Ar environment. The Ti 2p spectra 

(Figure B2a) are fitted with two distinct components at binding energies of 458.4 eV 

and 456.2 eV indexed to the Ti4+ and Ti3+ oxidation states, respectively.[B4] The core-

level spectra of Sr 3d (Figure B2b) are de-convoluted into the Sr2+ oxidation state at 

binding energies 132.98 eV and 134.72 eV for Sr 3d5/2 and Sr 3d3/2, respectively.[S1,S2] 

Furthermore, the core-level spectra of O 1s (Figure B2c) are de-convoluted into two 

components at 529.5 eV and 531.4 eV binding energies indexed to the O2- oxidation 

state and C-O bonds on the oxide surface, respectively.[B1,B2] 
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Figure B2 The XPS spectra of principal elements from sputtered undoped oxygen 

deficient a-STOx thin films. The core-level spectra of (a) Ti 2p, (b) Sr 3d and (c) O 1s. 

 

 

B2. Resistive switching characteristic of MIM devices 

Figure B3 shows the representative electroforming sweeps to induce multifunctional 

resistive switching behaviors in our Cr:a-STOx MIM devices.  

 

 

Figure B3 Current compliance controlled electroforming step and induced resistive 

switching behaviors. The representative electroforming sweeps to induce (a) 

complementary resistive switching behavior where current compliance is set to 5 µA, 

(b) peculiar-complementary resistive switching where current compliance is set to 

10 µA, (c) clockwise bipolar resistive switching with current compliance fixed at 40 µA 

and (d) counter-clockwise bipolar resistive switching with current compliance at 50 µA. 

The colored voltage ramps represent the sequence of applied voltage sweeps during the 

subsequent switching cycles of the corresponding resistive switching behavior. The 

current compliance is set to >5×10-4 A during the switching cycles. 
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The effect of current compliance during the electroforming process is studied on at least 

115 Cr:a-STOx based MIM devices. Figure B4 shows that the current compliances in 

the range 1-5 µA, 10-15 µA and 40-100 µA induce CRS, p-CRS and bipolar resistive 

switching (BRS) behaviors, respectively. 

 

 

Figure B4 Influence of the current compliance on the resistive switching behaviors. 

Statistical distribution of the current compliance during electroforming process based on 

the data acquired from 115 different MIM devices. 

 

In order to evaluate the reliability of the switching behaviors, the retention and 

endurance characteristics are measured for several devices in their corresponding 

switching behaviors. For each switchingbehavior, at least 15 different devices are 

electroformed to induce either p-CRS, CW-BP or CCW-BP switching behavior before 

they are subjected to the retention and endurance measurements. Figure B5 shows that 

our Cr:a-STOx MIM devices exhibit reproducible retention and cyclic endurance 

characteristics in their corresponding resistive switching behaviors without the loss of 

memory window. 
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Figure B5 Electrical performance of the resistive switching behaviors. The retention 

and endurance characteristics of (a, b) the p-CRS, (c, d) the CW-BP and (e, f) CCW-BP 

switching behaviors, respectively, are measured and averaged for at least 15 different 

devices, for each switching behavior. The bars indicate the standard deviation. 

 

Symmetric Pt (35 nm)/Cr:a-STOx (25 nm)/Pt (7 nm) MIM devices are prepared by 

following identical fabrication conditions as the asymmetric MIM devices. Figure B6 

shows the I�V characteristic of a symmetric MIM device. 
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Figure B6 Electrical characteristics of the symmetric MIM devices. I�V cyclic sweep of 

the symmetric MIM device while biasing from the bottom Pt electrode. Inset shows the 

biasing scheme during cyclic sweeps. 

 

B3. Cross-sectional analyses of Cr:a-STOx MIM devices 

Transmission electron microscope (TEM) and electron energy loss spectroscopy 

(EELS) techniques are used to analyze the morphology and composition of the Cr:a-

STOx MIM devices. In order to ascertain the effect of applied bias (during 

electroforming and resistive switching) on the metal/oxide interfaces and within the 

functional oxide, the cross-sectional TEM samples are prepared from separate MIM 

devices subjected to different bias conditions namely; pristine, electroformed and 

switching devices. 

Figure B7 shows the cross-sectional TEM analyses of a pristine Cr:a-STOx MIM 

device. Figure B7a shows a TEM micrograph of the MIM structure where the Cr:a-

STOx oxide film is sandwiched between the top Pt/Ti and bottom Pt electrodes. The 

selected-area electron diffraction (SAED) pattern collected from the MIM cross-section 

shows a diffused ring (Figure B7b), indicative of an amorphous structure. The 

amorphous structure of the Cr:a-STOx oxide film is also confirmed by the high-

resolution TEM (HRTEM) micrograph, shown in Figure B7c. To assess the electronic 

composition and the relative distribution of oxygen content across the pristine MIM 

device, the EELS area map is collected by considering the O�K edge intensities 

(Figure B7d). The presence of low oxygen content in the Cr:a-STOx oxide layer 
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indicates its oxygen deficient stoichiometry which is consistent with our XPS analyses. 

The EELS Ti�L2,3 and O�K edge profiles are also obtained from a line-scan across the 

MIM structure (Figure B7e). Broad Ti�L3 and Ti�L2 peaks at the top Ti/Cr:a-STOx 

interface indicate the presence of mixed Ti2+ and Ti3+ oxidation states,[S5] which 

suggests the partial oxidation of top Ti layer (also observed in the EELS area map, 

Figure B7d). In the functional oxide layer, a weak splitting of the t2g and eg peaks in a 

few Ti�L2,3 edge profiles indicate Ti4+ oxidation state. However, O�K edge profiles are 

weak and noisy which makes difficult to clearly distinguish the fine structures and 

cannot be used to accurately identify the Ti valence. 

 

Figure B7 Microstructure and electronic structure of the pristine Cr:a-STOx devices. (a) 

TEM micrograph of a pristine MIM device. (b) Selected area electron diffraction pattern 

collected from the MIM cross-section. (c) High resolution TEM micrograph of the Cr:a-
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STOx oxide film. (d) The EELS O�K edge area map and (e) the EELS Ti�L2,3 and O�K 

edge profiles along a line scan across the MIM device. 

 

Figure B8a shows the cross sectional TEM micrograph of a Cr:a-STOx MIM device 

electroformed to exhibiting BP resistive switching behavior. The highlighted region of 

interest (ROI, enclosed in a box) shows the isolated incomplete filaments along the 

bottom interface. The fast Fourier transform (FFT, Figure B8b) taken from the ROI 

shows the diffraction spots. The diffraction spots indicated with arrows can be indexed 

to the cubic phase of STO and are masked to perform an inverse FFT (iFFT), as shown 

in Figure B8c. Several diffraction spots are used to ensure the iFFT show the 

distribution of crystals with differing orientations. 

 

 

Figure B8 Morphological analyses of the Cr:a-STOx MIM devices electroformed to 

exhibit CW-BP resistive switching behavior. (a) TEM micrograph of the MIM device 

subjected to electroforming step to exhibit CW-BP switching behavior. The box 

encloses the ROI. (b) The FFT diffraction patterns generated from the ROI enclosed in 
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(a). (c) The iFFT obtained from a diffraction spot in (b) highlight the crystalline region 

along the bottom electrode. 

 

Figure B9a shows the cross sectional HR-TEM micrograph of a Cr:a-STOx MIM 

device in its HRS, exhibiting CW-BP resistive switching characteristics. The ROI 

shows the localized crystalline region in the active Cr:a-STOx layer, extending from the 

bottom Pt electrode. The FFT diffraction pattern of the ROI (Figure B9b) indicates the 

presence of different crystalline phases of STO. The diffraction spot of the highest 

intensity (marked as spot 1 in Figure B9b) and other weaker diffraction spots can be 

assigned to the cubic perovskite STO phase. However, the encircled diffraction spots 

could not be assigned to the cubic perovskite STO phase, indicating the presence of 

other secondary phases. The spot 1 (with the d-spacing of 0.28 nm) is used to generate 

the iFFT (Figure B9c) highlighting the presence of [011] cubic STO phase in the 

selected ROI. 

 

Figure B9 Morphological analyses of the Cr:a-STOx MIM devices in HRS and 

exhibiting CW-BP resistive switching behavior. (a) TEM micrograph of the MIM 
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device subjected to at least 100 switching cycles and set to HRS prior to the lamella 

preparation. ROI is enclosed in the box. Scale bars 5 nm. (b) The FFT diffraction 

patterns generated from the ROI enclosed in (a). (c) The iFFT obtained from spot 1 in 

(b) highlight the crystalline region. 

 

Figure B10 shows the cross-sectional HR-TEM micrograph of the top Ti/Cr:a-STOx 

interface of a MIM device subjected to electroforming. In order to assess the 

morphological changes in the top Ti layer, two ROIs are selected along its length at two 

different locations (Figure B10a). The FFT diffraction patterns generated for each 

location (Figure B10b and 10c) reveal the polycrystalline structure of the top Ti layer. 

The high intensity diffraction patterns with the d-spacing ranging from 0.24 nm to 

0.26 nm can be indexed to the different planes of the rhombohedral Ti2O3. This suggests 

that under the influence of applied electroforming bias, the as-deposited amorphous Ti 

layer (observed in TEM analysis from pristine MIM devices shown in Figure B7a) has 

changed its micro-structure to polycrystalline along the length of top Pt electrode 

(acting as an anode). Furthermore, the diffusion of oxygen ions from the functional 

Cr:a-STOx layer causes the oxidation of Ti to a suboxide such as Ti2O3.  

 

 

Figure B10 Microstructure of electroformed MIM devices. (a) TEM micrograph of top 

Pt/Ti/Cr:a-STOx interface. Two ROIs are selected at Location 1 and Location 2, 

enclosed in boxes. Scale bar denotes 10 nm. (b) and (c) are the FFT diffraction patterns 

generated from Location 1 and Location 2, respectively, in (a).  
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Figure B11 shows the EELS O�K edge area map of the locally crystalline ROI from the 

MIM device exhibiting CW-BP resistive switching behavior (presented in Figure B9). 

The representative MIM device was set to HRS prior to TEM sample preparation. 

Relatively low oxygen content at the bottom Pt electrode indicates a ruptured 

filamentary path and accumulation of the Vos at anode in HRS. Presence of varying 

oxygen content at the vicinity of top Pt electrode shows the oxidation of Ti layer to a 

sub-stoichiometric Ti2O3, as indexed in the FFT analysis. 

 

 

Figure B11 Relative distribution of oxygen in the Cr:a-STOx MIM devices exhibiting 

CW-BP resistive switching behavior. The EELS O�K edge area map of the conductive 

filamentary path in HRS. Scale bar represents 20 nm. 
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Appendix!C:!Supporting!Information!for!Chapter!5 

 

C1. Area dependent resistive switching characteristics 

In transition metal oxides, the bipolar resistive switching behaviour is usually attributed 

to the formation and rupture of localized filamentary pathways due to redox 

processes.[C1,C2] Under a filamentary switching mechanism, the lateral dimensions of the 

memory cell are not expected to influence the resistive switching properties. Figure C1 

shows the correlation between HRS/LRS read currents and the area of our t-ReRAM 

cells. Unlike interfacial resistive switching, where the resistance�area product is 

independent of cell size,[C3] our t-ReRAMs show an increase in the product with 

increasing cell size. This further indicates that the switching mechanism in both 

Device BL15 (Fig. C1a) and Device BL5 (Fig. C1b) is of a filamentary nature. 

 

 

Figure C1 The resistance�area product of Device BL15 (a) and Device BL5 (b) in HRS 

and LRS. The resistances are measured for varying cell sizes at a VREAD of 0.5 V. 

 

C2. Stoichiometric analysis of ITO thin films 

The XPS analysis was carried out to characterize the composition and identify the 

chemical states of the principal elements in sputtered ITO (50 nm) thin films on glass. 

Curve-fitting of the core level spectra (O 1s, Sn 3d5/2 and In 3d5/2) for two types of ITO 

thin films, namely � as-grown and post-deposition annealed at 400  C,! is! shown! in!

Figure C2. 
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Figure C2 High resolution XPS spectra corresponding to (a) O 1s (b) Sn 3d and (c) 

In 3d for the as-grown and post-deposition annealed ITO (50 nm) thin films. 

 

The characteristic peaks positions are within the corresponding rage and are comparable 

to those reported in the literature.[C4-7] All sub-peaks of principal elements have been 

labelled to distinguish among them and their positions are listed in Table C1. The O 1s 

spectra have been fitted with three peaks centered at 530.3 eV (OI), 531.8 eV (OII), 

533.0 eV (OIII) for as-grown, and 529.9 eV (OI), 531.4 eV (OII) and 532.4 eV (OIII) for 

the post-deposition annealed sample. It is believed that the room temperature sputtering 

of ITO in a pure Ar environment results in oxygen deficient thin films, originating OI 

and OII peaks in the XPS spectra due to the formation of two types of O2- ions.[C5] 

Whereas OIII at higher binding energies (533.0 eV and 532.4 eV for as-grown and 

annealed samples, respectively) is associated with In(OH)x present on the surface.[C4,C7] 

The presence of oxygen deficient regions such as oxygen vacancies (Vo) and Sn centers, 

in ITO thin film act as charge trapping sites, making In 3d peaks insensitive to the 

concentration Vo and Sn species.[C7] In the literature, it is suggested that the OII/OI ratio 

can be used to estimate the oxygen deficiency in the ITO thin films.[C5] The calculated 

OII/OI ratios (listed in Table C1) for our sputtered ITO thin films show that as-grown 

ITO thin films are more oxygen deficient than the post-deposition annealed thin films. 



Tuning Resistive Switching in Complex Oxide Memristors 

114   

 

Table C1 Peak positions of the resolved core level XPS spectra from the principal 

elements in as-grown and post-deposition annealed ITO thin films. 

 

C3 Optical transmission characterization of ITO thin films 

Optical transmission characteristics of both as-grown and post-deposition annealed ITO 

thin films (50 nm), within the optical range of 300-800 nm, are shown in Figure C3. 

The average transmission increased after post-deposition annealing at 400  C! in! air!

which is consistent with the literature.[C4]  

 

 

Figure C3 Optical transmission characteristics of the ITO (~50 nm) thin films sputtered 

at room temperature on glass substrates. 
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C4 Electrical characterization of single layer and bilayer t-ReRAM cells 

with symmetric interfaces 

The I�V characteristics of a single layer (ITO/a-STOx (35 nm)/ITO) and bilayer (ITO/a-

STOx (10 nm)/a-STOy (15 nm)/ITO) are shown in Figure C4a and Figure C4b, 

respectively. 

 

 

Figure C4 Electrical characterization of transparent devices with symmetric interfaces. 

(a) I�V characteristics of single layer ITO/a-STOx/ITO cell. (b) I�V characteristics of 

bilayer ITO/a-STOx/STOy/ITO cell. 

 
 

C5. Optical characterization 

UV-Vis transmission and reflectance spectra of sputtered functional bilayer (a-STOx/a-

STOy) oxide stack, bottom (ITO) and top (ITO/Ti) electrodes of our devices are shown 

in Figure C5a and C5b, respectively. The bottom ITO electrodes are post-deposition 

annealed (at 400  C! in! air)! to! improve the transparency of t-ReRAM cells, instead of 

annealing top ITO/Ti electrode which may permanently diffuse the interfaces at high 

temperature and deteriorate the resistive switching performance of the devices. 

Figure C6 shows the reflectance spectra of both Device BL5 and Device BL15. The 

reflectance spectra are collected from device (ITO/Ti/a-STOx/a-STOy/ITO) region. 
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Figure C5 Optical characteristics of the sputtered oxides. (a) UV-Vis transmission and 

(b) reflectance spectra of the bilayer a-STOx/a-STOy stack, bottom ITO and top ITO/Ti 

electrodes for Device BL5 and Device BL15. Inset shows a schematic of the regions on 

the cross-point cells used for the collection of transmission spectra for both devices and 

are!highlighted!by!markers!�B�,!�C�!and!�D� for bottom ITO electrode, a-STOx/a-STOy 

stack and top ITO/Ti electrode, respectively. 

 



Appendix C: Supporting Information for Chapter 5 

   117 

 

Figure C6 UV-Vis reflectance spectra of Device BL5 and Device BL15 in 325-800 nm 

optical range. The spectra are collected from the device area highlighted by a marker 

�A�!on!the!inset!schematic!of!a!cross-point device. 

 

C6. XPS analysis of functional a-STO oxides 

Figure C7 shows the core-level binding energy spectra of oxygen (O 1s) and strontium 

(Sr 3d) in a-STOx and a-STOy oxides sputtered in a reducing (0% oxygen) and an 

oxidizing (5% oxygen) environment, respectively. In both oxides, O 1s spectra 

(Figure C7a) can be fitted with two components with peak positions at 529.5 eV 

(±0.1 eV) and 531.3 eV (±0.1 eV), corrosponding to O2- ions in a-STO oxide[C8] and C�

O bond[C8-10] formed due to adsorption of adventitious carbon onto the surface, 

respectively. 
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Figure C7 Core-level XPS spectra of (a) O 1s and (b) Sr 3d for as-grown a-STOx and a-

STOy oxides. 

 

Furthermore, the core-level spectra of Sr 3d (Figure C7b) could be fitted into a single 

component with no significient shift observed in chemical states. The binding energies 

for Sr 3d5/2 at 132.9 eV (±0.1 eV) and for Sr 3d3/2 at 134.7 eV (±0.1 eV) for both oxides, 

are attributed to Sr2+ species in a-STO.[C8,C10] 

 

C7. Electroforming of t-ReRAMs 

Figure C8 shows the electroforming sweeps of 10×10 "m
2 t-ReRAMs while biasing 

from the bottom ITO electrodes. The Device BL15 (Figure C8a) electroforms by 

applying -17.2 V and setting the current compliance at 100 µA. On the other hand, the 

Device BL5 (Figure C8b) electroforms by applying -14.5 V and the current compliance 

fixed at 5 µA. Comparatively higher electroforming current in the Device BL15 than the 

Device BL5 can be associated with the higher concentration of as-grown Vos in the 

Device BL15 owing to its thicker oxide stack. Under the influence of an electroforming 

voltage, the concentration of Vos further increases which results in the formation of 

conductive filamentary pathways and consequently an abrupt jump in current (limited 

by the current compliance at -100 µA) is observed at around -16.3 V (Figure C8a). 
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Figure C8 The electroforming I�V sweeps of 10×10 "m
2 t-ReRAMs. The 

electroforming sweep of (a) Device BL15 where current compliance is fixed at 100 µA 

and (b) Device BL5 where current compliance is fixed at 5 µA. 

 

C8. X-ray diffraction spectra of ITO 

The crystalline structure of as-deposited and post-deposition annealed ITO films 

(150 nm) on a glass substrate is investigated by X-ray diffraction (Bruker, D2 Phaser). 

In Figure C9, the diffractogram of annealed ITO (at 400  C! in! ambient)! shows! a!

crystalline structure and can be indexed to cubic In2O3.
[C11,C12] 

 

 

Figure C9 X-ray diffractograms of room temperature sputtered and post-deposition 

annealed ITO thin films on pyrex substrates. 
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C9. Electron energy loss spectroscopic analysis of t-ReRAM cells 

Figure C10 shows the titanium L2,3 absorption edge of a virgin and an electroformed t-

ReRAM cell. The fine structure from the electroformed cell is relatively more defined 

and the presence of t2g peak indicates the higher morphological order in a-STO than the 

virgin cell.[C13,C14] 

 

 

Figure C10 Electron energy loss spectra of the virgin and electroformed t-ReRAM cells 

for the titanium L2,3 edge. 

 

C10. Photoelectric characterization of t-ReRAM cells 

The photoelectric response of t-ReRAM cells in HRS is measured under UV 

illumination (25±2 mW/cm2) as a function of exposure frequency. Figure C11 shows 

the photoelectric modulation in HRS of Device BL15 at 10 Hz of exposure frequency 

(Figure C11a) and Device BL5 at 5 Hz (Figure C11b) under read voltages of 0.25 V and 

1 V, respectively. 
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Figure C11 Photoelectric modulation in HRS of the t-ReRAM devices. (a) 

Photoelectric response of Device BL15 at 10 Hz of exposure frequency, measured under 

a constant read bias of 250 mV. (b) Photoelectric response of Device BL5 at 5 Hz of 

exposure frequency, measured under a constant read bias of 1 V. 

 

 

C11. Photoelectric response of ITO electrodes 

The optical response of top and bottom ITO electrodes to the different wavelengths 

(Figure C12) shows that both electrodes are insensitive to the exciting illuminations. 

 

Figure C12 The optical response of ITO electrodes to 365, 455, and 530 nm of 

illumination wavelengths at a VREAD of 100 mV. 
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Appendix!D:!Supporting!Information!for!Chapter!6 

 

D1. Electrical characterization of a-STOx devices 

Figure D1 shows the resistance of as-fabricated a-STOx devices with respect to their 

active area. The resistances of at least 15 devices, with same active area are measured 

under a read voltage (VREAD) of 0.1 V.  

 

Figure D1 Electrical characterization of the pristine a-STOx devices. The pristine 

resistance measured for at least 15 devices of the same cell area at VREAD of 0.1 V. The 

error bars show the standard deviation in the measurement. 
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Figure D2 First SET/RESET characterization of the a-STOx devices. (a) The 

representative I-V characteristics of the first SET/RESET sweeps. The current 

compliance!is!set!at!$0.5 mA during the I-V sweeps. (b) The statistics of the first VSET 

and VRESET of at least 15 MIM devices with same cell sizes. 
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Figure D3 Characterization of SET/RESET pulses for the endurance of a-STOx MIM 

devices. (a) Effect of SET and RESET pulse width on switching ratio. The READ 

pulses with amplitude of 0.1 V and fixed width of 200 ns are used to measure the 

switching ratios of 15 MIM devices with 10×10 µm2 active area. (b) Response of the 

MIM device to the input VSET (-1.4 V)/VRESET (+1.6 V) voltage pulses with 1 µs pulse 

width (500 ns rise and fall time) and 0.1 V VREAD pulses with width of 200 ns. The 

upper panel shows the input voltage pulses, middle panel shows measured current 

response to the applied voltage pulses on a linear scale while the lower panel shows 

only SET/RESET and LRS/HRS read currents on a log scales. 

 

 

D2. Cross-sectional analyses of a-STOx devices 

Transmission electron microscope (TEM) and electron energy loss spectroscopy 

(EELS) techniques are used to analyze the morphology and composition of the a-STOx 

MIM devices. Figure D4a shows a TEM micrograph of the pristine a-STOx MIM 

device. During the TEM and live-FFT observation of the pristine devices, no noticeable 

crystalline regions are identified in the top Ti or the a-STOx functional oxide layer. To 

assess the electronic composition of the pristine device, the EELS area map and Ti�L2,3 

and O�K edge profiles are obtained from a line-scan across the MIM structure 

(Figure D4b,c respectively). The EELS O�K area map (Figure D4b) shows the presence 

of low oxygen content in the a-STOx oxide layer which indicates its oxygen deficient 

stoichiometry. The EELS Ti�L2,3 edge profiles collected along a line scan (Figure D4c) 

show broad Ti�L3 and Ti�L2 peaks at the top Ti/a-STOx interface indicate the presence 

of mixed Ti2+ and Ti3+ oxidation states.[D1] In the functional oxide layer, weak splitting 
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of the t2g and eg peaks indicate Ti4+ oxidation state. However, O�K edge profiles are 

weak and noisy which makes difficult to clearly distinguish the fine structures and 

cannot be used to accurately identify the Ti valence. 

 

 

Figure D4 Microstructure and electronic structure of the pristine a-STOx devices. (a) 

TEM cross-section of a pristine device. Scale bar 20 nm. (b) The EELS O�K edge area 

map of a pristine device. Scale bar 20 nm. (c) The EELS Ti�L2,3 and O�K edge profiles 

along a line scan across the pristine device. 

 

 

D3. Spike-time conversion to voltage 

The time-to-digital-to-voltage circuitry converts spike-timing information into 

corresponding voltage magnitude. The corresponding voltages are applied to the bottom 

or top electrode of the a-STOx synaptic devices, depending on the sign of %t1 

(potentiation or depression). Table D1 lists the selected %t1 values and corresponding 

voltage amplitudes. 
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Depression Potentiation 

%t1 (ms) %V (V) %t1 (ms) 
%V (V) 

%t2 = 10 ms %t2 = 80 ms %t2 = 160 ms 

-45 0.500 3 -0.800 -0.900 -1.200 

-42 0.529 6 -0.778 -0.875 -1.167 

-39 0.557 9 -0.757 -0.850 -1.135 

-36 0.586 12 -0.735 -0.825 -1.103 

-33 0.614 15 -0.714 -0.800 -1.071 

-30 0.643 18 -0.692 -0.775 -1.039 

-27 0.671 21 -0.671 -0.750 -1.007 

-24 0.700 24 -0.650 -0.725 -0.975 

-21 0.729 27 -0.628 -0.700 -0.942 

-18 0.757 30 -0.607 -0.675 -0.910 

-15 0.786 33 -0.585 -0.650 -0.878 

-12 0.814 36 -0.564 -0.625 -0.846 

-9 0.843 39 -0.542 -0.600 -0.814 

-6 0.871 42 -0.521 -0.575 -0.782 

-3 0.900 45 -0.500 -0.550 -0.750 

 

Table D1 Conversion of the spike-timing!information!to!voltage.!Selected!values!of!%t1!

are simulated to obtain corresponding voltage amplitudes. 
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Triplet 

pairing 

Timing difference Weight change 

%t1 %t2 
Hippocampal 

experiments 

a-STOx 

memristors 

2-pre-1-post 

5 -5 -0.01±0.04 -0.01±0.02 

10 -10 0.03±0.04 0.01±0.02 

15 -5 0.01±0.03 0.01±0.02 

5 -15 0.24±0.06 0.28±0.03 

1-pre-2-post 

-10 10 0.34±0.04 0.33±0.05 

-5 5 0.33±0.04 0.33±0.05 

-5 15 0.22±0.08 0.23±0.04 

-15 5 0.29±0.05 0.31±0.06 

 

Table D2 Comparison of Hippocampal data set and a-STOx memristors. The synaptic 

weight change corresponding to different spike time differences is listed for both 2-pre-

1-pre and 1-pre-2-post triplet pairing configurations. The Hippocampal data set is taken 

from Ref.[D2]
 

 

Spike rate 

&!(Hz) 

Cortex a-STOx memristors 

%t = 10 ms %t = -10 ms %t = 10 ms %t = -10 ms 

0.1 -0.29±0.08 -0.04±0.05 -0.28±0.03 -0.006±0.02 

10 -0.41±0.11 0.14±0.1 -0.43±0.04 0.13±0.03 

20 -0.34±0.1 0.29±0.14 -0.35±0.04 0.31±0.05 

30 0 0.4±0 0±0.01 0.37±0.04 

40 0.56±0.32 0.53±0.11 0.37±0.04 0.37±0.04 

50 0.75±0.19 0.56±0.26 0.37±0.04 0.37±0.04 

 

Table D3 Comparison of Visual Cortex data set and a-STOx memristors. The synaptic 

weight change corresponding to the different! spike! rates! is! listed! for!both!%t = 10 ms 

and!%t = -10 ms. The Visual Cortex data is taken from Ref.[D2] 
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D4. Event Digitizor and Time-to-Voltage Converter 

The T2D (time-to-digital) module of our proposed CMOS circuitry (shown in Figure 6a 

in the main manuscript) includes a timing control unit and a decoder as shown in 

Figure D5a. The timing control unit is a fully digital unit that receives pre and post 

digital spikes and generates timing interval signals solely based on counters. It can be 

configured for multiple protocol implementation and  detection.[D3] The resolution of 

timing detection for any  is identified by (1) meaningful changes in synaptic weight 

( ) as the result of applying slight changes in voltage, and (2) resolution of overall 

time-to-voltage ( ) conversion which is mainly depends on the DAC resolution. The 

T2D module passes a multi-bit spike timing (ST) digital signal to a decoder where two 

multi-bit horizontal/vertical select (HS/VS) digital signals are generated to adjust the 

number of resistors in series in our resistive DAC. The ST signal contains information 

about and  and their different configurations which then are translated into an 

equivalent voltage ( ) to be generated. It also includes flags that are part of  and 

 and identify whether a  is positive or negative, hence, applying  to the top or 

the bottom electrodes.  

Figure D5b shows schematic of a single cell with two polysilicon resistors, controls and 

input/output signals. For a k-bit DAC,  resistors are required. More detail on the 

implementation of the DAC and voltage follower/buffer (VF) is provided in Ref.[D4] 

Figure D5c illustrates generation of an internal reference voltage ( ) by using a 

voltage divider and also demonstrates a regulated current mirror to generate and 

regulate a fixed reference current to the chain of DAC resistors. The signal  

provides the option to minimize the static current flowing through the resistor chain 

when the time-to-voltage circuit is disabled. It is worth highlighting again that these 

signals are affecting  and  to select a device in the array. As stated, voltage 

 identifies maximum required voltage for programming the a-STOx memristor. In 

case of  = 700 mV, 6-bit resistive DAC, and 1.2 V supply voltage in 90 nm 

standard CMOS technology, a 543 mV dynamic range on , 191 �A active mode 

current, 99 nA standby mode leakage current at room temperature, and a 235 mV/�s 

slew rate is achieved.[D4] The circuit also demonstrates a strong accuracy of ±5 mV with 

8.5 mV step sizes. While we have modified the design, the original design is reported to 

have an area of around 175×175 �m
2 capable of driving up to 1 mm2 of digital IP 

block.[D4] We have added a fully digital timing control unit and removed n-well bias 
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generation. While the main analog components are still part of the circuit, we estimate 

an area reduction of at least 20% is achievable in the modified time-to-voltage circuitry 

in comparison with the original body bias generator circuitry. 

 

Figure D5 Event digitization and Time-to-Voltage conversion. Schematics of (a) time-

to-digital module, (b) a single cell of resistive DAC and (c) a circuit to generate and 

regulate reference current and voltage for DAC. 
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Appendix!E:!Fabrication!and!Characterization!of!

a-STO!memristors 

 

E2. Deposition of amorphous STO oxides 

In this research work, a-STO thin films with different compositions are deposited by 

room temperature sputtering. Undoped a-STO thin films are deposited via RF-

mangetron sputtering of a stoichiometric STO ceramic target, while metal doping (i.e., 

Nb and Cr) is achieved by DC co-sputtering of metal targets. The sputtering parameters 

used in this work are listed in Table E1.  

 

Ceramic target SrTiO3 

Metal targets Nb, Cr 

Process gases 0, 5% O2 in Ar, 100% Ar 

Base pressure <5 × 10-7 Torr 

Process pressure 3.5× 10-7 Torr 

Process temperature 25 !C 

RF power 100-200 W 

DC power 4-40W 

 

Table E1 Sputtering and co-sputtering parameters for doped and undoped STO thin 

films.  

 

The oxygen partial pressure as well as the sputtering powers on both RF and DC 

sources are systematically varied to achieve different concentrations of the oxygen 

vacancies and dopant species. The thicknesses of the thin films are controlled by the 

sputtering time. Detailed specifications of the sputtering parameters used to deposit 

different a-STO thin films are explained in the following sections. 
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E2. Fabrication of Nb-doped a-STOx memristors 

Microscale Nb:a-STOx MIM devices in crossbar array configuration (20-100 �m 

symmetric electrode sizes) were fabricated on SiO2/Si substrates using a three step 

photolithography/lift off process. In the first lift-off step, 50 nm bottom Pt electrodes 

with 10 nm TiO2 adhesion layers were deposited on pre-patterned SiO2/Si substrates by 

electron beam evaporation at room temperature. Nb:a-STOx thin films of 100 nm 

thickness with a nominal oxygen deficiency of 3-4% were then RF sputtered at room 

temperature in a pure argon atmosphere through a shadow mask. Lastly, Pt/Ti 

(50:10 nm) top electrodes were patterned using photolithography deposited by electron 

beam evaporation to complete the crossbar structure. 

 

E3. Fabrication of Cr-doped a-STOx memristors 

The Cr: a-STOx resistive switching devices in cross-point configuration are fabricated 

via standard photolithography/lift-off and thin film deposition processes. After 

patterning through a photolithography (chrome) mask, the bottom Pt (7 nm)/Ti (3 nm) 

electrodes are evaporated onto a SiO2 (300 nm)/Si substrate by electron beam 

evaporation (Kurt J. Lesker PVD75 Pro-line). A 25 nm thin film of amorphous Cr 

doped oxygen-deficient STO is sputtered (Kurt J. Lesker PVD75 sputtering system) in a 

pure argon atmosphere at room temperature from a commercial ceramic STO target 

(99.95%, Testbourne Ltd) by using 200 W RF (13.54 MHz) plasma and under a 

sputtering pressure of 3.5×10-3 Torr. Cr was incorporated into STO by co-sputtering of 

metallic Cr target (99.95%, Testbourne Ltd) by using 4 W DC power. Finally, following 

the photolithographic patterning, top Pt (35 nm)/Ti (8 nm) electrodes are evaporated by 

electron beam evaporation at <5×10-7 Torr base pressure. The a-Cr:STOx MIM cross-

point devices with active area of 2×2 µm2, 4×4 µm2 10×10 µm2, 20×20 µm2, 

40×40 µm2, 80×80 µm2 and 100×100 µm2 are fabricated. 

 

E4. Fabrication of transparent a-STO memristors 

The transparent a-STO based resistive memories (t-ReRAMs) are fabricated in a cross-

point configuration on a glass (Pyrex) substrate via standard photolithography/lift-off 

and sputter deposition processes. To study the effect of cell size on the resistive 
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switching characteristics, different t-ReRAM cells are fabricated with lateral dimensions 

of 2×2 µm2, 4×4 µm2, 10×10 µm2, 20×20 µm2, 40×40 µm2, 80×80 µm2 and 

100×100 µm2. Each t-ReRAM cell comprises of a bilayer homojunction of a-STO, with 

different oxygen vacancy concentrations, sandwiched between two transparent 

conductive oxide (TCO) electrodes. A pair of bottom (30 nm) and top (40 nm) ITO 

electrodes are RF sputtered in a pure Ar atmosphere from a commercial ITO source 

(In2O3:SnO2 in a 90:10 wt%, Testbourne Ltd.). A detailed description on the 

stoichiometry of sputtered ITO thin films is provided in Appendix C. Room temperature 

RF sputtering of ITO in pure Ar environment results in thin films with poor 

transparency. In order to enhance optical transparency, the bottom ITO electrodes are 

annealed in ambient conditions at 400 !C for one hour in a furnace. Subsequently, the 

bilayer homojunction of a-STO is RF sputtered at room temperature from a ceramic 

SrTiO3 source (99.95% pure, Testbourne Ltd.). In order to enable repeatable resistive 

switching in t-ReRAM cells, an underlying Ti (5 nm) layer is DC sputtered in a pure Ar 

environment and capped with a top ITO electrode to form asymmetric top ITO/Ti/a-

STOx interface. Single layer and bilayer t-ReRAM cells with symmetric interfaces are 

also fabricated by following the processes explained above. Their electrical 

characterization shows unstable resistive switching behavior (Appendix C), 

necessitating the use of asymmetric interfaces in this work. 

 

E5. Fabricaiton of a-STO memristors for synaptic functions  

The a-STOx synaptic devices are fabricated as cross-point devices and array in metal-

insulator-metal (MIM) configuration with active areas of 2×2 µm2, 4×4 µm2, 

10×10 µm2, 20×20 µm2, 40×40 µm2, 80×80 µm2 and 100×100 µm2 by following 

standard photolithography and thin film deposition processes. The bottom Pt (15 nm)/Ti 

(7 nm) electrodes are patterned onto a SiO2 (300 nm)/Si substrate by electron beam (e-

beam) evaporation. As a switching layer, 25 nm thin film of amorphous oxygen-

deficient STO is deposited by using radio frequency sputtering (with 100 W power) 

from a commercial STO ceramic target in a pure argon environment under a pressure of 

0.46 Pa and at room temperature. In order to complete the MIM structure, top Pt 

(30 nm)/Ti (5 nm) electrodes are evaporated by the e-beam evaporation at a base 

pressure of <6×10-5 Pa. 
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E6. Electrical characterization 

The electrical characterizations of the a-STO memristive devices are performed under 

ambient pressure by using the Keithley 4200SCS equipped with remote preamplifiers 

and 4225 pulse modulation unit connected to a micro-probe station.  

High temperature electrical measurements are performed by using an environmentally 

isolated Linkum chamber connected with an Agilent 2912A sourcemeter. 

 

E7. X-ray photoelectron spectroscopy 

X-ray photoelectron spectroscopy (XPS) analysis is conducted by using a Thermo 

Scientific K-Alpha instrument utilizing an aluminum K" radiation source (1486.6 eV) is 

used. The XPS spectra are collected from bare a-STO oxide thin films, sputtered on 

SiO2/Si substrates. All spectra were resolved by using the standard Gaussian-Lorentzian 

function followed by the Shirley background correction. 

 

E8. Photoluminescence spectroscopy 

The photoluminescence emission spectra are obtained using a Horiba Scientific 

FluoroMax-4 spectrofluorometer. All spectra are collected at room temperature from 

as-deposited bare a-STOx thin films sputtered on SiO2/Si substrates. A laser source is 

used to excite the sputtered oxides. 

 

E9. Secondary ion mass spectroscopy 

Dynamic secondary ion mass spectrometry (SIMS) analyses are carried out with a 

CAMECA NanoSIMS 50L. Elemental depth profiles are obtained using a Cs+ primary 

ion source with a beam diameter of approximately 100 nm, impact energy of 16 keV 

and a beam current of approximately 3 pA. The instrument is operated in multi-collector 

mode, allowing the simultaneous detection of O-, TiO-, SrO- and CrO-. The raster size is 

15 �m
2, however, only secondary ions from the central 10 �m

2 are used to determine the 

depth profiles.  The mass spectrometer is calibrated using a commercial stoichiometric 

SrTiO3 single-crystal (100) substrate and pure Ti and Cr metals, prior to the 

characterization of the MIM devices.  
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E10. Cross-sectional analyses 

The transmission electron microscopy (TEM) and electron energy loss spectroscopic 

(EELS) analyses are performed on pristine, electroformed and switching (at least for 

100 cycles and subjected to constant bias stresses) a-STO MIM devices using a JEOL 

2100F scanning transmission electron microscope (STEM) with attached Tridium Gatan 

image filter with an entrance aperture of 5 mm. Thin TEM lamellae are prepared by 

focused ion beam (FIB) cuts through the MIM structure by using a FEI Scios 

DualBeamTM system. Cross-sectional STEM micrographs and EELS spectra are 

collected using a <1.5 nm beam spot. EELS spectra are collected with a dispersion of 

0.3 eV per pixel which allowed simultaneous recording of the titanium L2,3 (Ti�L2,3) 

edge and oxygen K (O�K) edge in the regions of interest (ROIs) and across the MIM 

cross-sections. A power law fit is adopted for the pre-edge background correction while 

the influence of nearby peaks and plural scattering are reduced by narrow signal 

windows.  

 


