1,797 research outputs found

    Monitoring and characterization of abnormal process conditions in resistance spot welding

    Get PDF
    Resistance spot welding (RSW) is extensively used for sheet metal joining of body-in-white (BIW) structure in the automobile industry. Key parameters, such as welding current, electrode force and welding time, are involved in the RSW process. Appropriate welding parameters are vital for producing good welds; otherwise, undersized weld and expulsion are likely to be caused. For a specific type of sheet metal, an acceptable nugget is produced when an appropriate combination of welding parameters is used. However, undersized welds and expulsion are still commonly seen in the plant environment, where some abnormal process conditions could account for the production of the poor quality welds. Understanding the influence of abnormal process conditions on spot weld quality and other RSW related issues is crucial. A range of online signals, strongly related to the nugget development history, have attracted keen interest from the research community. Recent monitoring systems established the applied dynamic resistance (DR) signal, and good prediction of nugget diameter was made based on signal values. However, the DR curves with abnormal process conditions did not agree well with those under normal condition, making them less useful in detecting abnormal process conditions. More importantly, none of the existing monitoring systems have taken these abnormal process conditions into account. In addition, electrode degradation is one of the most important issues in the plant environment. Two major electrode degradation mechanisms, softening and intermetallic compound (IMC) formation, are strongly related to the characteristics of welding parameters and sheet metals. Electrode misalignment creates a very distinct temperature history of the electrode tip face, and is believed to affect the electrode degradation mechanism. Though previous studies have shown that electrode misalignment can shorten electrode life, the detailed mechanism is still not understood. In this study, an online-monitoring system based on DR curve was first established via a random forest (RF) model. The samples included individual welds on the tensile shear test sample and welds on the same sheet, considering the airgap and shunting effect. It was found that the RF model achieved a high classification accuracy between good and poor welds. However, the DR signals were affected by the shunting distance, and they displayed opposite trends against individual welds made without any shunting effect. Furthermore, a suitable online signal, electrode displacement (ED), was proposed for monitoring abnormal process conditions such as shunting, air gap and close edged welds. Related to the thermal expansion of sheet metal, ED showed good consistency of profile features and actual nugget diameters between abnormal and normal welds. Next, the influence of electrode misalignment on electrode degradation of galvannealed steel was qualitatively and quantitatively investigated. A much-reduced electrode life was found under the angular misalignment of 5°. Pitting and electrode softening were accelerated on the misaligned electrodes. δ Fe-Zn phase from the galvannealed layer that extends electrodes was found non-uniformly distributed on the worn electrode. Furthermore, electron backscatter diffraction (EBSD) analysis was implemented on the worn electrode, showing marked reduction in grain diameter and aspect ratio. The grain deformation capacity was estimated by the distribution of the Taylor factor, where the portion of pore grain was substantially weakened in the recrystallized region compared to the base metal region

    Influence of surface pretreatment in resistance spot welding of aluminum AA1050

    Get PDF
    Resistance spot welding (RSW) of aluminum alloys implies a major problem of inconsistent quality from weld to weld due to problems of varying thickness of the oxide layer. The high resistivity of oxide layer causes strong heat development, which has significant influence on electrode life and weld quality. An experimental study of the influence of pretreatment on weld quality in RSW of AA1050 sheets with three thicknesses, comparing welding of as-received sheet with pretreated sheet by either pickling in NaOH or glass-blasting were investigated. Different weld settings were applied with low-, medium-, and high-energy inputs. The as-received sheet showed higher electrical contact resistance because of thicker oxide layer. Lower values were noticed with pickled surfaces, whereas the lowest electrical contact resistance was obtained when glass blasting, resulting in the roughest surface topography, which facilitated breakdown the oxide layer. Highest strength and smaller scatter in strength were obtained by pickling in NaOH

    New approaches to composite metal joining

    Get PDF
    This thesis explores new methods for achieving load-carrying joints between the dissimilar materials of continuous fibre reinforced polymer matrix composites and structural metals. The new composite-to-metal joining methods investigated in this work exploit the metal-to-metal joining techniques of arc micro-welding, resistance spot welding, and metal filler brazing, to form novel micro-architectured metal adherends that can be used for enhanced composite-to-metal joining. Through a combination of equipment instrumentation and metallographic inspection of fabricated prototype joints, understanding is gained of how materials respond when processed by manufacturing techniques that have not previously been exploited for dissimilar material joining. Mechanical testing of prototype joints; both to ultimate loading strength and partial failure states, with subsequent inspection of specimens and comparative performances evaluation enabled joining performance characterisation of the new joining methods. Key results include: the identification of micropin reinforced adhesive joints to exhibit pseudo-ductile failure characteristics, resistance spot weld reinforcement of adhesive joints to boost bonding performance, and the use of a polymer infused metal foam to overcome difficulties of thermoplastic to metal adhesion. Through this work knowledge of how novel micro-architectures reacted under mechanical loading enabled insights to be gained into how perceived manufacturing defects can benefit joining performance. Such examples include, localised material weakness that lead to global pseudo-ductile failure behaviour, and low-strength secondary joining mechanisms boosting primary load transfer systems. By comparison of the diverse joining methods investigated in this work, trends were identified that suggest joining performance between the two dissimilar materials is improved by increasing the direct interaction between the composite reinforcement fibres and the metal structure. It is demonstrated that joining improvements are gained by forming mechanical connections between metals and composite precursory material before the final manufacturing process of the composite

    Use of electrode displacement signals for electrode degradation assessment in resistance spot welding

    Get PDF
    In resistance spot welding, the quality of welds is not only affected by the correct design of the welding cycle, but also by the electrode degradation that occurs over time. This work proposes a novel approach to indirectly monitor the electrode degradation during welding by analyzing the electrode displacement signal from a non-contact sensor embedded in the welding machine and the electrode tip shape obtained from carbon imprint tests. As a result of an experimental campaign involving more than 1200 weld spots, the electrode speed during the final hold stage has been determined as the most explanatory feature describing the electrode displacement. Based on the mechanical strength of spot welds, the electrode contact face area has been defined as the most representative feature characterizing electrode degradation. A regression analysis has been carried out to infer a relationship between the electrode speed and the contact area representative of tool wear. A Neural Network has been built to use some features extracted from the electrode displacement signals to predict the contact area and thus indirectly the electrode degradation. The model has shown a good accuracy, with a mean error of the contact area about 1.61 mm2, and with a standard deviation of about 3.73 mm2. The data-driven approach proposed allows through the evaluation of the electrode contact area to have better real-time knowledge and control of the welding process

    Characteristics of shunting effect in resistance spot welding in mild steel based on electrode displacement

    Get PDF
    Shunting effect of resistance spot welding is evaluated based on the electrode displacement signals. The shunted welds in mild steel with different weld spacing were produced. The results showed that the weld spacing and nugget diameter were polynomial-correlated, and the minimum welding spacing of 20 mm can be derived from the results. Both the peak value and gradient of electrode displacement in the weld stage indicated strong correlations with the nugget diameters of shunted welds. Additional shunt path was found to further aggregate the shunting, suggesting the decline in the values of profile features. Furthermore, it is found that the shunting effect led to the decline of the dynamic resistance curves, which is contradictive to the trends between acceptable-sized and undersized welds claimed based on the single weld study. The paper shows that electrode displacement curves of shunting can be incorporated into existing quality monitoring system.The financial support from the Australian Research Council (Grant No. LP130101001) is fully acknowledged

    Resistance Welding of Advanced Materials and Micro Components

    Get PDF

    Lithium-Ion Batteries

    Get PDF
    Lithium-ion batteries (LIBs), as a key part of the 2019 Nobel Prize in Chemistry, have become increasingly important in recent years, owing to their potential impact on building a more sustainable future. Compared with other batteries developed, LIBs offer high energy density, high discharge power, and a long service life. These characteristics have facilitated a remarkable advance of LIBs in many frontiers, including electric vehicles, portable and flexible electronics, and stationary applications. Since the field of LIBs is advancing rapidly and attracting an increasing number of researchers, it is necessary to often provide the community with the latest updates. Therefore, this book was designed to focus on updating the electrochemical community with the latest advances and prospects on various aspects of LIBs. The materials presented in this book cover advances in several fronts of the technology, ranging from detailed fundamental studies of the electrochemical cell to investigations to better improve parameters related to battery packs

    Engineering Principles

    Get PDF
    Over the last decade, there has been substantial development of welding technologies for joining advanced alloys and composites demanded by the evolving global manufacturing sector. The evolution of these welding technologies has been substantial and finds numerous applications in engineering industries. It is driven by our desire to reverse the impact of climate change and fuel consumption in several vital sectors. This book reviews the most recent developments in welding. It is organized into three sections: “Principles of Welding and Joining Technology,” “Microstructural Evolution and Residual Stress,” and “Applications of Welding and Joining.” Chapters address such topics as stresses in welding, tribology, thin-film metallurgical manufacturing processes, and mechanical manufacturing processes, as well as recent advances in welding and novel applications of these technologies for joining different materials such as titanium, aluminum, and magnesium alloys, ceramics, and plastics
    • …
    corecore