2,021 research outputs found

    Inductive Wireless Power Transfer Charging for Electric vehicles - A Review

    Get PDF
    Considering a future scenario in which a driverless Electric Vehicle (EV) needs an automatic charging system without human intervention. In this regard, there is a requirement for a fully automatable, fast, safe, cost-effective, and reliable charging infrastructure that provides a profitable business model and fast adoption in the electrified transportation systems. These qualities can be comprehended through wireless charging systems. Wireless Power Transfer (WPT) is a futuristic technology with the advantage of flexibility, convenience, safety, and the capability of becoming fully automated. In WPT methods resonant inductive wireless charging has to gain more attention compared to other wireless power transfer methods due to high efficiency and easy maintenance. This literature presents a review of the status of Resonant Inductive Wireless Power Transfer Charging technology also highlighting the present status and its future of the wireless EV market. First, the paper delivers a brief history throw lights on wireless charging methods, highlighting the pros and cons. Then, the paper aids a comparative review of different type’s inductive pads, rails, and compensations technologies done so far. The static and dynamic charging techniques and their characteristics are also illustrated. The role and importance of power electronics and converter types used in various applications are discussed. The batteries and their management systems as well as various problems involved in WPT are also addressed. Different trades like cyber security economic effects, health and safety, foreign object detection, and the effect and impact on the distribution grid are explored. Prospects and challenges involved in wireless charging systems are also highlighting in this work. We believe that this work could help further the research and development of WPT systems.publishedVersio

    Inductive power transfer for automotive applications: State-of-the-art and future trends

    Get PDF
    The paper discusses the status of the development status of the inductive power transmission for automotive applications. This technology is, in fact, gaining the interest of electric vehicle manufacturers as an effective strategy to improve the market penetration of electric mobility. Starting from the origin of this technology, the paper presents an overview of the current state-of-the-art as well as the current research and industrial projects. Particular attention is devoted to the description of a prototypal system for the dynamic inductive power transmission whose goal is to extend the battery range by a fast partial recharging during the movement of the vehicle

    A Review on UAV Wireless Charging: Fundamentals, Applications, Charging Techniques and Standards

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are becoming increasingly popular for applications such as inspections, delivery, agriculture, surveillance, and many more. It is estimated that, by 2040, UAVs/drones will become a mainstream delivery channel to satisfy the growing demand for parcel delivery. Though the UAVs are gaining interest in civil applications, the future of UAV charging is facing a set of vital concerns and open research challenges. Considering the case of parcel delivery, handling countless drones and their charging will become complex and laborious. The need for non-contact based multi-device charging techniques will be crucial in saving time and human resources. To efficiently address this issue, Wireless Power Transmission (WPT) for UAVs is a promising technology for multi-drone charging and autonomous handling of multiple devices. In the literature of the past five years, limited surveys were conducted for wireless UAV charging. Moreover, vital problems such as coil weight constraints, comparison between existing charging techniques, shielding methods and many other key issues are not addressed. This motivates the author in conducting this review for addressing the crucial aspects of wireless UAV charging. Furthermore, this review provides a comprehensive comparative study on wireless charging's technical aspects conducted by prominent research laboratories, universities, and industries. The paper also discusses UAVs' history, UAVs structure, categories of UAVs, mathematical formulation of coil and WPT standards for safer operation.publishedVersio

    Design and integration of a dynamic IPT system for automotive applications

    Get PDF
    Inductive power transmission (IPT) for electric vehicles (EVs) is a promising emergent technology that seems able to improve the electric mobility acceptance. In the last two decades many researchers have proved its feasibility and the possibility to use it to replace the common conductive systems for the charge of the on-board battery. Many efforts are currently aimed to extend the IPT technology towards its use for the charge during the vehicle motion. This application, commonly indicated as dynamic IPT, is aimed to overcome the limit represented by the long stops needed for the recharge introducing also the possibility of reducing the battery capacity installed on vehicle. An IPT system is essentially based on the resonance of two magnetically coupled inductors, the transmitter, placed on or under the ground, and the receiver, placed under the vehicle floor. The typical operating frequency range for the EVs application goes from 20 kHz to approximately 100 kHz. The coupling between the two inductors takes place through a large air-gap, usually about 10-30 cm. This thesis presents the results of the research activities aimed to the creation of a prototype for the dynamic IPT oriented to the private transport. Starting from an analysis of the state of the art and the current research projects on this domain, this work presents the development of a circuit model able to describe the electromagnetic phenomena at the base of the power transfer and the interface with the power electronics. This model provides the information at the base of the design and the implementation of a dedicated low cost-high effciency H-bridge converter for the supply of the transmitter side. A general architecture of the power electronics that manages the receiver side is proposed together with the additional protection circuits. A methodology for the integrated design of the magnetic structure is illustrated covering the aspects of the matching with the power electronics, the integration on an existing vehicle and the installation on the road infrastructure. A series of activities aimed to the implementation of a dedicated test site are presented and discussed. In particular, the activities related to the creation of the electrical infrastructure and the issues and methods for the embedding of the transmitters in the road pavement are presented. The final goal is the creation of a dedicated IPT charging line one hundred meters long. Finally, a methodology for the assessment of the human exposure is presented and applied to the developed solution

    Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles

    Get PDF
    Electric vehicles could be a significant aid in lowering greenhouse gas emissions. Even though extensive study has been done on the features and traits of electric vehicles and the nature of their charging infrastructure, network modeling for electric vehicle manufacturing has been limited and unchanging. The necessity of wireless electric vehicle charging, based on magnetic resonance coupling, drove the primary aims for this review work. Herein, we examined the basic theoretical framework for wireless power transmission systems for EV charging and performed a software-in-the-loop analysis, in addition to carrying out a performance analysis of an EV charging system based on magnetic resonance. This study also covered power pad designs and created workable remedies for the following issues: (i) how power pad positioning affected the function of wireless charging systems and (ii) how to develop strategies to keep power efficiency at its highest level. Moreover, safety features of wireless charging systems, owing to interruption from foreign objects and/or living objects, were analyzed, and solutions were proposed to ensure such systems would operate as safely and optimally as possible

    Wireless Power Transfer

    Get PDF
    Wireless power transfer techniques have been gaining researchers' and industry attention due to the increasing number of battery-powered devices, such as mobile computers, mobile phones, smart devices, intelligent sensors, mainly as a way to replace the standard cable charging, but also for powering battery-less equipment. The storage capacity of batteries is an extremely important element of how a device can be used. If we talk about battery-powered electronic equipment, the autonomy is one factor that may be essential in choosing a device or another, making the solution of remote powering very attractive. A distinction has to be made between the two forms of wireless power transmission, as seen in terms of how the transmitted energy is used at the receiving point: - Transmission of information or data, when it is essential for an amount of energy to reach the receiver to restore the transmitted information; - Transmission of electric energy in the form of electromagnetic field, when the energy transfer efficiency is essential, the power being used to energize the receiving equipment. The second form of energy transfer is the subject of this book

    Wireless charging system for static electric vehicles

    Get PDF
    The use of electric vehicles expands slowly due to many problems; one of them is charging the car using cable, a method known as plug-in. A technological alternative that can replace cables is the system of energy transfer by electromagnetic induction; for the moment this energy transfer is low power compared to the cable system. The objective of this research project is to demonstrate that the induction charging system is totally feasible for a parked vehicle. It uses a source coil located on the floor of the parking lot, and a pickup coil located in the frame of the car. This paper experimentally demonstrates how the power of transfer varies when the distances between the two coils vary too; three alternatives are considered: coils with cores of air, coils with common iron core and coils with separated iron cores. The measurements are made in a prototype formed by two coils separated by a distance d and provided with a scale of measurement in millimeters. Finally, the behavior of the transferred energy is evaluated according to the distance between coils and the three magnetic core alternative

    A review on power electronics technologies for electric mobility

    Get PDF
    Concerns about greenhouse gas emissions are a key topic addressed by modern societies worldwide. As a contribution to mitigate such effects caused by the transportation sector, the full adoption of electric mobility is increasingly being seen as the main alternative to conventional internal combustion engine (ICE) vehicles, which is supported by positive industry indicators, despite some identified hurdles. For such objective, power electronics technologies play an essential role and can be contextualized in different purposes to support the full adoption of electric mobility, including on-board and off-board battery charging systems, inductive wireless charging systems, unified traction and charging systems, new topologies with innovative operation modes for supporting the electrical power grid, and innovative solutions for electrified railways. Embracing all of these aspects, this paper presents a review on power electronics technologies for electric mobility where some of the main technologies and power electronics topologies are presented and explained. In order to address a broad scope of technologies, this paper covers road vehicles, lightweight vehicles and railway vehicles, among other electric vehicles.This work has been supported by FCT – Fundação para a Ciência e Tecnologia with-in the Project Scope: UID/CEC/00319/2020. This work has been supported by the FCT Project DAIPESEV PTDC/EEI-EEE/30382/2017, and by the FCT Project new ERA4GRIDs PTDC/EEI-EEE/30283/2017. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by FCT

    Capacitive power transfer for maritime electrical charging applications

    Get PDF
    Wireless power transfer can provide the convenience of automatic charging while the ships or maritime vehicles are docking, mooring, or in a sailing maneuver. It can address the challenges facing conventional wired charging technologies, including long charging and queuing time, wear and tear of the physical contacts, handling cables and wires, and electric shock hazards. Capacitive power transfer (CPT) is one of the wireless charging technologies that has received attention in on-road electric vehicle charging applications. By the main of electric fields, CPT offers an inexpensive and light charging solution with good misalignment performance. Thus, this study investigates the CPT system in which air and water are the separation medium for the electrical wireless charging of small ships and unmanned maritime vehicles. Unlike on-road charging applications, air or water can be utilized as charging mediums to charge small ships and unmanned maritime vehicles. Because of the low permittivity of the air, the air-gapped capacitive coupling in the Pico Farad range requires a mega-hertz operating frequency to transfer power over a few hundred millimeters. This study examines an air-gapped CPT system to transfer about 135 W at a separation distance of 50 mm, a total efficiency of approximately 83.9%, and a 1 MHz operating efficiency. At 13.56 MHz, the study tested a shielded air-gapped CPT system that transfers about 100 W at a separation distance of 30 mm and a total efficiency of about 87%. The study also examines the underwater CPT system by submerging the couplers in water to increase the capacitive coupling. The system can transfer about 129 W at a separation distance of 300 mm, a total efficiency of aboutapproximately%, and a 1.1 MHz operating efficiency. These CPT systems can upscale to provide a few kW for small ships and unmanned maritime vehicles. But they are still facing several challenges that need further investigations
    • …
    corecore