80 research outputs found

    Electrostatic Discharge

    Get PDF
    As we enter the nanoelectronics era, electrostatic discharge (ESD) phenomena is an important issue for everything from micro-electronics to nanostructures. This book provides insight into the operation and design of micro-gaps and nanogenerators with chapters on low capacitance ESD design in advanced technologies, electrical breakdown in micro-gaps, nanogenerators from ESD, and theoretical prediction and optimization of triboelectric nanogenerators. The information contained herein will prove useful for for engineers and scientists that have an interest in ESD physics and design

    Component-Level Mitigation Solution and System-Level Analysis Method of High-Voltage Transient ESD Event

    Get PDF
    Department of Electrical EngineeringElectrostatic discharge (ESD) is a significant phenomenon in the field of electromagnetic compatibility (EMC) that causes critical issues in the reliability and functionality of electronic devices and systems. ESD events can be classified based on the occurring environment and conditions, and the methods to address related issues vary accordingly. The two main classifications are component-level ESD events and system-level ESD events. Component-level ESD events primarily occur during repetitive and predictable stages of electronic component and product manufacturing processes. These events can be effectively addressed by eliminating the ESD hazards themselves. On the other hand, system-level ESD events are characterized by their irregular and unpredictable occurrence during the operation of electronic devices and systems. To address issues related to system-level ESD events, it is necessary to enhance ESD robustness of the system. This thesis covers research on various aspects of the ESD that encompass both component-level events and system-level events. In electronic device manufacturing process, ionizers are commonly used to effectively eliminate static charges. Among diverse ionizers, corona ionizers utilizing a high-voltage source are widely preferred for their easy installation and safety. However, the corona ionizers may induce electric overstress (EOS) to sensitive electronic devices. Also, regular maintenance is necessary to prevent particle accumulation on corona ionizers, which can interfere with their performance and lead to ESD failures. In this thesis, a novel low-voltage microwave plasma ionizer is proposed and analyzed to address the critical limitations associated with the EOS risk and particle fuzzballs in the corona ionizers. To evaluate the system-level ESD immunity of electronic products, researchers and manufacturers conduct ESD immunity tests according to international standards such as IEC 61000-4-2 and ISO 10605 for general and automotive electronic devices, respectively. However, the process of design iteration and troubleshooting to improve the ESD immunity of novel electronic devices in this test setup are time consuming and costly. To solve this problem, many studies have been conducted to predict ESD immunity by computing the system-level ESD noise in the test setup. However, the prediction of the automotive system-level ESD immunity is very difficult because the automotive ESD test setup in ISO 10605 contains complex and large structures, requiring significant computational memory and time. In this thesis, an accurate and efficient method for computing system-level ESD noise waveforms in the ISO 10605 standard using the decomposition method and split-domain approach is proposed and validated. While the standards related to the ESD immunity test primarily address ESD scenarios involving a charged human body, it is also important to consider other objects that may act as ESD sources, which can be charged with high potential. For example, in areas with low relative humidity, such as deserts, automotive parts can be damaged or malfunction if they come into contact with a charged dust cleaner during cleaning operations. In this thesis, an ESD model of a dust cleaner is proposed and the ESD failure of an automobile headlamp is analyzed using the proposed ESD model.clos

    Development of electrical test procedures for qualification of spacecraft against EID. Volume 2: Review and specification of test procedures

    Get PDF
    A combined experimental and analytical program to develop system electrical test procedures for the qualification of spacecraft against damage produced by space-electron-induced discharges (EID) occurring on spacecraft dielectric outer surfaces is described. A review and critical evaluation of possible approaches to qualify spacecraft against space electron-induced discharges (EID) is presented. A variety of possible schemes to simulate EID electromagnetic effects produced in spacecraft was studied. These techniques form the principal element of a provisional, recommended set of test procedures for the EID qualification spacecraft. Significant gaps in our knowledge about EID which impact the final specification of an electrical test to qualify spacecraft against EID are also identified

    Design, Characterization and Analysis of Component Level Electrostatic Discharge (ESD) Protection Solutions

    Get PDF
    Electrostatic Discharges (ESD) is a significant hazard to electronic components and systems. Based on a specific process technology, a given circuit application requires a customized ESD consideration that meets all the requirements such as the core circuit\u27s operating condition, maximum accepted leakage current, breakdown conditions for the process and overall device sizes. In every several years, there will be a new process technology becomes mature, and most of those new technology requires custom design of effective ESD protection solution. And usually the design window will shrinks due to the evolving of the technology becomes smaller and smaller. The ESD related failure is a major IC reliability concern and results in a loss of millions dollars each year in the semiconductor industry. To emulate the real word stress condition, several ESD stress models and test methods have been developed. The basic ESD models are Human Body model (HBM), Machine Mode (MM), and Charge Device Model (CDM). For the system-level ESD robustness, it is defined by different standards and specifications than component-level ESD requirements. International Electrotechnical Commission (IEC) 61000-4-2 has been used for the product and the Human Metal Model (HMM) has been used for the system at the wafer level. Increasingly stringent design specifications are forcing original equipment manufacturers (OEMs) to minimize the number of off-chip components. This is the case in emerging multifunction mobile, industrial, automotive and healthcare applications. It requires a high level of ESD robustness and the integrated circuit (IC) level, while finding ways to streamline the ESD characterization during early development cycle. To enable predicting the ESD performance of IC\u27s pins that are directly exposed to a system-level stress condition, a new the human metal model (HMM) test model has been introduced. In this work, a new testing methodology for product-level HMM characterization is introduced. This testing framework allows for consistently identifying ESD-induced failures in a product, substantially simplifying the testing process, and significantly reducing the product evaluation time during development cycle. It helps eliminates the potential inaccuracy provided by the conventional characterization methodology. For verification purposes, this method has been applied to detect the failures of two different products. Addition to the exploration of new characterization methodology that provides better accuracy, we also have looked into the protection devices itself. ICs for emerging high performance precision data acquisition and transceivers in industrial, automotive and wireless infrastructure applications require effective and ESD protection solutions. These circuits, with relatively high operating voltages at the Input/Output (I/O) pins, are increasingly being designed in low voltage Complementary Metal-Oxide-Semiconductor (CMOS) technologies to meet the requirements of low cost and large scale integration. A new dual-polarity SCR optimized for high bidirectional blocking voltages, high trigger current and low capacitance is realized in a sub 3-V, 180-nm CMOS process. This ESD device is designed for a specific application where the operating voltage at the I/O is larger than that of the core circuit. For instance, protecting high voltage swing I/Os in CMOS data acquisition system (DAS) applications. In this reference application, an array of thin film resistors voltage divider is directly connected to the interface pin, reducing the maximum voltage that is obtained at the core device input down to ± 1-5 V. Its ESD characteristics, including the trigger voltage and failure current, are compared against those of a typical CMOS-based SCR. Then, we have looked into the ESD protection designs into more advanced technology, the 28-nm CMOS. An ESD protection design builds on the multiple discharge-paths ESD cell concept and focuses the attention on the detailed design, optimization and realization of the in-situ ESD protection cell for IO pins with variable operation voltages. By introducing different device configurations fabricated in a 28-nm CMOS process, a greater flexibility in the design options and design trade-offs can be obtained in the proposed topology, thus achieving a higher integration and smaller cell size definition for multi-voltage compatibility interface ESD protection applications. This device is optimized for low capacitance and synthesized with the circuit IO components for in-situ ESD protection in communication interface applications developed in a 28-nm, high-k, and metal-gate CMOS technology. ESD devices have been used in different types of applications and also at different environment conditions, such as high temperature. At the last section of this research work, we have performed an investigation of several different ESD devices\u27 performance under various temperature conditions. And it has been shown that the variations of the device structure can results different ESD performance, and some devices can be used at the high temperature and some cannot. And this investigation also brings up a potential threat to the current ESD protection devices that they might be very vulnerable to the latch-up issue at the higher temperature range

    Susceptibility Scanning as Failure Analysis Tool for System-Level Electrostatic Discharge (ESD) Problems

    Get PDF
    Susceptibility scanning is an increasingly adopted method for root cause analysis of system-level immunity sensitivities. It allows localizing affected nets and integrated circuits (ICs). Further, it can be used to compare the immunity of functionally identical or similar ICs or circuit boards. This paper explains the methodology as applied to electrostatic discharge and provides examples of scan maps and signals probed during immunity scanning. Limitations of present immunity analysis methods are discussed

    Characterization of triboelectric charging in data centers/display panel manufactures, and EMI visualization based on energy parcels method in high speed interconnections

    Get PDF
    This dissertation is composed of five papers. In the first three papers, triboelectric charging, which is the underlying cause of most electrostatic discharge (ESD), during daily human activities in data centers such as well-defined pattern walking, random walking, standing up from a chair, and taking off a sweater is investigated. Further, the effect of environmental condition (temperature and relative humidity), the footwear, and flooring material in building the static voltage and the discharge process are studied. In the fourth paper, triboelectric charge generation on the glass is investigated during the glass transportation by roller conveyor systems in display manufacturing. The underlying parameters that affect the static charging on both glass and rollers consisting of roller material, roller radius, transfer velocity, transfer acceleration, traveling distance, and relative humidity are explored. The fifth paper focuses on the shielding effectiveness (SE) of quad form-factor pluggable (QSFP) interconnections cages with heatsinks, which are often only optimized for thermal, mechanical, and volume manufacturing. Energy parcels and their trajectory concept are applied to electromagnetic waves (EM) to visualize the coupling paths in a QSFP cage with a rising heatsink. The rising heatsink creates a new coupling path for EM waves to leak to the cage and emit from the routers/switches chassis faceplate. An EMI mitigation technique is introduced and its performance is evaluated with SE measurement for the frequency of 1-40 GHz with and without the active operational of 40 Gbps optical module in a dual reverberation chamber --Abstract, page iv

    Electrical overstress and electrostatic discharge failure in silicon MOS devices

    Get PDF
    This thesis presents an experimental and theoretical investigation of electrical failure in MOS structures, with a particular emphasis on short-pulse and ESD failure. It begins with an extensive survey of MOS technology, its failure mechanisms and protection schemes. A program of experimental research on MOS breakdown is then reported, the results of which are used to develop a model of breakdown across a wide spectrum of time scales. This model, in which bulk-oxide electron trapping/emission plays a major role, prohibits the direct use of causal theory over short time-scales, invalidating earlier theories on the subject. The work is extended to ESD stress of both polarities. Negative polarity ESD breakdownis found to be primarily oxide-voltage activated, with no significant dependence on temperature of luminosity. Positive polarity breakdown depends on the rate of surface inversion, dictated by the Si avalanche threshold and/or the generation speed of light-induced carriers. An analytical model, based upon the above theory is developed to predict ESD breakdown over a wide range of conditions. The thesis ends with an experimental and theoretical investigation of the effects of ESD breakdown on device and circuit performance. Breakdown sites are modelled as resistive paths in the oxide, and their distorting effects upon transistor performance are studied. The degradation of a damaged transistor under working stress is observed, giving a deeper insight into the latent hazards of ESD damage

    On-chip Electro-static Discharge (esd) Protection For Radio-frequency Integrated Circuits

    Get PDF
    Electrostatic Discharge (ESD) phenomenon is a common phenomenon in daily life and it could damage the integrated circuit throughout the whole cycle of product from the manufacturing. Several ESD stress models and test methods have been used to reproduce ESD events and characterize ESD protection device\u27s performance. The basic ESD stress models are: Human Body Model (HBM), Machine Model (MM), and Charged Device Model (CDM). On-chip ESD protection devices are widely used to discharge ESD current and limit the overstress voltage under different ESD events. Some effective ESD protection devices were reported for low speed circuit applications such as analog ICs or digital ICs in CMOS process. On the contrast, only a few ESD protection devices available for radio frequency integrated circuits (RF ICs). ESD protection for RF ICs is more challenging than traditional low speed CMOS ESD protection design because of the facts that: (1) Process limitation: High-performance RF ICs are typically fabricated in compound semiconductor process such as GaAs pHEMT and SiGe HBT process. And some proved effective ESD devices (e.g. SCR) are not able to be fabricated in those processes due to process limitation. Moreover, compound semiconductor process has lower thermal conductivity which will worsen its ESD damage immunity. (2) Parasitic capacitance limitation: Even for RF CMOS process, the inherent parasitic capacitance of ESD protection devices is a big concern. Therefore, this dissertation will contribute on ESD protection designs for RF ICs in all the major processes including GaAs pHEMT, SiGe BiCMOS and standard CMOS. iv The ESD protection for RF ICs in GaAs pHEMT process is very difficult, and the typical HBM protection level is below 1-kV HBM level. The first part of our work is to analyze pHEMT\u27s snapback, post-snapback saturation and thermal failure under ESD stress using TLP-like Sentaurus TCAD simulation. The snapback is caused by virtual bipolar transistor due to large electron-hole pairs impacted near drain region. Postsnapback saturation is caused by temperature-induced mobility degradation due to IIIV compound semiconductor materials\u27 poor thermal conductivity. And thermal failure is found to be caused by hot spot located in pHEMT\u27s InGaAs layer. Understanding of these physical mechanisms is critical to design effective ESD protection device in GaAs pHEMT process. Several novel ESD protection devices were designed in 0.5um GaAs pHEMT process. The multi-gate pHEMT based ESD protection devices in both enhancementmode and depletion-mode were reported and characterized then. Due to the multiple current paths available in the multi-gate pHEMT, the new ESD protection clamp showed significantly improved ESD performances over the conventional single-gate pHEMT ESD clamp, including higher current discharge capability, lower on-state resistance, and smaller voltage transient. We proposed another further enhanced ESD protection clamp based on a novel drain-less, multi-gate pHEMT in a 0.5um GaAs pHEMT technology. Based on Barth 4002 TLP measurement results, the ESD protection devices proposed in this chapter can improve the ESD level from 1-kV (0.6 A It2) to up to 8-kV ( \u3e 5.2 A It2) under HBM. v Then we optimized SiGe-based silicon controlled rectifiers (SiGe SCR) in SiGe BiCMOS process. SiGe SCR is considered a good candidate ESD protection device in this process. But the possible slow turn-on issue under CDM ESD events is the major concern. In order to optimize the turn-on performance of SiGe SCR against CDM ESD, the Barth 4012 very fast TLP (vfTLP) and vfTLP-like TCAD simulation were used for characterization and analysis. It was demonstrated that a SiGe SCR implemented with a P PLUG layer and minimal PNP base width can supply the smallest peak voltage and fastest response time which is resulted from the fact that the impact ionization region and effective base width in the SiGe SCR were reduced due to the presence of the P PLUG layer. This work demonstrated a practical approach for designing optimum ESD protection solutions for the low-voltage/radio frequency integrated circuits in SiGe BiCMOS process. In the end, we optimized SCRs in standard silicon-based CMOS process to supply protection for high speed/radio-frequency ICs. SCR is again considered the best for its excellent current handling ability. But the parasitic capacitance of SCRs needs to be reduced to limit SCR\u27s impact to RF performance. We proposed a novel SCR-based ESD structure and characterize it experimentally for the design of effective ESD protection in high-frequency CMOS based integrated circuits. The proposed SCR-based ESD protection device showed a much lower parasitic capacitance and better ESD performance than the conventional SCR and a low-capacitance SCR reported in the literature. The physics underlying the low capacitance was explained by measurements using HP 4284 capacitance meter. vi Throughout the dissertation work, all the measurements are mainly conducted using Barth 4002 transimission line pulsing (TLP) and Barth 4012 very fast transmission line pulsing (vfTLP) testers. All the simulation was performed using Sentaurus TCAD tool from Synopsys
    corecore