14 research outputs found

    New sensing methods for scheduling variable rate irrigation to improve water use efficiency and reduce the environmental footprint : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Soil Science at Massey University, Palmerston North, New Zealand

    Get PDF
    Figures are re-used under an Attribution 4.0 International (CC BY 4.0) license, or are not copyrighted.Irrigation is the largest user of allocated freshwater, so conservation of water use should begin with improving the efficiency of crop irrigation. Improved irrigation management is necessary for humid areas such as New Zealand in order to produce greater yields, overcome excessive irrigation and eliminate nitrogen losses due to accelerated leaching and/or denitrification. The impact of two different climatic regimes (Hawkes Bay, Manawatū) and soils (free and imperfect drainage) on irrigated pea (Pisum sativum., cv. ‘Ashton’) and barley (Hordeum vulgare., cv. ‘Carfields CKS1’) production was investigated. These experiments were conducted to determine whether variable-rate irrigation (VRI) was warranted. The results showed that both weather conditions and within-field soil variability had a significant effect on the irrigated pea and barley crops (pea yield - 4.15 and 1.75 t/ha; barley yield - 4.0 and 10.3 t/ha for freely and imperfectly drained soils, respectively). Given these results, soil spatial variability was characterised at precision scales using proximal sensor survey systems: to inform precision irrigation practice. Apparent soil electrical conductivity (ECa) data were collected by a Dualem-421S electromagnetic (EM) survey, and the data were kriged into a map and modelled to predict ECa to depth. The ECa depth models were related to soil moisture (θv), and the intrinsic soil differences. The method was used to guide the placement of soil moisture sensors. After quantifying precision irrigation management zones using EM technology, dynamic irrigation scheduling for a VRI system was used to efficiently irrigate a pea crop (Pisum sativum., cv. ‘Massey’) and a French bean crop (Phaseolus vulgaris., cv. ‘Contender’) over one season at the Manawatū site. The effects of two VRI scheduling methods using (i) a soil water balance model and (ii) sensors, were compared. The sensor-based technique irrigated 23–45% less water because the model-based approach overestimated drainage for the slower draining soil. There were no significant crop growth and yield differences between the two approaches, and water use efficiency (WUE) was higher under the scheduling regime based on sensors. ii To further investigate the use of sensor-based scheduling, a new method was developed to assess crop height and biomass for pea, bean and barley crops at high field resolution (0.01 m) using ground-based LiDAR (Light Detection and Ranging) data. The LiDAR multi-temporal, crop height maps can usefully improve crop coefficient estimates in soil water balance models. The results were validated against manually measured plant parameters. A critical component of soil water balance models, and of major importance for irrigation scheduling, is the estimation of crop evapotranspiration (ETc) which traditionally relies on regional climate data and default crop factors based on the day of planting. Therefore, the potential of a simpler, site-specific method for estimation of ETc using in-field crop sensors was investigated. Crop indices (NDVI, and canopy surface temperature, Tc) together with site-specific climate data were used to estimate daily crop water use at the Manawatū and Hawkes Bay sites (2017-2019). These site-specific estimates of daily crop water use were then used to evaluate a calibrated FAO-56 Penman-Monteith algorithm to estimate ETc from barley, pea and bean crops. The modified ETc–model showed a high linear correlation between measured and modelled daily ETc for barley, pea, and bean crops. This indicates the potential value of in-field crop sensing for estimating site-specific values of ETc. A model-based, decision support software system (VRI–DSS) that automates irrigation scheduling to variable soils and multiple crops was then tested at both the Manawatū and Hawkes Bay farm sites. The results showed that the virtual climate forecast models used for this study provided an adequate prediction of evapotranspiration but over predicted rainfall. However, when local data was used with the VRI–DSS system to simulate results, the soil moisture deficit showed good agreement with weekly neutron probe readings. The use of model system-based irrigation scheduling allowed two-thirds of the irrigation water to be saved for the high available water content (AWC) soil. During the season 2018 – 2019, the VRI–DSS was again used to evaluate the level of available soil water (threshold) at which irrigation should be applied to increase WUE and crop water productivity (WP) for spring wheat (Triticum aestivum L., cv. ‘Sensas’) on the sandy loam and silt loam soil zones at the Manawatū site. Two irrigation thresholds (40% and 60% AWC), were investigated in each soil zone along with a rainfed control. Soil water uptake pattern was affected mainly by the soil type rather than irrigation. The soil iii water uptake decreased with soil depth for the sandy loam whereas water was taken up uniformly from all depths of the silt loam. The 60% AWC treatments had greater irrigation water use efficiency (IWUE) than the 40% AWC treatments, indicating that irrigation scheduling using a 60% AWC trigger could be recommended for this soil-crop scenario. Overall, in this study, we have developed new sensor-based methods that can support improved spatial irrigation water management. The findings from this study led to a more beneficial use of agricultural water

    Agricultural Meteorology and Climatology

    Get PDF
    Agricultural Meteorology and Climatology is an introductory textbook for meteorology and climatology courses at faculties of agriculture and for agrometeorology and agroclimatology courses at faculties whose curricula include these subjects. Additionally, this book may be a useful source of information for practicing agronomists and all those interested in different aspects of weather and climate impacts on agriculture. In times when scientific knowledge and practical experience increase exponentially, it is not a simple matter to prepare a textbook. Therefore we decided not to constrain Agricultural Meteorology and Climatology by its binding pages. Only a part of it is a conventional textbook. The other part includes numerical examples (easy-to-edit worksheets) and recommended additional reading available on-line in digital form. To keep the reader's attention, the book is divided into three sections: Basics, Applications and Agrometeorological Measurements with Numerical Examples

    European Union Timber Regulation Impact on International Timber Markets

    Get PDF
    The trade of illegal timber, often from illegal logging, has severe environmental, social and economic consequences. The EU’s response to this problem came with the Forest Law Enforcement, Governance and Trade (FLEGT) Action Plan, with its specific goal to end illegal logging, thereby improving sustainability of forest resources. In March 2013, an additional step was taken by implementing the EU Timber Regulation (EUTR). The EUTR requires proof of timber’s origin and legality to ensure that no illegal timber is imported into the EU. To this end the EU intends to block imports of any wood or wood product which comes from unknown sources. Certification of sustainable forest management will help EU importers minimize risk, which is an essential part of their required due diligence system. Monitoring organizations are established to assist trade associations and businesses to construct comprehensive due diligence systems. National competent authorities are designated to follow the trade of the new FLEGT-licensed timber and timber products. In the first year of the EUTR there are positive impacts, of which the most important is awareness of the disastrous situation with illegal logging, driven by exports of illegal timber. Another positive development is tropical timber exporters documenting the legality of their wood exports. Yet another positive feature is establishment of due diligence systems by EU importers. However, there are considerable problems for ensuring legal trade; for example the lack of comprehensive documentation of origin and legality. Analysis of recent trends establishes changes in the European timber trade in terms of sourcing, substitution, diversion to less-demanding countries. Short-term forecasts of market trends and changes will enable further policy assessment to achieve the objectives of improved legality in international timber markets.JRC.H.3-Forest Resources and Climat

    Planet Earth 2011

    Get PDF
    The failure of the UN climate change summit in Copenhagen in December 2009 to effectively reach a global agreement on emission reduction targets, led many within the developing world to view this as a reversal of the Kyoto Protocol and an attempt by the developed nations to shirk out of their responsibility for climate change. The issue of global warming has been at the top of the political agenda for a number of years and has become even more pressing with the rapid industrialization taking place in China and India. This book looks at the effects of climate change throughout different regions of the world and discusses to what extent cleantech and environmental initiatives such as the destruction of fluorinated greenhouse gases, biofuels, and the role of plant breeding and biotechnology. The book concludes with an insight into the socio-religious impact that global warming has, citing Christianity and Islam

    Nutrient sorption potential of treated and untreated hydrochars and biochars derived from various waste feedstocks

    Get PDF
    Biochars have traditionally been associated with soil amendment but are also useful in a number of sectors as they show potential to be cost-effective, multi-functional products particularly if they are produced from waste biomass. Current research is geared towards enhancing char agronomic value via physical, chemical and/or biological means although further studies are still required to gain a better understanding of the parameters which can be optimized to produce chars with specific functionality. This research set out to evaluate the potential for hydrochars and biochars derived from herbaceous and treated municipal waste to be used for nitrogen and phosphorus recovery from simulated wastewater, in addition to ammonia gas emission reduction during co-composting. This study also focused on providing more insight on some of the factors influencing hydrochar and biochar performance in nutrient-rich environments and investigating the potential for modifying char characteristics for enhanced nutrient recovery. Consequently, analysis of the physicochemical properties of hydrochars and biochars produced from paprika waste from a greenhouse, the treated organic fraction of municipal waste, greenwaste and pig manure has been performed. Comparisons are also made with relatively low-contaminant hydrochars and biochars derived from bark-free holm oak wood. Processing parameters include hydrothermal carbonization at 250°C for 60 min, slow pyrolysis at 400–700°C and gasification at 600–750°C over 30–60 min residence times. As oak and paprika waste chars possess carbon contents >50%, these have been categorised as Class 1 biochars in accordance with the international biochar initiative product specifications, while hydrochars and slow pyrolysis biochars derived from municipal waste, presscake, and greenwaste are ranked as Class 2–3 chars. in spite of differences in biomass inorganic content, the various feedstocks decompose into chars in a similar manner. Char morphological properties are observed to be more dependent on processing temperature and reactor system than to feedstock property, based on the substantial differences in surface area of holm oak biochars produced using three different reactor types. However, from batch sorption tests with synthetic wastewater, char surface area and porosity are of less importance than char oxygen and inorganic mineral contents in terms of ammonium and phosphate sorption, respectively. Overall however, all chars demonstrate similarly low capacities for ammonium and phosphate sorption (up to 14.6% and 7%, respectively). Conversely, in terms of ammonia removal, two of the hydrochars selected for further study are shown to possess higher ammonia emission reduction capacities relative to their biochar counterparts in 17-day laboratory co-composting trials. These differences are likely attributable to the acidic functional groups present in the hydrochars. While both oak and greenhouse waste hydrochars demonstrated higher levels of inorganic nitrogen (ammonium and nitrate) mineralization relative to their biochar counterparts, mineralization and carbon dioxide evolution was more prominent in the latter hydrochar. These findings are in agreement with previous studies in the literature, which have shown that hydrochars possess more mineralizable carbon and nitrogen species than biochars. Following from an understanding of the respective effects of char acid oxygen groups and inorganic content on char ammonium and phosphate sorption capacities, attempts have been made to enhance these properties via mild chemical activation of biomass or char samples. Results show that modest increases in both ammonium and ammonia sorption capacity of the chars can be achieved following acid treatment, while phosphate sorption can be enhanced from low levels (2.1–3.6%) to relatively high levels (66.4–70.3%) by impregnation with magnesium. Various treatments will understandably produce different effects on the different hydrochars. This is evident in the case of greenhouse waste, which experiences a considerable increase in ammonia sorption capacity following potassium hydroxide treatment of greenhouse waste 250°C hydrochar and 400°C biochar, from 3.3% to 44.1% in the latter char while the effect is less pronounced following sulphuric acid treatment. Overall, findings from this study suggest that it is possible to enhance waste-derived char capacity for ammonia / ammonium and phosphate recovery by treatment of chars or char precursors (raw feedstock) via mild chemical activation processes

    Друга міжнародна конференція зі сталого майбутнього: екологічні, технологічні, соціальні та економічні питання (ICSF 2021). Кривий Ріг, Україна, 19-21 травня 2021 року

    Get PDF
    Second International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2021). Kryvyi Rih, Ukraine, May 19-21, 2021.Друга міжнародна конференція зі сталого майбутнього: екологічні, технологічні, соціальні та економічні питання (ICSF 2021). Кривий Ріг, Україна, 19-21 травня 2021 року

    Greenhouse gas lifecycle assessment of biochar and biocoal applications in British Columbia

    Get PDF
    Biochar, a form of black carbon produced from pyrolyzed biomass, has been touted as a product that may suppress agricultural soil emissions while also sequestering carbon. BC Biocarbon LTD, a recently established company in McBride, BC, has developed a method of producing a new product called biocoal. This biocoal is produced from a combination of crushed biochar and an organic-based binder also made from the original biomass feedstock. As their biocoal contains similar properties to fossil coal or petroleum coke, its use to reduce emissions as an energy fuel or sequestration method may be favourable to biochar’s use as a soil additive. Additionally, this biocoal may present a method of long-term carbon sequestration if buried. This dissertation assessed the greenhouse gas emissions from the production of biocoal from BC Biocarbon’s system and compared the results to wood pellet production and delivery (Project 1), coal and petroleum coke displacement (Project 2), landfilling for carbon sequestration, while also assessing biochar’s potential soil greenhouse gas reductions with added carbon sequestration (Project 3), and a regional and province-wide assessment for reducing emissions in BC using available sawmill and roadside slash residues (Project 4). Project 1 showed that when comparing biocoal made from sawmill residues to locally produced wood pellets, transportation emissions may be decreased 64% due to biocoal’s higher heating value. When comparing emissions produced for biocoal or wood pellets at gate, biocoal may show a 42% reduction in emissions or up to a 51% increase in emissions, however this is largely dependent on the data-sourced scenarios and their underlying assumptions of emissions allocation. Project 2 showed that displacing petroleum coke in cement kilns offered the largest reduction potential compared to coal applications such as electricity generation, or lead smelting. Project 3 showed that under 3 average conditions, sequestering biocoal offered greater emission reduction potential than soil applied biochar. Finally, Project 4 showed that an estimated GHG emission reduction or carbon sequestration of 28,000,00 Mg CO2e/year from current available residues, and 20,006,000 Mg CO2e/year in 10 years’ time, BC has the potential to reduce its current emissions by around 46%, and 33% in 10 years.biocharpyrolyzed biomasssoil emissionsMcBridebiocoalorganic-base

    ECOS 2012

    Get PDF
    The 8-volume set contains the Proceedings of the 25th ECOS 2012 International Conference, Perugia, Italy, June 26th to June 29th, 2012. ECOS is an acronym for Efficiency, Cost, Optimization and Simulation (of energy conversion systems and processes), summarizing the topics covered in ECOS: Thermodynamics, Heat and Mass Transfer, Exergy and Second Law Analysis, Process Integration and Heat Exchanger Networks, Fluid Dynamics and Power Plant Components, Fuel Cells, Simulation of Energy Conversion Systems, Renewable Energies, Thermo-Economic Analysis and Optimisation, Combustion, Chemical Reactors, Carbon Capture and Sequestration, Building/Urban/Complex Energy Systems, Water Desalination and Use of Water Resources, Energy Systems- Environmental and Sustainability Issues, System Operation/ Control/Diagnosis and Prognosis, Industrial Ecology

    Investigation of Volatile Organic Compounds (VOCs) released as a result of spoilage in whole broccoli, carrots, onions and potatoes with HS-SPME and GC-MS

    Get PDF
    Vegetable spoilage renders a product undesirable due to changes in sensory characteristics. The aim of this study was to investigate the change in the fingerprint of VOC composition that occur as a result of spoilage in broccoli, carrots, onions and potatoes. SPME and GC-MS techniques were used to identify and determine the relative abundance of VOC associated with both fresh and spoilt vegetables. Although a number of similar compounds were detected in varying quantities in the headspace of fresh and spoilt samples, certain compounds which were detected in the headspace of spoilt vegetables were however absent in fresh samples. Analysis of the headspace of fresh vegetables indicated the presence of a variety of alkanes, alkenes and terpenes. Among VOCs identified in the spoilt samples were dimethyl disulphide and dimethyl sulphide in broccoli; Ethyl propanoate and Butyl acetate in carrots; 1-Propanethioland 2-Hexyl-5-methyl-3(2H)-furanone in onions; and 2, 3-Butanediol in potatoes. The overall results of this study indicate the presence of VOCs that can serve as potential biomarkers for early detection of quality deterioration and in turn enhance operational and quality control decisions in the vegetable industry
    corecore