7,885 research outputs found

    Component Outage Estimation based on Support Vector Machine

    Full text link
    Predicting power system component outages in response to an imminent hurricane plays a major role in preevent planning and post-event recovery of the power system. An exact prediction of components states, however, is a challenging task and cannot be easily performed. In this paper, a Support Vector Machine (SVM) based method is proposed to help estimate the components states in response to anticipated path and intensity of an imminent hurricane. Components states are categorized into three classes of damaged, operational, and uncertain. The damaged components along with the components in uncertain class are then considered in multiple contingency scenarios of a proposed Event-driven Security-Constrained Unit Commitment (E-SCUC), which considers the simultaneous outage of multiple components under an N-m-u reliability criterion. Experimental results on the IEEE 118-bus test system show the merits and the effectiveness of the proposed SVM classifier and the E-SCUC model in improving power system resilience in response to extreme events

    Mobile Emergency Generator Pre-Positioning and Real-Time Allocation for Resilient Response to Natural Disasters

    Get PDF
    postprin

    Reducing the Vulnerability of Electric Power Infrastructure Against Natural Disasters by Promoting Distributed Generation

    Get PDF
    Natural disasters cause significant damage to the electrical power infrastructure every year. Therefore, there is a crucial need to reduce the vulnerability of the electric power grid against natural disasters. Distributed generation (DG) represents small-scale decentralized power generation that can help reduce the vulnerability of the grid, among many other benefits. Examples of DG include small-scale photo-voltaic (PV) systems. Accordingly, the goal of this paper is to investigate the benefits of DG in reducing the vulnerability of the electric power infrastructure by mitigating against the impact of natural disasters on transmission lines. This was achieved by developing a complex system-of-systems (SoS) framework using agent-based modeling (ABM) and optimal power flow (OPF). N-1 contingency analysis and optimization were performed under two approaches: The first approach determined the minimum DG needed at any single location on the electric grid to avoid blackouts. The second approach used a genetic algorithm (GA) to identify the minimum total allocation of DG distributed over the electric grid to mitigate against the failure of any transmission line. Accordingly, the model integrates ABM, OPF, and GA to optimize the allocation of DG and reduce the vulnerability of electric networks. The model was tested on a modified IEEE 6-bus system as a proof of concept. The outcomes of this research are intended to support the understanding of the benefits of DG in reducing the vulnerability of the electric power grid. The presented framework can guide future research concerning policies and incentives that can strategically influence consumer decision to install DG and reduce the vulnerability of the electric power infrastructure

    Optimizing resilience decision-support for natural gas networks under uncertainty

    Get PDF
    2019 Summer.Includes bibliographical references.Community resilience in the aftermath of a hazard requires the functionality of complex, interdependent infrastructure systems become operational in a timely manner to support social and economic institutions. In the context of risk management and community resilience, critical decisions should be made not only in the aftermath of a disaster in order to immediately respond to the destructive event and properly repair the damage, but preventive decisions should to be made in order to mitigate the adverse impacts of hazards prior to their occurrence. This involves significant uncertainty about the basic notion of the hazard itself, and usually involves mitigation strategies such as strengthening components or preparing required resources for post-event repairs. In essence, instances of risk management problems that encourage a framework for coupled decisions before and after events include modeling how to allocate resources before the disruptive event so as to maximize the efficiency for their distribution to repair in the aftermath of the event, and how to determine which network components require preventive investments in order to enhance their performance in case of an event. In this dissertation, a methodology is presented for optimal decision making for resilience assessment, seismic risk mitigation, and recovery of natural gas networks, taking into account their interdependency with some of the other systems within the community. In this regard, the natural gas and electric power networks of a virtual community were modeled with enough detail such that it enables assessment of natural gas network supply at the community level. The effect of the industrial makeup of a community on its natural gas recovery following an earthquake, as well as the effect of replacing conventional steel pipes with ductile HDPE pipelines as an effective mitigation strategy against seismic hazard are investigated. In addition, a multi objective optimization framework that integrates probabilistic seismic risk assessment of coupled infrastructure systems and evolutionary algorithms is proposed in order to determine cost-optimal decisions before and after a seismic event, with the objective of making the natural gas network recover more rapidly, and thus the community more resilient. Including bi-directional interdependencies between the natural gas and electric power network, strategic decisions are pursued regarding which distribution pipelines in the gas network should be retrofitted under budget constraints, with the objectives to minimizing the number of people without natural gas in the residential sector and business losses due to the lack of natural gas in non-residential sectors. Monte Carlo Simulation (MCS) is used in order to propagate uncertainties and Probabilistic Seismic Hazard Assessment (PSHA) is adopted in order to capture uncertainties in the seismic hazard with an approach to preserve spatial correlation. A non-dominated sorting genetic algorithm (NSGA-II) approach is utilized to solve the multi-objective optimization problem under study. The results prove the potential of the developed methodology to provide risk-informed decision support, while being able to deal with large-scale, interdependent complex infrastructure considering probabilistic seismic hazard scenarios

    Resilience assessment and planning in power distribution systems:Past and future considerations

    Full text link
    Over the past decade, extreme weather events have significantly increased worldwide, leading to widespread power outages and blackouts. As these threats continue to challenge power distribution systems, the importance of mitigating the impacts of extreme weather events has become paramount. Consequently, resilience has become crucial for designing and operating power distribution systems. This work comprehensively explores the current landscape of resilience evaluation and metrics within the power distribution system domain, reviewing existing methods and identifying key attributes that define effective resilience metrics. The challenges encountered during the formulation, development, and calculation of these metrics are also addressed. Additionally, this review acknowledges the intricate interdependencies between power distribution systems and critical infrastructures, including information and communication technology, transportation, water distribution, and natural gas networks. It is important to understand these interdependencies and their impact on power distribution system resilience. Moreover, this work provides an in-depth analysis of existing research on planning solutions to enhance distribution system resilience and support power distribution system operators and planners in developing effective mitigation strategies. These strategies are crucial for minimizing the adverse impacts of extreme weather events and fostering overall resilience within power distribution systems.Comment: 27 pages, 7 figures, submitted for review to Renewable and Sustainable Energy Review

    A Parallel Fast-Track Service Restoration Strategy Relying on Sectionalized Interdependent Power-Gas Distribution Systems

    Get PDF
    In the distribution networks, catastrophic events especially those caused by natural disasters can result in extensive damage that ordinarily needs a wide range of components to be repaired for keeping the lights on. Since the recovery of system is not technically feasible before making compulsory repairs, the predictive scheduling of available repair crews and black start resources not only minimizes the customer downtime but also speeds up the restoration process. To do so, this paper proposes a novel three-stage buildup restoration planning strategy to combine and coordinate repair crew dispatch problem for the interdependent power and natural gas systems with the primary objective of resiliency enhancement. In the proposed model, the system is sectionalized into autonomous subsystems (i.e., microgrid) with multiple energy resources, and then concurrently restored in parallel considering cold load pick-up conditions. Besides, topology refurbishment and intentional microgrid islanding along with energy storages are applied as remedial actions to further improve the resilience of interdependent systems while unpredicted uncertainties are addressed through stochastic/IGDT method. The theoretical and practical implications of the proposed framework push the research frontier of distribution restoration schemes, while its flexibility and generality support application to various extreme weather incidents.©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Resilience-Driven Post-Disruption Restoration of Interdependent Critical Infrastructure Systems Under Uncertainty: Modeling, Risk-Averse Optimization, and Solution Approaches

    Get PDF
    Critical infrastructure networks (CINs) are the backbone of modern societies, which depend on their continuous and proper functioning. Such infrastructure networks are subjected to different types of inevitable disruptive events which could affect their performance unpredictably and have direct socioeconomic consequences. Therefore, planning for disruptions to CINs has recently shifted from emphasizing pre-disruption phases of prevention and protection to post-disruption studies investigating the ability of critical infrastructures (CIs) to withstand disruptions and recover timely from them. However, post-disruption restoration planning often faces uncertainties associated with the required repair tasks and the accessibility of the underlying transportation network. Such challenges are often overlooked in the CIs resilience literature. Furthermore, CIs are not isolated from each other, but instead, most of them rely on one another for their proper functioning. Hence, the occurrence of a disruption in one CIN could affect other dependent CINs, leading to a more significant adverse impact on communities. Therefore, interdependencies among CINs increase the complexity associated with recovery planning after a disruptive event, making it a more challenging task for decision makers. Recognizing the inevitability of large-scale disruptions to CIs and their impacts on societies, the research objective of this work is to study the recovery of CINs following a disruptive event. Accordingly, the main contributions of the following two research components are to develop: (i) resilience-based post-disruption stochastic restoration optimization models that respect the spatial nature of CIs, (ii) a general framework for scenario-based stochastic models covering scenario generation, selection, and reduction for resilience applications, (iii) stochastic risk-related cost-based restoration modeling approaches to minimize restoration costs of a system of interdependent critical infrastructure networks (ICINs), (iv) flexible restoration strategies of ICINs under uncertainty, and (v) effective solution approaches to the proposed optimization models. The first research component considers developing two-stage risk-related stochastic programming models to schedule repair activities for a disrupted CIN to maximize the system resilience. The stochastic models are developed using a scenario-based optimization technique accounting for the uncertainties of the repair time and travel time spent on the underlying transportation network. To assess the risks associated with post-disruption scheduling plans, a conditional value-at-risk metric is incorporated into the optimization models through the scenario reduction algorithm. The proposed restoration framework is illustrated using the French RTE electric power network. The second research component studies the restoration problem for a system of ICINs following a disruptive event under uncertainty. A two-stage mean-risk stochastic restoration model is proposed to minimize the total cost associated with ICINs unsatisfied demands, repair tasks, and flow. The model assigns and schedules repair tasks to network-specific work crews with consideration of limited time and resources availability. Additionally, the model features flexible restoration strategies including a multicrew assignment for a single component and a multimodal repair setting along with the consideration of full and partial functioning and dependencies between the multi-network components. The proposed model is illustrated using the power and water networks in Shelby County, Tennessee, United States, under two hypothetical earthquakes. Finally, some other topics are discussed for possible future work
    corecore