Predicting power system component outages in response to an imminent
hurricane plays a major role in preevent planning and post-event recovery of
the power system. An exact prediction of components states, however, is a
challenging task and cannot be easily performed. In this paper, a Support
Vector Machine (SVM) based method is proposed to help estimate the components
states in response to anticipated path and intensity of an imminent hurricane.
Components states are categorized into three classes of damaged, operational,
and uncertain. The damaged components along with the components in uncertain
class are then considered in multiple contingency scenarios of a proposed
Event-driven Security-Constrained Unit Commitment (E-SCUC), which considers the
simultaneous outage of multiple components under an N-m-u reliability
criterion. Experimental results on the IEEE 118-bus test system show the merits
and the effectiveness of the proposed SVM classifier and the E-SCUC model in
improving power system resilience in response to extreme events