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Abstract—Truck-mounted mobile emergency generators 

(MEGs) are critical flexibility resources of distribution systems 

(DSs) for resilient emergency response to natural disasters. 

However, they are currently under-utilized. For better utilization, 

this paper proposes dispatching MEGs as distributed generators 

in DSs to restore critical loads by forming multiple microgrids 

(MGs). As the travel time of MEGs on road networks (RNs) can 

greatly influence the outage duration of critical loads, a two-stage 

dispatch framework consisting of pre-positioning and real-time 

allocation is introduced, and the traffic issue is considered via the 

vehicle routing problem. Pre-positioning places MEGs in staging 

locations prior to a natural disaster, while real-time allocation 

sends MEGs from staging locations to restore critical loads by 

forming MGs in DSs after the natural disaster strikes. 

Specifically, with the objective of minimizing the expected outage 

duration of loads considering their priorities and demand sizes, 

pre-positioning is done via a scenario-based two-stage stochastic 

optimization problem, in which the first-stage pre-positioning 

decisions are evaluated by numbers of second-stage real-time 

allocation problems corresponding to considered scenarios of DS 

damage and RN damage/congestion. A scenario decomposition 

algorithm is applied to solve this problem. Illustrative cases 

demonstrate the effectiveness of the proposed dispatch scheme 

and algorithm.  

 
Index Terms—Distribution system, microgrid, mobile 

emergency generator, resilience, stochastic optimization. 

NOMENCLATURE 

A.  Indices: 

h, i, j, k Indices of DS nodes 

m Index of MEGs 

n Index of scenarios 

s Index of staging locations for pre-positioning 
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B.  Sets: 

B Set of all DS nodes, i ∈ B  

F, G Set of feeder root nodes, and set of candidate nodes 

for MEG connection, k ∈ {F, G} 

M Set of MEGs, m ∈ M 

N Set of scenarios, n ∈ N 

S Set of staging locations for pre-positioning, s ∈ S 

L Set of distribution lines, (i, j) ∈ L 

C.  Parameters: 

Xs Allowed number of MEGs pre-positioned to 

staging location s 

tskn Travel time of a MEG from staging location s to 

node k of DS under scenario n 

Tin Estimated restoration time for the load at node i 

under scenario n by conventional restoration 

un Probability or weight of scenario n 

pi, qi Real and reactive power demand at node i 

wi Priority weight of power demand at node i 

rij, xij Resistance and reactance of line (i, j) 

V0, ε Rated voltage and voltage deviation tolerance 

max max,m mP Q  Maximum real and reactive power output of MEG 

m 

Sij
max Apparent power capacity of line (i, j) 

θk  (i) Parent node of node i regarding node k 

Si
k Set of child nodes of node i regarding node k 

ζk  (i, j) Child node of line (i, j) regarding node k 

Π A sufficiently big number 

D.  Variables: 

xsm Binary, 1 if MEG m is pre-positioned to staging 

location s, 0 otherwise 

ysmkn Binary, 1 if MEG m is real-time allocated (sent) 

from staging location s to node k under scenario n, 

0 otherwise 

zkn Binary, 1 if node k is a feeder root node or a MEG 

is connected to it under scenario n, 0 otherwise 

vikn Binary, 1 if node i belongs to the MG powered by the 

power source at node k under scenario n, 0 otherwise 
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cijn Binary, 1 if line (i, j) is closed under scenario n, 0 

otherwise 

lin Binary, 1 if the switch of the load at node i is 

closed under scenario n, 0 otherwise 

γikn Binary, 1 if the load at node i is picked up by the 

power source at node k under scenario n, 0 otherwise 

,k k

in inP Q  Real and reactive in-flow power of node i 

regarding the MG powered by the power source at 

node k under scenario n 

,k k

in inV   Voltage and auxiliary voltage slack variable of 

node i regarding the MG powered by the power 

source at node k under scenario n 

I.  INTRODUCTION 

ATURAL disasters have been causing severe power 

outages in recent years. For example, in 2012, after 

Hurricane Sandy struck the East Coast of the U.S., 

approximately 8.35 million customers were reported without 

power [1]. Weather-related power outages have introduced 

tremendous economic loss and significant life risk, highlighting 

the importance of enhanced power grid resilience [2]. Rapid and 

effective response for electric service restoration is one of the 

critical requirements of a resilient power grid, as most recovery 

activities greatly depend on a reliable power supply [3]. 

However, a natural disaster can cause widespread and severe 

damage to power grids, leaving numerous customers without 

power for days, sometimes even for over a week. For faster 

restoration, resilient response strategies are critically necessary 

when communities are threatened by natural disasters. 

Mobile emergency generators (MEGs) are critical flexibility 

resources for fast electric service restoration across distribution 

systems (DSs), especially when customers are without complete 

power access to the main grid, which is often the case after a 

natural disaster strikes [4],[5],[6]. MEGs are truck-mounted 

generators with the merits of mobility and large capacity (up to 

several MVA). They can be one of the most effective response 

resources when sustained damage leads to prolonged electric 

service outages in DSs. However, they are currently not well 

utilized. For example, before Hurricane Sandy struck, 400 

industrial-size truck-mounted emergency response generators 

were prepared by the Federal Emergency Management Agency 

(FEMA), but only a fraction of them were providing power even 

three days after Sandy made landfall [7]. Efficient utilization of 

MEGs, i.e., an effective and fast response, is significantly 

hindered by several inter-related challenges. First, assessments 

are necessary to identify each outage area’s needs for different 

types of MEGs. Currently, assessments are conducted after 

natural disasters strike and can take from hours to days. Second, 

reasonable matching between MEGs and unserved loads is 

required to ensure rational utilization of MEG resources. This 

matching can be quite difficult when multiple factors such as 

grid damage, operation modes, and load priorities are 

considered. Third, road network (RN) damage and congestion 

can prevent timely dispatch of MEGs, as natural disasters can 

lead to quite inefficient traffic, which is also a complex yet 

necessary consideration in MEG dispatch. 

The literature contains little research on MEG utilization, 

i.e., dispatch, for resilient response to natural disasters. In [8], 

a detailed system design for MEGs using fuel cells is presented 

and studied experimentally. A MEG design based on an 

integrated controller for both single-phase and three-phase 

distribution line backup is provided and tested in [9]. 

Reference [10] studies risks of network protection provided by 

MEGs. Various designs of MEGs and their backup role during 

emergency situations in the British telecommunications 

network are briefly introduced in [11]. Telecommunications 

companies in Japan are also using MEGs to ensure 

telecommunications services, especially after an earthquake 

[12]. However, dispatch strategies are not presented in [11] or 

[12], and telecommunications networks are quite different 

from the power grid. 

In [13] and [14], optimal MEG dispatch is studied. 

Reference [13] minimizes the sum of MEG investment and 

maintenance cost and customers’ outage cost, via a genetic 

algorithm. Reference [14] first classifies and prioritizes loads 

according to multiple safety factors, and then minimizes load 

loss by a hierarchical dispatch strategy. However, the 

effectiveness of models or methods presented in [13] and [14] 

is quite limited. First, consequences of natural disasters (DS 

damage, RN damage/congestion, etc.) are not appropriately 

considered or modeled. Second, a detailed formulation for the 

operation of DSs is not included.  
 

Natural disaster 

strikes

Pre-positioning Real-time allocation
Timeline

Weather forecasting 
and monitoring

Distribution 
system and road 
network damage 

assessments

Week/days 
ahead

Days/hours
ahead

Minutes/hours/days 
afterwards   

Fig. 1.   Timing of pre-positioning and real-time allocation 

In the present paper, it is proposed to dispatch MEGs as 

distributed generators (DGs) to some nodes of the DS to restore 

critical loads by forming multiple microgrids (MGs). In [4], a 

novel electric service restoration approach that forms MGs 

energized by existing DGs is proposed and studied. One of the 

significant differences is that the method in the present paper 

involves optimal placement of MEGs, while DGs are pre-

installed resources in [4]. Note that the problem considered in 

the present work is also quite different from the optimal DG 

placement problem, which is generally studied assuming normal 

operation states for DSs, to reduce power loss, enhance voltage 

profile, improve service reliability, etc. [15]. Also, the present 

paper proposes to dispatch MEGs in a two-stage framework that 

comprises pre-positioning and real-time allocation. As shown in 

Fig. 1, prior to a natural disaster, according to damage forecasts 

for DSs and RNs, pre-positioning decisions are made via a 

scenario-based two-stage stochastic optimization problem to 

minimize the expected outage duration of loads considering their 

priorities and demand sizes. MEGs are then pre-positioned (i.e., 

placed) in staging locations for rapid real-time allocation in the 

future. After the natural disaster strikes, the actual real-time 

N 
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allocation is optimized. MEGs are then sent from staging 

locations to selected nodes in DSs to form MGs and pick up 

critical loads. A more detailed problem statement will be 

presented in Section II. 

Major contributions are summarized as follows:  

1) Dispatching MEGs as DGs in DSs to restore critical loads 

by forming multiple MGs is proposed and studied. This novel 

strategy is effective in matching MEGs with critical loads, thus 

achieving better capacity utilization of MEGs. 

2) A two-stage framework to dispatch MEGs is introduced. 

With proactive pre-positioning and timely real-time allocation of 

MEGs, the outage duration of critical loads to be picked up by 

MEGs can be significantly reduced compared to current practice.  

3) The pre-positioning and real-time allocation problems are 

properly modeled. The aforementioned challenges for MEG 

dispatch, i.e., proper assessment of needs for MEGs, reasonable 

matching between MEGs and critical loads, and appropriate 

consideration of the traffic issue, are accommodated by the 

present formulations. Specifically, the travel time of MEGs on 

RNs is optimized and obtained by solving the vehicle routing 

(VR) problem, and then considered in both the pre-positioning 

and real-time allocation problems, to minimize the outage 

duration of critical loads to be picked up by MEGs.  

 Thus, MEGs can be much better utilized for resilient 

response to natural disasters. The rest of this paper is 

organized as follows: Section II describes in detail the MEG 

dispatch problem and our proposed methodology for MEG 

dispatch. Sections III and IV present formulations of the pre-

positioning and real-time allocation problems, respectively. 

Section V briefly discusses their implementation and the 

applied algorithms. Illustrative cases are included in Section 

VI. Section VII briefly concludes the paper.  

II.  PROBLEM STATEMENT 

A.  MEG Dispatch in Response to Natural Disasters 

Essentially, the MEG dispatch problem is to allocate MEGs 

in the power grid (normally, the DS) to restore critical loads 

under emergency situations. Generally, a MEG may serve a 

single location such as a hospital or a government building. 

However, after a natural disaster, MEGs will have to play a 

more important role than that. First, most critical and large 

loads, which are small in number, have backup power access 

to multiple feeders or self-installed emergency generators. And 

note that many MEGs will be in a state of readiness before a 

natural disaster. Thus, a considerable number of MEGs can be 

spared to serve small yet critical or less-critical loads, which 

are numerous. Second, as natural disasters often cause 

prolonged outages for many customers, MEGs can be vital 

power sources for them for days or even for over a week after 

a natural disaster strikes. Moreover, MEG dispatch in response 

to natural disasters has the following characteristics:  

1) Natural disasters often cause a complete or partial loss of 

power supply to DSs from the main grid. Major reasons 

include transmission system outages, substation faults, broken 

feeders or laterals of DSs, etc. Timely electric service recovery 

of isolated outage regions by conventional restoration can be 

hindered. These are the major areas of interest for MEG 

dispatch. Nevertheless, areas that still have power access to the 

main grid should also be considered, as operational constraints 

may prohibit them from being fully restored.  

2) Sustained DS element damage, the resulting prolonged 

power outages to customers, and RN damage/congestion are 

quite uncertain prior to a natural disaster. Assessments of these 

may be completed in minutes or hours, or even days, after the 

natural disaster strikes. Then, matching between MEGs and 

critical loads is conducted to guide MEG dispatch. Matching 

can be a quite difficult and complicated task, considering grid 

damage, DS operational constraints, requirements for resource 

utilization efficiency of MEGs, desired timely restoration, etc. 

3) MEGs are truck-mounted emergency response generators 

that will have to travel on RNs to allocated locations. The 

outage duration of critical loads to be picked up by MEGs is 

greatly influenced by MEGs’ travel time. Some critical loads 

may also require a MEG to arrive before their backup power 

runs out. Note that RNs can be vulnerable to natural disasters, 

too. Thus, the traffic issue is a critical factor in MEG dispatch. 

To reduce the outage duration of critical loads, proactive pre-

dispatch measures (pre-positioning, in this paper) are 

necessary, and VR of MEGs should be considered. 

The current practice of MEG dispatch generally follows an 

ineffective pattern. First, although MEGs are prepared to be 

ready in advance, major dispatch efforts are conducted after 

natural disasters strike. However, proactive measures are 

preferred. Second, assessment of needs for MEGs and matching 

between MEGs and critical loads are not carried out rationally. 

After damage and outage assessments, sub-districts request 

MEGs on the basis of some statistical data, and then match them 

to loads on the basis of limited experience. Third, the traffic 

issue, a critical factor as previously noted, is not appropriately 

considered. Thus, MEGs are currently under-utilized. 

B.  Proposed Operation Strategy: MG Formation with MEGs 

This paper proposes dispatching MEGs as DGs to some nodes 

of DSs. MEGs then restore critical loads by forming multiple 

MGs that operate in islanded mode. The objective is to minimize 

the outage duration of loads, considering their priorities and 

demand sizes. Major decision variables include the following: 

 Allocating MEGs: to allocate each MEG to which 

candidate node in DSs 

 Forming MGs powered by MEGs: to open or close each 

line to form MGs, and to pick up or not pick up each load 

Conditions and constraints to be considered include: 

 Capacity differences of MEGs 

 Priorities of critical loads 

 DS element damage 

 RN damage/congestion 

 Radial topology requirements, operational constraints, etc. 

Note also that, constrained by equipment or firmware 

requirements, only a fraction of the nodes in DSs will be 

feasible as candidate nodes for MEG allocation and 

connection. Optimization models are presented in Sections III 

and IV; first, a two-stage framework for realizing this 

operation strategy is introduced in Section II.C. 
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C.  Proposed Dispatch Method: A Two-stage Framework 

The proposed operation strategy for MG formation with 

MEGs is fulfilled by a proposed two-stage dispatch framework, 

comprising pre-positioning and real-time allocation. 

In the first stage, i.e., prior to a natural disaster, pre-

positioning is conducted. Resource pre-positioning is a 

common proactive measure undertaken by electric utilities. 

Before a natural disaster, they allot resources (including repair 

crews and restoration equipment) across their staging locations 

to ensure the earliest possible response after the natural 

disaster strikes [16]. We determine that pre-positioning of 

MEGs, i.e., placing utilities’ MEGs in staging locations for 

earliest future response, is also necessary for several inter-

related reasons:  

 The earliest possible electric service recovery is desired.  

 MEGs’ travel time to allocated places can be saved. 

 The influence of RN damage/congestion can be reduced. 

In the second stage, i.e., after the natural disaster strikes, 

real-time allocation is optimized. MEGs are sent from staging 

locations to allocated locations. Upon arrival, they are 

connected to the grid and form MGs to pick up critical loads.  

III.  PRE-POSITIONING PROBLEM FORMULATION 

A.  Objective Function 
 

{ , }

min [(1 ) ]n i i ikn in ikn smkn skn

n i k k s m

u w p T y t
     

      
N B F G G S M

   (1) 

 

The objective (1) is minimizing the expected outage 

duration of loads, considering their priorities and demand sizes. 

Specifically, all the terms in the square brackets in whole, i.e. 

[(1-∑
k∈{F,G}

γikn)Tin+∑
k∈G

∑
s∈S

∑
m∈M

γiknysmkntskn], represent outage 

duration of loads. The second term in the parentheses, i.e. 

∑
k∈{F,G}

γikn, indicates whether the load at node i is restored by a 

feeder root node or a MEG in scenario n. Firstly, if it equals to 

0, this load is not restored, and will experience an outage 

duration of the estimated restoration time Tin. In this case,     

(1-∑
k∈{F,G}

γikn) equals to 1, and ∑
k∈G

∑
s∈S

∑
m∈M

γiknysmkntskn equals 

to 0. Thus Tin takes effect in objective (1) as the outage 

duration of this load. Secondly, if ∑
k∈{F,G}

γikn equals to 1, this 

load is restored by two possible power sources. One possibility 

is that it obtains power from a feeder root node. Its outage 

duration is considered as zero here since its restoration can be 

conducted immediately. In this case, both (1-∑
k∈{F,G}

γikn) and 
∑

k∈G
∑

s∈S
∑

m∈M
γiknysmkntskn equal to 0, making the terms in the 

square brackets in whole equal to 0. The other possibility is 

that this load is recovered by a MEG. The MEG’s travel time 

on RNs is seen as its outage duration. In this case, (1-∑
k∈{F,G}

γikn) 

still equals to 0. And, assuming that this load is picked up by a 

MEG at node k and this MEG is from staging location s, then 

the term ∑
k∈G

∑
s∈S

∑
m∈M

γiknysmkntskn equals to tskn. By using (1), 

pre-positioning decisions with optimal expected performance 

of future real-time allocations are derived. Note that (1) 

contains quadratic terms of two binary variables, γiknysmkn. For 

linearization, we replace each of them by an auxiliary binary 

variable τsmikn and add constraints (2) to achieve equivalent 

conversion: 
 

,  ,  1smikn ikn smikn smkn smikn ikn smkny y              (2) 

B.  Constraints 

,sm s

m

x X s


 
M

                  (3a) 

 

=1,sm

s

x m



S

               (3b) 

 

, , ,smkn sm

k

y x s m n


   
G

          (4a) 

 

1, ,smkn

s m

y k n
 

  
S M

           (4b) 

 

, ,kn smkn

s m

z y k n
 

   
S M

G         (5a) 

 

1, ,knz k n   F              (5b) 
 

{ , }

1, ,ikn

k

v i n


  
F G

            (5c) 

 

, , ,ikn knv z k i n                (5d) 
 

, ,kkn knv z k n                (5e) 
 

, ( ), , ,ikn jkn kv v j i k i n               (5f) 
 

{ , }

, ( , ), ( , ),ijn hkn k

k

c v h i j i j n


   
F G

      (5g) 

 

, , ,ikn ikn inv l k i n                (5h) 
 

, , ,
k
i

k k

jn in ikn i

j S

P P p k i n


              (6a) 

 

, , ,
k
i

k k

jn in ikn i

j S

Q Q q k i n


             (6b) 

 

0 , , ,k

in iknP v k i k n                (6c) 
 

0 , , ,k

in iknQ v k i k n                (6d) 
 

max0 , ,k

kn smkn m

s m

P y P k n
 

    
S M

G      (6e) 

 

max0 , ,k

kn smkn m

s m

Q y Q k n
 

    
S M

G       (6f) 

 

2 2 max 2( ) ( ) ( ) , ( ), , ,k k

in in ij kP Q S j i k i k n          (6g) 
 

, ,k

kn kn RV z V k n                (6h) 
 

, ( ), , ,

k k

ij in ij ink k k

in jn in k

R

r P x Q
V V j i k i k n

V

  
            (6i) 

 

0 , , ,k

in ikn RV v V k i n                (6j) 
 

0 (1 ) , , ,k

in ikn Rv V k i n              (6k) 
 

0 0

{ , } { , } { , }

(1 ) (1 ) , ,k

ikn in ikn

k k k

v V V v V i n
  

       
F G F G F G

     (6l) 

 

0, , ( , )ijn nc n i j   LO             (7) 
 

The above constraints can be divided into five different 

groups as follows: 

1) Pre-positioning constraints (3a) and (3b), to pre-position 

each MEG, and to avoid violating staging location capacity: 

The number of pre-positioned MEGs at each staging location 
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is limited by its capacity as in (3a). Constraints (3b) ensure 

that each MEG is pre-positioned to exactly one of the staging 

locations.  

2) Real-time allocation constraints (4a) and (4b), to send 

MEGs from staging locations: Constraints (4a) ensure that in 

each scenario, MEG m is sent to one of the candidate nodes in 

the DS from staging location s where it is pre-positioned. 

Constraints (4b) declare that at most one MEG is allocated to 

each candidate node. 

3) DS topology reconfiguration constraints (5a)–(5h), to 

define feasible DS topologies, which satisfy the radial 

topology requirements and divide the DS into multiple MGs 

each with one power source: This and the next groups of 

constraints define the operational feasible set of related variables 

to realize the strategy of MG formation with MEGs. Only a brief 

explanation is presented here, owing to space limitations. 

Although the models have major differences, one can still refer 

to [4] for more details. Note that other than isolated outage 

regions, areas still having power access to the main grid are also 

modeled for the aforementioned reason. For statement simplicity, 

here we refer to the sub-grid powered by feeder root node k or a 

MEG at node k as MG k. In (5a) and (5b), auxiliary variables zkn 

indicate whether node k has a power source (i.e. zkn=1 if it is 

connected to a MEG or it is a feeder root node, zkn=0 otherwise). 

Constraints (5c) ensure that each node belongs to at most one 

MG (vikn=1 if node i belongs to MG k, vikn=0 otherwise). 

Constraints (5d) prevent construction of a MG without a power 

source (if node k does not have any power source, i.e. zkn=0, then 

the formulation should not form the MG k, i.e. vikn=0 for all i). 

Constraints (5e) determine that each node with a power source 

belongs to the MG powered by itself (i.e., vkkn=1 if zkn=1). 

Constraints (5f) ensure that a node can belong to MG k only if its 

parent node also belongs to MG k, because of the connectivity 

feature of a tree (in a radial DS network, each MG can be seen 

as a sub-tree network with the power source node being the root 

node). Equations (5g) mean that a distribution line should be 

closed if its child node belongs to one of the MGs (conditioning 

that both node i and j belong to MG k, i.e. vikn= vjkn=1, then the 

line (i, j) also belongs to MG k, i.e. cijn=1 in the closed state; 

considering constraints (5f), this condition is equal to that the 

child node of the line (i, j) belongs to MG k). The radial 

topology of DSs is preserved by constraints (5c)–(5g). 

Constraints (5h), which can be linearized in a similar manner to 

(2), guarantee that the load at node i is picked up by MG k only 

if node i belongs to MG k and the load switch is also closed.  

4) DS operational constraints (6a)-(6l), to constrain line 

flows, voltages and MEG power outputs: Equations (6a) and 

(6b) are the real and reactive power balance of each node, based 

on the DistFlow model [17], [18]. Constraints (6c) and (6d) 

ensure that the in-flow power of node i regarding MG k is zero if 

it does not belong to MG k (i.e., P
k 

in=Q
k 

in=0 if vikn=0). Constraints 

(6e) and (6f) limit real and reactive power injection at a 

candidate node subject to the capacity of the connected MEG (if 

the mth MEG is connected to node k, its power injections P
k 

kn and 

Q
k 

kn should be less than its capacity P
max 

m  and Q
max 

m ). Constraints 

(6g) are apparent power capacity constraints of lines, which can 

be linearized by techniques such as those given in [19]. 

Equations (6h) set voltages at nodes with a power source as the 

reference value VR = (1+ε) V0. Equations (6i) express 

relationships of voltages between connected nodes regarding 

MG k. Constraints (6j) ensure that the voltage value regarding 

MG k is zero if a node does not belong to MG k (i.e., V
k 

in=0 if 

vikn=0). Constraints (6k) define the range of voltage slack 

variables that guarantee the satisfaction of (6i). Constraints (6l) 

set the voltage value range if a node belongs to one of the MGs. 

5) DS damage scenario condition constraints (7), to give 

scenario conditions: With LOn as the set of damaged lines 

under scenario n, constraints (7) restrict them as inoperable in 

an open state.  

Thus, the pre-positioning formulation is a scenario-based two-

stage stochastic optimization problem. The first-stage pre-

positioning decisions are evaluated by numbers of second-stage 

real-time allocation problems corresponding to the considered 

scenarios of DS damage and RN damage/congestion.  

IV.  REAL-TIME ALLOCATION PROBLEM FORMULATION 

Provided optimal pre-positioning decisions, i.e., determined 

xsm, the actual real-time allocation of MEGs is conducted after 

the natural disaster strikes and damage assessments of DSs and 

RNs are finished. It is optimized via the following formulation, 

with only one scenario n representing the reality resulting from 

the natural disaster: 
 

{ , }

min [(1 ) ]i i ikn in smikn skn

i k k s m

w p T t
    

     
B F G G S M

        (8) 

 

s.t.  (2), (4a)–(4b), (5a)–(5h), (6a)-(6l), (7)  
 

Some other constraints can also be included, such as tolerable 

interruption duration 
it  of a critical load at node i:  

 

1ikn

k

 
G

                                     (9a) 

 

ikn smkn skn i

k s m

y t t
  

 
G S M

                         (9b) 

 

If the data of MEG installation time are available, they can be 

considered by simply adding to tskn in (1) (8) and (9b). And 

capacity utilization rate (CUR) requirement R of MEGs: 
 

max ,ikn i smkn m

i s m

p R y P k
  

   
B S M

                    (10) 

 

where we define the CUR of a MEG as the sum of real power 

loads served by it, divided by its real power capacity. With 

available MEG installation time data,  

Next, several remarks regarding the formulations of both the 

pre-positioning and real-time allocation problems are provided: 

Remark 1: regarding the selection of available MEGs. 

Currently we set capacities of available MEGs as parameters 

in our formulations. In some cases, dispatchers have to or are 

allowed to select a budgeted number of MEGs among different 

types. Our formulations can accommodate these cases by 

listing enough number of MEGs of each type and letting the 

optimizer to choose. A budget constraint limiting the amount 
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of selected MEGs should also be added. In this way, the 

capacities of MEGs can be co-optimized with other decisions. 

Note that this may introduce extra computational burden. 

Experience-based heuristics may help to relieve it. For 

example, an initial solution of good quality may be set at first 

by the dispatchers based on experience.  

Remark 2: regarding the number of MEGs in MGs. To 

maintain functionality of a MG with two or more generation 

units, their coordination has to be resolved [20] [21]. This can 

be a difficult issue not only for temporarily-install MEGs but 

also for pre-installed generators due to communication 

obstruction and the post-event degraded state of the system 

after natural disasters. Thus, although allowing two or more 

MEGs in a MG can be more advantageous in matching power 

with loads and improving voltage security, in this work we 

choose to form each MG with only one power source 

following [4]. For some types of MEGs equipped with 

required functional modules, parallel operation of 2 or 3 

MEGs can be conducted by well-trained staff [12]. The 

premise is that they are connected to the same DS node. Our 

formulations can accommodate this special case by minor 

modifications. Specifically, constraints (4b) and (5a) should be 

modified as follows: 
 

3, ,smkn

s m

y k n
 

  
S M

                       (4b.R) 
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Remark 3: regarding the selection of candidate nodes for 

MEG connection. Generally they are selected based on: 1) Site 

requirements. Their locations should have appropriate space to 

install and operate a MEG, free of potential risks such as 

flooding [12]. 2) Access requirements. Their locations should 

be reachable by the truck-mounted MEGs and fuel trucks via 

the RNs [12]. 3) Facility requirements. A node with 

connection panel to interface with plug-terminated cables of 

MEGs is preferred [11]. An underground fuel tank at its 

location is also a plus [11] [12]. 4) Some other considerations. 

For example the noise. If necessary, dispatchers can further 

reduce the number of candidate nodes based on their 

preferences or other factors such as distance. 

Remark 4: regarding the consideration of other power or 

flexibility resources. In the current formulations, feeder root 

nodes representing power from substations are also modelled 

besides MEGs. Other power or flexibility resources, including 

DGs and the measures of partial load restoration/curtailment, 

can also be considered. Specifically, DGs can be treated in the 

same way as feeder root nodes. In this way, DGs restore 

critical loads by forming MGs exactly as that in [4]. Partial 

load restoration/curtailment can be incorporated by adding a 

continuous variable for each load and some easy modifications 

of the formulations. We omit this consideration as it is not 

always practically feasible. More importantly, it can potentially 

lead to over-positive results of the CUR, thus over-evaluating 

our performance in matching MEGs and loads. The focus of 

this paper is designing a method to better utilize MEGs in 

response to natural disasters. 

V.  IMPLEMENTATION AND ALGORITHM 

A.  Implementation Discussions 
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Fig. 2.   Relationships between data sets and task modules 

The foregoing Fig.1 has shown the implementation timeline. 

Fig. 2, which is also self-explanatory, reveals the relationships 

among data sets and task modules that are necessary to 

implement MEG dispatch of pre-positioning and real-time 

allocation. On the basis of the framework depicted in Fig. 2, 

the proposed MEG dispatch methodology can also be reduced 

or modified to address the utility repair truck scheduling 

problem. Proactive pre-positioning and timely real-time 

response are also preferred in that problem. The detailed DS 

operation formulation is necessary to optimize the electric 

service recovery process, too. Note that the present paper 

focuses on the pre-positioning and real-time allocation 

modules for MEG dispatch. 

Two selected issues related to implementation of the proposed 

MEG dispatch scheme are also discussed briefly as follows: 

1) Scenario generation for natural disaster damages: On 

the one hand, statistical data fitting models use power grid data 

and environmental data to estimate outages and damages. 

Measurements of fitting goodness are also studied for 

evaluation. For example, models such as Bayesian Additive 

Regression Trees are assessed in estimating the number of 

damaged DS poles in [22]. On the other hand, simulation-

based models make predictions based on physical mechanisms 

of damages. For example, in [23] the mechanism of localized 

high intensity wind damaging overhead line is studied. 

Interested readers may refer to [24], [25] and [26] for more 

detailed reviews. Thus, applying simulation-based or statistical 

models, scenario generation for natural disaster damages itself 

is a critical, challenging and active research topic. A potential 

topic is to consider graph-theoretic metrics here. In this work 

we generally assume that extensive expert experience or 

mature tools for scenario generation are available, and do not 

investigate too much detail on this topic since it is not the 

focus. Specifically, in Section VI, we generate scenarios 

following references [27] and [28], i.e. comparing failure 

probabilities of vulnerable components with a random variable 

uniformly distributed in the interval (0, 1). And we reduce 

scenarios by three rules. Firstly, prioritize scenarios that MEGs 

can restore more critical loads, since naturally it is of little 

meaning for the MEG dispatch problem to consider scenarios 
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in which MEGs will not be quite helpful. Secondly, aggregate 

scenarios with the same real-time allocation solution as they 

tend to impact the pre-positioning decisions similarly. Thirdly, 

prioritize scenarios with higher probabilities of occurrence. 

The travel time of edges in RNs is assumed a lognormal 

distribution. 

2) Coordination with the conventional DS restoration: The 

conceptual resilience curve in [29] is used here for more clear 

statements. In Fig. 3, R is an index of system resilience level, 

tMEG the timing of MEGs participating into DS restoration.  

 

te tpe tr tpr tir tpir

Time

R

R0

Rpe

prR’

tMEG

Rpr

Solely conventional restoration 
Conventional restoration & MEG dispatch

prt  ，
 

Fig. 3.  A conceptual resilience curve associated with an event 

Associated with an event, a DS has these states: event progress 

te~tpe, post-event degraded state tpe~tr, restorative state tr~tpr, 

post-restoration state tpr~tir and infrastructure recovery tir~tpir. 

The time period tr~tir is the concern of conventional DS 

restoration strategies, which are generated by expert systems 

[30], multi-agent systems [31] and optimization [32], etc. 

However, they may be of limited effect for a DS struck by a 

natural disaster. That is, the enhancement from Rpe to Rpr is 

small. In this case MEGs are desirable resources to enhance 

the system resilience level from Rpr to R’pr in the post-

restoration state. The concerned areas of MEG dispatch are 

mainly the isolated outage regions, and some areas that cannot 

be sufficiently restored by the surviving power access. Thus, 

although the concerned time period of MEG dispatch is the 

same as that of conventional DS restoration, their concerned 

outage areas are different with limited overlaps. These two 

kinds of restoration actions are related yet independent to 

some extent. Generally we can coordinate them in such a 

straightforward way: For outage areas sufficiently recovered 

by conventional restoration strategies, apply these strategies; 

for isolated outage areas without power sources, send MEGs 

and conduct MG formation after MEGs arrive; for outage 

areas insufficiently recovered by conventional restoration 

strategies, apply conventional strategies first, and then transfer 

to coordinated restoration strategies after MEGs arrive. Note 

that the coordinated strategies can be generated by solving our 

real-time allocation problem.  

B.  Algorithm 

1) Dijkstra’s shortest-path algorithm for the VR problem: 

As mentioned above, the traffic issue can influence optimal 

MEG dispatch decisions, as MEGs have to spend time 

traveling on RNs to allocated locations. Thus, a VR module is 

employed, which finds the shortest or fastest route from an 

origin to a destination via RNs. VR can be realized by 

Dijkstra’s algorithm [33], the Floyd-Warshall algorithm [34], 

etc. We apply Dijkstra’s algorithm here, as only routes from 

staging locations to candidate nodes are of interest. For each 

scenario, the travel time from each staging location to each 

candidate node is derived via the VR module. Then the data 

are used both in the pre-positioning and real-time allocation 

optimization problems. Thus, the traffic issue is considered 

when optimizing MEG dispatch to reduce the outage duration 

of critical loads to be picked up by MEGs. One might also 

consider MEGs’ exploration role in damage assessment of DSs 

and RNs by assigning must-pass locations. 

2) Scenario decomposition (SD) algorithm for pre-

positioning: The scenario-based two-stage stochastic 

optimization problem of pre-positioning has a block-diagonal 

structure. It can be recast in a compact form as follows: 
 

min{ ( , ): , }n n n n

n

f   x y x Λ y Ω                       (11) 

 

where x, yn, fn(x,yn), Λ and Ωn denote first-stage pre-

positioning variables, second-stage real-time allocation 

variables under scenario n, second-stage objective function for 

scenario n, the feasible set of x defined by constraints (3a)-

(3b), and the feasible set of yn defined by constraints (4a)-(4b), 

(5a)-(5h), (6a)-(6l) and (7), respectively. Generally, the SD 

algorithm is to transform (11) into (12):  
 

min{ ( , ): , , }n n n n n n n n

n n

f    x y x Λ y Ω A x h            (12) 

 

where the last constraint is the non-anticipativity constraints 

enforcing x1=x2=…=xn. Thus the problem’s block-diagonal 

structure can be taken advantage of. Implementation of the SD 

algorithm is described in Algorithm 1 [35].  

 
Algorithm 1  Scenario decomposition algorithm 

1: Set upper_bound=+∞, lower_bound=-∞, S=∅, x*=∅ 

2: Set λ=0 

3: Solve αn= min{ fn(xn,yn)+λTAnxn: xn∈Λ\S, yn∈Ωn} and obtain xn
* for all n 

4: If consensus criteria are not met, update λ & go to step 3, otherwise step 5 

5: Update lower_bound= ∑n un αn-λTh, S’=∪n{xn
*}, S=S∪S’ 

6: For all x0∈S’, do  

7:    Solve βn=min{ fn(x0,yn): yn∈Ωn} for all n 

8:    If upper_bound ≥ ∑n un βn , update upper_bound=∑n un βn , x*=x0 

9: If ( upper_bound-lower_bound )/lower_bound ≥ convergence_tolerance,  

    go to step 2; otherwise, terminate 

 
 

It is essentially a modified version of the progressive 

hedging algorithm [36], which can be classified as an 

augmented Lagrangian relaxation algorithm. Specifically, 

fn(xn,yn)+λTAnxn, i.e. the objective function in step 3, can be 

rewritten in a more detailed form as follows: 
 

 
,

min ( ) ( ) ( ) 0.5 ( ) ( ) ( )
n n

n n nl
l l l l l l   

x y
μ λ x x y     (13) 

 

where n denotes the weighted average of xn over all scenarios 

n ∈ N in the previous iteration; µ and ϑ are cost coefficient 

vectors, i.e. problem parameters; (●)(l ) denotes the lth element 

of the vector (●); ρ is an algorithm parameter set as 10000 in 

this work. Note that, other than fixed ρ strategies, there exist 

variable ρ strategies. Interested readers can refer to [37], [38] 

and [39], which discuss both of them. And, λ is updated by: 
 

 ( ) ( ) ( ) ( )n nl l l l  λ λ x x                        (14) 
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which is a generally applied updating rule. And, the consensus 

criterion in step 4 is set as follows: 
 

,

( ) ( )n n

l n

l l
td td


 

x x

N
                           (15)                                                                

 

where td is defined as the average per-scenario deviation from 

the average; td denotes a threshold set as 0.5; and |N| is the 

number of scenarios. The consensus criteria can also be set 

based on other metrics such as normalized average per-

scenario deviation from the average [37] and overall cost 

discrepancy [38].  As for the actual real-time allocation 

optimization problem to be solved after the natural disaster 

strikes, in our cases it can be directly solved by a solver like 

Gurobi with quite acceptable efficiency. 

VI.  ILLUSTRATIVE CASES 

A.  Test System Introduction 
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Fig. 4.  Geographic information for RNs, DSs, staging locations, and 

candidate distribution nodes for MEG connection 
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Fig. 5.   Topology of DSs (DS1: a modified IEEE 34-node DS [40]; DS2: a 

modified IEEE 37-node DS [41]; DS3: a modified 16-node DS [42]; DS4: a 

modified 27-node DS [43]) and a demonstration case 

Fig. 4 and Fig. 5 show the test system used for illustration. As 

MEG dispatch often involves an area with multiple DSs, a 

geographic district with four DSs in four sub-districts is 

considered. The RNs shown in Fig. 4 have 51 intersections and 

82 edges. The DSs in Fig. 5 have 114 nodes in total. Loads 

and their priority weights are randomly generated. Several 

nodes in DSs are picked as candidate nodes for MEG 

connection. Assume that in this area, the utility has three 

staging locations, each of which can accommodate two MEGs, 

and has the MEG resources listed in Table I. A hurricane is 

considered, with high wind as one of the major influential 

factors. Damage scenarios for DSs are generated using lines’ 

failure probabilities based on the fragility curve. Lognormal 

distribution is assumed for the travel time on each road edge in 

RNs among scenarios.  

 
TABLE I  

CAPACITIES OF AVAILABLE MEGS 
 

m 
max

mP (kW) max

mQ (kVar) 

1 400 300 

2 800 600 

3 1000 800 

4 1600 1200 

5 2000 1600 

 

B.  Demonstration of the Proposed MEG Dispatch Method 

In this sub-section, we demonstrate how the proposed MEG 

dispatch method, i.e., the two-stage framework of pre-

positioning and real-time allocation, is applied step by step:  

1) Prior to the hurricane, with appropriately generated and 

selected scenarios, the pre-positioning problem is solved. It 

seeks pre-positioning of MEGs with optimal expected 

performance of future real-time allocations. Twenty scenarios 

are included here. Pre-positioning decisions for the studied 

case are shown in the second column of Table II.  

 
TABLE II  

A DEMONSTRATION CASE FOR THE PROPOSED MEG DISPATCH METHOD 
 

Staging 

locations 

Pre-positioning 

decisions (xsm) 

Real-time allocation 

decisions (ysmkn) 

S1 
         MEG 3        →→       Allocated to node 413 

         MEG 4        →→       Allocated to node 116 

S2 
         MEG 1        →→       Allocated to node 403 

         MEG 2        →→       Allocated to node 136 

S3          MEG 5        →→       Allocated to node 204 

 
2) After the hurricane strikes, assessments of DS damage and 

RN status are performed. Then the real-time allocation problem 

is solved for the resulting reality scenario. Assume that lines with 

a cross in Fig. 5 are damaged by the hurricane. Real-time 

allocation decisions are listed in the third column of Table II.  

3) MEGs are then sent from staging locations to allocated 

nodes in DSs. Their travel routes on RNs are already 

determined in step 2 when using the VR module to compute 

necessary parameters (travel time tskn) for the real-time 

allocation problem. For example, MEG 1 at staging location 

S2 is assigned to node 403. According to the VR module, it 

travels on the arrowed bold edges in Fig. 4, and its travel time 

will be about 21 minutes. If updated RN status is available, a 

new route can also be generated.  

4) Upon MEGs’ arrivals at assigned locations, they are 

connected to DSs, and form MGs to restore critical loads. The 
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formation of MGs is already decided in step 2 when solving 

the real-time allocation problem. In the assumed resulting 

reality scenario, the MG formation results are depicted in Fig. 

5. Each more deeply shadowed area is an operating MG 

powered by a MEG. The MGs 204 and 413 marked in Fig. 5 

explain the reason for including areas that still have power 

access to the main grid in formulations. Although loads in MG 

204 and MG 413 can reach a feeder root node via undamaged 

lines, they cannot be fully restored because of operational 

constraints such as line flow limits. Therefore, MEGs are 

connected for better restoration. Note that some loads are still 

unserved. Complete electric service recovery relies on further 

efforts on conventional repair and restoration.  

C.  Capacity Utilization of MEGs 

After natural disasters strike, the number of MEGs generally 

will be insufficient to meet demands on them. It is desired that 

MEGs be fully utilized to restore a maximal amount of critical 

load. Thus, the matching between MEGs and critical loads is 

important, as mentioned above. In this sub-section, the 

capacity utilization of MEGs is investigated. The evaluation 

process is to do simulations by solving real-time allocation 

problems for different scenarios based on fixed pre-positioning 

decisions, and then summarize the simulation results.  

We use the foregoing CUR as an evaluation index here. If 

MEG m is connected to node k in scenario n, its CUR will be 
 

max 100%ikn i m

i

CUR p P


  
B

（ ）                 (16) 

 

 Based on pre-positioning decisions discussed in Section 

VI.B, we conduct 500 rounds of simulations of the real-time 

allocation. Statistics for the CUR of each MEG with different 

capacities are listed in the second column of Table III. With an 

average CUR of 67.43%, the performance of the real-time 

allocation in matching MEGs with critical loads is acceptable. 

Actually, when using (8) as the objective function in real-time 

allocation problems, partial capacity of MEGs is sacrificed to 

achieve fast restoration of critical loads with high priorities. 

Here, we further investigate the CUR performance of a 

modified version of the real-time allocation problem. That is, 

the objective function (8) in the real-time allocation problem is 

replaced by the following one, which drops considerations of 

load priorities and travel time of MEGs on RNs:  
 

{ , }

max ikn i

i k

p
 

 
B F G

                              (17) 

 

Again, 500 rounds of real-time allocation simulations are 

conducted. The statistics for the CUR are listed in the fourth 

column of Table III. As shown, the performance of capacity 

utilization of MEGs is now even better. Thus, one may alter 

settings of the objective function according to one’s 

preference. In fact, whether using (8) or (17) as the objective, 

generally the proposed real-time allocation model can 

rationally match MEGs with loads as long as the topology of 

DSs allows. As indicated by the third and fifth columns of 

Table III, among a major fraction of simulated cases, the CUR 

of different types of MEGs reaches a level above 85%. Note, 

however, that among the other simulated cases, damage to DSs 

resulting from the hurricane may force some of the MEGs to 

serve small amounts of loads in some small isolated outage 

areas, such as the MG 403 shown in Fig. 5. 

 
TABLE III 

SIMULATION STATISTICS FOR CAPACITY UTILIZATION RATE  
 

—— 

MEG No. 

m 

Using obj. (8) Using obj. (17) 

Capacity 

utilization rate  

Times when 

CUR≥85% 

Capacity 

utilization rate 

Times when 

CUR≥85% 

1 73.03 %  221 74.58 %  228 

2 64.13 %  97 80.87 %  252 

3 75.93 %  242 87.28 %  323 

4 63.65 %  149 71.36 %  221 

5 60.41 %  126 72.14 %  179 

Average 67.43 %  167 77.25 % 240.6 

 
Actually, saving 25~35% of MEGs’ capacities as reserves is 

reasonable to accommodate fluctuation of loads, and helps to 

restore adjacent loads after some DS elements are quickly 

repaired. For example, in Fig. 5, after the line (404, 405) is 

repaired quickly, the loads at nodes 405 and 406 can be 

restored by the MEG at node 403. Electric service recovery for 

these nodes will not have to wait for repair and restoration of 

main grids and feeders, which may take much longer after a 

natural disaster. 

Case studies in this sub-section validate the capability of the 

proposed strategy and formulations to match MEGs and loads, 

thus achieving better utilization of MEGs. First, the strategy of 

MG formation with MEGs can avoid low capacity utilization 

of MEGs. Secondly, their allocations and load pickup via MG 

formation are explicitly co-optimized by our formulations. 

Various constraints and conditions, which are major 

challenges for the current MEG dispatch practice, are 

appropriately included. 

D.  Importance of Considering Traffic Issue and Pre-positioning 

As summarized in Table IV, real-time allocation is 

simulated 100 times under different settings for demonstration 

purposes. First, we show that to mitigate influence of the 

traffic issue on future real-time allocation, it is necessary to 

conduct proactive pre-positioning.  

 
  

TABLE IV 

SIMULATION STATISTICS FOR LOAD RESTORATION AND MEG TRAVEL TIME 
 

—— 
Average amount of load 

restored by MEGs 

Average travel time to 

assigned locations 

Non-optimal pre-positioning 3866.8 kW 28.26 minutes 

Optimal pre- 

positioning 

Using obj. (8) 3910.9 kW 21.58 minutes 

Using obj. (18) 4082.5 kW 35.05 minutes 

 
As indicated by the third row of Table IV, with optimal pre-

positioning, the time spent by MEGs on RNs with real-time 

allocation is short. Once assessments of DGs and RNs are fully 

or partly completed after the hurricane, optimal real-time 

allocation decisions can be derived. MEGs are then sent to 

assigned locations and will arrive soon to restore critical loads. 

If pre-positioning is not performed, certainly one can still use 

the same real-time allocation decisions to restore the same 

number of critical loads. However, it can take much longer for 

MEGs to travel on RNs from other distant regions to allocated 
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locations. When some administrative processes are included, 

outage durations for loads to be restored by MEGs can be 

hours or even days longer.  

Moreover, rather than merely random pre-positioning, 

optimal pre-positioning is desired. The second row of Table 

IV shows statistics for real-time allocation simulations when 

randomly decided, non-optimal pre-positioning is assumed. 

Compared to real-time allocation simulations based on optimal 

pre-positioning, the amount of restored load is slightly less, 

and the travel time of MEGs on RNs is 30.95% longer.  

Second, we show the importance of explicitly considering 

the traffic issue in real-time allocation. We experimentally 

alter the objective of real-time allocation to be the following 

one:  
 

{ , }

min (1 )i i ikn in

i k

w p T
 

  
B F G

                       (18) 

 

i.e., we drop the consideration of traffic issues. As indicated by 

the last row of Table IV, based on optimal pre-positioning, 

although the amount of restored load is slightly higher, this 

change leads to a longer outage duration of loads to be 

restored by MEGs.  

Simulations demonstrate the importance of considering 

traffic issues and applying pre-positioning. Solving the VR 

problem by methods such as Dijkstra’s algorithm, and then 

using related parameters in both pre-positioning and real-time 

allocation, are effective in reducing the outage duration of 

critical loads to be picked up by MEGs. In a practical system, 

the effectiveness can be more significant. To sum up, first, if 

proactive pre-positioning is not conducted, the outage duration 

of some critical loads can be much longer. Second, optimal 

pre-positioning does lead to better performance of real-time 

allocation than non-optimal pre-positioning. And third, to 

achieve the intended fast restoration, explicit consideration of 

traffic issues in performing real-time allocation is necessary.  

E.  Computational Efficiency  

In this paper, mixed-integer linear programming problems 

are solved by a computer with an Intel i5-4278U processor and 

8 GB of memory using Gurobi 6.0.4 with the default setting. 

The convergence tolerance of Algorithm 1 is set as 0.5%.  

As for the pre-positioning problem, we consider 20 

scenarios. Applying the SD algorithm, the problem can be 

solved within 10.04 minutes in 8.2 iterations on average. The 

computational efficiency is acceptable, since pre-positioning is 

conducted as much as days in advance. Table V further 

compares the computation time using the SD algorithm to the 

solution time directly using Gurobi 6.0.4 (here, MIPGap set as 

0.5% for fair comparison) with different numbers of scenarios: 

 
TABLE V 

COMPUTATION TIME COMPARISON OF PRE-POSITIONING PROBLEM (minutes) 
 

Solution 

Methods 

Scenario Number 

10 20 30 40 50 

Gurobi 6.0.4 8.38 20.24 54.71 86.62 134.12 

SD algorithm 4.61 10.04 35.73 62.16 101.22 

 
Application of the SD algorithm generally reduces the 

computation time. However, with increasing scenario number, 

the computational efficiency improvement becomes less 

significant. Since a major advantage of Algorithm 1 is that it 

can be easily implemented in a distributed framework of 

parallel computing [35] [37], faster computation can be 

achieved by doing so. Note that decision makers can set the 

convergence tolerance according to the situations such as 

scenario number, computation framework (serial or parallel) 

and computation environment, etc. We set it as 0.5% here so 

that all pre-positioning problems for this section can be solved 

within a reasonable length of time, and it takes much longer 

time to further reduce the optimality gap. The choice of 

scenario number is also an important issue. Less scenarios are 

desired to achieve better computational efficiency, while more 

scenarios improve the quality of the optimal solution. Decision 

makers should also dependently decide the scenario number 

according to the situations. Firstly, one can consider increasing 

the scenario number if the optimal solution is not consistent. 

Secondly, running simulations to evaluate solutions can be 

another choice if increasing scenario number is not an option.  

As for the real-time allocation problem, mostly it is solved 

rapidly within half a second. The computational efficiency is 

also acceptable. 

VII.  CONCLUSIONS 

Natural disasters often cause prolonged outages for many 

customers because of sustained damage of DS elements. 

MEGs are valuable flexibility resources for fast recovery of 

this electric service. This paper proposes to dispatch MEGs as 

DGs to restore critical loads by MG formation. This approach 

is realized by a two-stage dispatch framework with pre-

positioning and real-time allocation. Illustrative cases validate 

the effectiveness of the proposed MEG dispatch method. 

Explicitly considering the traffic issue and proactively 

executing pre-positioning can reduce the outage duration of 

critical loads. Rational matching between MEGs and loads is 

also achieved in real-time allocation. In summary, our 

proposed method for MEG dispatch is effective for reducing 

the outage scale and duration of critical loads after natural 

disasters strike. Thus, compared to the current practice, MEGs 

can be better utilized for resilient emergency response to 

natural disasters. 

 Some future research topics are worth investigating. Firstly, 

a robust real-time allocation strategy against uncertainties is 

desired to achieve fast response. Currently we are using 

perfect information for the real-time allocation problem. That 

is, we assume that damage assessments can be finished quickly 

to inform the system status. However, in some cases complete 

assessments of DS and RN damages can be quite time-

consuming. Thus, real-time allocation of MEGs based on 

imperfect information should be studies, especially for 

intended applications. Secondly, multi-period dynamic 

dispatch of MEGs can be co-optimized with the sequence to 

repair damaged elements in DSs. After actions including the 

conventional DS restoration and resilient response of MEGs, 

the DS stays in the post-restoration state for some time, and 

will start the infrastructure recovery process [29]. Damaged 

components will be repaired and the system will be restored 

dynamically. We will have to study how MEGs should 
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respond dynamically in this infrastructure recovery process to 

reduce load outage. This problem is also important for 

intended applications of MEGs. Third, combined with the 

optimal repair sequence problem, the proposed MEG dispatch 

methodology can be reduced or modified for utility repair 

truck scheduling. 
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