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ABSTRACT 
 
 
 

OPTIMIZING RESILIENCE DECISION-SUPPORT FOR NATURAL GAS NETWORKS 

UNDER UNCERTAINTY 

 
 

Community resilience in the aftermath of a hazard requires the functionality of complex, interdependent 

infrastructure systems become operational in a timely manner to support social and economic institutions. In 

the context of risk management and community resilience, critical decisions should be made not only in the 

aftermath of a disaster in order to immediately respond to the destructive event and properly repair the damage, 

but preventive decisions should to be made in order to mitigate the adverse impacts of hazards prior to their 

occurrence.  This involves significant uncertainty about the basic notion of the hazard itself, and usually 

involves mitigation strategies such as strengthening components or preparing required resources for post-

event repairs.  In essence, instances of risk management problems that encourage a framework for coupled 

decisions before and after events include modeling how to allocate resources before the disruptive event so as 

to maximize the efficiency for their distribution to repair in the aftermath of the event, and how to determine 

which network components require preventive investments in order to enhance their performance in case of 

an event.  In this dissertation, a methodology is presented for optimal decision making for resilience 

assessment, seismic risk mitigation, and recovery of natural gas networks, taking into account their 

interdependency with some of the other systems within the community. In this regard, the natural gas and 

electric power networks of a virtual community were modeled with enough detail such that it enables 

assessment of natural gas network supply at the community level. The effect of the industrial makeup of a 

community on its natural gas recovery following an earthquake, as well as the effect of replacing conventional 

steel pipes with ductile HDPE pipelines as an effective mitigation strategy against seismic hazard are 

investigated. In addition, a multi-objective optimization framework that integrates probabilistic seismic risk 
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assessment of coupled infrastructure systems and evolutionary algorithms is proposed in order to determine 

cost-optimal decisions before and after a seismic event, with the objective of making the natural gas network 

recover more rapidly, and thus the community more resilient. Including bi-directional interdependencies 

between the natural gas and electric power network, strategic decisions are pursued regarding which 

distribution pipelines in the gas network should be retrofitted under budget constraints, with the objectives to 

minimizing the number of people without natural gas in the residential sector and business losses due to the 

lack of natural gas in non-residential sectors. Monte Carlo Simulation (MCS) is used in order to propagate 

uncertainties and Probabilistic Seismic Hazard Assessment (PSHA) is adopted in order to capture 

uncertainties in the seismic hazard with an approach to preserve spatial correlation.  A non-dominated sorting 

genetic algorithm (NSGA-II) approach is utilized to solve the multi-objective optimization problem under 

study. The results prove the potential of the developed methodology to provide risk-informed decision 

support, while being able to deal with large-scale, interdependent complex infrastructure considering 

probabilistic seismic hazard scenarios.   
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CHAPTER 1: INTRODUCTION 
 
 
 

Community resilience in the aftermath of a disaster is determined based upon the 

functionality of complex, interdependent infrastructure systems – physical, social, and economic. 

These infrastructure systems – including transportation, telecommunication, electric power, water, 

and natural gas can be quite vulnerable to natural hazards and their disruption can disturb the social 

welfare and economic vitality of a community. As an example, Gordon et al. (1998) estimated that 

in the 1994 Northridge earthquake in Los Angeles, approximately one-quarter of business 

disruption losses were due to the failure of highway bridges. Therefore, in order for a community 

to be resilient, interdependent lifelines should remain functional, or return to functionality rapidly 

after a disruptive event. When lifeline network functionality is threatened by a natural hazard, 

community resilience which can be defined as “the ability to prepare for and adapt to changing 

conditions and withstand and recover rapidly from disruptions” (PPD-21, 2013) is called into 

action (Guidotti et al., 2016). The word resilience is rooted from the Latin word “resiliere” which 

means “to bounce back”. The concept of resilience has evolved and has been used in different 

disciplines such as ecology, material science, psychology, economics, and engineering. The 

concept of resilience in the engineering domain is quite new in comparison to other domains 

(Hosseini et al., 2016). Several researchers have provided definitions for resilience in the 

engineering domain. Youn et al. (2011) defined engineering resilience as the sum of the passive 

survival rate (reliability) and proactive survival rate (restoration) of the system. Hollnagel et al. 

(2006) described engineering resilience as the intrinsic ability of a system to adjust its functionality 

in the presence of a disturbance and unpredicted changes. The American Society of Mechanical 

Engineers (ASME, 2009) defined resilience as the ability of a system to sustain external and 
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internal disruptions without discontinuity of performing the system’s function, or if the function 

is discontinued, to fully and rapidly recover the function.  

In terms of community resilience, Koliou et al. (2018) reviewed the previous studies 

focusing on the effects of natural hazards on the built environment as well as social and economic 

systems within a community. They also discussed research needs in order to improve resilience 

assessment methodologies at the community level. They stated that one example of these gaps is 

including dependencies and interdependencies between the networks and components of a 

community in order to develop a methodology for community resilience assessment that properly 

correlates physical, social, and economic systems. Rosowsky  (2019) explored the definitions of 

resilience in the context of civil engineering systems subjected to natural hazards.  He considered 

a range of issues one should consider in articulating resiliency requirements for infrastructures 

systems, such as prioritization, triage, sequencing, and the ability to make emergency supplemental 

investments. He also discussed many of these dimensions and how associated decisions have 

political, social and economic dimensions.  

Bruneau et al. (2003) defined a four-dimensional framework for community resilience, 

which is known as the resilience triangle model. The four dimensions they consider in their 

definition include: (i) Robustness, which is defined as the strength of a system to withstand any 

disruptive event in order to prevent losing its functionality, (ii) rapidity, which shows the speed or 

rate at which a system can return to its original state in order to meet an acceptable level of 

functionality, (iii) resourcefulness, which represents the ability to recognize and manage material 

(i.e., physical, technological, and information) and human resources in a case of emergency or 

disaster, in order to achieve predefined goals, and (iv) redundancy, which represents the extent of 
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substitutable components or systems that can be used in the case of a disaster in order to minimize 

the likelihood and impact of disruptions.  

Chang and Shinozuka (2004) proposed resilience measures that relate expected losses in 

future disasters to a community’s seismic performance objectives. They used the four dimensions 

of community resilience previously proposed by Bruneau et al. (2003), which consists of technical, 

organizational, social, and economic dimensions. They demonstrated their proposed measurement 

framework by evaluating seismic resilience of the water delivery system in Memphis, Tennessee, 

comparing two retrofit strategies. They state that their resilience framework can be valuable for 

guiding mitigation and preparedness efforts. Miles and Chang (2003, 2004 and 2006) provided a 

conceptual model for disaster recovery in order to study community resilience. The basic notion 

of the model is based upon imperative relationships between a community’s households, 

businesses, infrastructures, as well as its neighborhoods. They proposed five primary interrelated 

factors affecting recovery: (1) time, (2) space, (3) agents attributes, (4) interactions, and (5) policy. 

In this concept, spatial effects represent the importance of the topology of community components; 

meanwhile temporal effects illustrated the changes in the condition of a system during time. For 

example, households and businesses can be influenced by availability of water, power, natural gas, 

transportation, and local employment opportunities, which can have different conditions (i.e. 

performance/functionality) at different locations of the community during various timeframes. On 

the other hand, one example for the agent-attribute effects is the type of demand for businesses. 

The local transportation conditions and the recovery of households in neighborhoods are variables 

that can affect businesses with local demands, but they do not have a significant influence on 

businesses that export their products. Interaction effects represent the dependencies, cross-

dependencies, and interdependencies across community components and networks. For example, 
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the pumping stations in the water supply systems require electricity in order to be functional; or 

any disruption in the transportation system can delay repair of damaged components in, for 

example, the natural gas network. Households affect businesses in that not only do they provide 

employees for businesses but they are also consumers of their products. On the other hand, 

businesses affect households as they satisfy the households’ demands. Finally, policy effects 

originate from the organizational decisions such as mitigation strategies and emergency planning 

before the event or restoration and resource prioritization in the aftermath of the disaster.  

In terms of the infrastructure resilience, the National Infrastructure Advisory Council 

(PPD-21, 2013) defined the resilience of infrastructure systems as their ability to predict, absorb, 

adapt, and/or quickly recover from disruptive events such as natural disasters. It is noteworthy that 

infrastructure systems are considered a subdomain of both engineering and social domains as their 

lack of resilience can result in adverse impacts on well-being of communities (Hosseini et al., 

2016). Moreover, infrastructure systems can have a significant influence on the economy of 

communities (Percoco, 2004). Since infrastructure functionality has a crucial role on social welfare 

and economic vitality of communities, a lot of research has recently focused on infrastructure 

systems’ resilience. Shafieezadeh and Ivey Burden (2014) proposed a probabilistic framework for 

scenario-based resilience assessment of infrastructure systems. The developed method accounts 

for uncertainties in the process including the correlation of earthquake intensity measures, fragility 

assessment of structural components, estimation of repair requirements, the repair process, as well 

as the service demands. They applied the proposed methodology to a hypothetical seaport terminal 

and evaluated the system level performance of the seaport using various performance metrics. The 

results showed that medium to large seismic events may significantly disrupt the operation of 

seaports immediately after the event and that the recovery process may take months. They state 
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that their proposed framework enables port stakeholders to systematically assess the most-likely 

performance of the system during expected future earthquake events. Guidotti et al. (2019) 

proposed probabilistic flow-based models for estimating the capacity and demand of critical 

infrastructure considering different levels of resolution. The model set in a probabilistic procedure 

that considered the impact of the disruptive event on the infrastructure. The procedure was capable 

of predicting the reduction or loss of functionality of the infrastructure in terms of their ability to 

provide essential goods or services. Physical infrastructure and social systems were integrated in 

the models in order to predict the change in demand on the infrastructure. The proposed 

methodology was applied to the modeling of the portable water network for the small coastal 

community of Seaside, Oregon considering a seismic event as scenario. The results showed that 

neglecting the interdependency between the physical infrastructure and social systems may result 

in estimates of higher demands on the physical systems, slower recovery time, as well as smaller 

impacts on society in terms of population dislocation.  

Furthermore, interdependencies play a substantial role in the performance of infrastructure, 

and thus the resilience of communities. During normal situations, these interdependencies can be 

beneficial and help networks operate near their optimized design capacity (Applied Technology 

Council, 2016; Guidotti et al., 2016; Nan and Sansavini, 2015; Ouyang et al., 2015). In the case of 

a disaster, however, interdependencies can have a substantial contribution to cascading effects and 

taking them into account can substantially alter the recovery process. Therefore, it is crucial to 

study the resilience of lifeline systems within a community including their interdependencies. An 

emerging body of research on functionality assessment and restoration modeling of interdependent 

infrastructure is ongoing.  Dueñas-Osorio et al. (2007) presented the topological characterization 

of two interdependent small-sized real networks and investigated the effect of the degree of 
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coupling between networks with a tunable parameter that drove networks from independence to 

complete interdependence. The results showed that detrimental responses are larger when 

interdependencies are included in the analyses. Zhang et al. (2016) examined the vulnerability of 

an interdependent power-water network system by taking into account the effect of cascading 

failures as well as the resulting load redistribution through the power network. They introduced a 

critical tolerance threshold in order to control the cascading failures in the power system and its 

propagation into the water network. Guidotti et al. (2016) modeled the direct effects of seismic 

events on response and functionality of a potable water distribution network and simulated the 

cascading effects of the damage to the electric power network on the potable water distribution 

network. The results quantified the loss of functionality and the delay in the recovery process due 

to dependency of the potable water network on the electric power network and emphasized the 

importance of considering dependencies between different networks in modeling the resilience of 

critical infrastructure. Dong and Frangopol (2017) studied an interdependent healthcare-bridge 

network subjected to seismic hazard considering the effects of extra travel and waiting time along 

with the structural damage to the hospitals and bridges. Argyroudis et al. (2015) examined the 

influence of interdependencies on performance of road networks for case of a seismic hazard. The 

interdependencies were modeled both through the network components in addition to other 

external networks. It was shown that interdependencies can substantially affect the performance 

of a road network, specifically at the urban level where building collapse has a significant impact 

on network functionality. Masoomi and van de Lindt (2018) modeled a water network, electric 

power network, school buildings, residential buildings, and businesses along with their relative 

spatial distribution and system interdependencies and investigated the restoration of a community 

in the aftermath of a tornado.  
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Resilience studies of natural gas distribution networks have been primarily focused on the 

performance evaluation and vulnerability assessment of natural gas pipelines in the case of seismic 

hazards (see e.g. Choo et al., 2007; Jeon and O’Rourke, 2005; Lanzano et al., 2014; Lanzano et 

al., 2013; O’Rourke et al., 2014; Omidvar and Kivi, 2016; Xie et al., 2013; Psyrras and Sextos, 

2018; Tsinidis et al., 2019; Badida et al., 2019). A number of researchers have also focused on 

studying qualitative and quantitative methodologies for risk assessment of natural gas distribution 

networks (see e.g. Esposito et al., 2015; Han and Weng, 2011; Liu et al., 2018; Markowski and 

Mannan, 2009; Cimellaro et al. 2014; Praks et al., 2017; Urlainis et al., 2015; Yuhua and Datao, 

2005; Zulfikar et al., 2016). Some researchers have also studied the interconnected natural gas 

network and electric power network systems. Ouyang and Wang (2015) developed a resilience 

assessment framework for interdependent systems with the focus on modeling and resilience 

contribution analysis of multi-systems’ joint restoration processes. As an illustrative example, the 

methodology was used for evaluating the resilience of the interdependent power and gas systems 

in Houston, Texas under hurricane hazards, using five different types of joint restoration strategies. 

The results revealed that under limited restoration resources, a gas-aimed restoration strategy is 

the best for the gas system recovery. Chiang and Zavala (2016) developed a detailed optimal 

control model that captured spatiotemporal interactions between natural gas and electric 

transmission networks. They used the model to study flexibility and economic opportunities 

provided by coordination and applied the methodology to a large-scale case study in the Illinois 

system to show the coordination can enable the delivery of significantly larger amounts of natural 

gas to the power grid.  Liu et al. (2017) proposed a framework that combined dynamic modeling 

and resilience analysis of interconnected critical infrastructure. Thy performed a resilience analysis 

on two interconnected critical infrastructures, a gas network and an electric power system, using 
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numerical calculation of the resilience conditions in terms of design, operation, and control 

parameters values for certain failure scenarios. They state the results can be valuable to inform the 

decision making process of critical infrastructures operators and other stakeholders. Portante et al. 

(2017) proposes a framework for interdependency modeling in order to evaluate cascading failures 

within critical infrastructure systems. The framework permitted the integration and automation of 

the assessment process, including threat and hazard identification and data acquisition, as well as 

estimation and projection of the impact zones. The model was also capable of simulating the initial 

effects on infrastructure assets resulting from an initiating disruptive event and evaluation of 

propagating effects within each infrastructure system. Two state-level case studies were used in 

order to illustrate the approach in simulating the propagation of disruptions between the natural 

gas and electric power systems.  

It should be noted, however, most of the natural gas network research has been dedicated 

to region-wide performance of natural gas networks and the system performance at the community 

level is seldom studied.  Moreover, the bi-directional interdependency between natural gas and 

electric power network systems has been rarely studied. Modeling the natural gas network at the 

community level and considering interdependencies in resilience assessment of natural gas 

networks is important for risk-informed decision making is needed. Furthermore, decision making 

relating to preparedness and recovery has a crucial impact on maintaining safety, social wellbeing, 

and economic vitality of a community in the aftermath of a disaster. Thus, an optimal decision-

making framework that quantifies the effect of different mitigation and recovery strategies needs 

to be developed in order to enhance the resilience of the communities after disasters. 

OVERVIEW OF DISSERTATION  
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In this dissertation, a comprehensive approach is presented for optimal decision making 

for resilience assessment, seismic risk mitigation, and recovery of natural gas networks, taking 

into account their interdependency with other systems in the community. In this regard, the natural 

gas and electric power networks of a virtual community known as Centerville (Ellingwood et al., 

2016) were modeled with enough detail such that it enables resilience assessment of natural gas 

network at the community level. Moreover, probabilistic seismic hazard assessment is considered 

in this dissertation, as it is crucial in capturing uncertainties in decision-making processes. A brief 

overview of the remaining chapters of this dissertation is summarized below:  

Chapter 2 describes modeling natural gas networks and their components at the community 

level. It discusses fragility and restoration curves as well as repair rate equations that are developed 

based on available empirical data and expert judgment. In order to represent the performance of 

network components under seismic hazards, the fragility curves and repair rate equations are 

extracted from literature. 

Chapter 3 discusses the interdependency approach for natural gas network and other 

systems. Modeling the interdependency between natural gas network and other systems as well as 

how disruption in one network can result in failures in the other are discussed. In order to consider 

the effect of cascading failures, a bi-directional dependence has been considered between the 

natural gas and electric power network in this dissertation.  

Chapter 4 presents modeling of the earthquake hazard. Simulating spatial damage over the 

community when subjected to a seismic hazard is discussed to be employed further in the 

restoration analysis explained in the next chapter. In this dissertation, earthquake simulations are 

done using two different approaches: scenario-based and hazard-based. For scenario-based 

simulations, earthquake hazards are being generated using a well-known attenuation model for the 
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considered scenarios. For hazard-based simulations, two earthquakes with return periods of 475 

years and 2475 years are considered using probabilistic seismic hazard assessment, which is done 

based on the active faults existing around the community and the possible earthquakes they can 

generate. In both cases, the effects of liquefaction are also included. 

Chapter 5 introduces a community restoration algorithm in order to model the recovery 

process of the affected natural gas network. The algorithm is capable of representing spatial and 

temporal depiction of the restoration process until the full restoration is achieved. The algorithm 

also captures dependencies and interdependencies across components and networks and includes 

the effect of cascading failures in the restoration analysis such that a component remains non-

functional until all its supplier nodes are fully recovered and functional, even if the component 

itself is undamaged or has been already repaired. Mitigation strategies and optimized resource 

allocation processes are also discussed in this chapter in order to evaluate the effect of those 

strategies on pace of recovery in natural gas networks.  

Chapter 6 represents the illustrative community model used in this dissertation. Indeed, to 

illustrate the methodology proposed, a virtual community known as Centerville is subjected to the 

considered earthquakes (both scenario- and hazard-based), in order to examine the restoration of 

communities in the aftermath of an earthquake.  This chapter discusses the topology and structure 

of the natural gas as well as electric power networks and describes the bi-directional dependence 

considered across the networks. It should be noted that although only natural gas network and 

electric power network are considered in this dissertation, other critical infrastructure systems such 

as transportation, telecommunication, water, and emergency services can be modeled and 

integrated into the current model in future studies.  
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Chapter 7 introduces a platform for optimal decision making, resilience assessment, 

seismic risk mitigation, and recovery of natural gas networks, taking into account their 

interdependencies with other systems. An algorithm is developed in order to find the best locations 

for replacing the main steel distribution pipelines with earthquake-resistant HDPE pipelines under 

limited budgets. Focusing on residential and business sectors in the community as two main sectors 

affecting the social stability area, decisions can be made on what pipelines should be retrofitted in 

order to improve the speed of network recovery and achieve the preliminary goals of the 

community.  

Finally, the overall summary and the conclusions, the anticipated contribution to the 

profession, as well as recommendations for future research studies are provided in Chapter 8 of 

this dissertation. 
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CHAPTER 2: COMPONENT MODELS FOR NATURAL GAS NETWORKS 
 
 
 

Natural gas is a vital component and is a major source of the energy supply in worldwide. 

Natural gas has many applications, including in commercial applications, in residential sectors, in 

industry, and even in the transportation sector. According to the U.S. Energy Information 

Administration (EIA, 2017) energy form natural gas accounts for 29 percent of the total energy 

consumed in the United States, making it a key component of the nation’s energy supply. Figure 

2-1 shows the natural gas consumption by sector in the United States in 2017.  

 

Figure 2-1: U.S. Natural Gas Consumption by Sector (source: EIA, 2017) 

Like other lifelines, natural gas networks (NGN) are susceptible to physical damage during 

earthquakes. Indeed, seismic events have highlighted the vulnerability of NGNs and the 

consequences of NGNs’ loss of functionality on community resilience (Esposito et al., 2013). 

Specifically, recent earthquakes have caused a lot of damage to NGNs. As an example, the 1971 

San Fernando earthquake resulted in extensive damage to welded-steel transmission pipes. The 

1923 Kanto Japan earthquake also caused over four thousand breaks to gas pipelines in the Tokyo 

region (Esposito et al., 2013). In addition to pipelines, damage to other aboveground facilities in 

NGNs have also been observed. Besides the lifeline disruption due to the physical damage, there 
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are other possible consequences such as pollution of the waterways or onset of fires and explosion. 

The explosion subsequent to the 1971 San Fernando earthquake, which caused crater-like 

depressions in the streets, is a good example. Therefore, it is important to conduct accurate 

vulnerability assessment of NGN components in order to design communities that are more 

resilient.  

NETWORK OVERVIEW AND DEFINITIONS OF COMPONENTS 

A natural gas system consists of two main categories of components: 1) nodal elements 

(e.g. natural gas processing plants and city gate stations), and 2) link elements i.e. pipelines that 

connect the nodal components together. The main components of the NGN include the following: 

1) Natural Gas Processing Plant (NGPP): These facilities serve as a critical component in 

natural gas networks and their disruption can significantly interrupt the whole network’s 

functionality.  The natural gas that is brought up from the underground to the wellhead 

contains hydrocarbons, carbon dioxide, hydrogen sulfide, and water together with many 

other impurities (Poe and Mokhatab, 2016). On the other hand, major transportation 

pipelines usually impose restrictions on the quality and make-up of the natural gas that is 

allowed into the pipelines. Therefore, the raw natural gas from wellhead must be processed 

in a safe way and with minimal environmental effect before it can be moved into the 

transmission pipelines. Although some of the required processing can be accomplished at 

or near the wellhead (field processing), the complete processing of natural gas is done at a 

processing plant that is usually located in a natural gas producing region. The objective of 

a NGPP is to separate natural gas, associated hydrocarbon liquids, acid gases, and water 

from a gas-producing well and condition these fluids for sale or disposal (Poe and 

Mokhatab, 2016). After the liquid components and impurities are removed from the natural 
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gas, the natural gas can be injected into transmission and distribution systems in order to 

be used as fuel by residential, commercial and industrial consumers (Kidnay et al., 2011). 

Figure 2-2 shows a typical NGPP. It should be noted that processing plants may be different 

sizes and can be significantly different in their feed and product.  

 

Figure 2-2: Natural Gas Processing Plant (source: https://www.bicmagazine.com) 

2) Compressor Stations (CS): Natural gas needs to be highly pressurized while travelling 

through the transmission network. In order to make sure that natural gas maintains its high 

pressure so it can be transported from transmission pipelines to distribution systems, there 

are compressor stations usually located every 60 to 160 km (40- to 100-miles) along the 

pipelines, which supply the gas with necessary amount of pressure to keep it flowing over 

long distances through the network (Folga, 2007). These stations compress the natural gas 

using either a turbine, motor, or an engine. In addition to compressing natural gas, some 

compressor stations contain some type of liquid separator and filters similar to the ones 

https://www.bicmagazine.com/
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used to dehydrate natural gas during its pressing in order to capture any liquids or 

undesirable particles from the natural gas in the pipeline (Folga, 2007). These facilities 

usually include one or more compressor units, auxiliary equipment for secondary functions 

such as power generation or cooling of discharge gas, as well as a Supervisory Control And 

Data Acquisition (SCADA) system (Pitilakis et al., 2014). A typical compressor station 

houses the gas turbine compressor package as well as the instrumentation controls and 

equipment required to monitor and operate the engines and compressors in a low-rise 

building that are can be made from steel or reinforced concrete. These stations are usually 

enclosed by a chain-link fence and most have some type of additional security equipment 

such as cameras and motion sensors (Folga, 2007). Figures 2-3 and 2-4 show photos of the 

exterior and interior of a NGN compressor station.  

 

Figure 2-3: Exterior View of a Natural Gas Compressor Station (source: 
https://www.entecheng.com) 
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Figure 2-4: Interior View of a Natural Gas Compressor Station (source: http://go.jereh.com) 

3) City Gate Stations (CG): These stations are the connection points between the high-

pressure transmission and medium/low-pressure distribution networks in a natural gas 

system, and are sometimes called town border or tap stations (Folga, 2007). The main 

function of the city gate stations is to meter the natural gas and reduce its pressure in the 

transmission pipeline to the distribution system. Moreover, natural gas received at the city 

gate may not contain odorant (the compound that gives the natural gas its specific smell). 

Before the gas leaves the city gate station, odorant is added to the gas if it contains 

insufficient or no odorant (Folga, 2007). These stations are usually cased in one-story 

buildings which house regulators and mechanical equipment for gas pre-heating, gas 

odorizing, and control through a SCADA system (Pitilakis et al., 2014). Figure 2-5 shows 

a typical city gate station. 

http://go.jereh.com/
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Figure 2-5: Natural Gas City Gate Station (source: https://www.fiorentini.com) 

4) District Regulating Stations (DR): These are local stations in the distribution networks that 

are used to control the pressure of the gas flowing through the distribution pipelines. They 

have a pressure reduction facility in order to set the gas pressure to the required level for 

end users. These stations are usually buried or housed in a metallic kiosk (Esposito et al., 

2015). Figure 2-6 shows a district regulating station.  

 

Figure 2-6: Natural Gas Processing Plant (source: https://www.tecnogas.es) 
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In general, natural gas pipelines can be divided into three main groups based on the level 

of pressure they operate at:  

1) Supra-regional transmission pipelines: these pipelines operate at extremely high pressures 

and have large diameters (usually up to 120 cm (48 inches) in diameter). These pipelines 

can cover large areas. 

2) Regional transmission/distribution pipelines: these pipelines also operate at higher pressure 

levels and are mainly used to connect the transmission networks to distribution systems. 

3) Local distribution pipelines: these are smaller pipelines that usually operate in the medium- 

to low-pressure ranges through the distribution networks. 

For pipelines, the material and connection types are determining factors in performance of 

the pipelines, since they govern the behavior and the potential failure modes of buried pipelines in 

an earthquake. Reports from the American Lifeline Alliance (ALA, 2001) and HAZUS-MH 

(FEMA, 2003) describe some of the most common types of materials and connections used in 

buried pipelines. It is noteworthy that, pipelines that are specifically designed for natural gas 

networks are usually made of relatively ductile materials such as steel (K Pitilakis et al., 2014). 

Another particular type of material is polyethylene (medium or high density, i.e. MDPE or HDPE), 

which is used in newer networks due to its high ductility. 

COMPONENTS DAMAGE MODELS 

In order to capture damage that occurs to natural gas network components, fragility curves 

can be used. A seismic fragility describes the performance of a component or a system subjected 

to earthquakes in probabilistic terms, and can be defined as a mathematical function that expresses 

the probability that a facility or a component exceeds some previously defined limit state, as a 

function of a certain intensity measure such as peak ground acceleration (Porter, 2015). Fragility 
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models are used in order to estimate the risk of earthquake excitation acting on the components of 

different lifeline systems such as natural gas networks. The fragility of a structural component or 

system is usually expressed in the form of a lognormal cumulative distribution function (CDF) as 

shown in Equation (2-1):  

𝐹𝑟(𝑥) = Ф [ln(𝑥) − 𝜆𝜉 ] (2 − 1) 

where x = specified intensity measure (e.g. PGA or SA); Ф[∗] = standard normal 

cumulative distribution function; 𝜆 = logarithmic median of the capacity; and 𝜉 = logarithmic 

standard deviation of the capacity. Fragility functions are obtained either by structural modeling 

of the seismic performance of components and systems (known as analytical approach; e.g. 

Ellingwood, 2001; Singhal and Kiremidjian, 2002; Shinozuka et al., 2002; Noh et al., 2015), or 

using statistical analysis of failures observed during past earthquakes (known as the empirical 

approach; e.g. O’Rourke and So, 2000;  Gardoni et al., 2002; Basoz et al., 2003; Straub and Der 

Kiureghian, 2008; Noh et al., 2015). In the analytical method, simulations include an analytical 

model of the structure subject to a set of ground motions having varying intensities. This process 

is known as incremental dynamic analysis (for more information on this see Vamvatsikos and 

Allin Cornell, 2002). Using the selected ground motion intensity in each simulation, the 

corresponding structural response/damage of the structure is recorded and used for fragility 

development. In the empirical method, the observed damage to the individual structure is recorded 

in addition to the intensity measure in case a ground motion instrument is present near that 

structure. However, as it is unlikely that there will be a strong ground motion instrument near the 

structure, usually the ground motion is estimated using ground motion prediction models or from 

a ground motion map such as the ShakeMaps produced by the USGS. It should be noted that, 

another class of fragility functions are known as expert opinion or judgment-based fragilities. An 
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expert opinion fragility function is created by polling one or more experts in the field with the asset 

class in question, where the experts judge or predict failure probability as a function of 

environmental excitation (Porter, 2015). Examples of judgement-based fragilities can be found in 

Applied Technology Council (ATC, 1985). 

For aboveground facilities (e.g. compressor stations and city gate stations), seismic 

fragility curves are usually based upon peak ground acceleration (PGA) and are often developed 

based upon available empirical data as well as expert judgment. These facilities may lose their 

functionality due to the failure of various components in these facilities, which include (K Pitilakis 

et al., 2014):  

 Building: the collapse of the structure of the facility that covers the equipment may 

disrupt the functionality of the equipment; 

 Electrical/Mechanical components: damage to these miscellaneous components 

can also result in non-functionality, especially if these components are unanchored;  

 Electric power supply: lack of external power due to the electric power network 

disruption or the disconnection of the power lines and the facility building can also 

result in the facility become non-functional. 

Various sources in the literature represent fragility curves for the aboveground components 

(ALA, 2001; Berahman and Behnamfar, 2007; FEMA, 2003; O’Rourke and So, 2000; Iervolino 

et al., 2004). Note that if the damage to the facility is addressed by simply considering the seismic 

vulnerability of the building that shelters the equipment, then the corresponding fragility curves of 

that building can be used in order to represent the vulnerability of the whole facility. However, if 

the aim is to include the mechanical and electrical component behavior in the vulnerability 

assessment procedure, then overall fragility curves which represent the system fragility should be 
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utilized in order to capture the vulnerability of the facility. The overall fragility curves are usually 

generated using a fault-tree analysis considering redundancies and subcomponent behavior 

(FEMA, 2003). In such case, Boolean logic is implicitly used within the procedure of defining 

each particular damage state. For example, a minor damage to a compressor station - which can 

result in short-time malfunction of the facility, may be represented by either the loss of electrical 

power or a slight damage to the building that shelters the equipment.  

Like many other underground components, buried pipelines are very sensitive to 

permanent ground deformation (resulting from different types of ground failure, i.e. lateral 

spreading, liquefaction and landslide) in addition to transient ground deformation (resulting from 

seismic wave propagation). There is abundant literature on fragility relationships for buried 

pipelines. The fragilities for these components may be represented based on different intensity 

measures such as PGA (Chen et al., 2002; Hamada, 1991; Isoyama et al., 2000), PGV (Maison et 

al., 1995; Maruyama and Yamazaki, 2010; O’Rourke and Ayala, 1993; O’Rourke and Jeon, 1999; 

O’Rourke et al., 2012; Pineda-Porras and Ordaz-Schroeder, 2004), PGD (Eidinger and Avila, 

1999; O’Rourke et al., 2012; ALA, 2001). Some researchers have also represented the fragility for 

buried pipelines in terms MMI (macroseismic intensity) or PGS (peak ground strain) (Chen et al., 

2002; O’Rourke and Deyoe, 2004; O’Rourke and Jeon, 1999). Nonetheless, representing fragility 

curves for buried pipelines as equations based on peak ground displacement (PGD) and peak 

ground velocity (PGV) are the most common (ALA, 2001; FEMA, 2003). These equations are 

referred to as RR equations. In essence, these semi-empirical equations represent the number of 

repairs per unit length of the pipeline. The equations are usually developed according to the number 

of repairs recorded by field crews (e.g. ALA, 2001; O’Rourke and Ayala, 1993) and do not clearly 

demonstrate all possible failure modes for buried pipelines subjected to ground deformations. The 
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probability of having 𝑛 repairs in a pipe segment with length 𝐿 can be evaluated using a Poisson 

probability distribution as in Equation (2-2): 

𝑃(𝑁 = 𝑛) =  [(𝑅𝑅)(𝐿)]𝑛𝑛! 𝑒−(𝑅𝑅)(𝐿) (2 − 2) 

However, it should be noted that the main source of damage to buried pipelines is usually 

the permanent ground deformation, as proved by previous earthquakes (K Pitilakis et al., 2014). 

During the 1971 San Fernando earthquake, the steel pipelines withstood significant ground 

shaking, but suffered severe damage due to abrupt vertical and lateral dislocation as a result of 

lateral spreading (EERI, 1986; O’Rourke, 1988). In the 1906 San Francisco earthquake, lateral 

spreading accounted for only around 5% of the built-up area affected by the earthquake; 

meanwhile, approximately 50% of the damage occurred to the pipelines within one block of these 

zones, which shows the high impact of ground failure on pipeline damage (O’Rourke and Liu, 

1999). In the 1964 Niigata earthquake, liquefaction resulted in substantial damage to pipelines, 

where the average failure ratio for one of the pipeline systems was as high as 0.97 per km with all 

kinds of failure types such as pipe body breaks, weld breaks, and joint separation (K Pitilakis et 

al., 2014).  

The pipelines used in natural gas network are usually continuous pipelines like welded-

steel pipes. These pipelines typically fail due to compressive strain that induces buckling of the 

pipe body, or warping and wrinkling of the pipe wall (ALA, 2001; K Pitilakis et al., 2014). 

Moreover, pipeline damage in the natural gas network are categorized as either leakages or breaks, 

with different RR equations. If ground failure is the primary reason for damage to the pipeline, it 

is reasonable to assume that the proportions of leaks and breaks are 0.2 and 0.8, respectively; in 

the meantime, if the major cause of damage is ground shaking, leaks and breaks proportions will 

be 0.8 and 0.2, respectively. Moreover, for each network component, HAZUS-MH also provides 
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restoration curves that provide the conditional probability of restoration for a certain initial damage 

at a given time after failure, which is also adopted in this dissertation. 
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CHAPTER 3: APPROACHES FOR MODELLING INTERDEPENDENCE 
 
 
 

As previously mentioned, interdependencies can have a substantial contribution in 

cascading failures in the case of a disaster, and it is crucial to study the resilience of lifeline systems 

within a community including their interdependencies. A number of studies have utilized different 

approaches in order to model interdependency within the community. Rinaldi et al. (2001) defined 

four main classes of interdependencies between infrastructures, including physical, cyber, 

geographic, and logical. In this context, a physical interdependency arises from a physical linkage 

between the networks and two infrastructure systems are considered physically interdependent if 

the state of functionality in one network is dependent on the material output(s) of the other. For 

cyber interdependency, an infrastructure has a cyber interdependency if its functionality is 

dependent on the information transmitted from another infrastructure. A geographic 

interdependence occurs when elements of multiple infrastructures are in close spatial proximity 

such that a local environmental event can result in change of functionality status for all of the 

infrastructures. Finally, two infrastructures are logically interdependent if the state of each network 

depends on the state of the other system via a mechanism that is not classified as physical, cyber, 

or geographic. As an example, human decisions and interventions play an important role in logical 

interdependencies. 

Researchers have used the physical definition of interdependency in order to study the 

response of interconnected networks. Dueñas-Osorio et al. (2007b) investigated the effect of 

seismic disruptions on the performance of physically interdependent networks. Several degrees of 

interconnectedness were explored and interdependent network fragility curves were introduced in 

order to display the effect of different strengths of coupling. Based on the results, mitigation 
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actions were proposed and propagation of their effects were studied. Robert and Morabito (2008) 

presented a set of tools in terms of consequence curves and flexible cartographic representations 

that enabled the management of physical interdependencies among critical infrastructures. Based 

on the resources exchanged through the interdependent networks, these tools allowed the 

visualization of the evolution of domino effects in time and space, giving the infrastructure 

managers the potential to set up convenient preventive and protective measures in order to avoid 

their propagation. Poljanšek et al. (2012) developed a probabilistic reliability model in order to 

generate network fragility curves of spatially distributed interconnected network systems subjected 

to natural hazards. The developed methodology was applied to the interconnected European gas 

and electricity transmission networks such that the gas-fired power plants formed the physical 

connections between the two networks. Modeling the physical interdependencies, the propagation 

of failures in gas networks were identified using fragility curves and the effect of gas network 

failures on electricity network were captured. Wang et al. (2012) also developed a framework for 

vulnerability analysis of interdependent infrastructure systems. Considering the physical 

interdependency between the networks, the methodology was applied to the power and water 

systems of a major city in China and the results were used for ranking critical components for 

protection purposes. Using the available restoration curves from the 2011 Tohoku Earthquake in 

Japan, Cimellaro et al. (2014) proposed a method for calculation of regional resilience considering 

different degrees of physical interdependency between the infrastructures. Kong and Simonovic 

(2019) developed a methodology for multiple hazard spatiotemporal resilience assessment of 

infrastructure systems considering the physical interdependencies. They applied the methodology 

on a simplified two‐layer interdependent infrastructure network as a case study, showing the 

physical interdependence among infrastructures further magnifies the impact on resilience value.  
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On the other hand, some researchers have studied geographical, cyber, and logical 

interdependence between the infrastructure systems (e.g. Amin, 2010; Healy and Palepu, 2003; 

Johansson and Hassel, 2010; Ramachandran et al., 2015). Although the classification used by 

Rinaldi et al. (2001) provides a basic foundation for modeling infrastructure interdependencies, 

the clear way of modeling interdependencies between the infrastructures is not discussed in their 

study, and the authors emphasize the need for further research on developing explicit ways to 

model interdependencies.  

Several researchers have developed different approaches that are potentially capable of 

explicitly modeling interdependencies between the infrastructures. Ouyang (2014) classified these 

explicit approaches into six categories: empirical approaches, agent-based approaches, system 

dynamics based approaches, economic theory based approaches, network-based approaches, and 

other approaches. These are briefly explained below.  

EMPIRICAL APPROACHES 

In empirical approaches, the critical infrastructure systems’ interdependencies are analyzed 

according to historical accident or disaster data and expert experience. Empirical approaches 

provide the opportunity to identify significant and frequent failure patterns (e.g. Chou and Tseng, 

2010; McDaniels et al., 2007), quantify interdependency strength metrics to inform decision 

makers (e.g. Zio and Sansavini, 2011), and perform empirically based risk analyses (e.g. Utne et 

al., 2011).  

AGENT-BASED APPROACHES 

In agent-based approaches, it is assumed that the complex behavior of interdependent 

infrastructures emerge from many individual and relatively simple interactions of autonomous 

agents (Kaegi et al., 2009). In this context, most critical infrastructures’ components can be 
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considered as agents, and each agent interacts with other agents and its environment based upon a 

set of rules that mimics the way a real counterpart of the same type would respond. Agent-based 

approaches have been widely used in order to model the interdependencies between infrastructures 

(e.g. Barton et al., 2004; Basu et al., 1998; North, 2001), and are capable of modeling behaviors 

of decision-makers, capturing all types of interdependencies, providing scenario-based what-if 

analysis, and can also be integrated with other modeling techniques in order to provide more 

comprehensive analysis (Ouyang, 2014).  

SYSTEM DYNAMICS BASED APPROACHES 

System dynamics-based approaches take a top-down method in order to analyze and model 

complex interdependent infrastructures. The key concepts that are used in these approaches are 

feedback, stock and flow. Feedback loops represent the connections between infrastructure 

components, including the direction of interdependencies. Stocks show different states of the 

system, and flow rates control the levels of these states over time. Using a causal-loop diagram 

that captures the causal influence among different variables, and a stock-and-flow diagram that 

describes the flow of information through the system, system dynamic approaches are capable of 

modeling the interdependencies between critical infrastructures (Brown et al., 2004; Stapelberg, 

2008). 

ECONOMIC THEORY BASED APPROACHES 

Economic theory-based approaches generally work based on interactions between 

households and producers. Households provide labor and capital to producers in exchange for 

income. The producers, on the other hand, provide the households with goods and services by the 

use of not only that labor and capital, but also other types of materials and services. Generally, two 

types of economic theories exist in the literature that can be utilized in order to model 
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interdependencies between critical infrastructures: the input-output (I-O) model and the 

computable general equilibrium (CGE) model. The I-O models represent the interdependencies 

between different sectors of a national economy or different regional economies (Dietzenbacher 

and Lahr, 2004). The fist I-O model was proposed by Leontief (1986), which was a static and 

linear model. Since then various researchers have developed more complicated I-O models (e.g. 

Haimes et al., 2005; Haimes and Jiang, 2001). CGE models are an extension of the I-O models 

and inherit the main features of I-O models, including the consideration of interdependencies 

between economic sectors, while they overcome most of their limitations, such as linear 

interdependencies among sectors, lack of consumers’ and producers’ behavioral responses to 

markets and prices subject to labor, as well as resource and capital constraints (Rose, 1995 and 

2004; Ouyang, 2014). Extending the capacities of the I-O models, CGE models have been used by 

researchers in order to model interdependencies between infrastructures (e.g. Zhang and Peeta, 

2011).  

NETWORK-BASED APPROACHES 

Interdependent critical infrastructures can also be modeled as networks, where components 

of the networks can be represented as nodes, and the physical and relational connections between 

these nodes can be represented by links. Network-based approaches model each infrastructure by 

networks and then describe the interdependencies between these networks by inter-links, providing 

intuitive representations along with detailed descriptions of their topologies and flow patterns if 

desired. Network-based approaches also provide the opportunity to evaluate response of critical 

infrastructures under different hazards by modeling the component failures at component level 

first, and then simulating the cascading failures within and across the infrastructures at system 
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level. Depending on whether the modeling procedure includes particle flow of the infrastructures, 

network-based approaches can be broadly divided into topology-based and flow-based methods. 

Topology-based methods 

In order to investigate the performance of interdependent critical infrastructures under natural 

hazards, topology-based simulation methods can be used. A topology-based model, which has also 

been adopted in this dissertation, defines the interdependencies between the infrastructures based 

upon their topologies, with discrete states of functionality for each component (i.e. nodes and 

links), and generally with considering two states: functional or failed. Failure of a component 

might happen directly due to the failure of the component itself, or indirectly due to the failure of 

other components in the network that result in disconnections from its source nodes.  

In this methodology, a number of different metrics can be defined in order to evaluate the 

performance of the networks, such as the number of normal or failed components (e.g. Johansson 

and Hassel, 2010), the inverse characteristic path length (e.g. Ouyang et al., 2009), the connectivity 

loss (e.g. Dueñas-Osorio et al., 2007a), as well as the redundancy ratio and cluster related metrics 

(e.g. Dueñas-Osorio et al., 2007b). Furthermore, by incorporating the level of service provided to 

the customers and system-level performance, some other metrics can be defined such as lost 

service hours (e.g. Johansson and Hassel, 2010) or the fraction of customers affected (e.g. 

Poljanšek et al., 2012). The topology-based methods mainly capture topological features of the 

interdependent infrastructures and can be used to provide suggestions on robustness improvements 

from the topological perspective. 

Flow-based methods 

The key difference between topology- and flow-based methods is that in flow-based 

methods, the flow and the amount of services provided by the critical infrastructures is also taken 
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into account. In this context, some capacities are defined for each component in the networks that 

should be produced, loaded and delivered to the end users. Flow-based models capture the flow 

characteristics of interdependent infrastructures, and are capable of providing realistic descriptions 

on their operation mechanisms. This type of methods can also identify critical infrastructures’ 

components and provide emergency protection provisions against natural hazards.  

INTERDEPENDENCE APPROACH FOR NGN AND OTHER SYSTEMS 

As the world struggles to find new sources of energy, natural gas plays a key role in the 

foreseeable future. Natural gas is used in different sectors – including residential, commercial, 

industrial, and electrical power sectors. The residential sector uses natural gas for heating 

buildings, heating water, cooking, and also for drying clothes. The commercial sector uses natural 

gas to heat buildings, heat water, operate refrigeration and cooling equipment, dry clothes and 

provide outdoor lighting. The industrial sector uses natural gas as a fuel for process heating as well 

as for combined heat and power systems, and as a raw material to produce different products. 

Finally, the electric power sector uses natural gas to generate electricity. 

In particular, both natural gas and electric power networks show strong interdependency 

which is well recognized (Portante et al., 2017). For example, EPNs with gas-fired power plants 

need natural gas to produce electricity. An interruption or pressure loss in gas network systems 

may lead to a loss of multiple gas-fired electric generators, which can substantially decrease the 

supplied power and endanger the power system security (Shahidehpour et al., 2005). EIA’s 

January 2018 Short-Term Energy Outlook (STEO) estimates that natural gas will remain the 

primary source of electricity generation in the United States, for at least the next two years, and it 

is likely that the use of natural gas as a fuel source for electricity will continue to grow 

(https://www.eia.gov). On the other hand, electricity is essential for natural gas processing plants 

https://www.eia.gov/
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and sometimes for other stations such as electric-driven compressor stations. Interruption of 

electric service to such facilities can have significant negative safety and financial consequences 

observable long after the electric power network has recovered (EAC, 2011).  

It is worth mentioning that, the issues related to interdependencies between natural gas and 

electric power networks are not only limited to those described above, but these interdependencies 

can also have a negative impact on the economic and social systems within a community. For 

example, in severe weather situations, the natural gas and electricity demands may reach the 

highest point together, which in turn, can result in a spike in energy prices. In such situations, gas 

price hikes can push up the marginal cost of gas-fired generating units, which would directly 

transform into higher market prices for electricity (Shahidehpour et al., 2005). For example, in the 

2000-2001 winter, gas and electricity markets in California reached their capacity limits 

simultaneously, and the result was a dramatic increase in energy costs (Pope, 2002).  

Therefore, it is important to consider the interactions between the natural gas and electric 

power networks in restoration modeling and recovery of a community in the aftermath of a disaster. 

On the other hand, natural gas has a crucial role in maintaining continued occupancy as a disruption 

in the natural gas network may disturb the functionality of residential, commercial, and industrial 

sectors, and consequently result in population dislocation and outmigration, especially during cold 

weather.  

Modeling the interdependencies between different networks can be accomplished via an 

adjacency matrix A. As described in Wallace et al. (2003), a general network system k may be 

defined by n(k) nodes and m(k) links connecting the nodes, while the links are considered to be 

bidirectional (i.e. not pointing in a specific direction). In the case of K interdependent systems, 

each network can be represented as a symmetric 𝑛(𝑘) × 𝑛(𝑘) adjacency matrix, namely 𝐴(𝑘) =
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[𝑎𝑖𝑗(𝑘)], (𝑖, 𝑗 ∈  𝑘;  𝑖, 𝑗 =  1, … , 𝑛(𝑘)), where 𝑎𝑖𝑗(𝑘)
 is equal to 1 if there is a link (element) between 

nodes 𝑖 and 𝑗, and is 0 otherwise. The K adjacency matrices representing each network can then 

be placed along the main diagonal of A, and the off-diagonal matrices are used to represent 

connections between the nodes of different networks. For instance, considering two network 

systems p and q, the 𝑛(𝑝) × 𝑛(𝑞) matrix 𝐴(𝑝,𝑞) = [𝑎𝑖𝑗(𝑝,𝑞)] represents the connections between the 

nodes of the two networks, where 𝑎𝑖𝑗(𝑝,𝑞)
 is equal to 1 if there is a link between node 𝑖 of network 

p and node 𝑗 of network q, and is 0 otherwise. The adjacency matrix A can be represented as 

follows: 

𝐴 =
[  
   𝐴(1) ⋯ 𝐴(1,𝑝)⋮ ⋱ ⋮𝐴(𝑝,1) ⋯ 𝐴(𝑝) 𝐴(1,𝑞) ⋯ 𝐴(1,𝐾)⋮ ⋱ ⋮𝐴(𝑝,𝑞) ⋯ 𝐴(𝑝,𝐾)𝐴(𝑞,1) ⋯ 𝐴(𝑞,𝑝)⋮ ⋱ ⋮𝐴(𝐾,1) ⋯ 𝐴(𝐾,𝑝)

𝐴(𝑞) ⋯ 𝐴(𝑞,𝐾)⋮ ⋱ ⋮𝐴(𝐾,𝑞) ⋯ 𝐴(𝐾) ]  
    (3 − 1) 

In essence, in the connectivity matrix A, if 𝑎𝑖𝑗(𝑘) = 1, then a failure of node 𝑖 in the network 

results in a certain failure of node 𝑗, assuming that there is no redundancy in the network and that 

is the only connection between the nodes. It should be noted that, however, the dependency 

between two nodes in a network may not be mutual (Guidotti et al., 2016). 
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CHAPTER 4: MODELLING EARTHQUAKE HAZARD 
 
 
 

Earthquakes are one of the most devastating disasters and can result in considerable loss of 

life and damage to property.  As an example, the 1906 San Francisco earthquake caused more than 

3,000 deaths and left 225,000 people homeless (USGS, n.d.). In general, earthquakes were 

responsible for 1.87 million deaths in the twentieth century and resulted in an average of 2,052 

fatalities per event between 1990 and 2010 (Doocy et al., 2013; Wisner et al., 2003). Events such 

as the 1994 Northridge and 1995 Kobe earthquakes are reminders that losses to a community are 

not limited to the immediate aftermath of an earthquake only. In fact, socioeconomic losses 

accumulate over, as the recovery process gets longer and more complex (Miles and Chang, 2006).  

On the other hand, despite the sustained efforts on “earthquake prediction”, which can be defined 

as issuing a science-based alarm of an imminent damaging earthquake with enough accuracy and 

reliability in order to justify measures such as evacuations, there is still no scientifically plausible 

way to predict the occurrence of earthquakes (Mulargia et al., 2017).  

Two commonly used approaches for seismic hazard analysis include deterministic and 

probabilistic methods (Gupta, 2007). Both approaches are commonly used in the field and one has 

different advantages over another, but the question of what method should be used in a particular 

situation depends on the basic notion of the problem to be solved. In particular, factors affecting 

this choice include the decision to be made (i.e. the goal of the hazard and risk assessment), seismic 

environment (i.e. seismicity level of the location), and the purpose of the assessment (i.e. whether 

one is evaluating the risk at a site, a multi-site, or a region) (McGuire, 2001).  

In the deterministic approach, different intensity measures are estimated for a specific 

considered earthquake scenario (Krinitzsky, 2002). An earthquake scenario can be a representative 
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of a potential future earthquake by assuming a particular magnitude, location, and fault-rupture 

geometry. The shaking maps from that earthquake scenario can be estimated using ground motion 

prediction models.  The deterministic approach can be used for generating realistic earthquakes 

that are considered likely to happen, or are a desirable measure to use in design and analysis of 

infrastructure.   Further, these can be used to conduct training exercises, and can be used by local 

government, utility companies and other organizations for disaster preparation and emergency 

response planning. The USGS Earthquake Hazards Program has a product known as ShakeMap 

that provides near-real-time maps of ground motion and shaking intensity following significant 

earthquakes, and can also be used as a tool for scenario-based earthquake modeling. Although 

convenient and easy to model, deterministic approaches might not be able to provide a realistic 

picture of seismic hazard at a specific site, as there is a great deal of uncertainty about the location, 

magnitude, and resulting shaking intensity of future earthquakes.  

Probabilistic seismic hazard assessment (PSHA) aims to account for the uncertainties in 

the occurrence and intensity of future earthquakes, essentially their location and magnitude, and 

combines these uncertainties in order to produce an explicit description of the distribution of future 

possible earthquakes that may occur at a specific site (Baker, 2008). The concept of PSHA was 

first introduced by (Cornell, 1968). Since then, various researchers have used the methodology 

proposed by Cornell (1968) as a basis  to develop more advanced models for PSHA (e.g. 

Abrahamson, 2000; Akkar et al., 2018; Baker, 2005; Delavaud et al., 2012; Jayaram and Baker, 

2010; Jibson et al., 2000; Lapajne et al., 2003; Refice and Capolongo, 2002; Shahi and Baker, 

2011; Stein et al., 2003; Tothoug and Cornell, 2007; Visini et al., 2019). While performing a PSHA 

may add some complexity to the seismic hazard assessment procedure due to incorporation of 
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uncertainties into the calculations, the results will be much more reliable especially in engineering 

decision-making applications (Baker, 2008). 

FORMULATION OF PSHA 

The PSHA considers all possible earthquake events and resulting ground motions, in 

addition to their associated probabilities of occurrence. The final output of a PSHA is a full 

distribution of levels of ground motion intensities along with their associated rates of exceedance. 

These results can later be used to identify a ground motion intensity having a certain probability 

of exceedance. The steps for performing a PSHA at its most basic level are explained in the 

following subsections (Baker, 2008).  

Identifying seismic sources  

The first step in performing a PSHA is to identify all earthquake sources capable of 

producing damaging ground motions. In contrast to the deterministic approach, in PSHA the 

interest is in all earthquake sources capable of producing ground motions. Ideally, the sources are 

faults, which are typically planar surfaces identified using various means such as by observations 

of past earthquake locations and geological evidence. However, if individual faults are not 

identifiable due to lack of knowledge about all the faults, then earthquake sources may be 

represented as areas that encompass several faults and are associated with a specific geological 

structure such as uplifts, rifts, folds, or volcanos that localize the seismic activity within that area. 

On the other hand, if there is no information on either active faults or geological structures (this 

may happen in less seismically active areas), then another type of seismic source referred to as 

“tectonic province” can be used in practical applications (Gupta, 2007). In this case, the area can 

be represented as a large geographic area of diffused seismicity with no identifiable active faults 

or geological structures, and earthquakes can occur anywhere within the considered area.  
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Seismicity sources in a region are usually identified based upon geological, geophysical, 

geodetic and seismotectonic data (Gupta, 2007). Nonetheless, if the available data is not adequate 

in most cases, expert knowledge and judgment will play an important role in identifying seismic 

sources for the region of interest. Once all possible sources of seismicity are identified for the 

region, one can identify the distribution of magnitudes and source-to-site distances associated with 

potential earthquakes from each source.  

Characterizing the distribution of magnitudes  

After the source of damaging earthquakes are identified, the next step is to identify the 

distribution of magnitudes for the potential earthquakes (i.e. the rates at which earthquakes with 

various magnitudes are expected to occur). Different seismic sources are capable of producing 

earthquakes with various magnitudes. The annual rate of occurrence for these earthquakes can be 

defined using recurrence relationships. Gutenberg and Richter (1944) first studied the magnitudes 

of earthquakes and noted that in general the number of earthquakes in a region greater than a given 

size follows a particular distribution as shown in Equation (4-1): log10 𝜆𝑚 = 𝑎 − 𝑏𝑚 (4 − 1) 

where 𝑎 and 𝑏 are constants and 𝜆𝑚 represents the rate of earthquakes with magnitudes 

greater than 𝑚. In this formulation, constant 𝑎 represents the overall rate of the earthquakes in a 

region, and constant 𝑏 indicates the relative ration of small and large magnitudes. These constants 

can be estimated using statistical analysis of historical observations, with additional constraining 

data provided by other types of geological evidence (Hainzl et al., 2006; Baker, 2008).  

Equation (4-1) can be used in order to compute the cumulative distribution function (CDF) 

for magnitudes of earthquakes that are larger than a minimum magnitude 𝑚𝑚𝑖𝑛.  The minimum 

magnitude is used as a condition as earthquakes with magnitudes smaller than 𝑚𝑚𝑖𝑛 may not have 
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any engineering importance (Baker, 2008). By defining 𝛽 = 𝑏 ln (10), the cumulative distribution 

function for magnitudes can be written as: 𝐹𝑀(𝑚) = 𝑝(𝑀 ≤ 𝑚 | 𝑀 > 𝑚𝑚𝑖𝑛) =  1 − 10−𝑏(𝑚−𝑚𝑚𝑖𝑛) (4 − 2) 

In practice, it is necessary to consider an upper limit on earthquake magnitudes, 𝑚𝑚𝑎𝑥, due 

to the finite size of the source faults. If a maximum magnitude is determined, then equation (4-2) 

can be rewritten as follows:  

𝐹𝑀(𝑚) = 𝑝(𝑀 ≤ 𝑚 | 𝑚𝑚𝑖𝑛 < 𝑀 < 𝑚𝑚𝑎𝑥) =  1 − 10−𝑏(𝑚−𝑚𝑚𝑖𝑛)1 − 10−𝑏(𝑚𝑚𝑎𝑥−𝑚𝑚𝑖𝑛)  (4 − 3) 

In PSHA equations, the continuous distribution of magnitudes can be converted into a 

discrete set of magnitudes. Later, the former equation should be used in order to calculate the 

probabilities of occurrence for different magnitudes, as follows: 𝑃(𝑀 = 𝑚𝑗) =  𝐹𝑀(𝑚𝑗+1) − 𝐹𝑀(𝑚𝑗) (4 − 4) 

where 𝑚𝑗 shows the discrete set of magnitudes, ordered in the way 𝑚𝑗 < 𝑚𝑗+1. So long as 

the discrete magnitudes are finely spaces, the approximation will be accurate enough (Baker, 

2008). It should be noted that, other alternative recurrence relationships exist in the literature that 

may be used instead of Gutenberg-Richter model (e.g. Burroughs and Tebbens, 2002; Kagan, 

1991, 2002b, 2002a; Kijko, 2004; Lomnitz-Adler and Lomnitz, 1979; Main, 1996; Main and 

Burton, 1984; Merz and Cornell, 1973; Schwartz and Coppersmith, 1984; Youngs and 

Coppersmith, 1985). Some of these models have a faster decay for larger magnitudes and propose 

that some faults have repeated occurrences of a characteristic earthquake with a reasonably 

consistent magnitude (Gupta, 2007; Baker, 2008). This characteristic magnitude occurs more often 

than predicted by the Gutenberg-Richter model (Baker, 2008).  

Characterizing the distribution of source-to-site distances 
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The PSHA also accounts for the differing probabilities of observing earthquakes at 

different locations. For this purpose, after the sources and corresponding earthquake magnitudes 

are determined, the distribution of source-to-site distances should be identified. It is usually 

assumed that earthquakes can occur with equal probability at any location within the earthquake 

source. Based on this assumption, the distribution of source-to-site distances can be identified 

using only the geometry of the sources. It is important to mention that there are different definitions 

of distance that are commonly used in PSHA (e.g. distance to epicenter or hypocenter, distance to 

the closet point on the rupture surface, distance to the closest point on the surface projection of the 

rupture, etc.). Although some of the distance definitions consider the distance from the surface 

projection of the rupture only, some definitions account for the depth of the rupture. The choice of 

distance definition will depend upon the required input to the ground motion prediction model. 

For example, in some models, it is required to assume ruptures occur over a plane rather than at a 

single point in space, and the definitions should account for the depth of the rupture (e.g. Campbell 

and Bozorgnia, 2014).  

Predicting the resulting distribution of ground motion intensity  

The next step involves using ground motion prediction models in order to predict the 

resulting distribution of desired ground motion intensity as a function of many parameters such as 

earthquake magnitude, distance, faulting mechanism, the near-surface site soil conditions, the 

potential presence of directivity effects, and so on. These prediction models are developed mainly 

by statistical regression analysis of thousands of observed ground motion intensities from dozens 

of previous earthquakes. For example, Campbell and Bozorgnia (2014) used 11,125 records from 

245 earthquakes of 3.0 ≤ 𝑀 < 5.5 and 4,396 records from 77 earthquakes of 5.5 ≤ 𝑀 < 7.9, as 

a subset of the PEER NGA-West2 database (Ancheta et al., 2013 and 2014) updated to include 
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earthquakes that occurred through 2011. Figure 4-1 shows the distribution of the recordings with 

respect to moment magnitude and rupture distance.  

 

Figure 4-1: Distribution of recordings of the NGA-West2 database with respect to moment 
magnitude and rupture distance (excerpted from Campbell and Bozorgnia (2014)) 

As shown in Figure 4-1, there is- significant scatter in observed ground motions, and 

therefore, the ground motion prediction models need to provide a probability distribution for 

intensities rather than simply identifying a single intensity. This is important as PSHA calculations 

need to account for the possibility of unlikely events including those with extreme intensities much 

larger than the predicted mean values (Baker, 2008; Bommer and Abrahamson, 2006). In order to 

describe this probability distribution, ground motion prediction models take a general form as 

shown in Equation (4-5): ln 𝐼𝑀 = ln 𝐼𝑀̅̅ ̅̅ ̅̅ ̅ (𝑀, 𝑅, 𝜃) + 𝜎(𝑀, 𝑅, 𝜃) . 𝜀 (4 − 5) 

where ln 𝐼𝑀 shows the natural logarithm of the desired ground motion intensity measure, 

which is modeled as a random variable with a normal distribution, and ln 𝐼𝑀̅̅ ̅̅ ̅̅ ̅ (𝑀, 𝑅, 𝜃) and 𝜎(𝑀, 𝑅, 𝜃) are the mean and standard deviation of ln 𝐼𝑀, respectively. These terms are functions 
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of earthquake magnitude (𝑀), distance (𝑅), and other parameters referred to as 𝜃. Moreover, 𝜀 is 

a normal random variable that captures the variability in ln 𝐼𝑀. Campbell and Bozorgnia (2014) 

proposed the following predictive model for the natural logarithm of PGA, PGV, and PSA:  

ln 𝑌 =  { ln 𝑃𝐺𝐴;                                                                 𝑃𝑆𝐴 < 𝑃𝐺𝐴 𝑎𝑛𝑑 𝑇 < 0.25 𝑠𝑒𝑐𝑓𝑚𝑎𝑔 + 𝑓𝑑𝑖𝑠 + 𝑓𝑓𝑙𝑡 + 𝑓ℎ𝑛𝑔 + 𝑓𝑠𝑖𝑡𝑒 + 𝑓𝑠𝑒𝑑 + 𝑓ℎ𝑦𝑝 + 𝑓𝑑𝑖𝑝 + 𝑓𝑎𝑡𝑛;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (4 − 6) 

where 𝑌 is the 𝐼𝑀 of interest and the 𝑓-term represent the scaling of ground motion with 

respect to earthquake magnitude, geometric attenuation, style of faulting, hanging wall geometry, 

shallow site response, basin response, hypocentral depth, fault dip, and anelastic attenuation, 

respectively (Campbell and Bozorgnia, 2014). The reader is referred to Campbell and Bozorgnia 

(2013) for detailed explanations of the abovementioned terms used in Equation (4-6). 

The probability of exceeding any 𝐼𝑀 level can be estimated using the standard normal 

cumulative distribution function, as follows: 

 𝑃(𝐼𝑀 > 𝑥 | 𝑚, 𝑟) = ∫ 𝑓𝐼𝑀(𝑡)𝑑𝑡∞
𝑥 (4 − 7) 

where 𝑓𝐼𝑀(𝑡) is the probability density function of PGA, given 𝑚 and 𝑟. The next step will 

be to combine all the information from previous steps in order to find the full distribution of levels 

of ground motion intensities along with their associated rates of exceedance. 

Combining uncertainties using the total probability theorem 

The final step in performing a PSHA is to combine all the uncertainties associated with the 

earthquake size, location, and ground motion intensity, using a calculation known as the total 

probability theorem. Having the probability distributions for distance and magnitude and assuming 

that the magnitudes and distances of events are independent, equation (4-7) can be written as:  

𝑃(𝐼𝑀 > 𝑥) =  ∫ ∫ 𝑃(𝐼𝑀 > 𝑥 | 𝑚, 𝑟) 𝑓𝑀(𝑚) 𝑓𝑅(𝑟) 𝑑𝑟 𝑑𝑚 𝑟𝑚𝑎𝑥0
𝑚𝑚𝑎𝑥𝑚𝑚𝑖𝑛  (4 − 8) 
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where 𝑃(𝐼𝑀 > 𝑥 | 𝑚, 𝑟) is calculated from the ground motion prediction model,  𝑓𝑀(𝑚) 

and  𝑓𝑅(𝑟) are the probability distribution functions for magnitude and distance. Equation (4-8) 

represents the probability of exceedance given an earthquake happens and does not include any 

information about how often earthquakes occur based on the considered sources. In order to 

calculate the rate of exceedance (instead of probability of exceedance), Equation (4-8) can be 

written as follows: 

𝜆(𝐼𝑀 > 𝑥) =  𝜆(𝑀 > 𝑚𝑚𝑖𝑛)∫ ∫ 𝑃(𝐼𝑀 > 𝑥 | 𝑚, 𝑟) 𝑓𝑀(𝑚) 𝑓𝑅(𝑟) 𝑑𝑟 𝑑𝑚 𝑟𝑚𝑎𝑥0
𝑚𝑚𝑎𝑥𝑚𝑚𝑖𝑛  (4 − 9) 

where 𝜆(𝑀 > 𝑚𝑚𝑖𝑛) shows the rate of occurrence of earthquakes bigger than 𝑚𝑚𝑖𝑛, and 

shows the rate of 𝐼𝑀 > 𝑥. Acknowledging the fact all seismic sources contribute to the rate of 𝐼𝑀 > 𝑥, Equation (4-9) will look like as follows: 

𝜆(𝐼𝑀 > 𝑥) =  ∑ 𝜆(𝑀𝑖 > 𝑚𝑚𝑖𝑛)∫ ∫ 𝑃(𝐼𝑀 > 𝑥 | 𝑚, 𝑟) 𝑓𝑀𝑖(𝑚) 𝑓𝑅𝑖(𝑟) 𝑑𝑟 𝑑𝑚 𝑟𝑚𝑎𝑥0
𝑚𝑚𝑎𝑥𝑚𝑚𝑖𝑛

𝑛𝑠𝑜𝑢𝑟𝑐𝑒𝑠
𝑖=1                                                                                                                                                                (4 − 10) 

where 𝑛𝑠𝑜𝑢𝑟𝑐𝑒𝑠 shows the number of sources included in hazard analysis, and 𝑀𝑖 and 𝑅𝑖 
represent the magnitude and distance distributions of source 𝑖. In practice, the distributions of 

magnitude and distance are discretized Equation (4-10) can be rewritten as follows: 

𝜆(𝐼𝑀 > 𝑥) =  ∑ 𝜆(𝑀𝑖 > 𝑚𝑚𝑖𝑛) ∑ ∑ 𝑃(𝐼𝑀 > 𝑥 | 𝑚𝑗 , 𝑟𝑘)𝑛𝑅
𝑘=1

𝑛𝑀
𝑗=1

𝑛𝑠𝑜𝑢𝑟𝑐𝑒𝑠
𝑖=1 𝑃(𝑀𝑖 = 𝑚𝑗) 𝑃(𝑅𝑖 = 𝑟𝑘)                                                                                                                                                                (4 − 11) 

where  𝑛𝑀 and 𝑛𝑅 show the range of possible 𝑀𝑖 and 𝑅𝑖, respectively. The abovementioned 

equation is the most common formulation used in PSHA and integrates the knowledge about 

occurrence rates of earthquakes, possible magnitudes and source-to-site distances from those 

earthquakes, as well as distribution of ground shaking intensity due to the possible earthquakes. 
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The result can be represented as a graph known as a hazard curve, which represents the rate of 

exceeding different 𝐼𝑀 levels at a certain site. Figure 4-2 represents the hazard curve in Los 

Angeles downtown, for an earthquake with 10% probability of exceedance in 50 years (Return 

Period = 475 years), which is generated using the USGS Unified Hazard Tool (USGS, 2017). The 

results derived from a PSHA can be useful for engineering decision-making purposes.  

 

Figure 4-2: Hazard curve for Los Angeles downtown (generated by Unified Hazard Tool) 

PSHA DEAGGREGATION 

Despite the advantage PSHA provides by accounting for all possible earthquake sources in 

an area when computing seismic hazards, the contribution of each earthquake scenario in the 

hazard is not immediately obvious after all scenarios are aggregated together in the PSHA 

calculations. Perhaps the bigger issue is that the spatial correlations of the intensities over a 

community or region are lost since hazard intensity collects contributions from different sources.  

Nonetheless, the question of which earthquake scenario is most likely to result in exceedance of a 

prescribed level of earthquake ground shaking at a site can be answered through a process known 

as deaggregation (Baker, 2008; Bazzurro and Cornell, 1999). Deaggregation of seismic hazard 

helps to understand the contribution of different possible earthquakes to the hazard at a point 
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location, by partitioning the earthquake sources into bins of distance and magnitude. The 

conditional joint distribution of magnitudes and distances can be found using the following 

equation: 

 𝑃(𝑀 = 𝑚,𝑅 = 𝑟 | 𝐼𝑀 > 𝑥) = 𝜆(𝐼𝑀 > 𝑥,𝑀 = 𝑚,𝑅 = 𝑟)𝜆(𝐼𝑀 > 𝑥) (4 − 12) 

The numerator of the above equation can be computed using the basic PSHA equation but 

not summing over the magnitude or distance, as follows: 

𝜆(𝐼𝑀 > 𝑥,𝑀 = 𝑚,𝑅 = 𝑟) =  ∑ 𝜆(𝑀𝑖 > 𝑚𝑚𝑖𝑛) 𝑃(𝐼𝑀 > 𝑥 | 𝑚𝑗, 𝑟𝑘) (𝑀𝑖 = 𝑚) 𝑃(𝑅𝑖 = 𝑟𝑛𝑠𝑜𝑢𝑟𝑐𝑒𝑠
𝑖=1 )                                                                                                                                                                (4 − 13) 

An example of this conditional distribution of 𝑀 and 𝑅 given 𝐼𝑀 > 𝑥 is shown in Figure 

4-3, for an earthquake with 10% probability of exceedance in 50 years (Return Period = 475 years) 

in Los Angeles downtown, which was generated using the USGS Unified Hazard Tool (USGS, 

2017). 

 

Figure 4-3: PSHA deaggregation for Los Angeles downtown (generated by Unified Hazard Tool) 
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The seismic hazard deaggregation is an essential part of many PSHA analyses and 

deaggregation results should be provided as part of the output from any PSHA calculations (Baker, 

2008). 

CAUSE OF DAMAGE TO NATURAL GAS COMPONENTS 

Damage to the natural gas components from earthquakes occur due to either 1) ground 

shaking associated with traveling seismic waves, or 2) large permanent ground deformations. The 

former is often referred to as transient ground deformation (TGD), while the latter is generally 

known as permanent ground deformation (PGD). It should be noted that permanent ground 

deformations are usually the result of liquefaction, landslides or surface fault ruptures. The relative 

influence of different earthquake-induced PGDs on a natural gas network system may depend on 

different soil features such as morphologic, geological, and geotechnical conditions of the subsoil 

(Esposito et al., 2015). In general, fault displacement can be evaluated through semi-empirical 

equations that correlate displacement with earthquake magnitude (e.g. Petersen et al., 2011). 

Meanwhile, for liquefaction and landslide, the ground displacement can be estimated by using 

models that relate the ground displacement to a certain ground motion intensity measure. The 

approach of HAZUS-MH can be utilized for the purpose of risk assessment of large networked 

systems such as natural gas networks, as this methodology requires limited information about the 

geotechnical characterization of the region. In that methodology, the first stage for evaluating 

liquefaction hazard is to determine the liquefaction susceptibility, and then calculate the 

probability of liquefaction (i.e. the likelihood that the earthquake will initiate the phenomenon). 

Eventually, given that liquefaction occurs at certain locations, the amount of PGD (i.e., 

displacement) is calculated using predictive graphs. Similarly, the calculation of downslope 

displacement starts by first evaluating the landslide vulnerability, which is related to the 



45 
 

morphologic and groundwater conditions of the area, in addition to the geologic source and the 

strength characteristics of soils. These factors contribute to the determination of the critical 

acceleration (which is known as kc), which is defined as the minimum shaking intensity needed to 

overcome the slide resistance of the slope.
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CHAPTER 5: RESTORATION ANALYSIS 
 
 
 

Rapid recovery and restoration is a vital element of community resilience. Communities 

are composed of complex systems and highly coupled networks, and therefore, failure of one 

network or any of its key components can result in malfunction of other systems and loss of 

functionality of all or parts of the community. For example, the Rhode Island gas outage of 2019 

resulted in a potentially dangerous loss of pressure caused by a supplier’s faulty valve in a single 

natural gas pipeline, and left thousands of people without heat resulting in school closures (U.S. 

News, 2019). The Northeast blackout of 2003 that started from a single point source also affected 

approximately 50 million people in both U.S. and Canada (Farmer and Allen, 2006). These 

examples highlight that in addition to the direct losses such as injuries, fatalities, and property 

damage, indirect losses that are indeed the consequence of cascading failures need to be accurately 

addressed in community resilience assessment, as they play an important role in economic vitality 

and the social well-being of people. Various researchers have studied the damage to infrastructure 

systems and cascading failures resulting from damage in the aftermath of disasters (e.g. Argyroudis 

et al., 2015; Dong and Frangopol, 2017; Fang and Zio, 2019; Heracleous et al., 2017; Javanbakht 

and Mohagheghi, 2014; Shafieezadeh et al., 2014; Wu et al., 2016; Zanini et al., 2017; Zhang et 

al., 2016). Nonetheless, the duration of these failures within the community is of significant 

importance on the amount of indirect losses and can be quantified by modeling the restoration 

analysis of the community (Masoomi and van de Lindt, 2018a).  

Restoration analysis in community resilience has received significant attention because of 

its critical role, but it is perhaps the least understood part of the recovery process for a community. 

Various researchers have modeled the post-disaster recovery of different infrastructure systems in 
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order to estimate the expected restoration time for systems (e.g. Francis and Bekera, 2014; 

Guikema et al., 2014; Liu et al., 2007; Nateghi et al., 2011; Shinozuka et al., 2003). Some 

researchers have also compared different restoration strategies (e.g. Buzna et al., 2007; Çaǧnan et 

al., 2006). Ouyang et al. (2012) evaluated the performance of an electric power network under 

hurricane hazards and investigated the effect of the number of recovery resource units on the 

restoration process. Çagnan et al. (2004) categorized lifeline restoration models into two 

theoretical approaches known as Markov processes and network models, as well as two empirical 

approaches called statistical curve fitting and deterministic resource constraint. Moreover, they 

proposed a simulation-based model for post-disaster restoration process and called it the discrete 

event simulation (DES) method, which was built based upon past studies yet overcame some of 

their limitations. The method is capable of considering rules, constraints, and decisions from utility 

companies for restoration process including recovery prioritization plans, mutual aid agreements, 

as well as number of available repair crews and materials. The method also captures uncertainties 

associated with the parameters such as inspection time, repair time, and amount of available 

resources by defining these parameters as random variables with specific probability distributions. 

Cagnan and Davidson (2007) used the DES method to simulate the post-earthquake restoration 

process for Los Angeles Department of Water and Power (LADWP) electric power system and 

simulated the restoration curve for the Northridge earthquake. Çaǧnan et al. (2006) used the DES 

approach and investigated several restoration improvement strategies to improve the seismic 

resilience of the LADWP electric power system. Tabucchi et al. (2010) also used the DES 

approach to the water supply system of LADWP in order to simulate the restoration curve and 

spatial distribution of the restoration in the aftermath of Northridge earthquake. D’Uffizi et al. 

(2015) used the DES as decision support for planning different strategies of action to apply in 
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emergency and risk situations due to man-made threats and natural hazards. Huling and Miles 

(2015) used the DES for modeling home reconstruction in the aftermath of disasters and stated 

that the DES is a novel approach that can be utilized to support pre- and post-disaster decision 

making for improved community disaster resilience.  

The recovery pace of a network system is a function of different parameters such as the 

recovery strategy and the amount and prioritization of resource allocation (Guidotti et al., 2016; 

Jia et al., 2017; Sharma et al., 2017). In order to evaluate the system functionality and recovery 

after the occurrence of an earthquake, a reliability approach should be used that includes both 

hazard modeling and physical and functional models of the damaged network system (Ameri and 

van de Lindt, 2018b). Moreover, the possibility of multiple component failures and the cascading 

effects due to different internal and external network dependencies and interdependencies should 

be taken into account for understanding the functionality assessment of a damaged network. In this 

dissertation, the DES approach is combined with network-based approach and is applied to a 

virtual community known as Centerville (Ellingwood et al., 2016). The methodology used enables 

considering the effect of cascading failures in the analysis such that if a component has no damage 

due to the disruptive event or is already physically repaired, it remains non-functional until all its 

supplier nodes are recovered and back to functionality. Furthermore, the methodology allows 

taking into account dependencies and interdependencies, as well as priorities for repair among 

networks and network components using evolutionary algorithm optimization techniques.  

METHODOLOGY AND PROCEDURE 

The methodology proposed herein combines the methods previously described with 

damage, functionality, and recovery models. Specifically a damage model refers to the simulation 

of physical damage to network components and a network functionality model represents an 
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analysis used to investigate the damage impact on the network. Finally, a recovery model refers to 

the restoration process of the damaged network. The methodology is also capable of modeling 

network dependencies and interdependencies. Figure 5-1 depicts the flowchart of the 

methodology. 

 

Figure 5-1: Flowchart for calculating functionality fragility and restoration process 

 
The entire process can be summarized in six steps as follows: 

1) Network modeling: The first step in resilience assessment of network systems is to model 
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interdependencies throughout the networks. This is worth-mentioning that different levels 

of resolution may be considered for modeling the networks based on the scale of interest 

and desired computational complexity. 

 

2) Hazard modeling: The second step of the procedure is to create the hazard model with 

spatial variations in intensity for different components of the networks. Seismic hazard 

ground motion prediction models can be used for generating desired spatial maps of 

intensity measures. These include maps of peak ground acceleration (PGA), peak ground 

velocity (PGV), and peak ground displacement (PGD).  

 

3) Direct damage assessment: Once the community topology and hazard are defined, the next 

step is to measure the physical damage that occurs to networks’ components. This is 

evaluated probabilistically through fragility curves and RR equations for nodal and link 

elements, respectively. Fragility curves represent the conditional probability of exceeding 

a predetermined performance level for a given level of hazard intensity measure (e.g. 

Ditlevsen and Bjerager, 1986; Gardoni et al., 2003; Masoomi et al., 2017; Masoomi et al., 

2018; Memari et al., 2017). RR equations, on the other hand, represent the expected number 

of leakage and breaks per unit length of the pipe, for a given hazard intensity measure (e.g. 

ALA, 2001; O’Rourke and Ayala, 1993; O’Rourke and Deyoe, 2004; Pitilakis et al., 2014).  

 

4) Indirect damage assessment: In order to determine the damage states for each network 

system as a whole, the cascading effects due to internal dependencies of the network 

components as well as the interdependencies between different networks should be 
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included in the process. This step determines the damage status of the networks’ 

components by including both the direct damage (from the previous step), in addition to 

the cascading effects due to dependencies and interdependencies. 

 

5) Functionality assessment: In this step, natural gas network functionality is evaluated in the 

immediate aftermath of the earthquake. Functionality assessment of an NGN can be carried 

out at two different levels: a) connectivity-based analysis, and b) flow-based analysis. The 

former method concentrates on finding paths connecting source nodes to supplier nodes, 

and allows the serviceability assessment in terms of, for instance, the number of supplier 

nodes that remain accessible from at least one supply node after the occurrence of an 

earthquake. The flow-based method focuses on the network’s capacity and considers extra 

constraints/factors in the serviceability evaluation; e.g., the minimum gas pressure at each 

supplier node.  

 

6) Restoration analysis: The time duration that component failures remain within the 

community can have a dramatic effect on indirect losses, and can be estimated by 

performing a community restoration analysis. After determining the functionality status of 

the network following the seismic event, the next step is to evaluate the level of 

functionality at each time step t after the earthquake. The recovery time of a certain 

component in the network is a function of both its recovery time and that of the supporting 

elements through different networks. For each time step t, the method implemented herein 

updates the functionality status of the elements in the network based on the initial damage 

state and corresponding restoration functions. It should be noted that in the literature, there 
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are different examples of restoration functions that are either postulated (e.g. Bocchini et 

al., 2012; Titi et al., 2015), or obtained based on more fundamental recovery activities 

(Sharma et al., 2017).  

In the restoration analysis in this dissertation, it is assumed that the recovery process of all 

networks are started immediately after the disaster occurs and simultaneously. This simultaneous 

assumption is felt to be logical as each network has its own crews for inspection, assessment, and 

repair.  

MITIGATION STRATEGIES 

Mitigation refers to measures that can be taken in order to minimize the destructive and 

disruptive effects of hazards, and thus reduce loss of life and property and lessen the impact of 

hazards in general. It includes some advance measures taken in order to avoid, decrease, or 

eliminate the risk that natural or man-made hazards impose to human lives and property. 

Mitigation strategies can be of different types, ranging from structural measures such as retrofitting 

the infrastructure components that are vulnerable to disasters, to non-structural measures such as 

developing and implementing education and outreach programs to increase public awareness. 

Although mitigation most often refers to actions against potential disasters before they happen, 

mitigation activities can take place at any time before the disaster, during an emergency, or after 

the disaster and during recovery and reconstruction (Maskrey, 1989).  

The structural measures are important as immediate injury and damage results from the 

physical infrastructure systems failure (Godschalk, 2003). Structural measures focus on protecting 

people, property, and the environment from disruptive events in a number of different ways. 

Examples of structural measures include identifying hazards and risks in order to perform smart 

urban growth by directing new developments away from hazardous areas, retrofit and strengthen 
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vulnerable buildings and lifelines, as well as other activities such as flood control works, slope 

stabilization, and shoreline hardening.  

Various researchers have focused on mitigation strategies for community resilience. Albert 

et al. (2004) studied the power grid from a network perspective and determined its ability to 

transfer power between generators and customers when certain nodes were disturbed. They 

realized that disturbances affecting key transmission substations substantially reduced its ability 

to function, and that increasing the redundancy and capacity of the existent structure can be used 

as an effective mitigation strategy to increase resilience and reduce blackouts effects on the 

population.  Pitilakis et al. (2006) proposed a methodology for seismic risk assessment of utility 

systems and transportation infrastructures. Their proposed methodology provided a uniform basis 

for the reduction of the consequences of lifeline damage in urban areas and an efficient mitigation 

strategy and periodization for pre- and post-earthquake actions. Davis (2008) summarized 

practices implemented as well as other practices identified as needing to be implemented by 

operational water systems worldwide in order to improve their seismic resilience. He presented 

several mitigation strategies for reducing component damage and effects on system functionality, 

such as providing normal and backup seismic resistant power supply, implementing block 

distribution system, as well as providing system redundancy to expected damage areas. Bana e 

Costa et al. (2008) developed a multi-criteria value model that enabled the prioritization of bridges 

and tunnels according to their structural vulnerability and strategic importance as a mitigation 

strategy in the case of seismic events. The model was subsequently explored to prioritize the 

bridges and tunnels of a zone in Lisbon, Portugal with high seismicity.  Kishawy and Gabbar 

(2010) summarized typical threats to pipeline integrity and techniques used in management and 

monitoring pipelines, and presented a pipeline integrity management system design for failure 
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prevention, inspection and repair, which allowed for risk mitigation and long-term optimized 

performance of pipeline systems. Zulfikar et al. (2016) described a real-time risk mitigation system 

for Istanbul natural gas distribution network. The system is capable of providing integrated ground 

shaking and damage maps for the natural gas network components immediately after an 

earthquake, which can be used for dispatching rapid response teams to high damage areas.  

For the case of a natural gas network resilience against earthquakes specifically, using 

high-density polyethylene (HDPE) pipelines in the distribution network is one effective mitigation 

strategy, as the absence of damage in these pipelines in the Canterbury earthquake (O’Rourke et 

al., 2012) leads to a reasonable assumption of very good performance of HDPE pipelines in 

earthquakes. HDPE pipelines are a type of flexible plastic pipe that can carry portable water, 

wastewater, hazardous wastes, as well as oil and compressed gases (Sajwan et al., 2008). They are 

built from polyethylene, which is a very strong and durable, yet flexible material. Due to their 

lower life cycle costs (e.g. corrosion resistance and leak tight) and their reduced installation costs, 

HDPE pipes are being used more in new gas distribution networks as well as in replacement of 

aging steel pipes (Pitilakis et al., 2014). In this dissertation, the effect of replacing steel pipes with 

ductile HDPE pipelines has been investigated as part of an effective mitigation strategy against 

seismic hazard.  

OPTIMIZED NETWORK RECOVERY 

Resources are usually limited and scarce in the immediate aftermath of an earthquake. 

Therefore, developing optimized network recovery plans in order to effectively allocate available 

resources to damaged components of a disrupted network can speed up the restoration process, 

and hence, enhance the community resilience. Various studies have focused on optimized 

restoration of disrupted lifelines for a faster and more efficient recovery. Bryson et al. (2002) used 
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a mixed integer programming approach for selecting a set of restoration plans, with the aim to give 

the greatest benefit to business operation and maximize the total value of the coverage provided 

by the set of selected plans. Casari and Wilkie (2005) discussed sequencing lifeline repairs after 

an earthquake and represented ways to integrate economic inventive into the management of 

natural disasters. The proposed decisional procedures could be employed by a planner in order to 

set repair priorities and help to coordinate lifeline firms in the post-earthquake reconstruction. Lee 

et al. (2007) proposed a model for minimizing the operating costs involved in temporary 

emergency restoration of highly interconnected lifelines. The model allowed representation of 

infrastructures under different conditions of normal operation, post-disruption impact assessment, 

as well as restoration, and permitted the development and use of algorithms for identifying 

solutions to problems associated with disruption of interdependent infrastructures. Xu et al. (2007) 

developed a methodology to determine how to schedule inspection, damage assessment, and repair 

tasks in order to optimize the post-earthquake restoration of the LADWP electric power system. 

The objective of the optimization was to minimize the average time each customer was without 

power, and a genetic algorithm was used to solve the problem. Matisziw et al. (2010) proposed a 

multi-objective optimization approach for network restoration during disaster recovery. The goal 

of the optimization was to ensure that facility restoration was prioritized so that system 

performance was maximized over a planning horizon. The proposed model permitted tradeoffs 

between two objectives to be evaluated and was applied to a telecommunication network to 

illustrate significance of optimization. Nurre et al. (2012) proposed an integrated network design 

and scheduling problem that modeled optimized restoring of infrastructure systems after an 

extreme event. They used integer programming to formulate the problem and utilized residual 

network optimality conditions in order to create a disputing rule and solve the problem. Applying 
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the models and algorithms on different testbeds, they indicated the developed dispatching rule can 

be utilized in real-time restoration planning activities. González et al. (2016) developed a model 

that optimized the reconstruction strategy of a damaged system of interdependent infrastructure 

networks, considering the existence of limited resources including budget, time, and manpower 

among others, as well as interdependencies between the networks, such as physical and 

geographical, among others.  Maya Duque et al. (2016) developed a dynamic programming 

algorithm as well as an iterated greedy-randomized constructive procedure to solve the problem 

of network repair crew scheduling and routing problem during the aftermath of disasters. Vodák 

et al. (2018) introduced a modified ant colony optimization algorithm in order to increase the speed 

of the road network recovery process in the aftermath of disasters. Fang and Sansavini (2019) 

investigated the effects of uncertain repair time and resources on the post-disruption restoration of 

critical infrastructure. They proposed a stochastic programming for infrastructure restoration under 

uncertainty by developing a multi-mode component repair model, and proposed a tailored Benders 

decomposition to effectively solve the model.   

In case of a disruptive event, utility companies start taking actions immediately after the 

disaster in order to recover their systems and its service. The number of available resource units 

for repairing the network is a crucial factor in this process. Meanwhile, the way in which these 

resources are being allocated to the damaged components in a network is another important factor 

that can substantially alter the entire recovery process. For a damaged network, different repair 

sequences can be defined based on the number of available resources, which can result in different 

restoration times and resilience. Accordingly, optimizing the restoration sequence to minimize the 

resilience loss is a good strategy to recover faster from a disaster.  
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Bruneau et al. (2003) proposed a deterministic static metric for measuring the resilience 

loss of a community in the aftermath of an earthquake as follows: 

𝑅𝐿 =  ∫ [100 − 𝑄(𝑡)]𝑑𝑡𝑡1
0  (5 − 1) 

where 𝑡1 is the time when the infrastructure is completely recovered, and 𝑄(𝑡) represents 

the functionality of the infrastructure in percent. In this context, the performance of the damaged 

infrastructure system is compared to the target infrastructure performance during the recovery 

process. Resilience Loss (𝑅𝐿) can be illustrated simply as the shaded area in Figure 5-2. 

Accordingly, a larger 𝑅𝐿 value means a lower resilience while a smaller value of 𝑅𝐿 indicates 

higher resilience. Herein, this definition is used in order to measure community resilience in the 

aftermath of an earthquake. 

 

Figure 5-2: Resilience loss measurement (excerpted from Bruneau et al. (2003)) 

 
It is usually difficult for standard optimization techniques to solve such problem due to the 

complicated cascading effects within and across multiple systems (Ouyang et al., 2015). 

Nonetheless, a Genetic Algorithm (GA) is a powerful optimization technique and has been 

successfully used in the literature for optimizing restoration sequences of damaged components 

(Xu et al., 2007; Ouyang and Wang, 2015). A Genetic Algorithm methodology has been used in 
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this dissertation in order to study the effect of optimized network recovery on recovery pace of 

natural gas network.  

Genetic Algorithms, inspired by Darwin’s theory of natural selection and initially 

developed by Holland (1975), is a well-known and accepted optimization method. In this method, 

a population of candidate solutions (aka individuals) is evolved to find a better solution for the 

problem. Each individual has a set of properties and is encoded as a string which represents a 

chromosome. The evolution begins by randomly generating a population of individuals, and it is 

a repetitive procedure, with the population at each iteration being called a generation. In each 

generation, a fitness value – which is usually the value of the objective function in the optimization 

problem being solved – is calculated for each individual in the population. Forming a new 

population takes place using three main operators: selection, crossover, and mutation. The 

selection operator chooses individuals based on their fitness values, meaning that the more fit an 

individual is, chances are higher they are selected. Two selected individuals (parents) then produce 

two descendants (offspring) by using the crossover and mutation operators.  Crossover operator 

exchanges substrings of the chromosomes in the chosen individuals based on a crossover 

probability. Mutation operators alter the chromosomes of the offspring with a mutation probability. 

This process is repeated until enough offspring are available to create the next generation. The new 

population of candidates is then used in the next iteration to seek better solutions. It should be 

noted that, the algorithm usually terminates after a certain maximum number of generations has 

been reached, or after a satisfactory level of fitness is achieved. The procedure to optimize the 

restoration sequence for damaged components is shown in Figure 5-3.  
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Figure 5-3: Flowchart for fiinding the optimized restoration sequence 

 
The procedure can be described in five steps as follows:  

1) Generate candidate solutions: The first step in this procedure is to number the damaged 

components in the network. Then, a restoration sequence may be expressed as a string 

composed of those numbers. For example, if five components are damaged in the network 

and the restoration sequence is in the order of 1  2  3  4  5, a chromosome such 

as 12345 represents that specific restoration sequence. It is obvious that in this context, the 

length of the chromosome is equal to the number of damaged components. 

 

2) Calculate fitness values: The second step of the procedure is to evaluate the fitness value 

for each of the individuals built in the previous step. For this purpose, for each chromosome 

which corresponds to a restoration sequence, the restoration process is simulated and the 𝑅𝐿 is calculated. Then, a linear normalization technique is used in order to calculate the 

fitness values. In this formulation, after calculating the 𝑅𝐿 for each of the candidate 
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solutions, the 𝑅𝐿 values are arranged by the order starting from the smallest 𝑅𝐿 to the 

biggest one. Then, the fitness value for the i-th individual can be calculated as 𝑓(𝑖) =𝑚𝑎𝑥(𝑎 − 𝑏𝑖, 1), in which 𝑖 is the order of the chromosome, 𝑎 is the maximum fitness 

value, and 𝑏 is the reducing ratio (Ouyang and Wang, 2015). The values for 𝑎 and 𝑏 can 

be set to 100 and 2.5, respectively. 

 

3) Selection: The roulette wheel selection techniques can be utilized in order to select superior 

chromosomes based on their fitness values. In this technique, a cumulative sum of all 

fitness values is calculated in order to make a summing fitness value sequence. Then, a 

uniformly distributed random number r is chosen between 0 and the total sum of fitness 

values. This random number is then compared with the elements of the summing sequence, 

and the first individual with its element in the summing sequence exceeding r is chosen. 

 

4) Crossover: For a pair of selected individuals in the previous step, if a uniformly distributed 

random number is less than the crossover probability, then this operator is called into 

action. In this context, a number between 1 and the length of the chromosome is randomly 

selected as the cutting point. The first offspring inherits the longer substring from the first 

parent and replaces the genes of the shorter substring in the order they appear in the second 

parent. The second offspring inherits the longer substring from the second parent and 

replaces the genes of the shorter substring in the order they appear in the first parent. For 

example, if 63281745 and 24876153 are the selected parents, assuming a cutting point 5 is 

considered, the first offspring inherits the genes 63281 from the first parent, and the 

remaining substring of 745 is replaced by 475, which is the order of genes, appeared in the 
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second parent. Hence, the first offspring will be 63281475 and the second offspring will 

be 24876315. This is shown in Figure 5-4. 

 

Figure 5-4: Example of crossover operator application in optimizing repair sequence  

 
1) Mutation: For each offspring generated in the previous step, if a uniformly distributed 

random number is less than the mutation probability, then this operator is called into action. 

In this context, two randomly selected genes in the chromosome of an offspring are 

replaced with each other. For examples, if 63281745 is the selected offspring for mutation, 

assuming that the 3rd and 6th genes are selected to be replaced, then the mutated 

chromosome will be 63781245. This is shown in Figure 5-5. 

 

Figure 5-5: Example of mutation operator application in optimizing repair sequence  

 
Steps 3 to 5 are repeated until enough number of offspring individuals are made for the 

next generation. The whole process is repeated until a certain maximum number of generations 

has been reached. Finally, the chromosome with the minimum 𝑅𝐿 corresponds to the optimal 

restoration sequence for recovery of the network system.
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CHAPTER 6: ILLUSTRATIVE COMMUNITY MODEL AND SIMULATIONS 
 
 
 

To illustrate the application of the probabilistic procedure described before, the natural gas 

and electric power networks of a virtual community known as Centerville are considered and 

subjected to two different earthquake scenarios.  The Centerville virtual community was developed 

as a testbed for the NIST–funded Center of Excellence for Community Resilience (van de Lindt 

et al., 2015) with the goal for examining procedures and methodologies (Ellingwood et al., 2016). 

Centerville is a typical mid-size community with a population of 50,000, located near an 

earthquake fault in the United States, and approximately 8 km by 13 km (5 miles by 8 miles) in 

size. The physical infrastructure of the Centerville built environment was initially modeled with 

four physical infrastructure components/systems – buildings, transportation system, water system, 

and electric power system. A natural gas network was later designed and added to the community 

(Ameri and van de Lindt, 2018a). The Centerville building portfolio contains about 30,000 

buildings with residential, commercial, and industrial occupancies. It also includes critical 

facilities such as fire stations, hospitals, schools, and government offices. These are distributed in 

in seven residential zones (including a mobile home park), two commercial zones, and two 

industrial zones (one light and one heavy industry). All of the systems are essential to the health 

and welfare of a community, and play a significant role in the community resilience assessment, 

regardless of community size or its location. The schematic view of the Centerville is shown in 

Figure 6-1. 
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Figure 6-1. Plan of Centerville (after Ellingwood et al., 2016) [Inco. = Income; and Den. = Density] 

 
THE CENTERVILLE NGN AND EPN 

The natural gas network of the Centerville supports residential, commercial, and industrial 

sectors of the community through subsystems that include supply, transmission, and distribution 

(Ameri and van de Lindt, 2018a). These subsystems are modeled using graph theory with nodal 

elements (e.g. processing plant, city gate stations, etc.) and link elements (i.e. the transmission and 

distribution pipelines). The network is characterized by a natural gas processing plant, which is 

the major source of natural gas for Centerville, two compressor stations, two city gate stations, one 

local distribution company, 20 district regulating stations, and steel pipelines that connect these 

components together. The model of the natural gas system is illustrated in Figure 6-2. Among the 

20 DR stations, one provides natural gas for the electric power processing plant, two stations 

deliver gas to the industrial sectors (heavy and light), and each of the other stations support two 

main sectors as well as their nearby critical facilities. It is noteworthy that even though the DR 

stations demand the natural gas from the transmission networks, herein they are considered 
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supplier nodes as they supply the natural gas for different sectors of the Centerville. The map of 

regions supported by each DR station is shown in Figure 6-3. 

 

Figure 6-2. Centerville Natural Gas Network 

 

Figure 6-3. Supported Zones by each District Regulating Station  
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Only large diameter transmission and distribution pipelines are represented in the model, 

as this simplified modeling is felt to be of sufficient resolution for assessing the system 

performance at the community level. Moreover, in designing the natural gas network system it was 

assumed that the natural gas system would be congruent to the major roadway system (Ameri and 

van de Lindt, 2018a). It is common practice in urban development in the U.S. to utilize the right-

of-way for transportation systems to locate other distributed infrastructure systems (Ellingwood et 

al., 2016). 

The electric power network of the Centerville includes one power plant, one transmission 

substation, one main grid substation, two distribution substations, three sub-distribution 

substations and 24 overhead poles (Unnikrishnan and van de Lindt, 2016) These are connected via 

transmission, distribution, and sub-distribution lines. The model of the electric power system is 

illustrated in Figure 6-4. As mentioned earlier, in case of a seismic event, damage occurs primarily 

to power plants, substations and buried power lines. Thus, in Centerville, the power plant and the 

substations are the only components of EPN that are prone to earthquakes. 

 

Figure 6-4. Centerville Electric Power Network 
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ILLUSTRATIVE SCENARIOS 

The methodology described in Section 2 was applied to Centerville in order to estimate 

damage and simulate recovery of the natural gas network when subjected to earthquakes. In order 

to evaluate the functionality and restoration of the natural gas network in the community, two 

earthquakes of magnitude 6.5 and 7.9, both located approximately 10 km northwest of the 

Centerville, were considered as two separate examples. Figure 6-5 to 6-8 show the PGA and PGV 

maps for each simulated earthquake from the attenuation relationship developed by Campbell and 

Bozorgnia (2014).  

 

Figure 6-5. PGA map for the simulated 6.5 magnitude earthquake  
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Figure 6-6. PGV map for the simulated 6.5 magnitude earthquake  

 

Figure 6-7. PGA map for the simulated 7.9 magnitude earthquake  
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Figure 6-8. PGV map for the simulated 7.9 magnitude earthquake  
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Figure 6-9. Liquefaction susceptibility map for Centerville  
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2) Interdependent NGN and EPN: In this case, the bi-directional interdependencies between 

the natural gas and electric power networks are considered. In this context, for the DR 

stations to remain functional, not only they need to be properly connected to the source 

nodes, but also the natural gas processing plant and the city gate stations need to be properly 

connected to and fed by the electric power network system.  

The bi-directional interdependency between the NGN and EPN is represented in Figure 

6-10. As shown in Figure 6-10, the required natural gas for electricity production is first produced 

in the natural gas processing plant (NGPP) and then delivered to the EPN power plant through 

NGN transmission pipelines. The NGPP also depends on EPN power plant for electricity. The city 

gate stations in the NGN depend on the nearby substations for electricity as shown in Figure 6-10.  

 

Figure 6-10. Bi-directional interdependency between NGN and EPN 
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In the case of link elements it is assumed that a pipeline cannot supply gas to the DR 

stations if it has at least one break. The compressor stations and the local distribution company 

were removed from the model for fragility analysis as the natural gas can still flow through the 

network without these components being functional (although unquestionably a failure in the 

compressor station will result in lower pressures, but pressure alteration is not the scope of this 

dissertation). The susceptibility of DR stations were also neglected which is consistent with the 

work done by Esposito et al. (2015).  

Accordingly, the NGPP, CG stations, and pipelines were considered as the vulnerable 

elements for the natural gas network. The CG stations were assumed to be modeled with the same 

fragility as of unanchored compressor stations (e.g. Chang and Song, 2007; Esposito et al., 2015). 

Moreover, for NGPP, the fragility curves for small oil refineries were adopted from HAZUS-MH 

in terms of lognormal cumulative distribution functions. For the electric power network, the power 

plant and the substations were considered as the vulnerable elements of the network, and the 

fragility curves were adopted from HAZUS-MH accordingly.  

For buried pipelines, the RR equations were adopted from Pitilakis et al. (2014) for steel 

pipelines as functions of PGV and PGD as follows: 𝑅𝑅 = 𝐾1 0.002416 𝑃𝐺𝑉 (6 − 1) 𝑅𝑅 = 𝐾2 2.5829 𝑃𝐺𝐷0.319 (6 − 2) 

where 𝑅𝑅 is given in 1/𝑘𝑚, PGV and PGD are expressed in 𝑐𝑚/𝑠 and 𝑐𝑚, respectively, 

and 𝐾1 and 𝐾2  are coefficients that are selected based on the pipe diameter and material. In order 

to calculate the RR for each pipeline, the pipe is first divided into separate segments. The RR for 

each segment is evaluated at the end nodes for both PGV and PGD intensity measures, and the 

mean RR is calculated by taking the average values at the end points of the pipe segments. Finally, 
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the calculated RRs are multiplied by 0.2 and 0.8 for PGV and PGD, respectively, as only breaks 

are considered in a connectivity-based analysis, and the largest number is taken as the final RR. It 

is noteworthy that, the probability of having 𝑛 repairs in a pipe segment with length 𝐿 can be 

evaluated using a Poisson probability distribution as in Equation (6-3): 

𝑃(𝑁 = 𝑛) =  [(𝑅𝑅)(𝐿)]𝑛𝑛! 𝑒−(𝑅𝑅)(𝐿) (6 − 3) 

There are different indicators that can be used in a connectivity-based analysis for 

performance assessment of natural gas networks, among which is the serviceability ratio (𝑆𝑅) (see 

Esposito (2011) for other possible performance indicators and more details). The 𝑆𝑅 indicator, 

originally defined for water supply systems (see e.g. Adachi and Ellingwood, 2008), is associated 

with the number of supplier nodes in the distribution network that remain accessible from the 

supply facilities in the transmission network after the hazard occurrence. The 𝑆𝑅 may be calculated 

as: 

𝑆𝑅 = ∑(𝑤𝑖 . 𝑥𝑖)𝑛
𝑖=1 ∑𝑤𝑖 𝑛

𝑖=1⁄ (6 − 4) 

where 𝑤𝑖 is the weighting factor for the supplier node 𝑖, 𝑥𝑖 represents the functionality 

status of the supplier node 𝑖 (which is modeled as the outcome of a Bernoulli trial, i.e., it is one if 

the supplier node is functional and it is zero otherwise), and 𝑛 is the number of the supplier nodes. 

The weighting factor for each supplier node is calculated based on the amount of natural gas 

consumed by the buildings supported by that certain DR station (Ameri and van de Lindt, 2018a). 

For this purpose, the amount of natural gas consumption for each building archetype in Centerville 

was estimated based on the available data from the U.S. Energy Information Administration (EIA) 

(https://www.eia.gov). Table 6-1 shows the amount of natural gas consumption for each building 

archetype in Centerville. 

https://www.eia.gov/
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Table 6-1. Average annual natural gas consumption 
for each building archetype in Centerville 

Sector Consumption (MCF*) 

Residential - R1 60 

Residential - R2 100 

Residential - R3 135 

Residential - R4 100 

Residential - R5 2100 

Mobile home 25 

Retail/Businesses 1075 

Government offices 1340 

School 2980 

Hospital 9420 

Fire Station 400 

Walmart/Home Depot 2500 

Light Industrial 5000 

Heavy Industrial 20000 

*MCF = the volume of 1,000 cubic feet 

 
Moreover, two different networks are considered for each of the aforementioned scenarios: 

1) Normal networks: In this scenario the natural gas and electric power networks are modeled 

realistically, meaning that all of the components in the networks are reasonably susceptible 

to the earthquake hazard. 

2) Fortified networks: In this scenario, the networks are considered to be more secured, in the 

way that the key elements in each network (i.e. natural gas processing plant in the NGN 

and electric power plant in EPN) are fortified, so that if they get damaged during the 

earthquakes they can be repaired much faster. 

For each of the aforementioned scenarios, two different restoration strategies are 

considered: Random Restoration Strategy and Optimized Restoration Strategy. The different 

restoration strategies are being considered in order to evaluate how optimized resource allocation 

can speed up the recovery process. Moreover, in order to perform a thorough community resilience 

assessment, the effect of having different numbers of resource units on the restoration process are 
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also taken into account. For natural gas network restoration, a number of available resource units, 

r, as generic work teams including repair crews, vehicles, equipment and replacement components 

are considered for assignment to damaged components (Ameri and van de Lindt, 2018a; Masoomi 

and van de Lindt, 2018; Ouyang et al., 2012). For electric power network restoration, two available 

resource units are considered, as this number seems reasonable according to the number of 

components in the EPN. It is assumed that only one resource unit is needed to repair each damaged 

component in the networks. When the repair is completed for a certain component, the resource 

unit is immediately shifted to the next damaged component in the network until the entire network 

is restored. Moreover, the effect of the industrial makeup of a community on its natural gas 

recovery following an earthquake, as well as the influence of replacing conventional steel pipes 

with high-density polyethylene (HDPE) ductile pipelines as part of the mitigation strategy plan 

has been examined for the case of an independent normal network with random restoration.  

RESULTS 

Effects of industrial makeup and HDPE pipelines  

Considering the independent normal network under random restoration, in order to 

investigate the effect of the industrial makeup of a community on the natural gas recovery and the 

influence of replacing conventional steel pipes with high-density polyethylene (HDPE) ductile 

pipelines, three scenarios were considered in this dissertation for functionality assessment of the 

natural gas network of the Centerville:  

Scenario A: General  

In this scenario, the natural gas is realistically distributed between different buildings and 

sectors (i.e. residential, commercial, and industrial) of Centerville based on the number and size 

of buildings. 
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Scenario B: Residential 

In this scenario, the natural gas is still realistically distributed among different 

buildings/sectors, however, the focus is on residential building (including mobile homes) 

restoration only. Therefore, the results in this simulation will represent the pace at which natural 

gas is restored to residential buildings as the measure being tracked for recovery.  

Scenario C: Industrial 

In this scenario it is assumed that the main portion of the natural gas (about 70%) is 

consumed by the industrial (both heavy and light) sectors of Centerville. 

Furthermore, two different cases were considered for each of the abovementioned 

scenarios. First, it is assumed all the pipelines are made of steel and the fragilities are adopted 

accordingly. In the second case, the distribution network pipelines are assumed to be made of high-

density polyethylene (HDPE) pipelines, which are being used more in new gas distribution 

networks due to their high ductility (K Pitilakis et al., 2014). There are no fragilities available for 

HDPE pipelines but the absence of damage in these pipelines in the Canterbury earthquake 

(O’Rourke et al., 2012) leads to a reasonable assumption of very good performance of HDPE 

pipelines in earthquakes. Therefore, in this dissertation it is assumed that HDPE pipelines in 

Centerville do not break in an earthquake due to their high ductility. Table 6-2 presents a summary 

of the 12 analyses presented in this dissertation for evaluating the effect of industrial makeup and 

HDPE pipelines. 
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Table 6-2. Summary of analyses types and corresponding analysis 
number  

Earthquake Scenario 
Pipeline 

Steel HDPE 

Mw = 6.5 
Scenario A 1 4 
Scenario B 2 5 
Scenario C 3 6 

Mw = 7.9 
Scenario A 7 10 
Scenario B 8 11 
Scenario C 9 12 

 

For each scenario considered in Table 6-2, the intensity measures for simulated earthquakes 

were applied to each element of the natural gas network and their damage state and repair time 

were calculated using the methodology described in Chapter 5. The network damage and 

functionality status are then updated from the previous time step. The reader is reminded that even 

if a component has no damage or is physically repaired, it remains non-functional until all its 

supplier components are recovered and become functional, consistent with a standard network 

analysis. A Monte Carlo Simulation (MCS) was used to propagate uncertainties with simulations. 

In essence, the whole procedure described in Figure 5-1 in Chapter 5, is a single run within the 

MCS. In each run of the MCS, a uniformly random number between 0 and 1 is generated and used 

to sample from the statistical distributions for each component within the network models.  Each 

run provides a probability of being in one of four damage states for each component. A repair time 

is then assigned to each damaged component based on its damage state and the demand percentage 

satisfied by the network in the immediate aftermath of the earthquake is calculated. Subsequently, 

a recovery sequence list is generated and the available resources (crews) are allocated to the 

damaged components in the generated recovery sequence list. After the first components in the list 

are repaired, the status of the repaired components is updated to functional, the new demand 

percentage satisfied by the network is calculated, and the associated resources are released and 

assigned to the next damaged components in the recovery sequence list. The process continues 
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until the system is fully recovered and the restoration curve can be determined. This whole process 

is repeated for 10,000 times and the mean result is eventually presented as the final answer.  

The results for recovery of the natural gas network under the magnitude 6.5 earthquake are 

illustrated in Figures 6-11 (Analyses 1-3) and 6-12 (Analyses 4-6) for steel and HDPE pipeline 

cases considered. Figures 6-13 (Analyses 7-9) and 6-14 (Analyses 10-12) show the results for the 

magnitude 7.9 earthquake with r indicating the number of resource units in the analysis. 

 
Figure 6-11. Restoration curves for the natural gas network with steel distribution pipes in case 

of magnitude 6.5 earthquake: (a) Scenario A: General, (b) Scenario B: Residential, and (c) 
Scenario C: Industrial 

 
Figure 6-12. Restoration curves for the natural gas network with HDPE distribution pipes in case 

of magnitude 6.5 earthquake: (a) Scenario A: General, (b) Scenario B: Residential, and (c) 
Scenario C: Industrial 
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Figure 6-13. Restoration curves for the natural gas network with steel distribution pipes in case 

of magnitude 7.9 earthquake: (a) Scenario A: General, (b) Scenario B: Residential, and (c) 
Scenario C: Industrial 

 
Figure 6-14. Restoration curves for the natural gas network with HDPE distribution pipes in case 

of magnitude 7.9 earthquake: (a) Scenario A: General, (b) Scenario B: Residential, and (c) 
Scenario C: Industrial 
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is capable of working on two damaged components simultaneously. For Scenario A in the 7.9 
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having only one work crew available after a major earthquake is unreasonable but is included with 

each scenario to serve as a benchmark. Increasing 𝑟 from one to five significantly decreases the 

functionality time to 70 days for 50% functionality. It should be noted that increasing the number 

of crews beyond r = 10 does not considerably improve the recovery process. This is due to several 

factors. Namely, in the case where one of the damaged components has a higher repair time in 

comparison to the other network components. In the cases where the HDPE pipelines are used for 

distributing (Analysis 10) the natural gas network will be 50% operational after 64 days if only 

one resource unit is available. Increasing r from one to five decreases the functionality time to 21 

days with HDPE. Meanwhile, increasing the number of crews beyond five does not have any 

influence on the recovery process if HDPE pipeline is used due to the same reasons explained 

earlier. 

A basic resilience metric was able to be defined as the ratio of the area under the restoration 

curve to the area under the fully functioning curve corresponding to the fully functional system in 

line with Bruneau et al. (2003). Table 6-3 represents the approximate mean value of the resilience 

metrics for each scenario that are normalized to the maximum amount of resilience metric observed 

among all scenarios for each earthquake. 

Table 6-3. Resilience metrics for the studied scenarios 

Earthquake Scenario 
Relative Resilience Index (%) 

Steel Distribution Pipes HDPE Distribution Pipes 
r = 1 r = 5 r = 25 r = 1 r = 5 r = 25 

Mw = 6.5 
Scenario A 25 88 97 92 99 99 
Scenario B 25 87 97 91 98 98 
Scenario C 26 88 98 93 100 100 

Mw = 7.9 
Scenario A 2 79 96 86 98 98 
Scenario B 1 78 94 85 97 97 
Scenario C 2 80 96 87 100 100 

Note: the results for r = 2 and r = 10 are not shown in the table for brevity. 
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As shown in Table 6-3, and as expected, the most resilient system is the system with the 

HDPE pipelines for the distribution portion of the network. This is clear from the table that for 

such a system using more than five resource units does not have any influence on the recovery 

process as also noted earlier. However, for the system with steel pipes, increasing the number of 

crews can have a significant influence on the recovery process. Such a resilience index could be 

used to assist in community-level decisions regarding the replacement of steel NGN pipeline in 

high seismic regions. Each resilience index can be tied to a cost for a community, thereby 

supporting scenario-based decision. 

Effects of bi-directional interdependencies and optimized network recovery  

In order to investigate the effect of bi-directional interdependencies between natural gas 

and electric power networks on recovery rate of natural gas network system, as well as evaluating 

the effect of optimized resource allocation on recovery and restoration of natural gas network, 

several scenarios were considered. Table 6-4 presents a summary of the analyses performed for 

this purpose. In this context, “I” and “ID” stand for independent and inter-dependent scenarios, 

“N” and “F” stand for normal and fortified networks, and “R” and “O” stand for random and 

optimized restoration strategies, respectively. Also, “65” and “79” stand for 6.5 and 7.9 magnitude 

earthquakes, respectively. 

Table 6-4. Summary of analyses types and corresponding analysis IDs  

Earthquake Scenario Network 
Restoration Strategy 

Random Optimized 

Mw = 6.5 
Independent  

Normal INR-65 INO-65 
Fortified IFR-65 IFO-65 

Inter-
dependent 

Normal IDNR-65 IDNO-65 
Fortified IDFR-65 IDFO-65 

Mw = 7.9 
Independent  

Normal INR-79 INO-79 
Fortified IFR-79 IFO-79 

Inter-
dependent 

Normal IDNR-79 IDNO-79 
Fortified IDFR-79 IDFO-79 
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Figure 6-15 shows the functionality of the natural gas network under the magnitude 7.9 

earthquake, when five crews are utilized. In Figure 6-15, the vertical axis represents different 

scenarios under study, the horizontal axis shows the day (time), and the colors represent the 

functionality of the network according to the color bar at the top of the figure.  

 

Figure 6-15. Functionality of the natural gas network under the magnitude 7.9 earthquake in case 
of using five crews 
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and IDNO). Moreover, fortifying the networks has a significant advantage and accelerates the 

entire recovery process. This is especially important in the case of interdependent networks, as 

fortifying the key elements in the networks will result in more resilient systems. For example, in 

the case of using optimized restoration strategy for interdependent networks, a fortified network 

will be 95% recovered after 90 days; meanwhile a normal network will recover up to around 40% 

during that time frame (compare IDNO and IDFO). The results for other scenarios are shown in 

Figures 6-16 to 6-20. 

 

Figure 6-16. Functionality of the natural gas network under the magnitude 7.9 earthquake in case 
of using one crews 
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Figure 6-17. Functionality of the natural gas network under the magnitude 7.9 earthquake in case 
of using 25 crews 
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Figure 6-18. Functionality of the natural gas network under the magnitude 6.5 earthquake in case 
of using one crews 

INR

IFR

IDNR

IDFR

INO

IFO

IDNO

IDFO

   15         30          60          90         120        150       180       270       360   

Day

S
ce

n
a

ri
o



84 
 

 

Figure 6-19. Functionality of the natural gas network under the magnitude 6.5 earthquake in case 
of using five crews 

 

Figure 6-20. Functionality of the natural gas network under the magnitude 6.5 earthquake in case 
of using 25 crews 
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As shown in these figures, using only one repair crew following a 7.9 magnitude 

earthquake is ineffective, regardless of the type of network (i.e. normal or fortified) and the method 

of restoration (i.e. random or optimized). Furthermore, in the case of using 25 repair crews, there 

is not much difference between random and optimized restoration methods; although in the case 

of the interdependent fortified networks, implementing an optimized restoration strategy can still 

be beneficial to some extent (compare IDFR and IDFO).  

Figure 6-21 compares the different types of restoration curves for the natural gas network 

following a magnitude 7.9 earthquake, with 25 repair crews. 

 

Figure 6-21. Restoration curves for the natural gas network under the magnitude 7.9 earthquake 
in case of using 25 crews 

As shown in Figure 6-21, using an optimized recovery strategy does not have any influence 

on the recovery process for the independent NGN. Nevertheless, a fortified independent network 

has a better performance than a normal independent network as one would expect. In the case of 

interdependent networks, however, using an optimized recovery strategy always improves the 
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recovery process. It should be noted that fortified interdependent networks have better 

performance when comparison to normal interdependent networks, even if a random restoration 

strategy is adopted for network recovery. In addition, in the case of interdependent normal 

networks, even though the systems eventually become functional at the same time (the graphs 

merge at a functionality of about 70%), the optimized restoration strategy still provides a better 

recovery curve and reduces the amount of resilience loss. 

Finally, Figure 6-22 shows the data for resilience loss generated via Monte Carlo 

Simulations for the natural gas network under magnitude 6.5 earthquake while using five crews 

for recovery of the network. The unit for resilience loss is functionality-days 

 

Figure 6-22. Resilience loss for the natural gas network following a magnitude 6.5 earthquake in 
using five crews 
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restoration strategy, which follows intuition but can now be quantified for the NGN.  It is worth 

mentioning that the high variation in resilience loss for the interdependent normal network is due 

to the fact that for such systems, when both the natural gas processing plant and electric power 

plant are severely damaged during the earthquake, it can take a long time for the natural gas 

network to return to being functional. Of course, this means the resilience loss will be substantial. 

Meanwhile, in scenarios where the electric power plant - or generally the electric power 

network - is slightly damaged, then the natural gas network can function quite independently, 

meaning that the amount of resilience loss will be much lower and similar to that observed in the 

independent normal network. 

The results provided here propose that considering bi-directional interdependency between 

the natural gas and electric power networks can alter the entire recovery process of the natural gas 

network in the aftermath of an earthquake. Fortifying the key elements in the natural gas and 

electric power networks can guarantee a much more resilient system and accelerate the recovery 

process, specifically when interdependencies are included in the analyses. Moreover, using an 

optimized network restoration strategy can speed up the recovery process of the natural gas 

network. Increasing the number of crews does not necessarily improve the recovery process post 

a certain number of crews, and in case of having sufficient number of repair crews, using an 

optimized recovery strategy does not necessarily enhance the recovery process. The failure of only 

one component in any of the natural gas or electric power network may impair the functionality of 

a large number of other components consistent with network analysis. Therefore, functionality 

cannot be used by itself in the decision-making process and should be considered in addition to 

the restoration process. The methodology proposed here can be utilized for weighing the cost of 

fortifying key elements in the networks or replacing steel distribution pipelines with HDPE 
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compared with the summation of direct and indirect losses for different scenario events and 

decision making under uncertainty. The ability to quantify the effect of investment in improving 

the seismic performance of buried lifeline networks is key to deciding where these investments 

should be made for overall community resilience strategies. The methodology can be implemented 

to investigate the use of different decisions and policies by a community for a disaster scenario in 

order to prioritize disaster planning and mitigation, and for pursuing strategic decisions regarding 

whether to proactively retrofit or reactively repair steel pipelines in the distribution network of a 

NGN, with the objective of minimizing the network functionality loss, and therefore, disruptions 

in the society and economy.  These will be further discussed in the next chapter.
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CHAPTER 7: OPTIMAL DECISION MAKING UNDER UNCERTAINTY 
 
 
 

In the context of risk management and community resilience, critical decisions should be 

made not only in the aftermath of a disaster in order to immediately respond to the event and 

properly repair the damage and restore services, but preventive decisions should be made in order 

to mitigate the adverse impacts of disasters before they happen. This usually involves significant 

uncertainty related to the basic notion of the hazard itself as well as disaster realization, and usually 

involves mitigation strategies such as strengthening components or preparing required resources 

for post-event activities. In essence, instances of risk management problems that encourage a 

framework for coupled decisions before and after disasters include how to allocate resources 

before the disruptive event so as to maximize the efficiency for their distribution in order to repair 

damage in the aftermath of the disaster, and how to determine which network components require 

preemptive investments in order to enhance their performance in case of a disaster (Gomez and 

Baker, 2019; Gomez et al., 2015). 

A number of researchers have worked on addressing decision-making and optimization 

problems within risk assessment and management of complex infrastructure systems. Lim and 

Song (2012) proposed an efficient reliability assessment approach for complex infrastructure 

networks and introduced an algorithm called the selective recursive decomposition algorithm, 

which preferentially identified critical disjoint cut sets and link sets to calculate the probabilities 

of network disconnection events with a significantly reduced number of identified sets. Baroud et 

al. (2014) defined network resilience along dimensions of reliability, vulnerability, survivability, 

and recoverability, and proposed a framework to optimize network resilience strategies using a 

non-parametric stochastic ranking technique. Hu et al. (2015) developed a framework in order to 
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determine optimal maintenance plans for large networks with many bridges, with the objective to 

minimize the extra travel distance caused by potential bridge failures over a planning horizon and 

under a budget constraint.  

Frangopol and Bocchini (2011) proposed a methodology that used resilience as an 

optimization criterion for bridge rehabilitation, considering the maximization of the transportation 

network resilience in addition to minimizing the total rehabilitation cost, relying on bi-objective 

genetic algorithms for constructing an efficient Pareto front. Pereira et al. (2016) used multi-

objective evolutionary algorithms to find resilient routing configurations that are robust to changes 

in traffic demands and are able to maintain desired performance in the case of arc failure events. 

Alderson et al. (2017) investigated the resilience of the transportation network in the San Francisco 

Bay Area based on a sequential game strategy and from the perspective of users. The model was 

used to quantify the operational resilience of the system, as well as for characterizing trade-offs in 

resilience considering different investments. Fan et al. (2009) proposed a stochastic programming 

model in order to optimize retrofit decision for highway systems so that damage caused by future 

earthquakes would be minimized. Liao et al. (2018) proposed a mathematical model to optimize 

transportation network resilience in case of a disaster. The model was used in order to prioritize 

preparedness and recovery activities under the constraints of budget and traversal time.  

Peeta et al. (2010) addressed a pre-disaster planning problem that sought to strengthen a 

highway network whose links were subject to random failures due to a disaster. Considering the 

goal to select the links to invest in under a limited budget with the objective of maximizing the 

post-disaster connectivity and minimizing traversal costs between the origin and destination nodes 

which was modeled using a stochastic programming approach.  Chang et al. (2012) proposed a 

methodology to find the optimal bridge retrofit program that aimed to maximize the post-disaster 
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network evacuation capacity, addressing the uncertainties of earthquake intensity, bridge structural 

damage, as well as bridge traffic-carrying capacities using a Monte Carlo simulation. Zhang et al. 

(2019) addressed the problem of evacuating residents out of affected areas in the aftermath of a 

natural disaster, and formulated a mathematical optimization model with the goal of maximizing 

the transportation network resilience and minimizing the total travel time for all users through 

different network reconfiguration schemes.  

MULTI-OBJECTIVE OPTIMIZATION  

Multi-objective optimization has a remarkable practical importance as almost every real-

world optimization problem can be logically developed by considering multiple conflicting 

objectives. In the past, in order to solve a multi-objective optimization problem (MOOP), these 

problems used to be converted to a single-objective problem using weighting factors due to the 

lack of suitable solution techniques (Deb, 2014). The difficulty arises due to such problems giving 

rise to a set of trade-off optimal solutions known as Pareto-optimal solutions. Nevertheless, various 

methods have been proposed that are capable of solving such problems without the need to 

simplify and convert them to a single-objective problem (e.g. Deb et al., 2002; Fonseca and 

Fleming, 1993; Zitzler and Thiele, 1999).  

In general, a multi-objective optimization problem can be defined as follows: 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥),… , 𝑓𝑛(𝑥));   𝑥 ∈ 𝐷 (7 − 1) 

where 𝑛 is the number of objectives (𝑛 ≥ 2), 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑘) is the vector of decision 

variables, 𝐷 is the set of feasible solutions and 𝐹(𝑥) is the function to be optimized. Each variable 𝑥𝑖 in the feasible decision space can be mapped to a point in objective space defined as 𝐹(𝑥𝑖) as 

shown in Figure 7-1. It should be noted that although Figure 7-1 is in two-dimensional space to 
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simplify visualization, in practice mapping usually takes place from a 𝑘-dimensional decision 

vector to an 𝑛-dimensional objective vector.  

 

Figure 7-1. Mapping from decision to objective space 

In contrast to a single-objective optimization problem, often there is no unique solution for 

a MOOP. Instead, there are usually a set of solutions representing the best possible trade-offs 

between the objectives. This set of solutions referred to as Pareto optimal solutions. Many 

researchers have developed algorithms to find the Pareto optimal solutions for MOOPs. As most 

MOOPs are mathematically complex (i.e. NP-hard), exact methods are usually effective for small-

scale problems only. For medium- and large-size problems, it is necessary to use approximation 

methods such as metaheuristics. Multi-objective metaheuristics can be broadly classified into two 

categories: 

 Scalar approaches: In this methodology, the MOOP is transformed into one or more single-

objective problems. These methods require prior knowledge of the problem in order to 

define preferences among objectives, and most of the time they produce a single solution 
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per each run.  The aggregation method (Ishibuchi and Murata, 1998) and ε-constraint 

method (Hertz et al., 1994) are examples of scalar approaches.   

 Population-based approaches: These methods use different candidate solutions in each run 

as a population that evolves in a way that guarantees some level of diversity among 

solutions. Among these methods, some are Pareto-based, in which the selection mechanism 

incorporates the concept of Pareto optimality. Some of the well-known methods in this 

category include: Pareto-archived evolution strategy (PAES) (Knowles and Corne, 1999), 

strength-Pareto evolutionary algorithm (SPEA) (Zitzler, 1999), and non-dominated sorting 

genetic algorithm (NSGA-II) (Deb et al., 2002). 

It should be noted that a non-dominated sorting genetic algorithm (NSGA-II) approach has 

been used in this dissertation, and thus, this method is discussed in more details in the following 

sub-section.  

Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

The non-dominated sorting genetic algorithm II (NSGA-II) proposed by Deb et al. (2002) 

is one of the most popular multi-objective optimization algorithms. With its three special and 

innovative features, i.e. a fast non-dominated sorting process, a fast crowded distance estimation 

procedure, and a simple crowded comparison operator, NSGA-II has been proved to outperform 

other contemporary multi-objective optimization techniques in terms of finding a more diverse set 

of optimal solutions (Yusoff et al., 2011; Deb et al., 2002). The aforementioned features are briefly 

explained in the following sub-sections. 

Fast Non-dominated Sorting Approach 

In order to sort a population into different non-domination levels in this methodology, at 

first two entities are calculated for each solution: 1) domination count 𝑛𝑝 i.e. the number of 
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solutions that dominate the solution 𝑝, and 2) 𝑆𝑝, a set of solutions that the solution 𝑝 dominates. 

In this context, all solutions in the first non-dominated front will have their domination count as 

zero. For each solution 𝑝 with 𝑛𝑝  =  0, each member (𝑞) of its set 𝑆𝑝 is visited and the domination 

count for those members is reduced by one. In doing so, if the domination count becomes zero for 

any member 𝑞, that member is placed in a separate list 𝑄, which represents the second non-

dominated front. This procedure is repeated on each member of 𝑄 in order to find the third non-

dominated front, and the process is continued until all fronts are identified.  

Crowded Distance Estimation Procedure 

Along with convergence to the Pareto-optimal solutions, it is also important to maintain a 

good spread of solutions in the Pareto front. For this purpose, a crowded comparison approach is 

used in NSGA-II. In this method, in order to estimate the density of solutions surrounding a 

specific solution in the population, the average distance of two points on either side of that solution 

is calculated along each of the objectives. This quantity, known as the crowding distance, can serve 

as an estimate of the perimeter of the cuboid formed by using the closest neighbors as the vertices. 

Figure 7-2 shows the crowding distance of the i-th solution in its front (marked in filled circles) as 

the average side length of the cuboid (showed as a dashed box). In order to compute the crowding 

distance for each solution, the population is first sorted in ascending order of magnitude according 

to each objective function value. Afterwards, for each objective function, the solutions with 

smallest and largest function values are assigned an infinite distance value. All other intermediate 

solutions are assigned a distance value equal to the absolute normalized difference in the values of 

two adjacent solutions. This calculation is then repeated for other objective functions and the 

overall crowding distance is reported as the sum of individual distance values corresponding to 
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each objective. The estimated crowding distance is then used in the crowded comparison operator 

that guides the selection procedure at various stages of NSGA-II algorithm.  

 

Figure 7-2. Crowding-distance calculation 

Crowded Comparison Operator 

After all members in the solution population are assigned a crowding distance, the crowded 

comparison operator directs the selection of candidate solutions toward a uniformly spread-out 

Pareto optimal front. In this context, between two solutions selected from different fronts, the one 

with a better rank is desired; nonetheless, if the solutions have the same ranking (i.e. they belong 

to the same front), the solution with a bigger crowding distance is desired, as a bigger crowding 

distance represents a lesser crowded region.  

NSGA-II Procedure  

In this methodology, a random parent population 𝑃0 with size 𝑁 is initially created and 

sorted based on the non-domination ranking. Each random solution in the population 𝑃0 is assigned 
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a ranking based upon its level of fitness. Using this initial population, a set of offspring population 𝑄0 is generated using the typical binary tournament selection, crossover, and mutation operators. 

The parent and offspring populations are then combined together in order to embrace the concept 

of elitism for generating next populations. From there, the process to generate next offspring 

populations using NSGA-II is shown in Figure 7-3.  

 

Figure 7-3. NSGA-II procedure  

As shown in Figure 7-3, in order to create a new population 𝑃𝑘+1 (of size 𝑁), the parents 

and offspring from previous generations need to be combined first in order to ensure elitism (𝑅𝑘 =𝑃𝑘 ∪ 𝑄𝑘). The combined population 𝑅𝑘 (of size 2𝑁) is then sorted according to non-domination, 

and solutions that belong to the best non-dominated fronts are transferred to the new population 𝑃𝑘+1 based on their rankings (i.e. the solutions are transferred first from set 𝐹1, then 𝐹2, and so 

on). Considering that the new population should have exactly 𝑁 members, the process is continued 
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until no more sets can be completely transferred to the new population. In this case, the members 

of the last set that cannot be completely transferred to the new population and will be sorted using 

the crowded-comparison operator, and then the best solutions from that last front will be selected 

in order to fill in the population 𝑃𝑘+1. The new population 𝑃𝑘+1 will then be used for selection, 

crossover, and mutation in order to create another population 𝑄𝑘+1. This process is usually 

repeated until a satisfactory level of non-dominated solutions are found for the specific multi-

objective problem under study. 

DECISION MAKING FRAMEWORK FOR DISASTER PREPAREDNESS AND RECOVERY 

As described before, in order to improve the resilience of an infrastructure component or 

system, courses of action might be taken either before the event occurs (preparedness) or in the 

aftermath of the event (repair/recovery). Moreover, the actions that are taken in the aftermath of a 

disaster are often dependent upon the preceding actions that are taken beforehand. For example, a 

typical decision before an event occurs is to whether or not invest in strengthening a system’s 

components in order to prevent or lessen the negative consequences of a potential future disaster, 

and how these investments are made will affect the repair and recovery process in the aftermath of 

the event. In this dissertation, an optimization framework that integrates probabilistic risk 

assessment of coupled infrastructure systems and evolutionary algorithms is proposed in order to 

determine cost-optimal decisions before and after a seismic event, with the objective of making 

the network recovery faster, and thus the community more resilient. Specifically, strategic 

decisions are pursued regarding which distribution pipelines should be retrofitted in the Centerville 

natural gas network under limited budgets, considering the objectives of minimizing the number 

of people without natural gas in the residential sector, as well as minimizing the business losses 

due to the lack of natural gas in non-residential sectors. MCS is used in order to propagate 
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uncertainties with simulations and PSHA is adopted in order to capture uncertainties in the seismic 

hazard.  A non-dominated sorting genetic algorithm (NSGA-II) approach was utilized to solve the 

multi-objective optimization problem in the present study, and the results can provide risk-

informed decision support as will be shown later.  

Risk Assessment Methodology 

The decision-making framework proposed in this dissertation adopts a methodology that 

combines probabilistic and deterministic seismic risk assessment methodologies. As mentioned in 

Chapter 4, the results from a PSHA are much more reliable due to incorporation of uncertainties 

into calculations, especially in engineering decision-making applications. Nevertheless, using the 

results of a PSHA merely may not be a suitable option for evaluating the serviceability of spatially 

distributed infrastructure networks, as the variation in spatial intensity in seismic demand from a 

particular earthquake is lost through the aggregation process (McGuire, 2001; Miller and Baker, 

2015). In contrast to PSHA, a deterministic scenario-based hazard assessment has the ability to 

better capture the spatial correlation in seismic intensity, as it is based upon a single earthquake 

rather than an aggregation of earthquakes. Nonetheless, using a single earthquake scenario with a 

very low and unknown rate of occurrence cannot provide sufficient information for estimating 

losses due to a spectrum of possible future earthquakes, or for determining proper investments in 

retrofit of existing infrastructures (Adachi and Ellingwood, 2009). Therefore, implementing a 

method that includes desirable features of both PSHA and scenario-based seismic hazard 

assessment is required. For this purpose, the methodology developed by Adachi and Ellingwood 

(2009) is adopted in this dissertation. In this context, all possible earthquakes affecting the 

serviceability of an infrastructure at a stipulated seismic hazard should be included in the analyses.  
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For the case of the Centerville coupled NGN and EPN systems, it is assumed the seismicity 

in the Centerville is affected by earthquakes that can occur from two separate seismic source zones. 

One seismic zone is located with its center at a distance approximately 15 km from the northeast 

side of Centerville, and with the potential to generate magnitude 7.0 to 8.0 earthquakes that occur 

at a rate of λ = 0.002 times per year. The other seismic zone is located with its center at a distance 

approximately 10 km from the southwest of the Centerville, with potentially producing magnitudes 

6.0 to 7.0 earthquakes that occur at a rate of λ = 0.01 times per year. Accordingly, in order to 

evaluate the serviceability of the interconnected NGN and EPN of the Centerville under a specified 

seismic hazard, both of the abovementioned seismic sources should be taken into account.  

Two different return periods of 475 and 2475 years are considered in this dissertation. The 

first step in the process of seismic hazard assessment for Centerville - that combines both PSHA 

and scenario-based methodologies together, is to deaggregate the seismic hazard at each return 

period of interest, as explained in Chapter 4. Next, the performance of the networks under all 

possible earthquake scenarios is evaluated in order to capture the spatial variation in intensity 

values accurately. Finally, the components’ functionality and the networks’ serviceability are 

determined by re-aggregating the seismic damage, weighted by the relative contribution of each 

earthquake at each return period of interest.  

Optimization Problem and Objective Functions  

Considering the coupled NGN and EPN in Centerville, the goal is to minimize the adverse 

consequences due to the unavailability of natural gas in the case of an earthquake, by retrofitting 

the most vulnerable components of the natural gas network under limited budgets before the 

seismic event, and effectively allocate the limited resources available for repairing the damaged 

components of the network in the aftermath of the earthquake. Thus, acknowledging the limited 
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budgets for retrofit and scarcity of available resources for repair, strategic decisions need to be 

made regarding how to proactively retrofit beforehand, and then reactively repair the damaged 

components afterwards, in order to maximize community resilience.  For this purpose, two 

different objective functions are considered for minimization: 1) the number of people affected by 

unavailability of natural gas in the residential sectors, and 2) the amount of business losses due to 

unavailability of natural gas in the non-residential sectors. In order to calculate the business losses, 

the same concept of resilience loss proposed by Bruneau et al. (2003) is utilized in this dissertation, 

as described in Chapter 5. In this context, the business loss can be evaluated using the following 

equation: 

𝐵𝐿 = ∫ [100 − 𝐹2(𝑡)]𝑑𝑡𝑡𝑇0  (7 − 2) 

where 𝑡𝑇 is the target time i.e. the time until when the business losses are being calculated, 

and 𝐹2(𝑡) represents the functionality of the non-residential sectors as a percent. This metric can 

be later transformed to a monetary measure, by evaluating the amount of money that is lost due to 

unavailability of natural gas in the non-residential sectors. For the case of Centerville, it is assumed 

that 100% unavailability of natural gas in non-residential zones can result in losses equivalent to 

$1,000,000 per day. The reader is reminded that this amount is just an assumption made in this 

dissertation for illustrative purposes only, and one may require performing a detailed investigation 

of exact amount of monetary losses due to unavailability of natural gas in non-residential sectors.    

Retrofit and Repair Strategy for the Centerville NGN 

As shown in Chapter 6, replacing steel pipes with HDPE pipelines in the natural gas 

distribution network can effectively increase the resilience of the system. Hence, retrofitting the 

steel pipes with HDPE pipelines can be regarded as an effective mitigation strategy. In order to 

find what combinations of retrofit and repair strategies result in the Pareto optimal solutions based 
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on the defined objectives in this dissertation, a random population of retrofit parents (i.e. retrofit 

schemes) is first generated. Each retrofit parent is built such that steel pipelines are randomly 

selected from the distribution network to be replaced with HDPE pipes, until there is no money 

available for retrofitting more steel pipelines. Afterwards, for each retrofit parent, NSGA-II is 

implemented in order to find the best repair strategies that result in Pareto optimal solutions for 

that specific retrofit scheme. Considering the limited number of available repair crews, selection, 

crossover, and mutation operators are used as described earlier in Chapter 5 in order to find the 

best repair sequences for each retrofit scheme. After the best combinations of retrofit and repair 

strategies are found, a new population of retrofit parents needs to be generated. In this dissertation, 

in order to generate new retrofit offspring populations, only selection and mutation are used. The 

reason is that the retrofit optimization problem considered in this dissertation is not a sequential 

problem (i.e. the order of selected pipelines for retrofitting does not matter in the optimization 

process), and therefore, exchanging different segments of retrofit chromosomes does not 

necessarily result in a more diverse population. Moreover, there is also the danger of violating 

budget constraints in swapping different segments of selected retrofit chromosomes. Therefore, 

using only selection and mutation operators seems to be a better option for the specific problem 

defined herein. Therefore, in this dissertation, a mutation operator is designed with the aim to 

guarantee building a more diverse population for next generations. In this context, first a number 

(p) between 1 and half of the length of the selected chromosome is randomly selected. Then, p 

elements of the selected retrofit chromosome are randomly selected and substituted with other 

pipelines that do not already exist in the chromosome. Combining this mutation operator with the 

selection methodology used in NSGA-II algorithm, the retrofit parents for next generations can be 

built. Then, for each newly built retrofit parent, the procedure explained above is repeated again, 
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in order to find the best repair strategies for each retrofit parent. This whole process is repeated 

until enough number of non-dominated Pareto optimal solutions are found. It should be noted that 

NSGA-II has already been used by other researchers adopting a selection and mutation operator 

only (e.g. Coello et al., 2009). Moreover, it is proven that depending on the basic notion of the 

problem under study, a search strategy that is merely based upon selection and mutation can be 

used as a powerful search procedure (Michalewicz, 2013). It is also noteworthy that technically, 

an algorithm that only works based upon selection and mutation operators is no longer considered 

a genetic algorithm, but may be referred to as an evolution strategy or evolutionary programming 

(Simon, 2013).  

Results 

In order to show the results of the multi-objective optimizations, it is important to capture 

the bi-directional interdependencies between the NGN and EPN systems. Moreover, as the results 

from Chapter 6 proved the importance of functionality of key elements (i.e. natural gas processing 

plant in the NGN and electric power plant in EPN) in the resilience of the natural gas network, 

retrofitting these key elements should be prioritized in any mitigation plan. Thus, a fortified 

interdependent natural gas network is selected in order to show the optimization results. 

In terms of the costs for replacing the pipelines, Farahmandfar et al. (2016) obtained the 

cost of pipeline replacement from the literature. Assuming that pipe bursting technique is used for 

pipeline replacements, they used a cost of $1.04/mm/m ($8 in./ft.) for pipeline replacements, which 

was derived by adjusting the costs provided by Boyce and Bried (1998) for inflation from 1998 to 

2014. In this dissertation, the same cost of $1.04/mm/m is used in order to calculate the costs of 

pipeline replacements. There are approximately 44 km of pipelines in the natural gas distribution 

network of the Centerville. In order to retrofit the natural gas network distribution pipelines, two 
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different budgets of $2.8 and $5.6 million dollars are considered for illustrative purposes, which 

are sufficient for retrofitting approximately 25% and 50% of the total pipelines in the distribution 

network, respectively. Moreover, three different number of repair crews (two, five, and ten) are 

considered in the recovery process of the natural gas network, in order to capture the effect of 

having a different number of available resources for repair in the aftermath of an earthquake. 

Considering two different earthquakes with return periods of 475 and 2475 years, three different 

target days of 30, 60, and 90 days have been selected. These are used as a target in time domain, 

at which the objective functions are being optimized.  

As an example, consider a retrofit budget of $2.8 million dollars and two repair crews 

available to repair the damaged components under an earthquake with 475 years return period. 

After 30 days, both residential and non-residential sectors remain completely non-functional, 

regardless of how the gas distribution network is retrofitted before the earthquake and how the 

damaged components are repaired afterwards. Nonetheless, after 60 days, even though the sectors 

cannot reach 100% functionality, there are certain combinations of retrofit and repair that can 

produce some optimal solutions. Figure 7-4 shows the process of moving toward optimal solutions 

via millions of simulations for the considered scenario. The Pareto front for these simulations is 

also plotted in Figure 7-5. As shown in Figure 7-5, each dot on the plot represents a certain policy 

(P) of retrofit and repair that results in Pareto optimal solutions. The retrofit schemes for these 

policies (i.e. P1 to P5) are depicted in Figures 7-6 to 7-8. The green lines in the figures show the 

pipelines that have been retrofitted. It is noteworthy that the retrofit schemes for Policies 2, 4, and 

5 are similar, and the difference in the results is due to adopting different repair strategies in the 

aftermath of the earthquake.  
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Figure 7-4. Simulations at day 60, for the case of an earthquake with a return period of 475 
years, a retrofit budget of $2.8 million dollars, and two available repair crews 

 

Figure 7-5. Pareto optimal solutions at day 60, considering an earthquake with a return period of 
475 years, a retrofit budget of $2.8 million dollars, and two available repair crews 
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P2

P3
P4
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Figure 7-6. Retrofit scheme for Policy 1 (green lines indicate retrofitted pipelines) 

 

Figure 7-7. Retrofit scheme for Policy 2, 4, and 5 (green lines indicate retrofitted pipelines) 
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Figure 7-8. Retrofit scheme for Policy 3 (green lines indicate retrofitted pipelines) 

It should be noted that after 90 days, there are certain combinations of retrofit and repair 

strategies that can provide 100% functionality in both residential and non-residential sectors. 

Figure 7-9 shows one of the retrofit schemes that provides complete functionality of the sectors, 

considering that an optimized network recovery will be done after the earthquake. 
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Figure 7-9. Retrofit scheme that results in 100% functionality in both sectors after 90 days for 
the considered scenario 

Tables 7-1 and 7-2 show several polices that represent different combinations of retrofit 

and repair schemes for the Centerivlle NGN under all scenarios considered in this dissertation. For 

simplifications, for each scenario, at most three Pareto optimal solutions have been selected to be 

shown in the tables as possible solutions for policy-makers to consider: one that minimizes the 

number of people affected, one that minimizes the amounts of business losses, and one that is in-

between the two.  
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Table 7-1. Results for the earthquake with 10% chance in 50 years (RP = 475 yrs) 

Retrofit Budget 
Repair 
Crew 

Policy 

Day 
30 days 60 days 90 days 

People BL People BL People BL 

$2.8 

R = 2 
P1 50,000 $30 11,500 $47.7 0 $49.6 
P2 50,000 $30 9,500 $57.5 0 $62.4 
P3 50,000 $30 15,000 $43.7 0 $44.2 

R = 5 
P4 15,500 $30 13,500 $33.6 0 $33.8 
P5 50,000 $30 0 $42.2 0 $42.2 

R = 10 
P6 13,500 $30 0 $43.8 0 $44.3 
P7 50,000 $30 0 $38.7 0 $38.7 

$5.6 

R = 2 
P8 26,500 $28 13,000 $43.4 0 $43.5 
P9 50,000 $30 0 $44.3 0 $44.5 
P10 50,000 $28 2,500 $43.4 0 $43.4 

R = 5 
P11 13,500 $28 0 $33.5 0 $33.5 
P12 0 $30 0 $38.6 0 $38.6 

R = 10 
P13 13,500 $28 0 $33.5 0 $33.6 
P14 0 $30 0 $38.6 0 $38.6 

Note: the retrofit budget and business losses (BL) are in million dollars 
 

Table 7-2. Results for the earthquake with 2% chance in 50 years (RP = 2475 yrs) 

Retrofit Budget 
Repair 
Crew 

Policy 

Day 
30 days 60 days 90 days 

People BL People BL People BL 

$2.8 

R = 2 
P15 50,000 $30 50,000 $60 28,500 $76.3 
P16 50,000 $30 50,000 $60 21,500 $89.9 
P17 50,000 $30 50,000 $60 44,500 $72.1 

R = 5 
P18 50,000 $30 15,500 $55.2 13,500 $65.3 
P19 50,000 $30 37,500 $47.1 0 $84.5 

R = 10 P20 50,000 $30 13,500 $51.1 0 $63.1 

$5.6 

R = 2 
P21 50,000 $30 50,000 $60 17,500 $71.9 
P22 50,000 $30 50,000 $60 9,500 $83.1 
P23 50,000 $30 50,000 $60 48,500 $61.2 

R = 5 
P24 50,000 $30 13,500 $56.3 0 $57.5 
P25 50,000 $30 29,500 $48.1 0 $49.8 

R = 10 P26 50,000 $30 13,500 $56.4 0 $57.7 
Note: the retrofit budget and business losses (BL) are in million dollars 

 

As shown in the tables, each policy (P) provides information with regard to the trade-offs 

between the number of people affected and the amount of business losses at different time frames, 

considering different budgets for retrofit, the number of repair crews, and two different design 
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earthquakes. The results from these tables can provide useful information for decision making 

purposes. For example, consider policies P4 and P5, which represent the results for the case of an 

earthquake with 475 years return period, when a budget of $2.8 million dollars and five repair 

crews are available for retrofit and repair, respectively. Comparing these policies together, 

adopting policy P4 results in a smaller number of people being affected after 30 days (15,500 

people instead of 50,000) and reduces the amounts of business losses in the long run ($33.8 million 

dollars after 90 days).  Nonetheless, using this policy results in 13,500 people not having access to 

natural gas after 60 days. Therefore, if the goal is to have 100% functionality of natural gas network 

in the residential sectors by the day 60, then policy P5 should be implemented, even though the 

amount of business losses after 90 days will increase for this case ($42.2 million dollars).  

Furthermore, for the earthquake with 475 years return period, the results show that when a 

budget of 5.6 million dollars are available for retrofit, arranging more than five repair crews would 

be unnecessary for repairing the damaged components. Nontheless, considering five crews can be 

much more effective than two crews for this case. Moreover, if under certain circumstances only 

two crews can be arranged and devoted for repairing the damaged components in the aftermath of 

the earthquake, then doubling the retrofit budget to strengthen the natural gas distribution pipelines 

does not seem to be a reasonable option, as there is not much difference between the results for 

these cases.  Instead, it may be more reasonable to save the extra budget and invest it in either 

increasing the number of available repair crews after the event, or fortifying the key elements of 

the networks more extensively before the event occurs. Similar reasoning can also be made for the 

case of earhtquake with 2475 years return period.  

Moreover, the question for which earthquake the decisions should be made is completely 

up to the decion-maker. A risk-taker may only consider the results for the earthquake with a return 
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period of 475 years. Nontheless, if the decision-maker is a risk-averse person, they may select 

planning for the earthquake with 2475 years return period, which is a low-probability yet high-

consequence event. Regardless, for someone who is risk neutral, both of the above-mentioned 

tables can provide sufficient information for decision making purposes at the community 

committee level.  

Finally, the methodology developed in this dissertation can provide decision makers with 

useful information in order to prioritize retrofit actions. For example, in most scenarios under 

study, pipelines L6 and L38 have been selected for retrofit. This reveals the importance of these 

pipelines as the key connections between the transmission and distribution networks. Thus, the 

developed methodology is capable of recognizing the critical components in the network that need 

to be prioritized in retrofit and planning projects at the community level. 
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CHAPTER 8: SUMMARY, CONTRIBUTIONS, AND RECOMMENDATIONS 
 
 
 
SUMMARY 

In this dissertation, a methodology was proposed and described for optimizing resilience 

decision making for natural gas networks under uncertainty. An optimization framework that 

integrated probabilistic seismic risk assessment of coupled infrastructure systems and evolutionary 

algorithms was proposed in order to determine cost-optimal decisions before and after a seismic 

event, with the goal of making the network recovery faster and thus contributing to a more resilient 

community.  Specifically, strategic decisions were pursued regarding which pipelines in the natural 

gas distribution network of a community should be retrofitted under limited budgets, and how the 

limited available resources should be allocated to damaged components, considering minimizing 

two competing objective functions: the number of people without natural gas in the residential 

sector, and business losses due to a lack of natural gas in non-residential sectors. The proposed 

methodology can be used to find the best mitigation and recovery policies or to master-plan a new 

community or network.  

As a basis for the proposed decision-making methodology, component models for natural 

gas networks were discussed by defining the network components at the community level and their 

damage models in chapter 2. In order to model the interdependencies between the natural gas 

network and other networks, approaches for modeling these interdependencies were explained in 

chapter 3. In chapter 4, earthquake hazard modeling was discussed and deterministic and 

probabilistic seismic hazard assessment methodologies were explained including an approach to 

maintain spatial correlation while utilizing hazard with a specified return period. The causes of 

damage to natural gas network components were also discussed in chapter 4.  Chapter 5 introduced 
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a community restoration algorithm, primarily the natural gas network combined with electrical 

power, in order to model that portion of the recovery process in the aftermath of an earthquake. 

The developed algorithm was capable of representing the restoration process both spatially and 

temporally until full restoration of the network was achieved.  Mitigation strategies and 

optimization of resource allocation processes were discussed in this chapter.  

In order to illustrate the methodology proposed, chapter 6 represented a virtual community 

model that was used in this dissertation and subjected to earthquakes in order to examine the 

restoration of communities in the aftermath of an earthquake.  The chapter discussed the topology 

and structure of the natural gas as well as electric power networks and described the bi-directional 

interdependency that should be considered across the networks. Finally, chapter 7 introduced a 

platform for optimal decision making, resilience assessment, seismic risk mitigation, and 

optimized recovery of natural gas networks, taking into account their interdependencies with other 

systems. An algorithm was developed in order to find the best locations for replacing the main 

steel distribution pipelines with earthquake-resistant HDPE pipelines for mitigation before the 

event and under limited budgets, as well as finding the best way to allocate the available yet limited 

repair crews to damaged components for recovery.  

CONTRIBUTIONS 

Modelling NGN at the community level 

 A robust simulation methodology was proposed for modeling natural gas networks 

including their interdependencies with other systems at the community level. The causes of 

damage to natural gas network components due to earthquakes were discussed and component 

damage models were provided. This simulation model can be coupled with any restoration model 
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in order to investigate the recovery of natural gas networks under seismic hazards at the community 

level. 

Optimized restoration analysis methodology  

An algorithm was developed in this dissertation, which can model interdependencies 

between natural gas networks and other systems, and includes cascading failures in restoration of 

natural gas networks in the aftermath of an earthquake. The proposed restoration algorithm 

combines discrete event simulation (DES) and network-based approaches and can represent spatial 

and temporal depiction of the restoration process until the full restoration is achieved. Another 

advantage of the developed algorithm is its ability to perform optimized network recovery and 

prioritized resource allocation using genetic algorithms. 

Optimizing resilience decision-making for NGN under uncertainty 

A comprehensive approach for optimal decision making for resilience assessment, seismic 

risk mitigation, and recovery of natural gas networks, taking into account their interdependencies 

with other systems was developed. The optimization framework is capable of integrating 

sophisticated probabilistic descriptions of potential disruptive scenarios derived from seismic risk 

assessment with evolutionary algorithms in order to determine cost-optimal decisions before and 

after a seismic event. Using this platform, strategic decisions can be pursued regarding which 

pipelines in the natural gas distribution network in a community should be retrofitted under limited 

budgets before the hazard event, and how the limited available resources should be allocated to 

damaged components in the aftermath of the event, considering different competing objective 

functions. Therefore, the proposed methodology can be used for risk-informed prioritization of 

investments incorporating different levels of risk preferences.  

Integrating the Platform into IN-CORE 
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The platform for optimal decision making under uncertainty has been developed in Python 

and can be integrated into the Interdependent Networked Community Resilience Modeling 

Environment (IN-CORE) in a straightforward fashion, in order to be coupled with other models 

for further analyses and investigations.   

RECOMMENDATIONS  

Incorporate community-level metrics as objective functions 

Community-level metrics may be used as more comprehensive objective functions in the 

decision-making approach developed in this dissertation. Examples include using a socioeconomic 

resilience metric such as population outmigration as an alternative for the number of people not 

having access to natural gas. 

Include direct and indirect business losses 

The simplified methodology to evaluate business losses used in this dissertation can be 

replaced by a more complex model that can accurately relate the unavailability of natural gas to 

direct and indirect economic losses.  Examples may include incorporating computable general 

equilibrium (CGE) models into the decision-making platform in order to make a more accurate 

estimation of the amount of business losses due to unavailability of natural gas in the community. 

It would also be appropriate to include other systems/networks in the community in the decision-

making framework (e.g. water, food supply chains, etc.) 

Combine additional mitigation approaches 

In addition to the mitigation strategies adopted in this dissertation, other mitigation 

schemes may be added to the decision-making platform. One example is the installation of new 

pipelines in the natural gas distribution network in order to make the system more resilient by 

adding more redundancy to it.  



115 
 

Reduce computational costs 

Despite the strength and capabilities of the algorithm developed in this dissertation, the 

amount of time it takes to converge to the optimal solution is lengthy. This is due to the stochastic 

nature of the models/methods (i.e. Monte Carlo simulation, probabilistic seismic hazard, and 

multi-objective genetic algorithm).  It is therefore recommended to investigate other approaches 

that may reduce the complexity of the simulations. One suggestion may be replacing Monte Carlo 

simulation with Latin Hypercube sampling to reduce computational demand. 
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