194 research outputs found

    Multicast routing strategy for SDN-cluster based MANET

    Get PDF
    The energy limitation and frequent movement of the mobile Ad hoc network (MANET) nodes (i.e., devices) make the routing process very difficult. The multicast routing problem is one of the NP-complete problems. Therefore, the need for a new power-aware approach to select an optimum multicast path with minimum power consumption that can enhance the performance and increase the lifetime of MANET has become urgent. Software defined network (SDN) is a new technique that can solve many problems of the traditional networks by dividing the architecture into data part and control part. This paper presents three power-aware multicast routing strategies for MANET. First one called a Reactive Multicast routing strategy for cluster based MANET by using SDN (RMCMS), second one called proactive multicast routing strategy for cluster based MANET by using SDN (PMCMS) and third one represents modification of PMCMS called M-PMCMS. Moreover, it produces a new mathematical model to build a multicast tree with minimum power consumption and takes into account the remaining power in each node. All proposed multicast strategies operate based on this mathematical model and aim to maximize the MANET lifetime by exploiting the advantages of SDN and clustering concepts. They consider the multicast tree with minimum power consumption as an optimal one. The simulation results illustrated that RMCMS is better than PMCMS, M-PMCMS, and MAODV in terms of power consumption and network overhead while M-PMCMS is the best one in terms of dropped packets ratio (DPR) and average end to end (E2E) delay

    Utility-based Bandwidth Adaptation in Mission-Oriented Wireless Sensor Networks

    Get PDF
    This article develops a utility-based optimization framework for resource sharing by multiple competing missions in a mission-oriented wireless sensor network (WSN) environment. Prior work on network utility maximization (NUM) based optimization has focused on unicast flows with sender-based utilities in either wireline or wireless networks. In this work, we develop a generalized NUM model to consider three key new features observed in mission-centric WSN environments: i) the definition of the utility of an individual mission (receiver) as a joint function of data from multiple sensor sources; ii) the consumption of each sender's (sensor) data by multiple missions; and iii) the multicast-tree-based dissemination of each sensor's data flow, using link-layer broadcasts to exploit the “wireless broadcast advantage” in data forwarding. We show how a price-based, distributed protocol (WSN-NUM) can ensure optimal and proportionally fair rate allocation across multiple missions, without requiring any coordination among missions or sensors. We also discuss techniques to improve the speed of convergence of the protocol, which is essential in an environment as dynamic as the WSN. Further, we analyze the impact of various network and protocol parameters on the bandwidth utilization of the network, using a discrete-event simulation of a stationary wireless network. Finally, we corroborate our simulation-based performance results of the WSN-NUM protocol with an implementation of an 802.11b network.</jats:p

    Leveraging the Cloud for Integrated Network Experimentation

    Get PDF
    The goal of this research is to determine the feasibility of performing integrated network experimentation using cloud services. This research uses performance metrics to compare computing architectures constructed in the cloud to architectures that run on traditional networks. If so, then cloud network architectures will display the same expected behavior as traditional network architectures, thus allowing the construction of networking testbeds at potentially substantial cost savings. Since the Amazon cloud does not support broadcast or multicast traffic, distributed applications face a challenge. Many distributed applications use broadcast or multicast to communicate real-time information. This research includes a case study for developing a distributed network application in the cloud which overcomes the restriction on broadcast and multicast traffic. During performance testing, the baseline network and cloud network configurations are provided statistically equivalent traffic workload. Metrics such as packet loss, delay, jitter and throughput are compared to determine relative performance. Analysis of the experimental results shows that in each case, the cloud network configurations performed at or above the performance level of the baseline network. Therefore, the public cloud infrastructure is suitable for performing integrated network experimentation. This research continues Project Everest\u27s efforts to leverage cloud services for network experimentation. Project Everest is a framework which aims to combine emulation and cloud infrastructure into a single testbed using the Amazon Elastic Compute Cloud (EC2). Their tests indicate satisfactory cloud performance, but they recommend testing cloud network performance under various workload. This research carries out those performance tests

    Journal of Telecommunications and Information Technology, 2003, nr 4

    Get PDF
    kwartalni

    An energy-aware and QOS assured wireless multi-hop transmission protocol

    Get PDF
    A thesis submitted in fulfillment of the requirements for the degree of Master of Science by researchThe Ad-hoc network is set up with multiple wireless devices without any pre-existing infrastructure. It usually supports best-effort traffic and occasionally some kinds of Quality of Service (QoS). However, there are some applications with real-time traffic requirements where deadlines must be met. To meet deadlines, the communication network has to support the timely delivery of inter-task messages. Furthermore, energy efficiency is a critical issue for battery-powered mobile devices in ad-hoc networks. Thus, A QoS guaranteed and energy-aware transmission scheme is one hot of research topics in the research area. The MSc research work is based on the idea of Real-Time Wireless Multi-hop Protocol (RT-WMP). RT-WMP is a well known protocol originally used in the robots control area. It allows wireless real-time traffic in relatively small mobile ad-hoc networks using the low-cost commercial IEEE 802.11 technology. The proposed scheme is based on a token-passing approach and message exchange is priority based. The idea of energy-aware routing mechanism is based on the AODV protocol. This energy-saving mechanism is analysed and simulated in our study as an extension of the RT-WMP. From the simulation results and analysis, it has been shown that adding energy-aware mechanism to RT-WMP is meaningful to optimise the performance of traffic on the network
    corecore