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eswaran@cse.psu.edu mpjohnson@cuny.edu archan@research.telcordia.com tlp@cse.psu.edu

aNetworking and Security Research Center, Pennsylvania State University
bDepartment of Computer Science, City University of New York

cAdvanced Technology Solutions, Telcordia Technologies

This paper considers rate adaptation for streaming multimedia data in a wireless sen-
sor network (WSN) consisting of multiple missions, where each mission subscribes to data
streams from multiple sensors, and each sensor’s data is utilized by multiple heteroge-
nous missions. We specifically consider the application of the distributed network utility
maximization (NUM) framework to a previously unconsidered scenario where the different
missions have different priorities, as well as minimum utility demands. When all the util-
ity demands are feasible, we first show that the addition of a penalty for failing to reach
the minimum utility demand to the base NUM protocol leads to maximization of the global
utility. The paper, however, principally focuses on those situations where the minimum
demands cannot all be satisfied due to resource constraints. To address such practical sce-
narios, we present and evaluate a) a family of modified NUM-based protocols to determine
the optimal satisfied set, when the missions have unique priority order, and b) heuristics for
applying NUM, when multiple missions have the same priority.

I. Introduction

Our work in this paper is motivated by a class of multi-
hop wireless sensor applications that require the routing
of streaming data to a group of tactical applications that
are operational for relatively short time periods (i.e., days
rather than months), and that employ sophisticated, high
data rate sensors, e.g., video cameras, short-aperture radar
and audio sensors. Unlike the majority of WSN scenarios,
where sensors are relatively resource-constrained (e.g.,
Motes) and where sensor data transmission is discrete
and event-based (e.g., transmission of motion event alerts
by a motion sensor), our focus is on applications (e.g.,
video monitoring of a site perimeter or trajectory estima-
tion from radar feeds) that consume, and usually perform
some signal processing over, continuous, variable-rate
streams of data from multiple sensors. In such stream-
ing environments, an application’s derived utility may
be expressed as a function of the received stream data
rates. Given the moderately high data rate of each stream
being transmitted to multiple receivers (called missions
in our work) over a multi-hop wireless network, band-
width (rather than energy) becomes the most critically-
constrained resource, necessitating the introduction of
congestion control algorithms.

The Network Utility Maximization (NUM) approach,
originally introduced in [1, 2, 7], is an attractive dis-
tributed optimization framework for flow-oriented traffic,
as it allows an individual user to define its own utility as
a function of the traffic rates from its set of sensors. In
recent work [3], we extended this framework to embrace
two new characteristics of our mission-oriented wireless
sensor network (WSN) environment: (i) Collective Util-
ity, whereby a mission’s utility is defined jointly over mul-
tiple sensors, (ii) Multi-Sink Flows, whereby each sen-
sor’s data may be consumed by multiple missions, each
with distinct perceived utilities.

In this paper, we present a distributed solution for
utility-based congestion control in a streaming WSN in
the presence of mission priorities. Accommodating mis-
sions of differing priorities is a very important practi-
cal requirement, especially in military and emergency re-
sponse scenarios, where some missions are more critical
than others (e.g., gunfire localization vs. perimeter moni-
toring). The basic NUM framework focuses only on max-
imizing the cumulative utility, i.e., it is permitted to drive
the traffic rates for some missions to very low values, if it
contributes to the “collective good”; accordingly, any set
of missions is inherently feasible.

This paper makes the following key contributions: (i)
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We first define a high priority mission via a combination
of a minimum-acceptable utility demand function and a
priority order. In general, a mission is modeled to have a
quasi-elastic demand. This gives rise to the biggest chal-
lenge when introducing prioritized missions: all mission
demands may no longer be collectively feasible; (ii) We
develop a modified NUM adaptation technique that, un-
der the assumption that all demands are feasible, can meet
all minimum demands and maximize global utility. (iii)
In more practical scenarios, all the demands may not be
feasible together due to bandwidth constraints or policy
rules. For the case where all priority missions are strictly
ordered, we provide three distributed protocols for deter-
mining the optimal subset of missions whose demands
can be met and the maximum utility that can be achieved.
(iv) When multiple missions are collectively infeasible
and have the same priority, we show that the NUM frame-
work is insufficient for solving the problem, and present a
set of heuristics for dealing with this scenario.

We start with the assumption that all minimum de-
mands of prioritized missions are feasible, using this
scenario to introduce the formal definition of prioritized
missions and to establish the basic changes needed to
the NUM framework to achieve optimal rate adaptation,
while considering both the elastic and inelastic demand
components. The bulk of our work then involves the use
of this basic framework to address the more complex and
realistic cases in which the combined minimum demands
of prioritized missions are not feasible.

The rest of this paper is organized as follows: Section II
provides a brief overview of related work. In Section III
we present the modified mathematical model of optimiza-
tion for priortized missions with quasi-elastic demands,
when all demands are feasible. In Section IV, we describe
and quantitatively evaluate three protocols for selecting
the optimal subset of demands, when not all are feasible.
In Section V, we evaluate heuristics for the case where
missions have non-unique priorities. Finally, Section VI
concludes the paper.

II. Related Work

The classical NUM framework ([1, 2, 7]) was recently ex-
tended in [3] to a more general WSN environment, where
the topology is arbitrary, individual sensors have multi-
ple subscribing missions, individual missions derive their
utility from a composite set of sensors, and intermedi-
ate nodes use link-layer multicast to forward sensor data
downstream; this may be viewed as a generalization of
NUM for multi-rate, wireless multicast performed in [14].

In this WSN-centric model, the optimization problem is
formulated as: SENSOR(U,L) :

maximize
∑
m∈M

Um(Xm) subject to
∑
∀(k,s)∈l

xs
ck,s
≤ 1,

where Um(Xm) represents the utility function of mission
m (M being the set of all missions) as a function of the
S-dimensional vector of rates associated with the set of
sensors S; ck,s is the transmission rate used by node k
during the link-layer broadcast of the data from sensor s,
andL is the set of all maximal cliques in the conflict graph
(CG) corresponding to WSN; please see [3] for details.
Based on this new model, a sensor (source) s1 adapts its
rate as: d

dtxs1(t) =

κ(
∑

m∈Miss(s1)

wms1(t)− xs1(t)
∑

∀l∈flow(s1)

∑
∀(k,s1)∈l

µl(t)
ck,s1

) (1)

where µl(t) is the ‘cost’ charged per bit by each forward-
ing clique, and is given by µl(t) =

pl(
∑
∀(k,s)∈l

xs(t)
ck,s

)) = (
∑
∀(k,s)∈l

xs(t)
ck,s

− 1 + ε)+/ε2 (2)

Each mission (sink) adapts its ‘willingness to pay’ terms
wms (these terms represent pure Lagrangian variables;
there is no actual pricing or monetary exchange) for sen-
sor s based on the source rates and its own utility function
Um(.), according to the equation wms(t) = xs(t)∂Um

∂xs
.

The system converges to an optimal solution of a relax-
ation of the problem SENSOR(U,L).

Past work on priorities in NUM-based optimization has
been done mostly in the context of admission control and
differentiated services. In [6] and [5], different ‘shapes’
of utility functions are considered for different classes of
flows. A control-theoretic approach for QoS provisioning
in ad hoc wireless networks is specified in [8], where
the rates of the low-priority flows are changed such that
the high-priority flow is maintained at the required rate.
Unlike these approaches, we focus on techniques that are
independent of specific choices of utility functions.

In [9], the NUM framework is used for providing dif-
ferentiated QoS-based rate allocation, where each class of
user defines a minimum and maximum allowable rate. In
[10], the NUM model is analyzed for inelastic and non-
concave utility functions. While we explicitly distinguish
between a mission’s priority order and its minimum de-
mand to help arbitrate cases where all demands cannot be
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accommodated, prior approaches, including [9] and [10],
do not consider explicit priorities - a user’s importance is
simply captured by its demand.

III. The Prioritized-NUM Framework
(All Demands Assumed Feasible)

In this section we show how the WSN-NUM model in
[3] can be enhanced to provide differentiated rate control
based on the minimum utility demands of high priority
missions. We initially focus on the simple case where all
demands are feasible; so, we do not yet explicitly con-
sider the priority order of missions. The main objective of
this section is to define the notion of demands within the
NUM-framework and to show how both quasi-elastic and
elastic (best-effort) flows can be accommodated together.

III.A. Prioritized Flows as Minimum De-
mand Constraints

Without loss of generality, missions can be categorized
into ‘regular’ and ‘prioritized’ missions. Regular mis-
sions do not possess any minimum-utility demands. In
contrast, each prioritized mission m has a minimum util-
ity requirement (expressed as a function over the rates of
each of the sensors s ∈ set(m)) that must be met if re-
sources are available. Prioritized missions are also quasi-
elastic and would like to utilize additional bandwidth (i.e.,
have more sensors transmit at higher rates) if the wireless
network is not congested and additional capacity is avail-
able.

The definition of a mission’s utility as a collective func-
tion of multiple sensors implies that its minimum require-
ment can conceivably be specified as one of multiple al-
ternative combinations of rates from set(m). As a gener-
alization, prioritized missions specify their minimal util-
ity requirements as a demand function that can be rep-
resented as: fi(Xm) ≥ Di. This effectively specifies an
l-dimensional surface in the utility space, demarcating the
‘unsatisfied’ region. (Here, l is the number of sources that
the demand involves.) Thus, a source node that serves a
high priority mission has partially-elastic flows, where its
rate can be adjusted as long as it is within the feasible
region.

III.B. Enhanced NUM framework with
minimal demands

The optimization problem, with the demand functions
of high priority missions represented as additional con-
straints, is:

SENSOR− P (U,L) :

maximize
∑

m∈M Um(Xm) over xs ≥ 0
subject to i)

∑
∀(k,s)∈l

xs
ck,s
≤ 1, and

ii) fi(X) ≥ Di, ∀i ∈ {1, . . . ,H} (3)

where fi(X) denotes the minimum demand of a prior-
itized mission in terms of its utility, and H is the to-
tal number of such ‘prioritized’ missions. This can be
solved by decomposing into independent SINK and
NETWORK problems.

SINKm(Um;λm) :

maximize Um(
w̄m
λ̄m

)− (
∑

s∈set(m)

wms) over wms > 0 (4)

where w̄m is a vector of terms wms, λ̄m is a vector of
λms, and element-wise division of w̄m by λ̄m is assumed.
NETWORK(L;w) :

maximize
∑

s∈S
∑

m∈M wmslog(xs) over xs ≥ 0
subject to i)

∑
∀(k,s)∈l

xs
ck,s
≤ 1, for each clique l ∈ L,

and ii) fi(X) ≥ Di, ∀i ∈ {1, . . . ,H} (5)

We can convert this to an unconstrained problem using
Lagrangian multipliers on Eq. (5). Based on the first-
order necessary condition for optimality, a sensor s1 ad-
justs its transmission rate according to the differential
equation:

d

dt
xs(t) = κ(

∑
m∈Miss(s)

wms(t)− xs(t)∗

(
∑

∀l∈flow(s)

(µl(t)
∑
∀(k,s)∈l

1
ck,s

)−
∑
i

(ηis
∂fi(X)
∂xs

)) (6)

where µl and η are the shadow costs, given by Eq. (2) and
Eq. (7) respectively.The above equation is similar to the
basic adaptation algorithm (Eq. (1)), except for the addi-
tional terms involving ηi. ηi can be viewed as the per-
bit cost of not adhering to the demand; this term ensures
that the overall ‘willingness to pay’ indicated to a sen-
sor s1 is higher than the sum of the marginal utilities of
Miss(s) by an amount proportional to the distance of the
rate from an appropriate ‘feasible point’ (one that satisfies
the demand function) if the demand is currently unmet. In
general, if a demand i is given by fi(X) ≥ Di, then the
normalized ηis for sensor xs at time t can be given by the
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following function:

ηis = {(1− fi(X(t))/Di)+/εp if fi(X) < Di;
=0 otherwise } (7)

where 0 < ε < 1 and ε plays a similar role as ε in Eq. (2);
p is the exponent of the denominator that determines the
magnitude of the cost (per unit flow) of not adhering to
the minimum demand.

Under the assumption that all demands can be met,
we can prove that the system converges at the maximum
global utility with penalties for congestion and for not
meeting the minimum demands. (The proof has been
omitted due to space constraints, and is provided in [13]).
But this does not guarantee that all demands will be sat-
isfied, because it is possible that the global optimum util-
ity of some missions may offset the cost of not meeting
the minimum demand of some other missions. To avoid
this, we must ensure that a) a ‘happy’ mission can never
overwhelm even the least ‘unhappy’ mission, and b) the
marginal increase in utility of all other missions must be
lower than the marginal decrease in dissatisfaction for any
currently-unsatisfied mission.

The first condition is met by ensuring that the maxi-
mum slope of the global utility (due to concavity of util-
ities, this occurs at the point xs = 0 for elastic mis-
sions) must always be less than the η-function. For a
tractable solution that satisfies the second condition, we
fix an upper bound, Nmax, on the number of missions
that the system can admit, and also restrict the maximum
slope of any mission’s utility function to Smax. Accord-
ing to Eq. 7, if the current utility is within a bound of ε
from the demand curve, i.e., if fi(X)/Di(X) = 1 − ε,
then ηi = 1

εp−1 . Hence, we can guarantee that if the
demands are collectively feasible, then they will all be
met (to within ε) provided the following condition holds:

1
εp−1 > Nmax ∗ Smax.

Intuitively, this condition ensures that the marginal cost
for a prioritized flow receiving utility that is more than ε
lower than its minimum demand is always greater than the
marginal utility of all other missions.

From a practical protocol-level perspective, the only
change in the NUM protocol occurs at a receiver (mis-
sion), which now sends an η-corrected path cost to the
source, i.e., the new formulation does not incur any addi-
tional overhead. Moreover, a high priority mission com-
putes its ‘willingness to pay’, based on the source rates
and its own utility function Um(.), according to the mod-

ified equation:

wms(t) = xs(t)
∂Um
∂xs

+ xs(t) ∗ ηms ∗
(
∂fm(X)
∂xs

)
. (8)

IV. Prioritized-NUM With Infeasible
Demands and Strict Priorities

The basic prioritized NUM framework, discussed in the
previous section, cannot be applied directly when the util-
ity demands cannot all be satisfied together, due to capac-
ity constraints or policy rules. The issue of utility max-
imization under infeasible constraints is, in fact, absent
from prior work on NUM-based rate control (irrespec-
tive of whether flows were considered to be completely
elastic or inelastic). In this section, we consider the case
where the different quasi-elastic missions (defined by the
setHP = {all priority flows}) have a priority order (PO)
assigned to them. A higher value of PO implies higher
priority; furthermore, missions have a strict priority or-
dering (no two missions have the same PO).

Given this setting, the problem is to find the “opti-
mal set” of ‘satisfied flows’ SF (SF ⊂ HP : mi ∈
SF iff fi(X) > Di), where Di is the demand constraint
for mission mi.

Optimality is defined by the following properties: (i)
Priority Property: A mission mi with priority POi can-
not be in the set SF if removing this mission from SF
(i.e., reducing its utility below its minimum demand) en-
ables a higher priority mission, Pj : Pj > Pi, not
in set SF , to become a member of SF , and (ii) Util-
ity Property: Given the set SF , the set of sensor rates
chosen, {xs}, maximizes system utility (subject to capac-
ity constraints) and meets the minimum demand for all
mi ∈ SF . If mi /∈ SF , it is simply treated as a reg-
ular mission (with no minimum demands) and thus still
receives a proportionally-fair data rate.

This generic problem cannot be solved using the
gradient-based NUM approach directly; an additional step
is required to compute the optimal set SF . Intuitively, a
lower priority (higher PO) mission is admissible only if
its demand can be met within the “feasible region”, in the
sensor rate space, defined by higher priority demands. We
describe and evaluate three different fully-distributed pro-
tocols: (i) Incremental, (ii) Batch and (iii) Hybrid, that
perform this feasibility evaluation.
IV.A. Incremental Protocol

In this protocol, we start by ignoring all demand con-
straints and iteratively add constraints in the decreasing
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order of their PO, i.e., adding the highest priority demand
first. At each iteration, as long as the demands of all the
previously added (higher priority) missions are satisfied,
the newest mission remains in the set SF ; otherwise it
is dropped (excluded from SF ). The feasibility for any
given set, SF , of demands is evaluated by running the
NUM algorithm described in Sec. III and verifying that
the network converges at a point where all demands are
met. When a mission m’s demand i is ‘added’ to the
system, the mission sends its sources the feedback term
ηis (Eq. 7). If it has not been included yet, or has been
dropped, the mission sends ηis = 0.

This protocol requires missions to identify the highest
priority unsatisfied mission in the network at any instant.
This is achieved by modestly extending the basic proto-
cols, described in [3] and Sec III, by having the nodes
maintain and propagate additional book-keeping informa-
tion. During the construction of the local conflict graph,
nodes exchange information about the set of flows that
they transmit, as well as the priorities of the receivers
(missions) that consume the flows traversing the node.
At the end of the local conflict graph construction, each
node is, thus, aware of the highest priority mission in
that clique, defined as the one with the highest PO value
among all missions that consume data from a node in-
volved in the clique.

In the basic clique-based congestion framework of [3],
the nodes within a clique communicate periodically to
exchange the current air-time fractions (which is used
to compute the clique cost). During these periodic ex-
changes, each node now also exchanges the highest-
priority information, enabling the identity of the mission
with the highest priority value in the clique to percolate to
all clique members.

When a node transmits data, it also appends the highest
priority seen by any of its cliques. When a node receives
the packet, it checks if its own clique is aware of a higher
priority mission; if so, it updates the packet. By the time
the packet reaches its destination, it contains information
about the highest priority mission. The mission checks if
it is the highest priority mission-if so it then has the ‘right
of way’ to signal its utility demand. This mission trans-
mits the additional feedback term, η as computed by Eq.7,
along with the congestion cost feedback. If the demand is
feasible, it is met, the rates converge and the next highest
priority mission can get its turn. If it is not feasible, then
either its demand is not met or it makes a higher priority
mission unsatisfied. If this happens, then this mission is
“rejected” and must not reattempt to signal a non-zero η

value.
To ensure this behavior, each mission maintains a state,

corresponding to the state diagram in Fig. 1. The solid
lines indicate normal transitions and the dotted lines indi-
cate transitions that occur due to system dynamics, i.e., if
a mission leaves or enters the network. Initially, a mission
is in Candidate state, when its demand has not yet been
tried. When it gets its right of way, its state changes to
Active. After the rates converge, an Active mission tran-
sitions to either Rejected or Satisfied. A Satisfied mission
is Violated if a lower priority mission’s demand makes it
unsatisfied.

The current state of a mission is sent (as a concise bit
vector) along with its feedback message to the source
sensors, which then piggy-back this information on the
data packets transmitted on the forward path; intermediate
nodes overhear these transmissions and the propagate this
state information along all their flows. This way, each for-
warding node can pick the highest unsatisfied Candidate
mission, and the current Active mission can infer whether
its demand has made a higher priority mission unsatisfied
(in which case it moves to the Rejected state). We note
that both the selection and reject decisions are made lo-
cally by each mission, without any external arbitration.

Adapting to Dynamics: The protocol must also adapt
to the arrival of a new mission or the departure of an ex-
isting mission. The basic NUM protocol without priori-
ties can itself be adapted to such dynamics as described in
[3]. If the priority of the new mission (or exiting mission)
is lower than that of the currently Active mission, then it
simply waits for its turn. If the new (or exiting) mission’s
priority is higher, then the currently Active mission and all
missions with priority lower than the new (or exiting) mis-
sion must revert back to being Candidate and reset their
η to 0.The arrival of a new mission is implicitly captured
by the protocol, as the cliques have been updated with
the new mission’s information during their reconstruction.
However, when a mission exits the network, and it is not a
Candidate, then explicit “Reset” messages must be propa-
gated over the WSN to trigger the lower priority missions
to revert to the Candidate state; this trigger is initiated by
the sensors upon prolonged absence of feedback from a
subscribed mission.

IV.B. Batch Protocol

In contrast to the Incremental protocol, the Batch protocol
has all ‘prioritized’ missions try their demands in parallel.
If there is at least one unsatisfied demand after the rates
converge, we remove the demand constraints successively

6 Mobile Computing and Communications Review, Volume 13, Number 1



s

Figure 1: State Transition Diagram for a mission in Incremental
Protocol

in the increasing order of priority, i.e., removing the least
priority demand first. This process defines a drop-phase
and continues until sufficient missions are dropped to en-
sure that the demands of all the remaining higher priority
missions are met. But this alone does not result in an
optimal set SF , because some of the lower priority de-
mands that were dropped may possibly be rehabilitated.
Hence, the protocol has a second restore-phase, where
the dropped demands are retried sequentially (similar to
the Incremental protocol), in descending order of priori-
ties.

The implementation of this protocol is similar to the In-
cremental protocol. The lowest priority missions, during
the ‘drop’ phase, and the highest priority dropped mis-
sions, during the ‘restore’ phase, are detected as explained
in IV.A. The state diagram of a mission is shown in Fig. 2.
All missions are initially in the Active state. If its demand
is not met, its state changes to Violated which triggers
the ‘drop-phase’. A mission being ‘Tried’ in the restore-
phase becomes either ‘Active’ or ‘Rejected.

Adapting to Dynamics: When a new mission of pri-
ority POi arrives during the drop-phase, and its priority
is lower than the mission dropped previously, then it is
Dropped, otherwise, it remains Active. If it arrives during
the ‘restore’ phase and has POi < POj , where j is the
mission currently being Tried, it changes state to Dropped
and waits for its turn to be Tried. Otherwise, the new mis-
sion and all missions with PO < POi enter the Dropped
state, implicitly restarting the ‘restore’ phase. If the new
mission arrives after existing missions have converged,
then it enters the Active pool, and the protocol proceeds
as before. If a mission leaves during the ‘drop’ phase or
a Dropped or Tried mission leaves during the ‘restore’
phase, it does not alter the behavior of the remaining mis-
sions. In all other cases, missions with PO values lower
than the exiting mission are Dropped and ‘restore’ phase
is (implicitly) restarted.

Figure 2: State Transition Diagram for a mission in Batch Protocol

Figure 3: State Transition Diagram for a mission in Hybrid Protocol

IV.C. Hybrid Protocol

The Hybrid protocol combines the Incremental and Batch
protocols: the Batch protocol is run with a group (batch)
of B missions, with the Incremental protocol being ap-
plied across the batches. For example, with B = 2, we
try meeting two demands at a time, starting with the high-
est two priorities. If both are feasible, we move on to
the next set of two (i.e., incrementally to the next batch).
If any entire group of prioritized missions proves infeasi-
ble, the two-phase conflict resolution process of the Batch
protocol is invoked within this group. We can see that the
Incremental and Batch protocols are special cases of this
protocol when B = 1 and B = |M |, respectively.

The working of the Batch protocol is essentially a com-
bination of the previous two protocols. In addition to the
Batch state-machine, each mission also maintains a state-
machine for its group, as shown in Fig. 3, whose initial
state is of groupCandidate. When a mission receives a
packet and finds itself as one of the highest B missions,
its GroupState value is groupActive and its local state be-
comes Active, indicating that it is part of the B missions
currently being evaluated. After the batch protocol for
this group of B missions successfully terminates (with a
subset of these missions potentially being Rejected), all
the B missions change their GroupState value to group-
Processed, indicating that the next batch of B missions
can now be evaluated.

Adapting to Dynamics: This protocol deals with the dy-
namic arrival or departure of missions in a simple way. If
a new mission arrives and has a priority POnew that lies
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within the priority range of the batch B currently being
evaluated, i.e., mini∈BPOi < POnew < maxi∈BPOi,
then the set of B missions is reset to Active and the new
batch of B missions (containing the new mission) is re-
initiated. If POnew > maxi∈BPOi, then the protocol
reinitiates the Batch mode by resetting to Active all mis-
sions that had been previously evaluated and have PO
values lower than POnew. The protocol is unaffected if
POnew is lower than any of the priorities currently being
evaluated. A similar adaptation occurs whenever a mis-
sion terminates and leaves the network.

IV.D. Distributed Implementation of the
Protocols

In Sections IV.A, IV.B and IV.C, we described how the
highest or lowest priority missions are detected in a dis-
tributed fashion and how the state information is prop-
agated across the network. In this section, we describe
in further detail, the protocol behavior at the source, for-
warding node and sink nodes. Figures 4,5 and 6 provide
the pseudocode of the algorithm implemented by sensors,
forwarding nodes and sinks, for the Incremental protocol.
We omit the detailed pseudocode for the other two proto-
cols for reasons of space.

In both Batch and Hybrid protocols, the source and for-
warding nodes behave as in Incremental, except that, in
Batch, the lowest priority mission in the clique is com-
puted, and in Hybrid, the highest priority B missions
are computed. The sink behavior of both protocols is
guided by their corresponding state transition diagrams.
All the three protocols converge in completely decentral-
ized fashion, even in the face of transient inconsistencies
that might occur while forwarding nodes exchange infor-
mation regarding their downstream missions.

IV.E. Performance Evaluation of The Three
Protocols

To quantitatively evaluate the performance of the three
protocols, we simulated their behavior, using the Qual-
net [4] discrete-event simulator, on an 802.11-based wire-
less network. The network consists of 100 nodes that are
randomly deployed on a 1500m x 1500m field. There are
15 flows and 10 missions (i.e.,M = 10), of which 5 are
prioritized and the rest are regular.

The evolution of network utility over time for Incre-
mental, Batch, and Hybrid-2 (i.e., Hybrid with B = 2)
are shown in Fig. 7. It also shows that the protocols
adapt to dynamics robustly, where the following case was
simulated: Initially network has missions with priorities

Figure 11: Average convergence time.

1,2,3,4,5. At t = 150s, the priority 2 and priority 3
missions leave; at t = 175s, a new mission enters with
priority 3. We see that by 150s all protocols reach the
same convergence point. We see that when the new mis-
sion enters, Batch approaches the optimal utility faster:
while Batch immediately admits the new mission, the In-
cremental (and Hybrid) must reset the states of lower pri-
ority missions and process the demands sequentially (and
quasi-sequentially).

Fig. 7 also shows that the protocols have different con-
vergence times. We note that the relative convergence
times of the three protocols depend on a number of factors
- the demanded utility values, the capacity of the network,
number and priorities of demands that eventually turn out
to be infeasible, and in Hybrid protocol, the specific group
size B used. Fig. 8 shows the mean convergence time
(and the 95% confidence intervals) taken by Incremental,
Batch and Hybrid (with 3 different group sizes) protocols,
for a set of demands with all possible priority arrange-
ments. For this set of demands, where the last two or
three demands were always infeasible, we see that Batch
converges faster than Incremental, while the performance
of Hybrid depends on the group size (and the number of
infeasible demands).

Optimal Batch Size Selection for Hybrid Protocol:
As shown above, the performance of the Hybrid proto-

col greatly depends on the group size. This gives rise to
the interesting problem of determining the optimal batch
size B that consumes the least number of cycles (n),
where a cycle is defined as the process of running the
NUM protocol and allowing it to converge, and based on
the converged value, deciding if a mission’s demand has
been accepted or not. If pi is the conditional probability
that the demand of mission i (i.e., with priority i) is fea-
sible given the current network capacity, then the number
of cycles required by the Hybrid protocol for a group size
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Input:
(i) For each trx in its Local Conflict Graph(LCG):trx node ID,

flow ID, airtime fraction ( xs
Cs

),(priorities,cur. state) of sinks;

(ii) Feedback message={aggregate flow cost, destination state}.
Variable: STATE: state vector for all its missions; RATE: src rate

onReceiveFeedback (destination d) : {
RATE ← RATE + computeDx()
∀ trx T ∈ LCGwhere T.destination = d
update(STATE)

}
onSendPacket(void) {

maxP ← computeMaxPriority(clique)
cliqueCost← computeCliqueCost()
Transmit(data,cliqueCost,cliqueID,maxP,STATE)

}
computeDX() : {returns result of Eq.6}
computeMaxPriority() : {returns highest priority

seen in the clique}
computeCliqueCost() : {returns result of Equation2}

Figure 4: Distributed Adaptation Algorithm at Sensor (Source)

Input: For each trx. in its LCG, trx:

nodeID,flowID, xs
Cs

,(PO, cur. states)

for all sinks of the flow }

onReceiveData (Flow f, Data data) {
∀ trx. T ∈ LCG
such that T.destination ∈ f.destination,

update destination state from

data.STATE;

if (nodeId ∈ data.immediateRx) {
//i.e., node is on the flow’s

// forwarding tree

data.maxP =
computeMaxPriority(data.maxP

⋃
clique)

update data.STATE from

T.destination state

}
Data.cost = data.cost+
computeCliqueCost()
}

Figure 5: Priority Arbitration Algorithm at For-
warding Node

onReceiveData(flow f) {
if (State! = “Candidate′′ AND (data.maxPri >pri myPri||data.exitedMission.Pri >pri myPri){//new mission arrives

State = ‘‘Candidate’’;

} if (State! =′′ Satisfied′′ AND State =′′ Rejected′′) {/* a decision has not yet been made on this mission*/

If( data.maxPriority = myPriority){ /* this mission has the current highest priority */

η ← computeUnsatisfiedCost()
If(′′V iolated′′ ∈ data.STATE&&isConsistent()) then State = “Rejected′′

else if (η = 0 && isConsistent()) then State = “Satisfied′′

} Else η ← 0
} else if(State = ‘‘Satisfied’’) { /* this mission has higher priority than the current highest,

and its demand was feasible with its predecessors and hence was admitted to the system */

η ← computeUnsatisfiedCost(); //0 if the demand is still met

If(η > 0) State = “V iolated′′;
} else η ← 0 /* if demand is not highest priority nor has been rejected, set η to 0 */

w = computeWillingnessToPay(); sendFeedback(η, State, w, data.cost);

}
computeUnsatisfiedCost() : {returns result of Eq.7}

Figure 6: η-Adjustment Algorithm at Sink (Mission)

B, is given by

n =
bM

B
c∑

g=1

[1 + (1−
(g−1)B+B∏
i=(g−1)B+1

pi){2(1− p(g−1)B+1)∗

(B − 1) +
(g−1)B+B∑
i=(g−1)B+2

(1− pi)(
i−1∏

j=(g−1)B+1

pj)∗

(1 + 2gB − 2i)}] + [1 + (1−
M∏

i=bM
B
cB+1

pi)∗

{2(1− pbM
B
cB+1)(M mod B − 1) +

M∑
i=bM

B
cB+2

(1− pi)

(
i−1∏

j=bM
B
cB+1

pj)(1 + 2M − 2i)}] (9)

The optimal batch size is that value of B that minimizes
Eq. 9. However, it is not straightforward to compute the
optimal batch size, because it requires knowledge of the
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Figure 7: Transient network
utility, with adaptation to dy-
namics.

Figure 8: Convergence times
for the protocols.

Figure 9: Optimal batch sizes
for uniform prob. function, with
M = 50.

Figure 10: Optimal batch sizes
for step prob. function, with M =
50.

conditional probability that a demand will be accepted,
which depends on factors such as capacity of the network,
presence of other missions, priority of demands, and so
on. Given the unlikelihood of having all of this knowl-
edge, we turn to finding a reasonable guideline for setting
a batch size that is robust in terms of performance. We
thus plot the batch sizes that provide the best performance
for a variety of probability distributions (for feasibility of
mission demands) in Figures 9 and 10.

Fig. 9 shows the optimal batch sizes in a network with
50 missions (M = 50) when all demands have equal
probability of being accepted. This is often the case
when smaller demands are likely to be accepted and larger
ones are likely to rejected, and a demand has an equal
chance of belonging to either of these categories. For a
probability, p < 0.5, batch size of 1 is the best (Incre-
mental protocol). If p ≈ 1, batch size of M is the best
(Batch protocol). Otherwise, a batch size of 2-3 is good.
Interestingly, we observed the same trend for other values
ofM too, implying that the best value ofB is independent
of M .

Sometimes, the demands may all be more or less equal,
and the network can accommodate as many demands as
the capacity allows. In such cases, it is likely that when
a demand of a certain priority is rejected, all demands of
lower priority are rejected also. This probability distri-
bution may be modeled as a step-function where, for in-
stance, the probability of acceptance for the first K mis-
sions is p1 = 1 and for the remaining M −K it is p2 = 0.
Fig. 10 shows optimal batch sizes when the threshold K
is varied, for two cases: (i) p1 = 1, p2 = 0 and (ii)
p1 = 0.9, p2 = 0.3, with M = 50. We see that when
more demands are certain to be accepted, larger batch
sizes are optimal; otherwise, smaller batch sizes are bet-
ter. Also, when K is greater than and close to the mid-
point, a range of batch sizes are optimal. (Indeed, for

case(i), choosing a batch size in the range [dM2 e,M − 1]
always results in 2+(M −K) cycles, one for each batch,
and M-K incremental attempts for each infeasible mis-
sion). However in practice, it is better to choose the small-
est batch size in the range for two reasons: (i) The penalty
of selecting a non-optimal batch size is lower for smaller
batch sizes, and (ii) We observed in our experiments that,
as anticipated, the duration of a “cycle” is longer for big-
ger batch sizes.

If there is no a priori knowledge of the demands, then
it is safe to assume that the higher priority demands have
better chances of being accepted because they are tried
and admitted first. We modeled this as a linear probabil-
ity function of priority (e.g., p(i) = (M − i)/M ), and
computed the optimal batch size. Interestingly, the op-
timal batch size always turns out to be 1, implying that
Incremental-mode is the best for this case.

We thus observe that the optimal batch sizes depend
heavily on the conditional probability distribution. In
Fig. 11, we plot the convergence time for Hybrid, In-
cremental and Batch protocols and a binary search al-
gorithm, varying the number of infeasible demands, for
M = 20, when all missions have the same probability
of acceptance. (Binary search is an intuitive approach to
mission grouping and is included for comparison). From
Fig. 9, we select B = 2 as our best ‘choice’ for the Hy-
brid protocol. The convergence time is averaged over all
possible priority assignments for the infeasible demands
and hence is independent of the specific demands (unlike
Fig. 8). We see that, in most cases, when fewer demands
are infeasible, Hybrid-2 performs better than the rest and
otherwise, while it does not perform as well as the In-
cremental, it does much better than the other two algo-
rithms. We also observe that Hybrid-18 performs much
worse than Hybrid-2, implying a large penalty for choos-
ing an incorrect large batch size.
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V. Prioritized-NUM with Infeasible
Missions and Non-unique Priorities

In this section, we relax the assumption of Section IV that
each mission has a unique priority (PO). When multi-
ple missions have the same priority, we must be able to
impose a total ordering among them, so that we can de-
termine the “best” subset of missions that can be satis-
fied. Sec. V.A presents some valid objective functions that
may be used to evaluate the ‘goodness’ of a selected set.
As maximizing each of these objectives turns out to be
hard, we shall develop and evaluate some heuristics that
help establish a strict order among missions in the same
priority-equivalence class.
V.A. Defining the objective function for

missions of equal priorities
The optimality of a particular selection or ordering among
missions with the same PO value may be evaluated using
several potential metrics:

1) Total Utility of Missions (
∑
∀m∈M Um): This metric

measures the total utility of all the missions (both normal
and prioritized), without consideration of whether or not
mission demands are satisfied. This conventional metric
is inappropriate for us, as it does not penalize the inability
to satisfy some mission demands.

2) Total Number of Satisfied Missions (I): This metric
measures the ability of the network to meet the minimum
demand of missions without regard to their utility. How-
ever, this problem of maximizing the number of satisfied
missions,MAX-CARD SATISFIED MISSIONS, is NP-hard.

Theorem 1. MAX-CARD SATISFIED MISSIONS is NP-
hard, even to approximate.

Proof. Given a MAXIMUM INDEPENDENT SET (MIS)
instance I = (V,E), we produce a problem instance I ′.
For each node v ∈ V , create a mission mv with Dv = 1
and a sensor sv. Define the utility function Uv(xv) = xv.
Set cks = 1 for all k, s. We say that two sensors su, sv
conflict with each other (i.e., are in some clique `) iff
nodes u, v are adjacent in I . Because all cks are unit, each
value xs is bound by 1. Given the demands and utility
functions, xs must exactly equal 1 if s is to provide any
benefit to a mission. Thusmu,mv can have their demands
satisfied iff their sensors su, sv do not conflict. Thus the
nodes corresponding to a max-size conflict-free set of sat-
isfied missions in I ′ are a MIS in I .

3) Total Utility of Satisfied Missions (
∑
∀m∈SF Um):

This metric combines the goals of the previous two met-

rics, measuring the total utility of only the satisfied mis-
sions (regardless of the number of satisfied missions).
However, this problem, MAX SATISFIED UTILITY, is
NP-hard too.

Theorem 2. MAX SATISFIED UTILITY is NP-hard, even
to approximate.

Proof. This proof follows from the proof for Theorem 1.
It can be observed from the proof for Theorem 1 that the
utility for any satisfied mission equals 1 (recall the upper
bounds on xs). Thus in the produced instance I ′, max-
imizing the satisfied utility is exactly the same as maxi-
mizing the number of satisfied missions.

4) Weighted Utility of Satisfied Missions (I ∗∑
∀m∈SF Um): This metric measures the total utility of

only the satisfied missions and weighs it with the total
number of satisfied missions. As we show in [13], this is
a mixed-integer (MINLP) optimization problem which is
well-known to be NP-hard and even popular techniques
such as branch-and-bound fail to provide a good solution.

V.B. Heuristics for Solving Prioritized
NUM with Missions of Equal Priority

In this section, we describe four heuristics for ordering the
demands of missions with equal priority. We can use these
heuristics in one of the protocols discussed in Section IV
for breaking the tie among missions of equal priority.

V.B.1. Maximum Utility

A simple heuristic is to order the missions in descending
order of their minimally utility demands, thus evaluating
missions greedily based on their utility demands. Hence,
for demands of the form fi(X) > Di, we order based on
theDis. From the protocol perspective, we simply use the
demand value as a secondary priority, which is used for
computing the highest or lowest priority (depending on
whether Incremental, Batch or Hybrid protocol is used) at
each node, when two missions have the same PO.

V.B.2. Minimum Resource

In this heuristic, we give preference to the mission with
lower resource requirement, i.e., the whose demand is
met at lower source rate. By conserving the capacity
of the network, this heuristic should increase the num-
ber of missions with satisfied demands. For a mission
with a demand U(x) > D, the rate at which the de-
mand is met is given by U−1(x)|D. However, since the
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utility of a mission depends on different sources and dif-
ferent numbers of them, we normalize this quantity (as-
suming identical rates from each sensor) to obtain the
“Per-source Rate” requirement. For instance, for a de-
mand log(x) + 2log(y) > D, the value of this heuristic is
eD/3. This heuristic has no implementation overhead as,
the missions just make their (normalized) U−1(x) values
available along with their demands.

V.B.3. Maximum Normalized Utility

This heuristic attempts to balance the dual requirements
of high utility and low resource consumption. We order
the missions based on their “Utility per-bit”, preferring
the mission with higher value. For a mission with demand
U(x) > D, its utility per bit is given as D

U−1(D)

V.B.4. Virtual Link

This heuristic also attempts to balance the trade-off be-
tween high utility and low resource consumption. Intu-
itively, this approach uses the concept of ‘virtual links’ in-
troduced in [11] to first estimate the amount of additional
bandwidth that is needed to satisfy all demands, and then
eliminates those missions that depend maximally on the
‘virtual flow’ to satisfy their demands. Let us assume an
imaginary link from each source to its destinations, with
infinite capacity; any demanded utility is thus inherently
feasible. However, each mission incurs a penalty for re-
ceiving data on the virtual link. Suppose a mission has a
utility function U(xs) = log(1 + xs) and it has a demand
U(xs) > Ds. With the introduction of a virtual link, its
demand can now be met if log(1+xs+x′s) > D, where x′s
is the rate transmitted through the virtual link from source
s. The penalty Y (X ′) for using the virtual link can be any
concave function of the virtual rates to the mission. The
objective function of the network is now given by:

maximize
∑
m∈M

Um(Xm)− Ym(X ′m)over xs ≥ 0 subject to

i)
∑
∀(k,s)∈l

xs
ck,s
≤ 1, ii) fi(X,X ′) ≥ Di, ∀i ∈ {1, . . . ,H}

We can show that the network converges at the unique
maximum if the sensor adjusts both its ‘real rate’ xs and
its virtual rate x′s (which it does not actually transmit)
such that the gradient is driven to zero. This is further
explained in [13]. Each mission computes its dependence
on the virtual link for meeting its demand, i.e., it computes
Depi(X) = 1−fi(X)/Di. The mission that depends the

∑
∀m∈M Um

∑
∀m∈SF Um I I

∑
∀m∈SF

Um

Min Resource 0.989 0.805 0.945 0.857

Max Util 0.975 0.957 0.839 0.927

Norm. Util 0.981 0.895 0.881 0.920

Virtual Link 0.994 0.854 0.971 0.928

Table 1: Performance of heuristics w.r.t different optimality metrics

most on the virtual link is dropped during the Batch pro-
tocol. This virtual process is simulated in parallel, along
with the actual Batch rate-change protocol. The simulated
rates and clique costs are carried along with the real rates
and costs in the data packet; as a part of the mission’s
state, its Depi values are also maintained. When two or
more missions are selected to be dropped, the Depi value
is used to break a tie. Thus we see that while it increases
the size of the packets, this heuristic, like the rest, does not
incur any communication overhead. However, this heuris-
tic works only with the Batch protocol, because this pro-
vides only a partial ordering among missions, that is used
to decide which mission has to be eliminated.

V.C. Evaluation of the Heuristics

In this section we evaluate the performance of the heuris-
tics. First, we evaluate how close each heuristic gets to the
optimal, for the different metrics of optimality discussed
in Sec. V.A. For this, we simulated a 20-node network
of random topology with 5 sources and 10 missions and
tested the heuristics in MATLAB. We also computed the
optimal values of the metrics using GAMS [12].

Table 1 shows the value of each metric (normalized
by the optimal, computed by exhaustive search) obtained
by the four heuristics. As expected, the “Minimum Re-
source” heuristic satisfies more missions, while the “Max-
imum Utility” heuristic yields higher utility of the satis-
fied missions. Although “Minimum Resource” increases
the number of missions satisfied, it does not increase the
weighted (satisfied) utility of the network. In contrast, the
Virtual Link heuristic not only increases the number of
missions satisfied, but also increases the weighted (satis-
fied) utility of the network (attains ≈ 92% of the opti-
mum). Normalized Utility also results in about the same
value of I ∗

∑
∀m∈SF Um and it yields lower I and higher∑

∀m∈SF Um compared to Virtual Link. We also simu-
lated the heuristics in Qualnet for a set of 10 missions be-
longing to three priority classes. As expected, there was
no significant differences in the convergence times for the
heuristics.
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VI. Conclusion and Future Work

In this work we have extended the NUM framework and
developed practical distributed protocols, to address the
scenario where all demands not collectively feasible and
the cases where priorities are unique and non-unique. In
future, we plan to further study the performance behavior
of the heuristics and develope techniques to improve the
convergence speed of the protocols.

References

[1] F.Kelly. Charging and rate control for elastic traf-
fic. European Transactions on Telecommunications,
Vol.8 (1997) 33-37.

[2] F.P.Kelly, A.K.Maulloo, D.K.H.Tan. Rate control
for comm. networks: shadow prices, proportional
fairness and stability. JORS Vol.49(1998)

[3] S.Eswaran, A.Misra, T.La Porta. Utility-Based
Adaptation in Mission-oriented WSN. Proc. of IEEE
SECON, June 2008.

[4] http://www.qualnet.com

[5] C. Liu, L. Shi, B. Liu. Utility-Based Bandwidth Al-
location for Triple-Play Services. Proc. of ECUMN,
Feb 2007.

[6] P.Dharwadkar, H.J.Siegel, E.K.P.Chong. A Heuris-
tic for Dynamic Bandwidth Allocation with Preemp-
tion and Degradation for Prioritized Requests. Dis-
tributed Computing Systems, Apr. 2001.

[7] S.H.Low, D.E.Lapsley. Optimization flow control,I:
Basic algorithm and convergence. IEEE/ACM ToN,
Vol.7, 861 - 874.

[8] D. Saha, S. Roy, S. Bandyopadhyay, T. Ueda, S.
Tanaka A dist. feedback control mechanism for
priority-based flow rate control for QoS provision-
ing in ad hoc wireless networks with dir. antenna.
IEEE ICC, June’04.

[9] D. Palomar and M. Chiang. Alternative dist. algo-
rithms for network utility maximization: Frame-
work and applications. IEEE TAC, March’08

[10] P. Hande, S. Zhang, and M. Chiang. Distributed
rate allocation for inelastic flows. IEEE/ACM ToN,
Vol.15,No.6,1240-1253

[11] R. Gallager and S. J. Golestaani. Flow control and
routing algorithms for data networks. Proc. 5th Int.
Conf. Computer Comm., 779-784, 1980

[12] http://www.gams.com

[13] S.Eswaran, M.P.Johnson, A.Misra, T.La Porta. Dis-
tributed Utility-Based Rate Adaptation for Priori-
tized Missions. TR NAS-TR-0090-2008,Dept. CSE,
PSU, May 2008.

[14] L.Bui, R.Srikant, A.Stolyar. Optimal resource allo-
cation for multicast flows in multihop wireless net-
works. Proc. of IEEE CDC, December 07.

Mobile Computing and Communications Review, Volume 13, Number 1 13


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	1-2009

	Distributed Utility-Based Rate Adaptation Protocols for Prioritized, Quasi-Elastic Flows
	Sharanya ESWARAN
	Matthew P. JOHNSON
	Archan MISRA
	Thomas LA PORTA
	Citation


	Distributed utility-based rate adaptation protocols for prioritized, quasi-elastic flows

