24 research outputs found

    Energy efficiency of mmWave massive MIMO precoding with low-resolution DACs

    Full text link
    With the congestion of the sub-6 GHz spectrum, the interest in massive multiple-input multiple-output (MIMO) systems operating on millimeter wave spectrum grows. In order to reduce the power consumption of such massive MIMO systems, hybrid analog/digital transceivers and application of low-resolution digital-to-analog/analog-to-digital converters have been recently proposed. In this work, we investigate the energy efficiency of quantized hybrid transmitters equipped with a fully/partially-connected phase-shifting network composed of active/passive phase-shifters and compare it to that of quantized digital precoders. We introduce a quantized single-user MIMO system model based on an additive quantization noise approximation considering realistic power consumption and loss models to evaluate the spectral and energy efficiencies of the transmit precoding methods. Simulation results show that partially-connected hybrid precoders can be more energy-efficient compared to digital precoders, while fully-connected hybrid precoders exhibit poor energy efficiency in general. Also, the topology of phase-shifting components offers an energy-spectral efficiency trade-off: active phase-shifters provide higher data rates, while passive phase-shifters maintain better energy efficiency.Comment: Published in IEEE Journal of Selected Topics in Signal Processin

    Green joint radar-communications: RF selection with low resolution DACs and hybrid precoding

    Get PDF
    This paper considers a multiple-input multiple-output (MIMO) joint radar-communication (JRC) transmission with hybrid precoding and low resolution digital to analog converters (DACs). An energy efficient radio frequency (RF) chain and DAC bit selection approach is presented for a subarrayed hybrid MIMO JRC system. We introduce a weighting formulation to represent the combined radar-communications information rate. The presented selection mechanism is incorporated with fractional programming to solve an energy efficiency maximization problem for JRC which selects the optimal number of RF chains and DAC bit resolution. Subsequently, a weighted minimization problem to compute the precoding matrices is formulated, which is solved using an alternating minimization approach. The numerical results show the effectiveness of the proposed method in terms of high energy efficiency whilst maintaining good rate and desirable radar beampattern performance

    Energy Efficiency Maximization Precoding for Quantized Massive MIMO Systems

    Get PDF
    The use of low-resolution digital-to-analog and analog-to-digital converters (DACs and ADCs) significantly benefits energy efficiency (EE) at the cost of high quantization noise for massive multiple-input multiple-output (MIMO) systems. This paper considers a precoding optimization problem for maximizing EE in quantized downlink massive MIMO systems. To this end, we jointly optimize an active antenna set, precoding vectors, and allocated power; yet acquiring such joint optimal solution is challenging. To resolve this challenge, we decompose the problem into precoding direction and power optimization problems. For precoding direction, we characterize the first-order optimality condition, which entails the effects of quantization distortion and antenna selection. We cast the derived condition as a functional eigenvalue problem, wherein finding the principal eigenvector attains the best local optimal point. To this end, we propose generalized power iteration based algorithm. To optimize precoding power for given precoding direction, we adopt a gradient descent algorithm for the EE maximization. Alternating these two methods, our algorithm identifies a joint solution of the active antenna set, the precoding direction, and allocated power. In simulations, the proposed methods provide considerable performance gains. Our results suggest that a few-bit DACs are sufficient for achieving high EE in massive MIMO systems

    A survey on hybrid beamforming techniques in 5G : architecture and system model perspectives

    Get PDF
    The increasing wireless data traffic demands have driven the need to explore suitable spectrum regions for meeting the projected requirements. In the light of this, millimeter wave (mmWave) communication has received considerable attention from the research community. Typically, in fifth generation (5G) wireless networks, mmWave massive multiple-input multiple-output (MIMO) communications is realized by the hybrid transceivers which combine high dimensional analog phase shifters and power amplifiers with lower-dimensional digital signal processing units. This hybrid beamforming design reduces the cost and power consumption which is aligned with an energy-efficient design vision of 5G. In this paper, we track the progress in hybrid beamforming for massive MIMO communications in the context of system models of the hybrid transceivers' structures, the digital and analog beamforming matrices with the possible antenna configuration scenarios and the hybrid beamforming in heterogeneous wireless networks. We extend the scope of the discussion by including resource management issues in hybrid beamforming. We explore the suitability of hybrid beamforming methods, both, existing and proposed till first quarter of 2017, and identify the exciting future challenges in this domain

    Intelligent Reflecting Surfaces and Next Generation Wireless Systems

    Full text link
    Intelligent reflecting surface (IRS) is a potential candidate for massive multiple-input multiple-output (MIMO) 2.0 technology due to its low cost, ease of deployment, energy efficiency and extended coverage. This chapter investigates the slot-by-slot IRS reflection pattern design and two-timescale reflection pattern design schemes, respectively. For the slot-by-slot reflection optimization, we propose exploiting an IRS to improve the propagation channel rank in mmWave massive MIMO systems without need to increase the transmit power budget. Then, we analyze the impact of the distributed IRS on the channel rank. To further reduce the heavy overhead of channel training, channel state information (CSI) estimation, and feedback in time-varying MIMO channels, we present a two-timescale reflection optimization scheme, where the IRS is configured relatively infrequently based on statistical CSI (S-CSI) and the active beamformers and power allocation are updated based on quickly outdated instantaneous CSI (I-CSI) per slot. The achievable average sum-rate (AASR) of the system is maximized without excessive overhead of cascaded channel estimation. A recursive sampling particle swarm optimization (PSO) algorithm is developed to optimize the large-timescale IRS reflection pattern efficiently with reduced samplings of channel samples.Comment: To appear as a chapter of the book "Massive MIMO for Future Wireless Communication Systems: Technology and Applications", to be published by Wiley-IEEE Press. arXiv admin note: text overlap with arXiv:2206.0727

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin
    corecore