539 research outputs found

    Soft Computing Techniques for Stock Market Prediction: A Literature Survey

    Get PDF
    Stock market trading is an unending investment exercise globally. It has potentials to generate high returns on investors’ investment. However, it is characterized by high risk of investment hence, having knowledge and ability to predict stock price or market movement is invaluable to investors in the stock market. Over the years, several soft computing techniques have been used to analyze various stock markets to retrieve knowledge to guide investors on when to buy or sell. This paper surveys over 100 published articles that focus on the application of soft computing techniques to forecast stock markets. The aim of this paper is to present a coherent of information on various soft computing techniques employed for stock market prediction. This research work will enable researchers in this field to know the current trend as well as help to inform their future research efforts. From the surveyed articles, it is evident that researchers have firmly focused on the development of hybrid prediction models and substantial work has also been done on the use of social media data for stock market prediction. It is also revealing that most studies have focused on the prediction of stock prices in emerging market

    Soft Computing Techniques for Stock Market Prediction: A Literature Survey

    Get PDF
    Stock market trading is an unending investment exercise globally. It has potentials to generate high returns on investors’ investment. However, it is characterized by high risk of investment hence, having knowledge and ability to predict stock price or market movement is invaluable to investors in the stock market. Over the years, several soft computing techniques have been used to analyze various stock markets to retrieve knowledge to guide investors on when to buy or sell. This paper surveys over 100 published articles that focus on the application of soft computing techniques to forecast stock markets. The aim of this paper is to present a coherent of information on various soft computing techniques employed for stock market prediction. This research work will enable researchers in this field to know the current trend as well as help to inform their future research efforts. From the surveyed articles, it is evident that researchers have firmly focused on the development of hybrid prediction models and substantial work has also been done on the use of social media data for stock market prediction. It is also revealing that most studies have focused on the prediction of stock prices in emerging market

    A Credit Rating Model in a Fuzzy Inference System Environment

    Get PDF
    One of the most important functions of an export credit agency (ECA) is to act as an intermediary between national governments and exporters. These organizations provide financing to reduce the political and commercial risks in international trade. The agents assess the buyers based on financial and non-financial indicators to determine whether it is advisable to grant them credit. Because many of these indicators are qualitative and inherently linguistically ambiguous, the agents must make decisions in uncertain environments. Therefore, to make the most accurate decision possible, they often utilize fuzzy inference systems. The purpose of this research was to design a credit rating model in an uncertain environment using the fuzzy inference system (FIS). In this research, we used suitable variables of agency ratings from previous studies and then screened them via the Delphi method. Finally, we created a credit rating model using these variables and FIS including related IF-THEN rules which can be applied in a practical setting

    Evolving neuro-fuzzy tools for system classification and prediction

    Get PDF
    "Classification and prediction algorithims have recently become very powerful tools to a wide array of real-world applications. Some real world applications include system condition monitoring, bioinformatics, robotics, predictive control, earthquake prediction, weather forecasting, stock market and traffic pattern prediction, just to name a few. Within this work, several novel approaches, as well as modifications to some existing approaches, are introduced in order to improve the performance of current classification and prediction paradigms. In the first section of this work, a novel weighted recurrent neuro-fuzzy inference system is introduced alongside two existing neural networks. It is found that the novel design outperforms both the existing neural networks in terms of equal-step and sequential-step inputs for time-series forecasting. The second contribution of this work is the development of a novel evolving clustering algorithim for classification and prediction. This particular algorithim starts without any priori knowledge of the distribution of the data set. The novel design is capable of revealing the true cluster configuration in a single pass of the data, estimating the location and variance of each cluster. After a rigorous performance evaluation, it is found that the novel design outperforms many existing clustering approaches including the well-known potential-based evolving Takagi-Sugeno (eTS) clustering scheme. The third and fourth contributions of this work are the development of a second novel clustering technique and a novel hybrid training technique. The clustering technique is a combination of the aforementioned scheme and the potential-based technique. The new training algorithm is a combination of the decoupled-extended Kalman filter (for the backward pass) and the recursive least-sequares estimate (for the forward pass). It is found that the novel clustering technique outperforms many available clustering techniques. Also, the novel training algorithm is proven to outperform most existing training techniques."--Abstrac

    Soft Computing Approaches to Stock Forecasting: A Survey

    Get PDF
    Soft computing techniques has been effectively applied in business, engineering, medical domain to solve problems in the past decade. However, this paper focuses on censoring the application of soft computing techniques for stock market prediction in the last decade (2010 - todate). Over a hundred published articles on stock price prediction were reviewed. The survey is done by grouping these published articles into: the stock market surveyed, input variable choices, summary of modelling technique applied, comparative studies, and summary of performance measures. This survey aptly shows that soft computing techniques are widely used and it has demonstrated widely acceptability to accurately use for predicting stock price and stock index behavior worldwide

    Recurrent error-based ridge polynomial neural networks for time series forecasting

    Get PDF
    Time series forecasting has attracted much attention due to its impact on many practical applications. Neural networks (NNs) have been attracting widespread interest as a promising tool for time series forecasting. The majority of NNs employ only autoregressive (AR) inputs (i.e., lagged time series values) when forecasting time series. Moving-average (MA) inputs (i.e., errors) however have not adequately considered. The use of MA inputs, which can be done by feeding back forecasting errors as extra network inputs, alongside AR inputs help to produce more accurate forecasts. Among numerous existing NNs architectures, higher order neural networks (HONNs), which have a single layer of learnable weights, were considered in this research work as they have demonstrated an ability to deal with time series forecasting and have an simple architecture. Based on two HONNs models, namely the feedforward ridge polynomial neural network (RPNN) and the recurrent dynamic ridge polynomial neural network (DRPNN), two recurrent error-based models were proposed. These models were called the ridge polynomial neural network with error feedback (RPNN-EF) and the ridge polynomial neural network with error-output feedbacks (RPNN-EOF). Extensive simulations covering ten time series were performed. Besides RPNN and DRPNN, a pi-sigma neural network and a Jordan pi-sigma neural network were used for comparison. Simulation results showed that introducing error feedback to the models lead to significant forecasting performance improvements. Furthermore, it was found that the proposed models outperformed many state-of-the-art models. It was concluded that the proposed models have the capability to efficiently forecast time series and that practitioners could benefit from using these forecasting models

    Dynamic non-linear system modelling using wavelet-based soft computing techniques

    Get PDF
    The enormous number of complex systems results in the necessity of high-level and cost-efficient modelling structures for the operators and system designers. Model-based approaches offer a very challenging way to integrate a priori knowledge into the procedure. Soft computing based models in particular, can successfully be applied in cases of highly nonlinear problems. A further reason for dealing with so called soft computational model based techniques is that in real-world cases, many times only partial, uncertain and/or inaccurate data is available. Wavelet-Based soft computing techniques are considered, as one of the latest trends in system identification/modelling. This thesis provides a comprehensive synopsis of the main wavelet-based approaches to model the non-linear dynamical systems in real world problems in conjunction with possible twists and novelties aiming for more accurate and less complex modelling structure. Initially, an on-line structure and parameter design has been considered in an adaptive Neuro- Fuzzy (NF) scheme. The problem of redundant membership functions and consequently fuzzy rules is circumvented by applying an adaptive structure. The growth of a special type of Fungus (Monascus ruber van Tieghem) is examined against several other approaches for further justification of the proposed methodology. By extending the line of research, two Morlet Wavelet Neural Network (WNN) structures have been introduced. Increasing the accuracy and decreasing the computational cost are both the primary targets of proposed novelties. Modifying the synoptic weights by replacing them with Linear Combination Weights (LCW) and also imposing a Hybrid Learning Algorithm (HLA) comprising of Gradient Descent (GD) and Recursive Least Square (RLS), are the tools utilised for the above challenges. These two models differ from the point of view of structure while they share the same HLA scheme. The second approach contains an additional Multiplication layer, plus its hidden layer contains several sub-WNNs for each input dimension. The practical superiority of these extensions is demonstrated by simulation and experimental results on real non-linear dynamic system; Listeria Monocytogenes survival curves in Ultra-High Temperature (UHT) whole milk, and consolidated with comprehensive comparison with other suggested schemes. At the next stage, the extended clustering-based fuzzy version of the proposed WNN schemes, is presented as the ultimate structure in this thesis. The proposed Fuzzy Wavelet Neural network (FWNN) benefitted from Gaussian Mixture Models (GMMs) clustering feature, updated by a modified Expectation-Maximization (EM) algorithm. One of the main aims of this thesis is to illustrate how the GMM-EM scheme could be used not only for detecting useful knowledge from the data by building accurate regression, but also for the identification of complex systems. The structure of FWNN is based on the basis of fuzzy rules including wavelet functions in the consequent parts of rules. In order to improve the function approximation accuracy and general capability of the FWNN system, an efficient hybrid learning approach is used to adjust the parameters of dilation, translation, weights, and membership. Extended Kalman Filter (EKF) is employed for wavelet parameters adjustment together with Weighted Least Square (WLS) which is dedicated for the Linear Combination Weights fine-tuning. The results of a real-world application of Short Time Load Forecasting (STLF) further re-enforced the plausibility of the above technique

    Literature Review of the Recent Trends and Applications in various Fuzzy Rule based systems

    Full text link
    Fuzzy rule based systems (FRBSs) is a rule-based system which uses linguistic fuzzy variables as antecedents and consequent to represent human understandable knowledge. They have been applied to various applications and areas throughout the soft computing literature. However, FRBSs suffers from many drawbacks such as uncertainty representation, high number of rules, interpretability loss, high computational time for learning etc. To overcome these issues with FRBSs, there exists many extensions of FRBSs. This paper presents an overview and literature review of recent trends on various types and prominent areas of fuzzy systems (FRBSs) namely genetic fuzzy system (GFS), hierarchical fuzzy system (HFS), neuro fuzzy system (NFS), evolving fuzzy system (eFS), FRBSs for big data, FRBSs for imbalanced data, interpretability in FRBSs and FRBSs which use cluster centroids as fuzzy rules. The review is for years 2010-2021. This paper also highlights important contributions, publication statistics and current trends in the field. The paper also addresses several open research areas which need further attention from the FRBSs research community.Comment: 49 pages, Accepted for publication in ijf
    • …
    corecore