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ABSTRACT

Time series forecasting has attracted much attention due to its impact on many prac-

tical applications. Neural networks (NNs) have been attracting widespread interest as

a promising tool for time series forecasting. The majority of NNs employ only au-

toregressive (AR) inputs (i.e., lagged time series values) when forecasting time series.

Moving-average (MA) inputs (i.e., errors) however have not adequately considered.

The use of MA inputs, which can be done by feeding back forecasting errors as extra

network inputs, alongside AR inputs help to produce more accurate forecasts. Among

numerous existing NNs architectures, higher order neural networks (HONNs), which

have a single layer of learnable weights, were considered in this research work as they

have demonstrated an ability to deal with time series forecasting and have an simple

architecture. Based on two HONNs models, namely the feedforward ridge polyno-

mial neural network (RPNN) and the recurrent dynamic ridge polynomial neural net-

work (DRPNN), two recurrent error-based models were proposed. These models were

called the ridge polynomial neural network with error feedback (RPNN-EF) and the

ridge polynomial neural network with error-output feedbacks (RPNN-EOF). Extensive

simulations covering ten time series were performed. Besides RPNN and DRPNN, a

pi-sigma neural network and a Jordan pi-sigma neural network were used for com-

parison. Simulation results showed that introducing error feedback to the models lead

to significant forecasting performance improvements. Furthermore, it was found that

the proposed models outperformed many state-of-the-art models. It was concluded

that the proposed models have the capability to efficiently forecast time series and that

practitioners could benefit from using these forecasting models.
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ABSTRAK

Peramalan siri masa mendapat banyak perhatian kerana kesannya terhadap banyak

aplikasi praktikal. Rangkaian saraf (NNs) telah menarik minat yang meluas untuk

menjadi alat yang baik bagi peramalan siri masa. Kebanyakan NNs hanya menggu-

nakan input autoregressive (AR) (iaitu ketinggalan dari siri masa) apabila meramalkan

siri masa. Input purata bergerak (MA) (iaitu sisihan) bagaimanapun tidak dipertim-

bangkan dengan secukupnya. Selain daripada input AR, jika MA digunakan sebagai

input tambahan dengan memasukkan semula sisihan ramalan kepada rangkaian, ra-

malan yang lebih tepat boleh diperolehi. Antara banyak seni bina NN yang sedia

ada, rangkaian saraf jujukan tinggi (HONN) yang mempunyai satu lapisan pemberat

boleh dilatih dipertimbangkan dalam penyelidikan ini. Ini adalah kerana HONN me-

nunjukkan keupayaan yang cekap untuk menangani ramalan siri masa selain daripada

seni bina mudah mereka. Berdasarkan dua model HONN iaitu rangkaian saraf poli-

nomial rabung feedforward (RPNN) dan rangkaian saraf polinomial rabung dinamik

berulang (DRPNN), dua model berasaskan ralat berulang dicadangkan. Model-model

ini dinamakan rangkaian saraf polinomial rabung dengan maklum balas ralat (RPNN-

EF) dan rangkaian saraf polinomial rabung dengan maklum balas output ralat (RPNN-

EOF). Simulasi meluas yang meliputi sepuluh siri masa telah dilakukan. Selain RPNN

dan DRPNN, rangkaian saraf pi-sigma dan rangkaian saraf pi-sigma Jordan digunakan

dalam perbandingan. Hasil simulasi menunjukkan bahawa memperkenalkan maklum

balas ralat kepada model membawa kepada prestasi ramalan yang sangat baik. Se-

lain itu, didapati bahawa hasil yang diperoleh dari model yang dicadangkan mengatasi

banyak model state-of-the-art. Disimpulkan bahawa model yang dicadangkan mem-

punyai keupayaan untuk meramalkan siri masa dengan cekap, dan pengamal dapat

memanfaatkan penggunaan alat peramalan ini.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Time series are a set of observations that are recorded sequentially over time (Diebold,

2006; Box et al., 2015; Brockwell & Davis, 2016; Hyndman & Athanasopoulos, 2018).

Time series are found in many disciplines such as hourly air temperature, daily for-

eign exchange rate, and weekly interest rates. Most time series signals are difficult to

forecast because they consist of non-linear, complex, and chaotic patterns (Samsudin,

Saad & Shabri, 2011). Furthermore, some time series are found difficult to analyse

and forecast as they are affected by many unpredictable factors (political, economic,

and psychological) that interact with each other in a very complex fashion (Elattar,

Goulermas & Wu, 2012). Despite the fact that it is difficult in practical applications,

forecasting time series data is still an issue of much interest in a wide range of ap-

plications. For example, forecasting water-related disasters to save lives and reduce

property and infrastructure damage (Badrzadeh, Sarukkalige & Jayawardena, 2015),

financial forecasting to maximize profits (Ghazali, Hussain & Liatsis, 2011), and fore-

casting power demand for effective power system control and economically efficient

operations (Zjavka, 2015).

Various time series forecasting models have been developed. Conventional sta-

tistical models have been used to model time series and to forecast future values (Rout
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et al., 2014; Cadenas et al., 2016; Benmouiza & Cheknane, 2016). However, they

do not show fully satisfactory performance as they are linear-based models. There-

fore, they assume linear relationships between past time series values, making them

unable to capture the non-linear relationships that found in most real time series data

(Kayacan, Ulutas & Kaynak, 2010; Wong, Xia & Chu, 2010; Xia & Wong, 2014).

Contrary, non-linear models such as support vector machines (SVM), adaptive

neuro fuzzy inference systems (ANFIS), and neural networks (NNs) have been shown

better performance than linear models (Ömer Faruk, 2010; das Chagas Moura et al.,

2011; Osório, Matias & Catalão, 2015; Ansari et al., 2018; Jiang et al., 2018).

A search conducted using the Scopus database for “neural network” and “fore-

cast” in September 2018 yielded 10,850 results, which means NNs have attracted

widespread interest among researchers for forecasting problems. NN is inspired by bi-

ological nervous systems. During the training step, NN can learn from historical data

(e.g. current and past observations) to build a model that has the ability to forecast

future observations. Using NNs, machines can learn complex relationships between

input and output variables without the need for a human to specify the nature of the

relationship (Reid, Hussain & Tawfik, 2013).

Numerous applications have used different types of NNs to model time series.

NNs are employed due to their ability to handle non-linear functional dependencies

and because they are data-driven models with few prior assumptions about underlying

models (Panda & Narasimhan, 2007; Wong et al., 2010; Zhang, 2012). Furthermore,

NNs are universal function approximators that can approximate any continuous func-

tion with an arbitrary degree of accuracy (Panda & Narasimhan, 2007; Wong et al.,

2010; Zhang, 2012).

Higher order neural networks (HONNs) are a type of NNs used for time series

forecasting that have been shown better forecasting performance than the most popular

Multilayer Perceptron (MLP) networks (Ghazali et al., 2009; Husaini et al., 2011;

Sermpinis et al., 2012a; Sermpinis et al., 2012b; Sermpinis, Stasinakis & Dunis, 2014;

Al-Jumeily, Ghazali & Hussain, 2014; Husaini et al., 2014a; Sermpinis, Laws & Dunis,
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2015). HONNs utilize high order terms (i.e., multiplicative neurons) besides summing

neurons. HONNs are simple in their architecture and need fewer trainable parameters

to deliver input-output mappings compared to multilayered NNs. Some examples of

HONNs are the functional link neural network (FLNN) (Giles & Maxwell, 1987), the

pi-sigma neural network (PSNN) (Ghosh & Shin, 1992), the ridge polynomial neural

network (RPNN) (Shin & Ghosh, 1995), and the dynamic ridge polynomial neural

network (DRPNN) (Ghazali et al., 2009).

Generally, NNs have been used extensively with only Autoregressive (AR)

inputs (i.e., lagged time series values) when modelling and forecasting time series.

Moving-average (MA) inputs (i.e., past errors) bave not been taken into consideration,

unlike the extensive uses of AR inputs. Feeding back a forecasting error to the input

layer of the network is considered an MA input, and it is an alternative to the AR mod-

elling (Connor et al., 1994; Burgess & Refenes, 1999; Egrioglu et al., 2015). Based on

the systematic literature review (SLR) conducted in this research work, If MA and AR

inputs are used with NNs, more accurate forecasts are obtained. Hence this research

proposes the use of recurrent error-based NNs for time series forecasting to increase

forecasting accuracy.

1.2 Problem Statements

An MLP network can approximate reasonable functions to any desired degree of ac-

curacy (Cybenko, 1989). However, the number of hidden layers and neurons must be

sufficient to deal with the given problem. The number of hidden neurons in the hidden

layer directly affects MLP performance. An MLP that is of insufficient size usually

fails to approximate the underlying function (Ghazali et al., 2008). Furthermore, an

MLP with of more than sufficient size tends to memorize the training data, which re-

sults in poor generalization and a low learning rate. Therefore, the determination of

the number of hidden neurons is not an easy task (Dehuri & Cho, 2010; Egrioglu et al.,

2015). In addition, since the MLP is multilayered, and it uses the backpropagation
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algorithm (Werbos, 1974; Rumelhart, Hinton & Williams, 1986), which involves high

computational complexity, the MLP needs excessive learning time.

An easy way to avoid the aforementioned problems in the multilayered NNs is

the replacement of hidden layers with higher order neurons in the input layer (Giles &

Maxwell, 1987; Pao, 1989; Dehuri & Cho, 2010). Therefore, HONNs are constructed

by taking advantage of higher order correlations among inputs to perform non-linear

mappings using only one layer of neurons (Giles & Maxwell, 1987; Dehuri & Cho,

2010).

FLNN is a type of HONN that passes input patterns through a functional ex-

pansion unit to produce supplementary inputs to its structure. However, it from the

combinatorial explosion in the number of free parameters when its order becomes ex-

cessively high from the use of multivariate polynomials (Ghazali et al., 2011). A sim-

ple yet efficient HONNs is PSNN (Ghosh & Shin, 1992). PSNN was introduced to deal

with the weight explosion problem found in FLNN. However, PSNN is not a universal

approximator (Shin & Ghosh, 1995). Moreover, PSNNs order can be determined by

trial and error.

A generalization of PSNN is RPNN, which is a universal approximator network

(Shin & Ghosh, 1995). RPNN are an NN model that address the problems found in

MLP, FLNN, and PSNN. RPNN uses constructive learning to automatically determine

the number of hidden neurons. Therefore, RPNN neither needs to determine network

order as in the PSNN nor the number of hidden neurons as in the MLP (Ghazali et al.,

2011). In addition, RPNN is a universal approximator that utilizes univariate polyno-

mials, which are easy, avoiding an explosion in the number of trainable parameters as

the number of inputs increases (Shin & Ghosh, 1995; Ghazali et al., 2011). Further-

more, it was found that RPNN produces more accurate forecasts than MLP, FLNN,

and PSNN (Ghazali et al., 2009; Ghazali et al., 2011; Al-Jumeily et al., 2014).

All the aforementioned NNs are classified as feedforward NNs. But, to enable

an NN to learn a representation of time in data, a recurrent neural network (RNN) is

needed. In the RNN, the network activations produced by past inputs are fed back to
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affect the processing of future inputs (Thiery et al., 2008). In general, RNNs have a

memory of the past inputs because of recurrent connections. This allows them to have

knowledge of past behaviour and learn the temporal dependences found in time series

data over time. Further, they can respond to the same input pattern differently at differ-

ent times, depending on previous input patterns (Ho, Xie & Goh, 2002). This makes

RNNs more suitable for time series forecasting than feedforward NNs (Connor, Martin

& Atlas, 1994; Ghazali et al., 2011; Brezak et al., 2012; Al-Jumeily et al., 2014). For

this reason, the dynamic ridge polynomial neural network (DRPNN), which is a re-

current version of RPNN proposed by Ghazali et al. (2009) showed better forecasting

performance than RPNN and other NNs (Ghazali et al., 2009; Ghazali et al., 2011;

Al-Jumeily et al., 2014).

Despite the potential and capability of the DRPNN which comprises the feed-

back connection, it is subjected to the complexity and difficulty of training which sum-

marized in two main points as reported in (Ghazali et al., 2011). First, calculating

gradients and updating DRPNN weights are difficult because the dynamic system vari-

able (“a set of quantities that summarizes all the information about the past behaviour

of the system that is needed to uniquely describe its future behaviour (Haykin, 2009)”)

affects both the gradient and the output. Second, learning errors may not be monoton-

ically decreased leading to a long convergence time.

To tackle these problems, Ghazali et al. (2011) proposed a sufficient condition

for DRPNN convergence based on the feedback network stability theorem proposed

by Atiya (1988). The aim of this theorem is to adjust network weights to generate

network outputs as close as possible to the desired output (Ghazali et al., 2011). This

theorem was used with recurrent networks for problems such as pattern recognition

and time series forecasting. However, this solution is restrictive where a large network

is necessary (Atiya, 1988) or when working with constructive learning because it stops

learning with a few hidden neurons. Furthermore, when working with time series fore-

casting, only learning trajectories are considered, not learning fixed points (Atiya &

Parlos, 2000). Therefore, another solution is needed to solve network size restrictions
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