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Abstract: One of the most important functions of an export credit agency (ECA) is to act as an
intermediary between national governments and exporters. These organizations provide financing
to reduce the political and commercial risks in international trade. The agents assess the buyers
based on financial and non-financial indicators to determine whether it is advisable to grant them
credit. Because many of these indicators are qualitative and inherently linguistically ambiguous,
the agents must make decisions in uncertain environments. Therefore, to make the most accurate
decision possible, they often utilize fuzzy inference systems. The purpose of this research was to
design a credit rating model in an uncertain environment using the fuzzy inference system (FIS). In
this research, we used suitable variables of agency ratings from previous studies and then screened
them via the Delphi method. Finally, we created a credit rating model using these variables and FIS
including related IF-THEN rules which can be applied in a practical setting.

Keywords: credit rating; export credit agencies; uncertainty environment; fuzzy inference system;
Delphi method

1. Introduction

Due to the strong expansion of international trade, many countries have established export credit
agencies (ECAs) to protect exporters from bankruptcy due to political and commercial risks. Their
agents evaluate foreign buyers and determine whether to grant credit to these exporters to protect
them from risks. The agents evaluate the buyers based on their countries’ sovereign credit. In this
paper, we use a Fuzzy Inference System (FIS) to evaluate exporters’ credit in an uncertain environment.

For each contract, the sellers need to know about the financial situation of the buyers. This study
helps them to evaluate the ability of buyers to repay their debt, and to determine the probability of
default. There are two types of credit ratings: (1) sovereign credit rating and (2) corporate credit rating.
To ascertain the risk level of the buyers’ investment, we evaluate them as well as their government.
Credit risk can be analyzed using various financial tools, which are affected by political, social, and
economic factors.

Decision-making is an essential function of any enterprise. It is very difficult for decision makers
(DMs) to utilize quantitative variables since many evaluation attributes are vague. For this type of
uncertain environment, linguistic and verbal scales can be helpful in making an appropriate decision.
Thus, the fuzzy set theory of linguistic variables can express the preferences of decision makers in an
uncertain environment.
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Fuzzy logic and fuzzy set theory, introduced independently by Zadeh [1] and Klaua, have inspired
many scholars over the decades. Since then, fuzzy models have found wide areas of application,
including various economically important areas. For instance, in [2], an adaptive neuro-fuzzy inference
system was used for selecting vehicle routes under uncertainty conditions. In [3], a similar type of model
was used for determining economic order quantities (such as for procurement or production planning).
Based on the Boston Consulting Group (BCG) portfolio matrix, a neuro-fuzzy approach is elaborated
in [4] for analyzing human resources. Further application examples include the multiobjective route
planning for the transport of hazardous material [5] or location planning for city logistics [6].

In addition, many studies have been published on using fuzzy modelling in the context of buyer
evaluation and credit scoring, including those by Akkoç [7] who investigated loan defaults. Due to
financial crises, many financial institutes aim for accurate credit scoring models. Ramkumar and
Busi [8] utilized a modified analytic network process (ANP) and fuzzy inference system to establish a
risk assessment model for third-party e-procurement systems. As part of a modified ANP, decision
makers are encouraged to express their preferences verbally rather than via a numerical rating system.
Yazdi et al. [9] used an adaptive neural fuzzy inference system to create inputs, outputs, membership
functions, and fuzzy rules. The results indicated that these sets of constraints lead to similar constraint
categories with output fuzzy trained systems. Moghadam et al. [10] used the FIS method to map
the model. They found that a fuzzy inference system could be helpful in this type of research. The
results showed that two factors were particularly effective for mapping via FIS. In the first step, FIS
was used to weight factors. In the next step, the factors were integrated using FIS, and the final step
revealed the results of exploratory boreholes. Dash and Dash [11] tested a model to predict stock
prices by using the Self-Evolving Recurrent Neuro-Fuzzy Inference System (SERNFIS) and modified
differential harmony search. They used stock market time series data utilizing diverse time frames.
The Takagi–Sugeno–Kang (TSK) model and fuzzy IF-THEN rules were also used.

In order to evaluate buyers who represent companies or individuals, these agencies must consider
some of the following indicators or use models created by credit rating agencies such as Moody’s,
S&P, Fitch, Capital Intelligence, Euler Hermes, Japan Credit Rating Agency, etc. [12]. For example, the
Export Guarantee Fund of Iran (EGFI) is the only credit rating agency that uses a customized model to
evaluate the credit ratings of buyers’ companies to determine whether to grant credit to exporters (EGFI
website). Considering that this agency uses both quantitative and qualitative indicators for evaluating
these companies, it is of utmost importance to create the most accurate model possible. Furthermore,
because the economic situation of Iran is uncertain, using a model for translating ambiguous and
qualitative indicators is crucial to obtaining the most accurate assessment [13]. A fuzzy inference
system is a robust computerized technique for decision-making in such an environment.

For this study, a three-stage hybrid adaptive neuro-fuzzy inference system for credit scoring was
used as a statistical technique. This model was tested in Turkey’s national banks using a 10-fold cross
process [7]. The results revealed that this model performed better than linear discriminate analysis,
logistic regression analysis, and an artificial neural network. The contributions this study makes are the
use of the fuzzy inference system to evaluate credit ratings in uncertain environments. Moreover, our
methodology includes building the proposed model by finding a similar one, which most accurately
represents the challenging economic situation in Iran. This model is customized via the Delphi method
using experts’ opinions [7].

In this paper, we present the application of fuzzy modeling methods to a problem of rating
companies with respect to credit decisions. Based on the input from experts of a rating agency, ranking
criteria are determined and assessed in terms of linguistic variables. Subsequently, fuzzy rules for an
FIS are determined. The approach is applied under practical conditions by an ECA in order to cope
better with difficult economic conditions and severe budget limitations. In particular, decisions are
based on a transparent model instead of ad hoc assumptions and decisions which affect the quality
of decisions.
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This paper is organized as follows: Section 2 is the literature review. Section 3 presents the
research methodology. Section 4 describes the data analysis. Finally, Section 5 presents the conclusions
and formulates suggestions for future research.

2. Literature Review and Basic Definitions

2.1. Literature Review

Since the establishment of ECAs, bankruptcy due to political and commercial risks has decreased
dramatically. While the ECAs are designed to protect exporters, they are also beneficial to global trade
and succeed in encouraging companies to establish more credit. However, because the worldwide
economic situation is unstable, making a truly accurate decision is very difficult. To accomplish
this, many scholars have studied the credit ratings of companies in uncertain environments. For
instance, Al-Najjar and Al-Najjar [14] showed how to measure corporate credit ratings in emerging
markets. They used a neural network and a clustering method to rate major companies in Jordan
during 2000 to 2007. Bian [15] looked at how the Chinese credit rating agencies were developed. He
argued that Chinese companies should have a customized model for evaluating various companies
and that they must focus on transparency. Chen and Cheng [16] established a hybrid model for credit
rating by employing the rough set theory in an uncertain environment using factor analysis. Then,
they used a learning algorithm for establishing decision-making rules. The result showed that this
hybrid model was more effective than previous models. Doumpos et al. [17] used a multiple attribute
decision-making (MADM) method based on linear programming and structural data to rate European
firms using accounting data. Gibilaro and Mattarocci [18] investigated how rating agencies can grant
credit based on customers’ portfolios. They analyzed 20,389 companies using the S&P, Moody’s, and
Fitch agencies. They evaluated these companies via the Herfindahl–Hirschman index and customer
lifetime value. Gogas et al. [19] showed how to calculate the credit rating of banks. They evaluated
94 American banks by logic probability regression. The results showed that only 84% of those bank
ratings were accurate. Orsenigo and Vercellis [20] used linear and nonlinear techniques to determine
credit ratings for banks. They used double-bounded tree-connected Isomaps and principal component
analysis to assess European, American, and Asian banks; they then classified the banks based on
financial and non-financial indicators. Ozturk et al. [21] applied artificial intelligence techniques, such
as classification and regression trees, multilayer perception, and support vector machines to measure
sovereign credit ratings. Pasricha et al. [22] used Markov regenerative processes to establish a credit
rating model. They applied the technique to find matrices of migration probability. They showed how
past and current data influenced the ratings. Hu and Hu [23] studied the effect of sovereign ratings on
bank stock returns in the European Union. They found that positive sovereign ratings did not lead to a
bank’s stock price reaction; however, negative events caused negative sovereign rating events.

2.2. Fuzzy Inference System

One of the advantages of fuzzy sets is their ability to translate qualitative and vague information
into deterministic and quantitative data. This method has been applied in many different industries
worldwide in spite of some conflicting opinions about its methodology [1]. The most common
application of this method is decision-making, especially in an uncertain environment. To implement
this method, we introduce the definition and notation of sets below. The first definition related to the
membership function is as follows:

Definition 1. Fuzzy membership: µA is defined as a membership function or characteristic function
with values µA((x) ∈ [0; 1] for x∈X. If A⊆X indicates a crisp (traditional) set, then µA assigns a value 0
or 1 to each member of X. µA(x) = 1 if x ∈ A; this means that x has full membership. µA(X) = 0 if x < A;
this means that X does not have any membership in X [1].
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The membership function of Ã can be specified, for instance, as a triangular, a trapezoidal, a
Gaussian function, or a sigmoid function. Moreover, logical operations can be used including AND,
OR, and NOT [24].

Definition 2. Triangular fuzzy numbers: Ã =
{
x,µÃ|x ∈ X} . There are three parameters of a triangular

fuzzy membership function, a, m, and b. The corresponding function is defined in Equation (1) [1]:

µÃ(x) =


x−a
m−a , a ≤ x ≤ m
b−x
b−m , m ≤ x ≤ b

0, otherwise

(1)

The third definition relates to the product of fuzzy numbers based on a t-norm operator.

Definition 3. The product of fuzzy numbers: The fuzzy numbers of Ã and B̃ are produced by t-norm
operators, as shown in Equation (2) [1]:

µÃ(x) AND µB̃(y) = −µÃ(x) × µB̃(y) (2)

Based on this method, one of the most important applications is the fuzzy inference system
(FIS), which uses IF-THEN rules based on fuzzy membership functions. In FIS, all inputs based on a
membership function change to an output membership function according to IF-THEN rules. There
are various systems that translate the inputs to output membership functions in the FIS. However,
we discuss only the two most essential [25–27]. Mamdani’s output membership function is based on
defuzzification. After computation with fuzzy numbers, these numbers must be transferred into crisp
numbers to make decisions easier. There are many methods available for this. In our study, we use the
mean method for changing fuzzy numbers to crisp numbers.

The FIS consists of four steps. First, the inputs and their degree of fuzziness are defined. Second,
we set up some fuzzy operators. Third, we determine the weights of each IF-THEN rule and use them
to obtain the decision. Fourth, all rules are entered either as inputs or operators.

3. Research Methodology

Because research on export credit agencies is rather novel, there is plenty of scope for study. In this
study, we attempt to introduce a new method for credit rating agencies based on the Moody method.
It is customized for the Export Guarantee Fund of Iran (EGFI). The research questions are as follows:

1. Which variables are suitable for the EGFI as well as for other credit rating agencies?
2. How does the uncertain environment affect these variables?

In order to determine the variables for determining credit ratings, we introduced Moody’s model
and experts’ opinions on these variables. These variables are interest coverage ratio, current ratio,
quick ratio, ownership structure, country risk and so on. After extracting these variables, we evaluated
them using the Delphi method as follows:

(a) These variables were sent to the experts of the EGFI to determine which ones were suitable for
credit rating agencies.

(b) Within the Delphi method, a 5-point Likert scale was used.
(c) When the average of the experts’ opinions was less than 4, this variable was eliminated.

Tables 1 and 2 show the computation of variables and their extractions. The results show that,
among 23 variables, only 19 should be used for ranking companies.
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Table 1. Preferences of experts (decision makers (DM)) regarding input variables. DEBT-TO-EQUITY
RATIO (Earnings Before Interest, Taxes, Depreciation and Amortization(EBITDA)), Debt-Service
Coverage Ratio (DSCR), Return On Equity (ROE), Definitions of these input variables are provided in
Table 3.

VARIABLES DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9

DEBT-TO-EQUITY RATIO 4 5 4 5 3 4 5 5 4
DEBT RATIO TO EBITDA 5 5 5 4 3 4 5 5 4

DSCR 5 4 4 5 5 5 5 4 3
INTEREST COVERAGE RATIO 3 4 5 5 5 4 5 4 5

CASH FROM OPERATING ACTIVITIES
RATIO TO TOTAL SALES 5 5 5 5 4 5 3 5 4

ROE 4 4 5 4 5 4 5 4 3
OPERATING PROFIT MARGIN 5 5 5 4 5 4 3 4 5

CURRENT RATIO 4 5 4 5 4 5 4 3 4
QUICK RATIO 5 5 5 5 4 5 4 5 3

ASSET TURNOVER 4 4 4 5 4 5 4 5 3
MANAGEMENT STRUCTURE 4 4 4 5 5 4 5 3 5

SUCCESSION PLANNING 4 3 4 5 4 3 3 2 4
STRATEGIC PLANNING 3 3 3 3 4 5 3 4 2

CORPORATE GOVERNANCE 4 4 4 5 5 5 3 4 5
OWNERSHIP STRUCTURE 3 5 4 4 5 4 5 4 3

DIVERSIFICATION OF INCOME 4 4 5 4 5 4 3 3 5
PAYMENT RECORDS 5 5 4 5 4 5 4 3 4

COMPANY AUDITORS 3 3 3 2 3 4 5 3 4
QUALITY AND TRANSPARENCY OF

REPORTING 3 4 4 5 5 5 5 3 4

COMPETITIVENESS 4 5 5 5 4 5 3 4 5
POSITION IN THE INDUSTRY/MARKET 3 4 5 5 5 5 4 5 4

RISK OF INDUSTRY 3 3 3 4 3 4 2 3 4
GROUPS OF COUNTRY RISK 4 5 5 5 5 4 4 3 4

Table 2. Results of the Delphi method.

VARIABLES AVERAGE SCORE ACCEPT/REJECT

1 debt-to-equity ratio 4.333333333 Accept
2 debt ratio to EBITDA 4.444444444 Accept
3 DSCR 4.444444444 Accept
4 interest coverage ratio 4.444444444 Accept
5 cash from operating activities ratio to total sales 4.555555556 Accept
6 ROE 4.222222222 Accept
7 operating profit margin 4.444444444 Accept
8 current ratio 4.222222222 Accept
9 quick ratio 4.555555556 Accept
10 asset turnover 4.222222222 Accept
11 management structure 4.333333333 Accept
12 succession planning 3.555555556 Reject
13 strategic planning 3.333333333 Reject
14 corporate governance 4.333333333 Accept
15 ownership structure 4.111111111 Accept
16 diversification of income 4.111111111 Accept
17 payment records 4.333333333 Accept
18 company auditors 3.333333333 Reject
19 quality and transparency of reporting 4.222222222 Accept
20 competitiveness 4.444444444 Accept
21 position in the industry/market 4.444444444 Accept
22 risk of industry 3.222222222 Reject
23 groups of country risk 4.333333333 Accept
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Table 3. References of variables.

Factor References

debt-to-equity ratio [28,29]
debt ratio to EBITDA [30,31]

DSCR [32,33]
interest coverage ratio [34,35]

cash from operating activities ratio to total sales [36]
ROE [37–39]

operating profit margin [40,41]
current ratio [42,43]
quick ratio [41,44,45]

asset turnover [46,47]
management structure [48]
corporate governance [49,50]
ownership structure [50,51]

diversification of income [52,53]
payment records [54]

quality and transparency of reporting [55,56]
competitiveness [57–59]

company position [60]
country risk [61,62]

We used MATLAB (version 2015b, created by Cleve Moler, University of New Mexico, matrix
laboratory, USA) and a fuzzy inference system to evaluate the variables.

4. Data Analysis

As shown in the previous section, the input variables (accepted variables according to Table 2) were
debt-to-equity ratio, debt ratio to EBITDA (earnings before interest, tax, depreciation and amortization),
DSCR (debt service coverage ratio), interest coverage ratio, cash from operating activities ratio to
total sales, ROE (return on equity), operating profit margin, current ratio, quick ratio, asset turnover,
management structure, corporate governance, ownership structure, diversification of income, payment
records, quality and transparency of reporting, competitiveness, company position, and country risk.
Table 3 provides an overview of these variables together with further references.

Table 4 shows the ranges of ratings for these variables, which were based on the opinions of
experts from the Delphi method. These ranges are based on the broad experiences of the experts and
provide valuable information to specify the FIS.

Table 4. Ranges of each variable and relationships to linguistic variables.

Variable Range

debt-to-equity ratio

x > 150% very poor

125% ≤ x ≤ 150% almost very poor

100% ≤ x ≤ 125% poor

75% ≤ x ≤ 100% average

50% ≤ x ≤ 75% good

x < 50% very good
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Table 4. Cont.

Variable Range

debt ratio to EBITDA

x > 5 very poor

4 ≤ x ≤ 5 poor

3 ≤ x ≤ 4 average

2 ≤ x ≤ 3 good

x < 2 very good

DSCR

x < 1 very poor

1 ≤ x ≤ 1.25 poor

1.25 ≤ x ≤ 1.75 average

1.75 ≤ x ≤ 2.5 good

x > 2.5 very good

interest coverage ratio

x < 1 very poor

1 ≤ x ≤ 2 poor

2 ≤ x ≤ 4 average

4 ≤ x ≤ 7 good

x > 7 very good

cash from operating activities ratio to total sales

x < 5% very poor

5% ≤ x ≤ 12.5% poor

12.5% ≤ x ≤ 20% average

20% ≤ x ≤ 30% good

x > 30% very good

ROE

x < 5% very poor

5% ≤ x ≤ 10% poor

10% ≤ x ≤ 15% average

15% ≤ x ≤ 20% good

x > 20% very good

operating profit margin

x < 5% very poor

5% ≤ x ≤ 10% poor

10% ≤ x ≤ 17.5% average

17.5% ≤ x ≤ 25% good

x > 25% very good

current ratio

x < 1 very poor

1 ≤ x ≤ 1.25 poor

1.25 ≤ x ≤ 1.75 average

1.75 ≤ x ≤ 2.5 good

x > 2.5 very good
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Table 4. Cont.

Variable Range

quick ratio

x < 0.5 very poor

0.5 ≤ x ≤ 0.75 poor

0.75 ≤ x ≤ 1.25 average

1.25 ≤ x ≤ 1.75 good

x > 1.75 very good

asset turnover

x < 0.5 very poor

0.5 ≤ x ≤ 1 poor

1 ≤ x ≤ 1.5 average

1.5 ≤ x ≤ 2 good

x > 2 very good

management structure

inadequate

below average

average

above average

adequate

corporate governance

weakness

average

satisfied

very good

excellent

ownership structure

weakness

average

satisfied

very good

excellent

diversification of income

one specific income

limited

balanced

highly diversified income

very highly diversified income

payment records

very poor

poor

average

good

very good
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Table 4. Cont.

Variable Range

quality and transparency of reporting

very poor

poor

average

good

very good

competitiveness

enemy

aggressive

average

suitable

without threat

company position

starter

small performer

middle performer

main performer

market leader

country risk

highest risk

almost high risk

often risk

middle risk

low risk

very low risk

no risk

Table 5 shows how we created the membership function of each variable and IF-THEN rules.
Then, we employed the IF-THEN rules to categorize agencies based on the input variables.

We utilized numerous IF-THEN rules to evaluate the input variables as shown in Table 5. These
rules are based on input variables and their membership functions. We extracted the data of each
company by considering the practical variables we obtained via the Delphi method. We then identified
the highest percentage, average, and the lowest percentage of the triangular fuzzy membership
function of each variable. As specified above (Equation (1)), a triangular membership function uses the
parameters a, b, and m. The percentage values are denoted as alpha-cuts and are calculated according
to [63]. An alpha-cut corresponds to the set of elements whose membership grades are greater than or
equal to the specified value of alpha. Equation (3) shows how the alpha-cut is calculated:

[A]α = [a−m(1− α), a + b(1− α)]. (3)

We combined them based on the FIS and separated them into seven categories based on
their levels of risk. This study helps managers make decisions and decreases the probability of
a company defaulting.
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Table 5. IF-THEN rules. For each of the seven evaluation categories, a respective rule is shown.

If If If If If If If If If If If If If If If If If If If then

very
poor

very
poor

very
poor

very
poor

very
poor

very
poor

very
poor

very
poor

very
poor

very
poor inadequate weakness weakness

one
specific
income

very
poor

very
poor enemy starter highest

risk 7

very
poor

very
poor

very
poor

very
poor

very
poor

very
poor

very
poor

very
poor

very
poor

very
poor Inadequate weakness weakness

one
specific
income

very
poor

very
poor enemy starter

almost
high
risk

6

almost
poor poor poor poor poor poor poor poor poor poor below

average average average limited poor poor aggressive small
performer

often
risk 5

poor average average average average average average average average average average satisfied satisfied balanced average average average middle
performer

middle
risk 4

average good good good good good good good good good above
average

very
good

very
good

highly
diversified

income
good good suitable main

performer
low
risk 3

good very
good

very
good

very
good

very
good

very
good

very
good

very
good

very
good

very
good adequate excellent excellent

very
highly

diversified
income

very
good

very
good

without
threat

market
leader

very
low
risk

2

very
good

very
good

very
good

very
good

very
good

very
good

very
good

very
good

very
good

very
good adequate excellent excellent

very
highly

diversified
income

very
good

very
good

without
threat

market
leader no risk 1
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In Table 5, all variables which are extracted from the model and their data are transferred to fuzzy
data. The change from crisp data to fuzzy data is based on Table 4. Based on the FIS logic and following
an OECD (Organisation for Economic Co-operation and Development) rating concept based on seven
categories or classes, the data is classified, that is, the rankings of customer companies are determined.

The membership function of each class is shown below in Figure 1. The figure presents an
overview of the seven individual membership functions which are mathematically specified in
Equations (4)–(10). Some researchers believe that the use of the Mamdani and Sugeno methods yields
the same results [64,65].

µÃ7
=


x−16.67

−2.97+16.67 ,−16.67 ≤ x ≤ −2.97
16.67−x

16.67+2.97 ,−2.97 ≤ x ≤ 16.67

0, otherwise

(4)

µÃ6
=


x−0

16.67−0 , 0 ≤ x ≤ 16.67
33.33−x

33.33−16.67 , 16.67 ≤ x ≤ 33.33

0, otherwise

(5)

µÃ5
=


x−16.67

33.33−16.67 , 16.67 ≤ x ≤ 33.33
50−x

50−33.33 , 33.33 ≤ x ≤ 50

0, otherwise

(6)

µÃ4
=


x−33.33

50−33.33 , 33.33 ≤ x ≤ 50
66.67−x

66.67−50 , 50 ≤ x ≤ 66.67

0, otherwise

(7)

µÃ3
=


x−50

66.67−50 , 50 ≤ x ≤ 66.67
83.33−x

83.33−66.67 , 66.67 ≤ x ≤ 83.33

0, otherwise

(8)

µÃ2
=


x−66.67

83.33−66.67 , 66.67 ≤ x ≤ 83.33
100−x

100−83.33 , 83.33 ≤ x ≤ 100

0, otherwise

(9)

µÃ1
=


x−83.33

100−83.33 , 83.33 ≤ x ≤ 100
116.7−x

116.7−100 , 100 ≤ x ≤ 116.7

0, otherwise

(10)
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Figure 1. Membership function of output variable. 

5. Conclusions 

In this uncertain world, most managers attempt to make decisions with the help of managerial 
tools. Based on these tools, managers can make accurate decisions in areas such as economics, politics, 
and finance. An important goal is to increase the economic growth rate of countries through 
exporting. Many nations have established ECAs to support exporters and avoid trade risks. However, 
because the situation of each country is unique, each agency must create a customized model to help 
agents analyze credit ratings in their specific countries. In this study, we extracted the key variables 
for credit rating using the Delphi method. Among the 23 possible variables extracted using Moody’s 
method, only 19 were classified as suitable. We used a fuzzy inference system to determine the credit 
rating membership function. We then separated the output membership functions into seven 
categories. Based on these variables and the range of each variable, we used IF-THEN rules to 
measure the output membership functions to show how these variables affect credit ratings and how 
credit is allocated to each category based on the membership function. 

The proposed method offers the following advantages for determining the credit ratings of 
companies. First, the proposed FIS method helps managers of the EGFI to rate companies in an 
uncertain environment. It allows them to determine the risk and the probability of default of a 
company. Second, the experts of EGFI evaluated the credit rating input variables using the Delphi 
method. They selected 19 suitable input variables to enter into the FIS method. Third, the FIS method 
considers not only quantitative ratings but also qualitative values and linguistic terms in an uncertain 
environment. This method is practical for rating the creditworthiness of companies in the real world. 

As mentioned above, the described FIS was customized for the Export Guarantee Fund of Iran 
(EGFI) for evaluating the credit ratings of buyer companies to determine whether to grant credit to 
exporters. Due to the general economic situation of Iran and budget limitations, it is crucial to support 
respective decisions by a well-designed software tool. It will be part of future research to further 
evaluate the use of the model and its results in the given application scenario. 

Apart from the specific FIS developed and applied during our study, the paper shows in general 
how the considered methodologies can be used in practice. This should help applying the techniques 
in other settings as well.  

For future research, the proposed procedure and FIS model may be applied to other credit rating 
systems in other countries. In particular, related research may provide further insights regarding a 
broader empirical validity of obtained information (such as ranges in Table 4 or IF-THEN rules in 
Table 5). 
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Figure 1. Membership function of output variable.
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With regard to the Export Guarantee Fund of Iran, each company was placed into one of the seven
categories. Category 7 attributes to a company the highest risk and probability of default, whereas a
category 1 placement represents the lowest risk and the lowest probability of default. Managers can
use these membership functions to determine whether they will do business with a company.

5. Conclusions

In this uncertain world, most managers attempt to make decisions with the help of managerial
tools. Based on these tools, managers can make accurate decisions in areas such as economics, politics,
and finance. An important goal is to increase the economic growth rate of countries through exporting.
Many nations have established ECAs to support exporters and avoid trade risks. However, because
the situation of each country is unique, each agency must create a customized model to help agents
analyze credit ratings in their specific countries. In this study, we extracted the key variables for credit
rating using the Delphi method. Among the 23 possible variables extracted using Moody’s method,
only 19 were classified as suitable. We used a fuzzy inference system to determine the credit rating
membership function. We then separated the output membership functions into seven categories.
Based on these variables and the range of each variable, we used IF-THEN rules to measure the output
membership functions to show how these variables affect credit ratings and how credit is allocated to
each category based on the membership function.

The proposed method offers the following advantages for determining the credit ratings of
companies. First, the proposed FIS method helps managers of the EGFI to rate companies in an
uncertain environment. It allows them to determine the risk and the probability of default of a company.
Second, the experts of EGFI evaluated the credit rating input variables using the Delphi method. They
selected 19 suitable input variables to enter into the FIS method. Third, the FIS method considers not
only quantitative ratings but also qualitative values and linguistic terms in an uncertain environment.
This method is practical for rating the creditworthiness of companies in the real world.

As mentioned above, the described FIS was customized for the Export Guarantee Fund of Iran
(EGFI) for evaluating the credit ratings of buyer companies to determine whether to grant credit to
exporters. Due to the general economic situation of Iran and budget limitations, it is crucial to support
respective decisions by a well-designed software tool. It will be part of future research to further
evaluate the use of the model and its results in the given application scenario.

Apart from the specific FIS developed and applied during our study, the paper shows in general
how the considered methodologies can be used in practice. This should help applying the techniques
in other settings as well.

For future research, the proposed procedure and FIS model may be applied to other credit rating
systems in other countries. In particular, related research may provide further insights regarding a
broader empirical validity of obtained information (such as ranges in Table 4 or IF-THEN rules in
Table 5).
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