87,316 research outputs found

    Efficient simulation and integrated likelihood estimation in state space models

    Get PDF
    We consider the problem of implementing simple and efficient Markov chain Monte Carlo (MCMC) estimation algorithms for state space models. A conceptually transparent derivation of the posterior distribution of the states is discussed, which also leads to an efficient simulation algorithm that is modular, scalable and widely applicable. We also discuss a simple approach for evaluating the integrated likelihood, defined as the density of the data given the parameters but marginal of the state vector. We show that this high-dimensional integral can be easily evaluated with minimal computational and conceptual difficulty. Two empirical applications in macroeconomics demonstrate that the methods are versatile and computationally undemanding. In one application, involving a time-varying parameter model, we show that the methods allow for efficient handling of large state vectors. In our second application, involving a dynamic factor model, we introduce a new blocking strategy which results in improved MCMC mixing at little cost. The results demonstrate that the framework is simple, flexible and efficient

    Auxiliary Likelihood-Based Approximate Bayesian Computation in State Space Models

    Get PDF
    A computationally simple approach to inference in state space models is proposed, using approximate Bayesian computation (ABC). ABC avoids evaluation of an intractable likelihood by matching summary statistics for the observed data with statistics computed from data simulated from the true process, based on parameter draws from the prior. Draws that produce a 'match' between observed and simulated summaries are retained, and used to estimate the inaccessible posterior. With no reduction to a low-dimensional set of sufficient statistics being possible in the state space setting, we define the summaries as the maximum of an auxiliary likelihood function, and thereby exploit the asymptotic sufficiency of this estimator for the auxiliary parameter vector. We derive conditions under which this approach - including a computationally efficient version based on the auxiliary score - achieves Bayesian consistency. To reduce the well-documented inaccuracy of ABC in multi-parameter settings, we propose the separate treatment of each parameter dimension using an integrated likelihood technique. Three stochastic volatility models for which exact Bayesian inference is either computationally challenging, or infeasible, are used for illustration. We demonstrate that our approach compares favorably against an extensive set of approximate and exact comparators. An empirical illustration completes the paper.Comment: This paper is forthcoming at the Journal of Computational and Graphical Statistics. It also supersedes the earlier arXiv paper "Approximate Bayesian Computation in State Space Models" (arXiv:1409.8363

    Marginal Likelihood Estimation with the Cross-Entropy Method

    Get PDF
    We consider an adaptive importance sampling approach to estimating the marginal likelihood, a quantity that is fundamental in Bayesian model comparison and Bayesian model averaging. This approach is motivated by the difficulty of obtaining an accurate estimate through existing algorithms that use Markov chain Monte Carlo (MCMC) draws, where the draws are typically costly to obtain and highly correlated in high-dimensional settings. In contrast, we use the cross-entropy (CE) method, a versatile adaptive Monte Carlo algorithm originally developed for rare-event simulation. The main advantage of the importance sampling approach is that random samples can be obtained from some convenient density with little additional costs. As we are generating independent draws instead of correlated MCMC draws, the increase in simulation effort is much smaller should one wish to reduce the numerical standard error of the estimator. Moreover, the importance density derived via the CE method is in a well-defined sense optimal. We demonstrate the utility of the proposed approach by two empirical applications involving women's labor market participation and U.S. macroeconomic time series. In both applications the proposed CE method compares favorably to existing estimators

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers

    Ensemble Kalman methods for high-dimensional hierarchical dynamic space-time models

    Full text link
    We propose a new class of filtering and smoothing methods for inference in high-dimensional, nonlinear, non-Gaussian, spatio-temporal state-space models. The main idea is to combine the ensemble Kalman filter and smoother, developed in the geophysics literature, with state-space algorithms from the statistics literature. Our algorithms address a variety of estimation scenarios, including on-line and off-line state and parameter estimation. We take a Bayesian perspective, for which the goal is to generate samples from the joint posterior distribution of states and parameters. The key benefit of our approach is the use of ensemble Kalman methods for dimension reduction, which allows inference for high-dimensional state vectors. We compare our methods to existing ones, including ensemble Kalman filters, particle filters, and particle MCMC. Using a real data example of cloud motion and data simulated under a number of nonlinear and non-Gaussian scenarios, we show that our approaches outperform these existing methods

    A non-Gaussian continuous state space model for asset degradation

    Get PDF
    The degradation model plays an essential role in asset life prediction and condition based maintenance. Various degradation models have been proposed. Within these models, the state space model has the ability to combine degradation data and failure event data. The state space model is also an effective approach to deal with the multiple observations and missing data issues. Using the state space degradation model, the deterioration process of assets is presented by a system state process which can be revealed by a sequence of observations. Current research largely assumes that the underlying system development process is discrete in time or states. Although some models have been developed to consider continuous time and space, these state space models are based on the Wiener process with the Gaussian assumption. This paper proposes a Gamma-based state space degradation model in order to remove the Gaussian assumption. Both condition monitoring observations and failure events are considered in the model so as to improve the accuracy of asset life prediction. A simulation study is carried out to illustrate the application procedure of the proposed model

    Latent Gaussian modeling and INLA: A review with focus on space-time applications

    Get PDF
    Bayesian hierarchical models with latent Gaussian layers have proven very flexible in capturing complex stochastic behavior and hierarchical structures in high-dimensional spatial and spatio-temporal data. Whereas simulation-based Bayesian inference through Markov Chain Monte Carlo may be hampered by slow convergence and numerical instabilities, the inferential framework of Integrated Nested Laplace Approximation (INLA) is capable to provide accurate and relatively fast analytical approximations to posterior quantities of interest. It heavily relies on the use of Gauss-Markov dependence structures to avoid the numerical bottleneck of high-dimensional nonsparse matrix computations. With a view towards space-time applications, we here review the principal theoretical concepts, model classes and inference tools within the INLA framework. Important elements to construct space-time models are certain spatial Mat\'ern-like Gauss-Markov random fields, obtained as approximate solutions to a stochastic partial differential equation. Efficient implementation of statistical inference tools for a large variety of models is available through the INLA package of the R software. To showcase the practical use of R-INLA and to illustrate its principal commands and syntax, a comprehensive simulation experiment is presented using simulated non Gaussian space-time count data with a first-order autoregressive dependence structure in time
    • …
    corecore