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Abstract

A new approach to inference in state space models is proposed, using approximate
Bayesian computation (ABC). ABC avoids evaluation of an intractable likelihood by
matching summary statistics computed from observed data with statistics computed
from data simulated from the true process, based on parameter draws from the prior.
Draws that produce a ‘match’ between observed and simulated summaries are re-
tained, and used to estimate the inaccessible posterior; exact inference being feasible
only if the statistics are sufficient. With no reduction to sufficiency being possible in
the state space setting, we pursue summaries via the maximization of an auxiliary
likelihood function. We derive conditions under which this auxiliary likelihood-based
approach achieves Bayesian consistency and show that, in the limit, results yielded
by the auxiliary maximum likelihood estimator are replicated by the auxiliary score.
In multivariate parameter settings a separate treatment of each parameter dimen-
sion, based on integrated likelihood techniques, is advocated as a way of avoiding
the curse of dimensionality associated with ABC methods. Three stochastic volatil-
ity models for which exact inference is either challenging or infeasible, are used for
illustration.

Keywords: Likelihood-free methods, stochastic volatility models, Bayesian consis-
tency, asymptotic sufficiency, unscented Kalman filter, α-stable distribution.

JEL Classification: C11, C22, C58

∗This research has been supported by Australian Research Council Discovery Grant No. DP150101728.
The authors would like to thank the Editor, an associate editor and two anonymous referees for very helpful
and constructive comments on an earlier draft of the paper.
†Department of Econometrics and Business Statistics, Monash University, Australia. Corresponding

author; email: gael.martin@monash.edu.
‡Management School, University of Liverpool, U.K.
§Department of Econometrics and Business Statistics, Monash University, Melbourne, Australia.
¶Melbourne Business School, University of Melbourne, Australia.
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1 Introduction

The application of Approximate Bayesian computation (ABC) (or likelihood-free infer-

ence) to models with intractable likelihoods has become increasingly prevalent of late,

gaining attention in areas beyond the natural sciences in which it first featured. (See

Beaumont, 2010, Csillery et al., 2010; Marin et al ., 2011, Sisson and Fan, 2011 and

Robert, 2015, for reviews.) The technique circumvents direct evaluation of the likelihood

function by selecting parameter draws that yield pseudo data - as simulated from the

assumed model - that matches the observed data, with the matching based on summary

statistics. If such statistics are sufficient, and if an arbitrarily small tolerance is used in

the matching, the selected draws can be used to produce a posterior distribution that is

exact up to simulation error; otherwise, an estimate of the partial posterior - defined as

the density of the unknown parameters conditional on the summary statistics - is the only

possible outcome.

The choice of statistics for use within ABC, in addition to techniques for determining

the matching criterion, are clearly of paramount importance, with much recent research

having been devoted to devising ways of ensuring that the information content of the

chosen set of statistics is maximized, in some sense; e.g. Joyce and Marjoram (2008),

Wegmann et al. (2009), Blum (2010), Fearnhead and Prangle (2012) and Frazier et al.

(2016). In this vein, Drovandi et al. (2011), Gleim and Pigorsch (2013), Creel and

Kristensen (2015), Creel et al., (2015) and Drovandi et al. (2015), produce statistics via an

auxiliary model selected to approximate the features of the true data generating process.

This approach mimics, in a Bayesian framework, the principle underlying the frequentist

methods of indirect inference (Gouriéroux et al., 1993, Smith, 1993) and efficient method

of moments (Gallant and Tauchen, 1996) using, as it does, the approximating model to

produce feasible inference about an intractable true model. Whilst the price paid for

the approximation in the frequentist setting is a possible reduction in efficiency, the price

paid in the Bayesian case is posterior inference that is conditioned on statistics that are

not sufficient for the parameters of the true model, and which amounts to only partial

inference as a consequence.

Our paper continues in this spirit, but with focus given to the application of auxiliary

model-based ABC methods in the state space model (SSM) framework. Whilst ABC

methods have been proposed in this setting (inter alia, Jasra et al., 2010, Dean et al., 2014,

Martin et al., 2014, Calvet and Czellar, 2015a, 2015b, Yildirim et al., 2015), such methods

use ABC principles (without summarization) to estimate either the likelihood function or

the smoothed density of the states, with established techniques - for example, maximum

likelihood or (particle) Markov chain Monte Carlo (PMCMC) - then being used to conduct

inference on the static parameters themselves. (Jasra, 2015, provides an extensive review
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of this literature, including existing theoretical results, as well as providing comprehensive

computational insights.)

Our aim, in contrast, is to explore the use of ABC alone and as based on summariza-

tion via maximum likelihood estimation (MLE) of the parameters of an auxiliary model.

Drawing on recent theoretical results on the properties of MLE in misspecified SSMs (Douc

and Moulines, 2012) we provide a set of conditions that ensures that auxiliary likelihood-

based ABC is Bayesian consistent in the state space setting, in the sense of producing

draws that yield a degenerate distribution at the true vector of static parameters in the

(sample size) limit. Use of maximum likelihood to estimate the auxiliary parameters also

allows the concept of asymptotic sufficiency to be invoked, thereby ensuring that - for

large samples at least - maximum information is extracted from the auxiliary likelihood

in producing the summaries.

We also illustrate that to the order of accuracy that is relevant in establishing the

theoretical properties of an ABC technique, a selection criterion based on the score of the

auxiliary likelihood - evaluated at the maximum likelihood estimator (MLE) computed

from the observed data - yields equivalent results to a criterion based directly on the

MLE itself. This equivalence is shown to hold in both the exactly and over-identified

cases, and independently of any positive definite weighting matrix used to define the two

alternative distance measures, and implies that the proximity to asymptotic sufficiency

yielded by using the auxiliary MLE in an ABC algorithm will be replicated by the use of

the auxiliary score. Given the enormous gain in speed achieved by avoiding optimization

of the auxiliary likelihood at each replication of ABC, this is a critical result from a

computational perspective.

Finally, we briefly address the issue of dimensionality that impacts on ABC techniques

in multiple parameter settings. (See Blum, 2010, Fearnhead and Prangle, 2012, Nott et

al ., 2014 and Biau et al., 2015). Specifically, we demonstrate numerically the improved

accuracy that can be achieved by matching individual parameters via the corresponding

scalar score of the integrated auxiliary likelihood, as an alternative to matching on the

multi-dimensional score statistic as suggested, for example, in Drovandi et al. (2015).

We illustrate the proposed method in three classes of model for stochastic return volatil-

ity. Two of the classes exemplify the case where the transition densities in the state process

have a representation that is either challenging to embed within an exact algorithm or is

unavailable analytically. The third class of model illustrates the case where the conditional

density of returns given the latent volatility is unavailable. Satisfaction of the sufficient

conditions for Bayesian consistency of ABC (up to identification conditions) is demon-

strated for one class. Examples from all three classes are then explored numerically, in

artificial data scenarios, with consistent inference being confirmed. This being the first

attempt made to formally verify the validity of auxiliary likelihood-based ABC techniques
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in such complex settings, the results augur well for the future use of the method.

The paper proceeds as follows. In Section 2 we briefly summarize the basic principles

of ABC as they would apply in a state space framework. In Section 3, we then proceed

to demonstrate the theoretical properties of the auxiliary likelihood approach to ABC,

including sufficient conditions for Bayesian consistency to hold, in this particular setting.

The sense in which inference based on the auxiliary MLE is replicated by inference based

on the auxiliary score is also described. In Section 4 we then consider the application of the

auxiliary likelihood approach in the non-linear state space setting, using the three classes

of latent volatility models for illustration. Numerical accuracy of the proposed method, as

applied to data generated artificially from the Heston (1993) square root volatility model,

is then assessed in Section 5.1. Existence of known (non-central chi-squared) transition

densities means that the exact likelihood function/posterior distribution is available for

the purpose of comparison. The accuracy of the auxiliary likelihood-based ABC posterior

estimate is compared with: 1) an ABC estimate that uses a (weighted) Euclidean metric

based on statistics that are sufficient for an observed autoregressive model of order one

defined on the logarithmic squared returns; and 2) an ABC estimate that exploits the

dimension-reduction technique of Fearnhead and Prangle (2012), applied to this latter

set of summary statistics. The auxiliary likelihood-based method is shown to provide

the most accurate estimate of the exact posterior in almost all cases documented. In

Section 5.2 numerical evidence supports Bayesian consistency for the auxiliary-likelihood

based method in all three SSMs investigated in the paper. In contrast, evidence for

the consistency of various summary-statistic based ABC methods is mixed. Section 6

concludes. Technical proofs and certain computational details are included in appendices

to the paper.

2 Auxiliary likelihood-based ABC in state space mod-

els

2.1 Outline of the basic approach

The aim of ABC is to produce draws from an approximation to the posterior distribution of

a vector of unknowns, θ, given the T -dimensional vector of observed data y = (y1, ..., yT )′,

p(θ|y) ∝ p(y|θ)p(θ),

in the case where both the prior, p(θ), and the likelihood, p(y|θ), can be simulated.

These draws are used, in turn, to approximate posterior quantities of interest, including

marginal posterior moments, marginal posterior distributions and predictive distributions.

The simplest (accept/reject) form of the algorithm (Tavaré et al., 1997, Pritchard, 1999)

proceeds as follows:
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Algorithm 1 ABC accept/reject algorithm

1: Simulate θi, i = 1, 2, ..., N , from p(θ)
2: Simulate zi = (zi1, z

i
2, ..., z

i
T )′, i = 1, 2, ..., N , from the likelihood, p(.|θi)

3: Select θi such that:
d{η(y), η(zi)} ≤ ε, (1)

where η(.) is a (vector) statistic, d{.} is a distance criterion, and, given N , the tolerance
level ε is chosen to be small.

The algorithm thus samples θ and z from the joint posterior:

pε(θ, z|η(y)) =
p(θ)p(z|θ)Iε[z]∫

Θ

∫
z
p(θ)p(z|θ)Iε[z]dzdθ

,

where Iε[z]:=I[d{η(y), η(z)} ≤ ε] is one if d {η(y), η(z)} ≤ ε and zero else. Clearly, when

η(·) is sufficient and ε arbitrarily small,

pε(θ|η(y)) =
∫

z
pε(θ, z|η(y))dz (2)

approximates the exact posterior, p(θ|y), and draws from pε(θ, z|η(y)) can be used to

estimate features of that exact posterior. In practice however, the complexity of the models

to which ABC is applied, including in the state space setting, implies that sufficiency is

unattainable. Hence, as ε → 0 the draws can be used to estimate features of p(θ|η(y))

only.

Adaptations of the basic rejection scheme have involved post-sampling corrections of

the draws using kernel methods (Beaumont et al., 2002, Blum, 2010, Blum and François,

2010), or the insertion of Markov chain Monte Carlo (MCMC) and/or sequential Monte

Carlo (SMC) steps (Marjoram et al., 2003, Sisson et al., 2007, Beaumont et al., 2009, Toni

et al., 2009, and Wegmann et al., 2009), to improve the accuracy with which p(θ|η(y)) is

estimated, for any given number of draws. Focus is also given to choosing η(.) and/or d{.}
so as to render p(θ|η(y)) a closer match to p(θ|y), in some sense; see Joyce and Marjoram

(2008), Wegmann et al., Blum (2010) and Fearnhead and Prangle (2012). In the latter

vein, Drovandi et al. (2011) argue, in the context of a specific biological model, that the

use of η(.) comprised of the MLEs of the parameters of a well-chosen approximating model,

may yield posterior inference that is conditioned on a large portion of the information in

the data and, hence, be close to exact inference based on p(θ|y). (See also Gleim and

Pigorsch, 2013, Creel and Kristensen, 2015, Creel et al., 2015, and Drovandi et al., 2015,

for related work.) It is the spirit of this approach that informs the current paper, but with

our attention given to rendering the approach feasible in a general state space framework

that encompasses a large number of the models that are of interest to practitioners.
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2.2 ABC in state space models

The stochastic process {yt}t≥0 represents a stationary ergodic process taking values in a

measure space (Y,Fy), with Fy a Borel σ-field, specified according to an SSM that depends

on an unobserved state process {xt}t≥0, taking values in a measure space (X,Fx), with

Fx a Borel σ-field. The SSM is parameterized by unknown parameters φ ∈ Φ ⊂ Rdφ ,

and for each φ, the state and observed sequences are generated according to the following

measurement and state equations:

yt = b(xt, wt, φ) (3)

xt = Gφ(xt−1) + Σφ(xt−1)vt, (4)

where {wt, vt}t≥0 are independent sequences of i.i.d. random variables, b(·),Σφ(·), Gφ(·)
are known, potentially nonlinear functions depending on φ ∈ Φ, and the matrix Σφ(·) is

full-rank for all φ ∈ Φ, with Φ compact. For each φ ∈ Φ, we assume that equation (4)

defines a transition density p(xt|xt−1, φ) and that equation (3) gives rise to the conditional

density of the sequence {yt}t≥0. This allows us to state the measurement and transition

densities respectively as:

p(yt|xt, φ) (5)

p(xt|xt−1, φ). (6)

Throughout the remainder, we denote the ‘true value’ generating {yt}t≥0 by φ0 ∈ Φ, and

denote by P and E the law and expectation of the stationary SSM associated with φ0.

The aim of the current paper is to use ABC principles to conduct inference about (5)

and (6) through φ. Our particular focus is situations where at least one of (5) or (6)

is analytically unavailable, or computationally challenging, such that exact MCMC- or

SMC-based techniques are infeasible or, at the very least, computationally burdensome.

Three such classes of examples are later explored in detail, with all examples related to the

modelling of stochastic volatility for financial returns, and with one example highlighting

the case of a continuous-time volatility process.

ABC methods can be implemented within these types of settings so long as simulation

from (5) and (6) is straightforward and appropriate ‘summaries’ of the data are available.

We conduct ABC-based inference by relying on the structure of the SSM in (3) and (4)

to generate a simplified version of the SSM, which we then use to produce informative

summary measures for use in ABC. Specifically, we consider a simplified and, hence,

misspecified version of equations (3) and (4), where

yt = a(xt, εt, β) (7)

xt = Hβ(xt−1) + Sβ(xt−1)et, (8)
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with {εt, et}t≥0 independent sequences of i.i.d. random variables with well-behaved densi-

ties; a(·), Sβ(·), Hβ(·) known functions of unknown parameters β; and Sβ(·) full-rank for all

β ∈ B ⊂ Rdβ . Together, we assume this specification ensures that {xt}t≥0 takes values in

the measure space (X,Fx) and leads to a known transition kernel Qβ : X×X×B → [0, 1],

which admits the known state-transition density qβ(·, ·) : X ×X × B → R+, and known

conditional density gβ : X × Y × B → R+. That is, equations (7) and (8) imply that

xt|xt−1 ∼ qβ(xt, xt−1) and yt|xt ∼ gβ(yt, xt), with both qβ(·, ·) and gβ(·, ·) analytically

tractable.

Defining the parametric family of the above misspecified SSM as G := {β ∈ B :

(qβ(x, x
′
), gβ(y, x))}, we maintain that there is no reason to assume P ∈ G. However, even

if P /∈ G, it will generally be the case that a well-chosen G is capable of capturing many

of the features associated with the DGP in equations (3) and (4). To this end, and in

the spirit of indirect inference, we obtain summary statistics for ABC using the quasi-

likelihood associated with the parametric family G. Such a strategy requires defining the

quasi-likelihood associated with the misspecified SSM, which, following Gouriéroux et al.

(1993), amongst others, is hereafter referred to as the auxiliary likelihood. Defining χ(·) to

be an initial probability measure on (X,Fx), for yTm = (ym, ..., yT )′, we state the auxiliary

likelihood for inference on β as

pχ(yTm; β) =

∫
· · ·
∫
χ(dxm)gβ(ym, xm)

T∏
p=m+1

Qβ(xp−1, dxp)gβ(yp, xp).

From observations y = yT1 ≡ (y1, ..., yT )′, the auxiliary MLE can then be obtained as

β̂(y) = arg max
β∈B

La(y; β); La(y; β) = log(pχ(yT1 ; β)). (9)

Given η(y) = β̂(y), ABC can then proceed via Algorithm 1.

We note that, in the above setting, the full set of unknowns constitutes the augmented

vector θ = (φ′,x′c)
′ where, in the case when xt evolves in continuous time, xc represents

the infinite-dimensional vector comprising the continuum of unobserved states over the

sample period. However, to fix ideas, we define θ = (φ′,x′)′, where x = (x1, x2, ..., xT )′ is

the T -dimensional vector comprising the time t states for the T observation periods in the

sample.1 Implementation of the ABC algorithm thus involves simulating φ from the prior

p(φ), followed by simulation of xt via the process for the state, conditional on the draw of φ,

and subsequent simulation of artificial data zt conditional on the draws of φ and the state

variable. Crucially, our attention is given to inference about φ only; hence, only draws of

φ are retained (via the selection criterion) and those draws used to produce an estimate

of the marginal posterior, p(φ|y). That is, from this point onwards, when we reference a

1For example, in a continuous-time stochastic volatility model such values may be interpreted as end-
of-day volatilities.
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vector of summary statistics, η(y), for instance, η(y) = β̂(y), it is the information content

of that vector with respect to φ that is of importance, and the asymptotic behaviour of

pε(φ|η(y)) with reference to the true φ0 that is under question. Similarly, in the numerical

illustration in Section 5.1, it is the proximity of the particular (kernel-based estimate of)

pε(φ|η(y)) explored therein to the exact p(φ|y) that is documented. We comment briefly

on state inference in Section 6.

3 Auxiliary likelihood-based ABC

3.1 ‘Approximate’ asymptotic sufficiency

ABC is predicated on the use of ‘informative’ summaries in its implementation, with a vec-

tor of sufficient statistics being the only form of summary that replicates the information

content of the full sample, and with the Pitman-Koopman-Darmois Theorem establishing

that sufficiency is attainable only for distributions that are members of the exponential

family (EF). For the general SSM described by (5) and (6) for any t - and with our partic-

ular focus being cases where either density does not have an analytical representation - the

joint distribution of y will, almost by default, not be in the EF, and sufficiency reduction

will therefore not be feasible.2

On the other hand, asymptotic Gaussianity of the MLE for the parameters of (5) and

(6) implies (under regularity) that the MLE satisfies the factorization theorem and is

thereby asymptotically sufficient for the parameters of that model. (See Cox and Hinkley,

1974, Chp. 9 for elucidation of this matter.) Denoting the log-likelihood function by

L(y;φ), maximizing L(y;φ) with respect to φ yields φ̂, which could, in principle, be

used to define η(.) in an ABC algorithm. For large enough T (and for ε → 0) the

algorithm would thus produce draws from the exact posterior. Indeed, in arguments that

mirror those adopted by Gouriéroux et al. (1993) and Gallant and Tauchen (1996) for

the indirect inference and efficient method of moments estimators respectively, Gleim and

Pigorsch (2013) demonstrate that if η(.) is chosen to be the MLE of an auxiliary model

that nests (or ‘smoothly embeds’) the true model in some well-defined way, asymptotic

sufficiency for the true parameters will still be achieved; see also Gouriéroux and Monfort

(1995) on this point.

Of course, if the SSM in question is such that the exact likelihood is accessible, the

2Even the simplest SSMs, with all components available, generate moving average-like dependence in
the data. The linear Gaussian SSM is the leading case, and for which simple computations lead to an
analytical link between the signal-to-noise ratio and the lack of sufficiency associated with any finite set
of statistics calculated from the observations. The crux of the problem is that information in the sample
does not ‘accumulate’ in the way required for reduction to a sufficient set of statistics of dimension smaller
than T to be feasible (see, for example, Anderson, 1958, Chp. 6). The essence of this problem would
characterize any SSM nested in (5) and (6), simply due to the presence of measurement error.
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model is likely to be tractable enough to preclude the need for treatment via ABC, with

the primary goal of this paper being the presentation of ABC methods in SSMs for which

exact methods are essentially infeasible. Further, the quest for asymptotic sufficiency via

a nesting auxiliary model conflicts with the quest for an accurate non-parametric estimate

of the posterior using the ABC draws, given that the dimension of the parameter set in the

auxiliary model is, by construction, likely to be large. Hence, in practice, the appropriate

goal in using the auxiliary likelihood approach to ABC in the SSM context is to define,

via (7) and (8), a sensible parsimonious approximation to the true model in (5) and (6),

for which the associated likelihood function can be evaluated with computational ease and

speed. Heuristically, if the approximating model is ‘accurate enough’ as a representation

of the true model, such an approach will yield, via the ABC algorithm, an estimate

of the posterior distribution that is conditioned on a statistic that is ‘close to’ being

asymptotically sufficient for φ. We certainly make no attempt in this paper to formalize

this statement in any way. Nevertheless, we do view the notion of asymptotic sufficiency

of the auxiliary MLE as being a intuitively compelling characteristic of the auxiliary

likelihood-based approach to ABC, and the numerical results presented later provide some

support for its importance in practice. More critically, however, pursuing the auxiliary

likelihood route enables us to draw on regularity as it pertains to likelihood functions, and

maximization thereof, to prove the Bayesian consistency of the resultant ABC posterior

and, hence, the baseline accuracy of the inferences produced via this route.

3.2 Consistency of auxiliary likelihood-based ABC

For a given choice of auxiliary model in (7) and (8), with parameters β ∈ B ⊂ Rdβ ,

dβ ≥ dφ, and sample log-likelihood function La(y; β) defined in (9), ABC can use as

summary statistics for inference on φ the maximizers of La(·; β), based on y and z(φi),

which we represent respectively by

β̂(y) = arg max
β∈B

La(y; β) and β̂(z(φi)) = arg max
β∈B

La(z(φi); β).

Herein, z(φi) is the ith vector of pseudo data, with the dependence of z(φi) on the ith

random draw φi from the prior p(φ) made explicit in the notation. Using β̂(y) and β̂(z(φi))

as summary statistics, we can take as the distance criterion in (1),

d{η(y), η(z(φi))} =

√[
β̂(y)−β̂(z(φi))

]′
Ω
[
β̂(y)−β̂(z(φi))

]
, (10)

where Ω is some positive definite matrix.

As noted above, with sufficiency and, hence, exact posterior inference via ABC, being

an unachievable goal in the complex state space settings that we envisage here, we aim

to establish conditions under which ABC attains a weaker - but no less important - form
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of validity, namely Bayesian consistency. Under such conditions the investigator can be

assured that, at the very least, with a large enough sample size the ABC posterior will

concentrate on the true parameter vector and provide valid inference in that sense.

In the ABC setting, Bayesian consistency requires that as T → ∞ and ε → 0, the

estimated posterior based on the selected draws from pε(φ|η(y)) concentrates around the

true parameter value generating the data; see, for example, Frazier et al. (2016) and the

references therein. With a slight abuse of terminology, from this point onwards we denote

the ‘ABC posterior’ by pε(φ|η(y)), recognizing that the quantity produced via ABC is

actually the kernel-based density estimate constructed from a given number of draws, N ,

from pε(φ|η(y)) as defined in (2).

To understand the intuition underlying Bayesian consistency of ABC based on η(y) =

β̂(y), first define Z ⊆ Y to be the space of simulated data z(φ), generated according

to the probability measure P φ
z , and denote the prior measure of a set A ⊂ Φ by Π(A).

We also make it explicit from this point onwards that Bayesian consistency depends on

simultaneous asymptotics regarding T and ε. To formalize this we consider ε as a T -

dependent sequence, denoted by εT , where εT → 0 as T →∞.
Heuristically, Bayesian consistency of ABC would then follow from the following se-

quence of arguments. First, under mild regularity conditions, as T →∞, the criterion in

(10) should satisfy

d{η(y), η(z(φi))} P−→
√

[β0 − b(φi)]′Ω [β0 − b(φi)], (11)

where ”
P−→” denotes convergence in probability, and where

β0 = arg max
β∈B

{
plim
T→∞

La(y; β)/T

}
; b(φi) = arg max

β∈B

{
plim
T→∞

La(z(φi); β)/T

}
.

Secondly, under identification conditions, φi = φ0 should be the only value that satisfies

β0 = b(φi) and, as a consequence, the only value that satisfies

d{β0,b(φi)} =

√
[β0 − b(φi)]′Ω [β0 − b(φi)] = 0. (12)

Hence, as T → ∞, for any εT > 0 such that Π[{φi ∈ Φ : d{β0,b(φi)} ≤ εT}] > 0, the

only value of φi satisfying d{η(y), η(z(φi))} ≤ εT for all εT is φi = φ0; therefore, if β̂(y)

is well-behaved, as T →∞, εT → 0, the ABC algorithm will only select draws arbitrarily

close to φ0. Put formally, the ABC posterior will be Bayesian consistent if, for any δ > 0

and Aδ(φ0) := {φ ∈ Φ : d {φ, φ0} > δ},∫
Aδ(φ0)

pε(φ|η(y))dφ =

∫
Aδ(φ0)

∫
Z

1
[
d{β̂(y), β̂(z(φ))} ≤ εT

]
P φ
z (dz)Π(dφ)∫

Φ

∫
Z

1
[
d{β̂(y), β̂(z(φ))} ≤ εT

]
P φ
z (dz)Π(dφ)

= oP (1),

(13)
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as T →∞ and εT → 0.

Establishing (13) in this SSM setting requires η(y) = β̂(y)
P−→ β0 and, uniformly in φi,

η(z(φi)) = β̂(z(φi))
P−→ b(φi). It also requires continuity and injectivity of the so-called

‘binding function’ φ 7→ b(.). Sufficient conditions to guarantee the convergence in (13) can

be split into two sets: the first controls the convergence of sample quantities; the second

set comprises identification conditions.

Assumption A:

(A1) The parameter spaces B ⊂ Rdβ and Φ ⊂ Rdφ are compact.

(A2) For any φ ∈ Φ, zt(φ) ∈ Z ⊆ Y , {zt(φ), xt(φ)}Tt=1 is a stationary and ergodic process,

with (z0(φ), x0(φ)) drawn in the stationary law.

(A3) For (x, x′, β) 7→ qβ(x, x′) the density of the Markov transition kernel associated with

the auxiliary model satisfies the following:

(A3.1) (x, x′, β) 7→ qβ(x, x′) is a positive continuous function on X ×X × B.

(A3.2) supβ∈B sup(x,x′)∈X×X qβ(x, x′) <∞.

(A4) The conditional density, (y, x, β) 7→ gβ(y, x), associated with the auxiliary model

satisfies the following conditions:

(A4.1) For each (x, y) ∈ X × Y , (y, x, β) 7→ gβ(y, x) is positive and continuous on

Y ×X × B.

(A4.2) For any K ⊂ Y , compact, and any β ∈ B, lim|x|→∞ supy∈K
gβ(y,x)

supx′∈X gβ(y,x′)
= 0.

(A4.3) For z0(φ) ∈ Y as in (A2), Eφ

[
ln+ supβ∈B supx∈X gβ(z0(φ), x)

]
<∞.

(A4.4) There exists a compact subset D ⊂ X such that, for z0(φ) ∈ Y as in (A2),

Eφ

[
ln− infβ∈B infx∈D gβ(z0(φ), x)

]
<∞.

(A5) L∞(φi; β) := plimT→∞(1/T )La(z(φi); β) has unique maximum b(φi) = arg maxβ∈B L∞(φi; β),

where β0 = b(φ0) = arg maxβ∈B L∞(φ0; β).

Assumption I:

(I1) For Ψε := {φ ∈ Φ : d {β0,b(φ)} ≤ ε}, some D > 0 and a constant K > 0, the prior

satisfies Π(Ψε) ≥ KεD.

(I2) The mapping φ 7→ b(φ) is continuous and one-to-one.

11



(I3) For any φ ∈ Φ, there exist constants κ,C, u0 > 0 such that, for some sequence

vT →∞ and all 0 < u < u0vT ,

P φ
z

[
d
{
β̂(z(φ)),b(φ)

}
> u

]
≤ C(φ)u−κv−κT , and

∫
Φ

C(φ)Π(dφ) <∞.

Remark 1: Under correct specification of the model generating the data y, Assumptions

(A1)-(A5) ensure that supβ∈B |(1/T )La(y; β) − L∞(φ0; β)| = oP (1), for L∞(φ0; β) de-

fined in (A5), and that ‖β̂(y) − β0‖ = oP (1), for ‖·‖ the Euclidean norm. In addition,

Assumptions (A1)-(A5) are enough to ensure that supφi∈Φ ‖β̂(z(φi)) − b(φi)‖ = oP (1).

The uniform convergence of β̂(z(φi)) to b(φi) is crucial as it ensures that the simulated

paths z(φi), and the subsequent β̂(z(φi)), are well-behaved over Φ. Assumptions (I1)-(I3)

ensure the required concentration of the ABC posterior on sets containing the truth, φ0.

In particular, Assumption (I1) ensures that the prior used within ABC places sufficient

mass on the truth, and (some version of) this assumption is standard in the analysis of

Bayesian consistency. Assumption (I3) is a type of deviation control for the estimated

auxiliary parameters, and allows us precise control over certain remainder terms in the

posterior decomposition.

The following theorem formally establishes Bayesian consistency of the ABC posterior.

Theorem 1 For all δ > 0, if Assumptions (A) and (I) are satisfied, then, so long as

εT = o(1) is such that εD+κ
T vκT →∞, and Ω is positive definite,∫

Aδ(φ0)

pε(φ|η(y))dφ = oP (1), for η(y) = β̂(y), as T →∞,

where Aδ(φ0) := {φ ∈ Φ : d {φ, φ0} > δ}.

Remark 2: The distance in (10) essentially mimics the Wald criterion used in the indirect

inference technique.3 Similar to the latter, in our Bayesian analyses, in which (10) is used

to produce ABC draws, Ω can also be defined as the sandwich form of a variance-covariance

estimator (Gleim and Pigorsch, 2013, and Drovandi et al., 2015), or as the inverse of

the (estimated) variance-covariance matrix for β, evaluated at β̂(y) (Drovandi et al.,

2011). In these cases it is more useful to denote the weighting matrix by Ω̂(y, β̂(y)) and

Bayesian consistency then requires, in addition to Assumptions (A) and (I), ‖Ω̂(y, β̂(y))−
Ω∞(β0)‖∗

P−→ 0, for some positive definite Ω∞(β0), where ‖W‖∗ =
√

Trace(W′W) for W

an arbitrary n×m matrix.

Remark 3: The conditions underlying Theorem 1 are weaker than those considered in the

ABC literature where either the asymptotic shape of the ABC posterior or the asymptotic

3In practice the implementation of indirect inference may involve the use of a simulated sample in the
computation of β̂(z(φi)) that is a multiple of the size of the empirical sample.
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behaviour of ABC point estimates, or both, is the focus; see, for example, Creel et al.

(2015), Frazier et al. (2016) and Li and Fearnhead (2016). For instance, nothing about

our conditions requires the summaries to satisfy a central limit theorem.

Remark 4: We have presented the conditions for consistency, and proven Theorem 1,

for the specific setting which is the focus here, namely where both the true and auxiliary

models are SSMs. The sufficient conditions to ensure η(y) = β̂(y)
P−→ β0, and, uniformly

in φi, η(z(φi)) = β̂(z(φi))
P−→ b(φi) - (A1) to (A5) - are based on the conditions invoked

by Douc and Moulines (2012) to establish consistency of the MLE in misspecified SSMs.

Whilst these authors use simple examples to illustrate their theory, in our ABC setting, in

which the true data generating process is, by the very nature of the exercise, a challenging

one, verification of these conditions will not always be feasible. Similarly, it would appear

to be infeasible to verify (I3) analytically under the remaining maintained assumptions in

the typical case in which β̂(z(φ)) is unavailable in closed form. Moreover, and in common to

all simulation-based inference procedures, analytical verification of the injectivity condition

in (I2) is infeasible as a general rule, and, hence, remains an open problem. Nevertheless,

we do illustrate the verification of Assumptions (A1) to (A5) in one class of examples,

and demonstrate numerically that Bayesian consistency is achieved in all three classes

considered.

Remark 5: In the numerical experiments, the distance in (1) is replaced by

d{η(y), η(z(φi))} =

√[
S(z(φi); β̂(y))

]′
Σ
[
S(z(φi); β̂(y))

]
, (14)

where

S(z(φi); β) = T−1∂La(z(φi); β)

∂β
(15)

is the (average) score of the auxiliary likelihood, where S(y; β̂(y)) = 0, and Σ denotes

a positive definite weighting matrix which, if an estimated quantity, satisfies comparable

conditions to those specified in Remark 2 for Ω̂(.). Implementation of ABC via (14) is

faster (by orders of magnitude) than the approach based upon η(.) = β̂(.), due to the fact

that maximization of the auxiliary likelihood is required only once, in order to produce

β̂(.) from the observed data y. All other calculations involve simply the evaluation of

S(.; β̂(y)) at the simulated data, with a numerical differentiation technique invoked to

specify S(.; β̂(y)), when not known in closed form. Whilst we do not re-cast the formal

conditions for consistency in terms of the auxiliary score, in Appendix B we do demonstrate

informally that, under an additional identification condition, for T →∞ and εT → 0, the

score and MLE-based ABC selection criteria will yield equivalent draws of φ and, hence,

equivalent estimates of p(θ|y).
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4 Auxiliary likelihood-based ABC for three classes of

latent volatility models

4.1 Overview

Given the critical role played by volatility in asset pricing, portfolio management and the

calculation of risk measures, a large segment of the empirical finance literature has been

devoted to the construction and analysis of volatility models. Three decades of empirical

studies have demonstrated that the constant volatility feature of a geometric Brownian

motion process for an asset price is inconsistent with both the observed time variation in

return volatility and the non-Gaussian characteristics of empirical distributions of returns;

see Bollerslev et al. (1992) for a review. Empirical regularities documented in the option

pricing literature, most notably implied volatility ‘smiles’, are also viewed as evidence that

asset prices deviate from the geometric Brownian motion assumption underlying the Black

and Scholes (1973) option price; see Garcia et al . (2010) for a recent review.

In response to these now well-established empirical findings, many alternative time-

varying volatility models have been proposed, with continuous-time stochastic volatility

(SV) models - often augmented by random jump processes - being particularly prominent

of late. This focus on the latter form of models is due, in part, to the availability of (semi-)

closed-form option prices, with variants of the ‘square root’ SV model of Heston (1993)

becoming the workhorse of the empirical option pricing literature. Given the challenging

nature of the (non-central chi-squared) transitions in this model, Bayesian analyses of it

have typically proceeded by invoking (Euler) discretizations for both the measurement

and state processes and applying MCMC- or SMC-based techniques to that discretized

model (e.g. Eraker, 2004, Forbes et al., 2007, Broadie et al., 2007, Johannes et al., 2009).

It has also featured in the indirect inference and efficient method of moments literatures,

as a very consequence of the difficulty of evaluating the exact likelihood (e.g. Andersen,

Benzoni and Lund, 2002, and Gallant and Tauchen, 2010). It is of interest, therefore, to

assess the performance of the proposed ABC method in the context of this form of model,

and this is the focus of Section 4.2.

In Sections 4.3 and 4.4 we then pursue two alternative volatility models in which the

distinctly non-Gaussian features of the innovations to conditional returns are captured via

the used of α-stable processes (see, e.g. Carr and Wu, 2003, and Lombradi and Calzolari,

2009). With the α-stable process not admitting a closed-form representation for the density

function, models in which it appears present challenges for exact inference and are thus

a prime candidate for analysis via ABC, in particular given that such processes can be

simulated via the algorithm proposed in Chambers et al. (1976, 1987).

To facilitate the link between the general theoretical material presented thus far and the
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specific examples to follow, we use the notation φ (β) to denote the vector of parameters

characterizing the true (auxiliary) model in each case, despite the interpretation of the

parameters obviously differing from case to case. We also use yt to denote the observed

measure in each example, xt to denote the latent state and wt and vt to denote the

measurement and state errors, as is consistent with the notation defined in (3) and (4).

4.2 Square root stochastic volatility

In this section we being by assuming an observed (de-meaned) logarithmic return, rt, with

the square root model for the variance xt,

rt = x
1/2
t ηt, (16)

dxt = (φ1 − φ2xt)dt+ φ3

√
xtvt, (17)

where vt = dWt is a Brownian increment, and ηt is defined as an i.i.d. random variable

with zero mean and variance 1. We observe a discrete sequence of returns, and our goal is

to conduct Bayesian inference on the parameters governing the dynamics of volatility. We

restrict the structural parameters as 2φ1 ≥ φ2
3 to ensure positive volatility, and for some

M,ϕ, we impose M ≥ φ3, φ1, φ2 ≥ ϕ > 0. With these restrictions,xt is mean reverting

and as t → ∞, xt approaches a steady state gamma distribution, with E[xt] = φ1/φ2

and var(xt) = φ2
3φ1/2φ

2
2. The conditional distribution function is non-central chi-square,

χ2(2cVt; 2q+ 2, 2u), with 2q+ 2 degrees of freedom and non-centrality parameter 2u. The

transition density for xt, conditional on xt−1, is thus

p(xt|xt−1, φ) = c exp(−u− v)
(v
u

)q/2
Iq(2(uv)1/2), (18)

where c = 2φ2/φ
2
3(1 − exp(−φ2)), u = cxt−1 exp(−φ2), v = cxt, q = 2φ1

φ23
− 1, and Iq(.) is

the modified Bessel function of the first kind of order q.

With both the conditional density in (5) and the transition density in (6) being avail-

able for this model, likelihood-based inference is, in principle, feasible. For example, whilst

we are not aware of any exact Bayesian inference having been conducted on the model

in (16) and (17), the PMCMC techniques developed by Flury and Shephard (2011) and

Pitt et al. (2012) for simpler volatility models may well be applicable. Further, in Sec-

tion 5.1, in order to produce an exact comparator for the ABC posterior estimate for this

model, we apply the non-linear filter of Ng et al. (2013) to evaluate the likelihood, and

numerically normalize the exact posterior using deterministic numerical integration tech-

niques. However, we do not propose the latter as a computationally attractive (or readily

generalizable) competitor to the ABC approach, simply using it in a one-off exercise for

the purpose of evaluation; and the performance of a PMCMC algorithm for an SSM with

transitions as challenging as those given in (18) is as yet untested. Hence, we view the
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application of ABC in this setting as an attractive option to explore, in particular given

the ability to simulate the process via its exact representation as a composition of central

chi-squared and Poisson distributions.

For convenience, we take squares and logarithms of the measurement equation, defining

yt = ln(r2
t ) = ln(xt) + wt (19)

dxt = (φ1 − φ2xt)dt+ φ3

√
xtvt, (20)

where

wt = ln(η2
t )− ω. (21)

If we adopt the specific distributional assumption of Gaussianity for ηt, wt is a mean-zero

log-chi-squared random variable with variance σ2
w = π2/2. The Gaussian assumption is

not, however, essential for the verification of the sufficient conditions for consistency of

ABC as applied to this model class. Rather, we require only that the first two moments

of ηt are finite and that the density is bounded. We view (19) and (20) as the true data

generating process under analysis and refer to it hereafter as the SV-SQ class of model.

Note that the (exact) discretization of (20) would place (19) and (20) precisely in the form

of (3) and (4) in Section 2.2.

To implement an auxiliary likelihood-based ABC algorithm, we adopt a Gaussian ap-

proximation for wt in (19) and an Euler discretization for (20), yielding the approximating

model,

yt = ln(xt) + εt (22)

xt = β1 + β2xt−1 + β3
√
xt−1et, (23)

where εt ∼ N(0, σ2
w), et is a truncated Gaussian variable with lower bound, et >

−β1
β3
, and

we define the auxiliary parameters as β = (β1, β2, β3)′. Similar parameter restrictions to

those imposed on the structural parameters φ are required of the elements of β: M ≥ β1,

β3 ≥ ϕ > 0, ϕ ≤ β2 ≤ 1− ϕ, and 2β1 ≥ β2
3 . The equations in (22) and (23) play the role

of (7) and (8) respectively.

The non-linearities that characterize both (22) and (23) imply that an analytical eval-

uation of the auxiliary likelihood via the Kalman filter (KF) is not feasible. Therefore,

we turn to the augmented unscented KF (AUKF) as an computationally efficient means

of evaluating the La(y; β) and, hence, of producing the auxiliary MLE as the matching

statistic within ABC. General pseudo code detailing implementation of the AUKF is given

in Algorithm 2, with more detailed implementation instructions given in Appendix C.1.

The precise form of the auxiliary likelihood function thus depends on both the first-order

Euler discretization of the continuous-time state process and the particular specifications

used to implement the AUKF. For the AUKF specification detailed in Appendix C.1, we

state the following corollary, the proof of which is given in Appendix C.2:
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Algorithm 2 General AUKF algorithm

1: Initialize the system in (22) and (23) with a matrix of sigma-points Xa,0 and a vector of
fixed weights; see, Appendix A.3.1 for the definition of these sigma-points and weights;

2: while t ≤ T do
3: Propagate Xa,t−1 through (23) to obtain xt sigma points for time t;
4: Using simple weighted sums of the xt sigma points, generate the predicted mean

and variance for xt;
5: Use the predicted mean and variance to generate a new matrix of sigma points
Xa,t;

6: Propagate Xa,t through (22) to obtain yt sigma points for time t;
7: Using simple weighted sums of the yt sigma points, generate the predicted mean

and variance for yt;
8: Use the predicted mean and variance to form a Gaussian conditional density for
yt;

9: Using the predicted mean and variance for yt and KF up-dating, produce the
filtered mean and variance for xt, given the observation of yt, and up-date the sigma
points Xa,t accordingly;

10: Set t = t+ 1;

11: end while
12: La(y; β) is the log-product of the increments in Step 8.

Corollary 1 For the SV-SQ model in (19) and (20) and true value φ0, the model in

(22) and (23), with auxiliary likelihood La(y; β) constructed via the AUKF filter, and with

η(y) = β̂(y), satisfies Assumption (A1)-(A5).

Remark 6: Bayesian consistent inference for φ0 also depends on the satisfaction of As-

sumption (I). Whilst (I1) is trivially satisfied via the specification of a sensible prior,

Assumptions (I2)-(I3) in the SV-SQ model are not amenable to analytical investigation,

or verification, given the nature of the auxiliary likelihood, as numerically evaluated using

the AUKF, and the lack of a closed-form expression for the auxiliary MLE. This is, in

fact, an illustration of the general point that there exists a tension between a choice of

summaries for which one can analytically verify Assumptions (I2) and (I3), and a choice

of more complicated summaries for which analytical verification is not feasible, but which

yield more accurate ABC-based inference. To this end, we set our focus on the latter

but remark that if one were willing to consider a simpler auxiliary model (and associ-

ated auxiliary MLE) then verification of Assumptions (I2) and (I3) may well be possible

analytically. Note that we do (in effect) investigate the satisfaction of (I2)-(I3) for the

SV-SQ model in Section 5.2, in which consistency of the auxiliary model-based method for

all three examples is explored numerically. Such numerical exploration is indeed the only

option available to us for the two models that follow, given that analytical verification of

both sets of conditions, (A) and (I), is precluded due to the need (in part) to evaluate

certain expectations under an α-stable law.
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4.3 Conditionally α-stable returns with stochastic volatility

Let {Xα,γ
t , t ∈ R+} be an α-stable Lévy process with location µ = 0, scale σ = 1,

tail index α ∈ (1, 2), and skewness parameter γ ∈ [−1, 1]. Then Xt has independent

and stationary increments dXα,γ
t such that dXα,γ

t ∼ S(α, γ, 0, dt1/α) and exhibits differing

degrees of leptokurtosis and skewness depending on the values of α and γ. The process is

also self-similar in that the distribution of an α-stable variable defined over any horizon has

the same shape upon scaling. Critically however, the density function has no closed-form

representation. (See Samorodnitsky and Taqqu, 1994, Chapter 7.)

Recently, several authors have used α-stable Lévy motion to model financial data.

Notably, Carr and Wu (2003) model logarithmic returns on the S&P500 price index as

α-stable, with a view to capturing the lack of ‘flattening’ of the implied volatility smile

as option maturity increases. In brief, the infinite variance (for the log return) implied

by this model violates the conditions for a Gaussian central limit theorem and, hence, fits

with the phenomenon of a smile that persists. At the same time, however, with the lower

bound imposed for γ, the conditional expectation of the index itself remains finite, thereby

enabling meaningful European option prices to be defined. Whilst the detailed derivations

in their paper pertain to the case in which volatility is constant, recognition of the need

to incorporate stochastic volatility prompts the authors to propose (as a vehicle for future

research) an extended model in which the Heston (1993) model in (17) is adopted for the

variance, with closed-form option pricing still being feasible as a consequence.

Most importantly, with the focus in Carr and Wu (2003) being on the estimation of

risk neutral parameters via calibration of the model with market option prices, the lack

of analytical form for the density of Xt is not a hindrance for inference. However, any

attempt to conduct likelihood-based inference (including exact Bayesian inference) on the

objective counterpart of such a model using spot returns would encounter this hurdle, with

the conditional density in (5) being unavailable; and that is where ABC provides a useful

alternative.

With this empirical motivation in mind, we thus explore the application of ABC to

the model

yt = rt = x
1/φ4
t wt, (24)

lnxt = φ1 + φ2 lnxt−1 + φ3vt, (25)

where wt ∼ i.i.d. S(φ4,−1, 0, dt = 1), vt is an i.i.d. random variable (independent of wt)

with zero mean and variance 1, and to be consistent with our general notation, we denote

α by φ4. Once again we assume discretely observed returns and, for the sake of illustration,

work with a discrete-time autoregressive model for the logarithm of the variance, as given

in (25). In particular this allows us to illustrate ABC using the following simple aux-
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iliary model based on a first-order generalized autoregressive conditional heteroscedastic

(GARCH(1,1)) model for the latent standard deviation,

yt = rt = xtεt, (26)

xt = β1 + β2xt−1 |εt−1|+ β3xt−1, (27)

where εt ∼ i.i.d. St(0, 1, β4). That is, the measurement error in the auxiliary model is

a standardized Student t random variable with degrees of freedom parameter β4. (See

also Lombardi and Calzolari, 2009, and Garcia et al., 2011, for the application of indirect

inference to similar model scenarios.) The ARCH component of (27) is parameterized using

absolute deviations (instead of squares) to mitigate numerical instabilities that can arise

from extreme realizations of the α-stable distribution. Note that the model in (26) and

(27) can be placed in the state space form given in (7) and (8) by defining et = |εt−1| ; but

with the auxiliary likelihood function available in closed form in this case, the application

of ABC is particularly straightforward and does not require filtering.4

4.4 Stochastic volatility with α-stable errors

An alternative approach to modelling the stylized features of financial returns is to consider

a stochastic volatility model for returns in which an α-stable process drives the innovations

to (log) volatility itself; see Lombardi and Calzolari (2009) once again. To that end, in

this section we define the following model for the return,

rt = x
1/2
t wt,

lnxt = φ1 + φ2 lnxt−1 + φ3vt,

where vt ∼ i.i.d. S(φ4,−1, 0, dt = 1), and wt is an i.i.d. random variable (independent

of vt) with zero mean and variance. With this particular specification it is the transition

density in (6) that is unavailable, rendering exact likelihood-based inference infeasible.

In the spirit of Lombardi and Calzolari we base ABC on a (conventional) GARCH(1,1)

auxiliary model for the latent variance:

yt = rt = x
1/2
t εt,

xt = β1 + β2xt−1ε
2
t−1 + β3xt−1,

in which case the computational burden of the ABC method is comparable to that in

Section 4.3.

4Use of the square root volatility model in (25) would also of course be feasible, but the heteroscedastic
nature of the variance model would demand an auxiliary model that reflected that feature, along the lines
of (23), and hence, entail the use of filtering to evaluate the auxiliary likelihood.
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5 Numerical assessment of the auxiliary likelihood-

based ABC method

We undertake a series of numerical exercises in which the accuracy of the auxiliary

likelihood-based approach to ABC is documented. The first set of exercises, in Section

5.1, uses the SV-SQ model in (19) and (20) as the example, with a Gaussian assumption

adopted for the conditional distribution of returns. The auxiliary likelihood function of

the approximating model (defined by (22) and (23)) is evaluated using the AUKF in the

manner described above. Existence of known (non-central chi-squared) transition densities

means that the exact likelihood function/posterior distribution is available for the pur-

pose of comparison. We perform that evaluation using the non-linear grid-based filtering

method of Ng et al. (2013). The accuracy of the auxiliary likelihood-based ABC poste-

rior estimate, for a given finite sample size, is compared with: 1) an ABC estimate that

uses a (weighted) Euclidean metric based on statistics that are sufficient for an observed

autoregressive model of order one for the log squared returns; and 2) an ABC estimate

that applies the approach of Fearnhead and Prangle (2012) to this set of summaries. We

consider both the case where a single parameter (only) is unknown (and dimensionality

thus plays no role), and the case where two, and then all three parameters of the model

are unknown. A dimension reduction technique for the multi-parameter case, based on

marginalization of the auxiliary likelihood is proposed, and shown to produce more accu-

rate estimates overall of the exact marginals.

In Section 5.2 we then explore the large sample behaviour of the ABC posterior esti-

mates for all three classes of stochastic volatility model. In particular, we illustrate that

despite the fact that the full set of conditions for consistency for the auxiliary likelihood-

based approach are not analytically verifiable (for any of the three examples), numerical

evidence supports the presence of posterior concentration on the truth in all three cases. In

contrast, the evidence in favour of consistency for summary statistic-based ABC estimates

is mixed.5

5.1 Finite sample accuracy: the SQ-SV model

5.1.1 Data generation and computational details

For the purpose of this illustration we simulate artificially an ‘empirical’ sample of size T

from the model in (19) and (20), with the parameters set to values that yield observations

on both rt and xt that match the characteristics of (respectively) daily returns and daily

values of realized volatility (constructed from 5 minute returns) for the S&P500 stock

5Results are produced using the GAUSS and MATLAB programming languages. Subroutines written
in C are used to perform the integration of the auxiliary likelihood needed for the dimension reduction
technique described in Section 5.1.2.
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index over the 2003-2004 period: namely, φ1 = 0.004; φ2 = 0.1; φ3 = 0.062. This relatively

calm period in the stock market is deliberately chosen as a reference point, as the inclusion

of price and volatility jumps, and/or a non-Gaussian conditional distribution in the model

would be an empirical necessity for any more volatile period, such as that witnessed

during the 2008/2009 financial crisis, for example. The aim of this exercise being to assess

the accuracy of the alternative ABC methods in a non-linear state space setting, it is

important to have access to the exact posterior, and the SV-SQ model - without additional

distributional complexities - enables this posterior to be accessed, via the deterministic

non-linear filtering method of Ng et al. (2013). In brief, the method of Ng et al. represents

the recursive filtering and prediction distributions used to define the exact likelihood

function as the numerical solutions of integrals defined over the support of wt in (19), with

deterministic integration used to evaluate the relevant integrals, and the exact transitions

in (20) used in the specification of the filtering and up-dating steps. Whilst lacking the

general applicability of the ABC-based method proposed here, this deterministic filtering

method is ideal for the particular model used in this illustration, and can be viewed as

producing a very accurate estimate of the exact density, without any of the simulation

error that would be associated with an MCMC-based comparator, for instance. We refer

the reader to Ng et al. for more details of the technique; see also Kitagawa (1987).6 The

likelihood function, evaluated via this method, is then multiplied by a uniform prior that

imposes the restrictions: 0 < φ2 < 1; φ1, φ3 > 0 and 2φ1 ≥ φ2
3, with φ1 and φ3 bounded

above by 0.025 and 0.089 respectively. The three marginal posteriors are then produced

via deterministic numerical integration (over the parameter space), with a very fine grid

on φ being used to ensure accuracy. We report the posterior results for 1 − φ2, where

values of 1− φ2 close to unity signify a very persistent volatility process.

We compare the performance of the score-based technique with that of more conven-

tional ABC methods based on summary statistics that may be deemed to be a sensible

choice in this setting. For this purpose we propose a set of summary statistics that are

sufficient (under Gaussianity) for an observable AR(1) process for the log of squared daily

returns, yt = ln(r2
t ), namely

s1 =
T−1∑
t=2

yt, s2 =
T−1∑
t=2

y2
t , s3 =

T∑
t=2

ytyt−1, s4 = y1 + yT , s5 = y2
1 + y2

T . (28)

6We note that the application of this filter in Ng et al. is to a non-parametric representation of the
measurement error. In the current setting, in which wt is specified parametrically, the known form of
the distribution of wt is used directly in the evaluation of the relevant integrals. We refer the reader
to Section 2.2 of that paper for a full description of the algorithm. Preliminary experimentation with
the number of grid points used in the deterministic integration was undertaken in order to ensure that
the resulting estimate of the likelihood function/posterior stabilized, with 100 grid points underlying the
final results documented here. As an additional check we also evaluated the exact (normalized) likelihood
function using a bootstrap particle filter, based on 50,000 particle draws. The filtering-based estimate
was indistinguishable from the grid-based estimate and, hence, is not reproduced here.
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Two forms of distances are used. Firstly, we apply the conventional Euclidean distance,

with each summary statistic also weighted by the inverse of the variance of the values of

the statistic across the ABC draws. That is, we define

d{η(y), η(z(φi))} = [
5∑
j=1

(sij − sobsj )2/var(sj)]
1/2 (29)

for ABC iteration i = 1, 2, ..., N , where var(sj) is the variance (across i) of the sij, and

sobsj is the observed value of the jth statistic, j = 1, 2, ..., 5. Secondly, we use a distance

measure proposed in Fearnhead and Prangle (2012) which, as made explicit in Blum et al.

(2013), is a form of dimension reduction method. We explain this briefly as follows. Given

the vector of observations y, the set of summary statistics in (28) are used to produce

an estimate of E(φj|y), j = 1, 2, 3, which, in turn, is used as the summary statistic in

a subsequent ABC algorithm. The steps of the Fearnhead and Prangle procedure (as

modified for this context) for selection of the scalar parameter φj, j = 1, 2, 3, are as given

in Algorithm 3.

Algorithm 3 FP ABC algorithm

1: Simulate φi, i = 1, 2, ..., N , from p(φ)
2: Simulate xi = (xi1, x

i
2, ..., x

i
T )′ from (20) using the exact transitions, and pseudo data,

zi using p(z|xi)
3: Given zi, construct

si =
[
si1, s

i
2, s

i
3, s

i
4, s

i
5

]′
(30)

4: For φj = (φ1
j , φ

2
j , ..., φ

N
j )′, X =

[
1 1 · · · 1
s1 s2 · · · sN

]′
and φj = E[φj|Z] + e =

X
[
α γ′

]′
+ e, where Z =

[
z1, z2, ..., zN

]
and γ is of dimension (5× 1), use OLS to

estimate E[φj|Z] as Ê[φj|Z] = α̂ +
[

s1 s2 · · · sN
]′
γ̂

5: For η(zi) = Ê(φj|zi) = α̂ + si
′
γ̂ and η(y) = Ê(φj|y) = α̂ + sobs

′
γ̂, where sobs denotes

the vector of summary statistics in (30) calculated from the vector of observed returns,
use:

d{η(y), η(zi)} =
∣∣∣Ê(φj|y)− Ê(φj|zi)

∣∣∣ =
∣∣∣si′ γ̂ − sobs

′
γ̂
∣∣∣ (31)

as the selection criterion for φj.

The score-based method uses the distance measure in (14). The weighting matrix Σ

is set equal to the Hessian-based estimate of the variance-covariance matrix of the (joint)

MLE of β, evaluated at the MLE computed from the observed data, β̂(y). For the case

where a single parameter only is unknown, the absolute value of the relevant scalar score

is used to define (14). The 1% percentile of 50,000 ABC draws is used to determine the

tolerance level.
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5.1.2 Dimension reduction via an integrated likelihood technique

As highlighted by Blum (2010) (amongst others) the accuracy with which ABC draws

estimate the so-called partial posterior, p(φ|η(y)), for any given tolerance ε and number

of simulation draws N , will be less, the larger the dimension of η(y). This ‘curse of dimen-

sionality’ obtains even when the parameter φ is a scalar, and relates solely to the dimension

of η(y). As elaborated on further by Nott et al. (2014), this problem is exacerbated as

the dimension of φ itself increases, firstly because an increase in the dimension of φ brings

with it a concurrent need for an increase in the dimension of η(y) and, secondly, because

the need to estimate a multi-dimensional density (for φ) brings with it its own problems

related to dimension.7 This type of inaccuracy is, of course, distinct from the inaccuracy

that results from the use of summary statistics that are not sufficient for φ.

We explore here a dimension reduction technique that is particularly apt when there

is a natural link between the elements of the true and auxiliary parameter vectors, and

the dimensions of the two vectors are equivalent. These conditions are clearly satisfied

for the model investigated in this particular numerical exercise, in which we produce the

auxiliary model by discretization of the true latent diffusion, and dβ = dφ as a consequence.

In brief: let β−j = (β1, ..., βj−1, βj+1, ..., βdφ)′ be the (dφ− 1)-dimensional parameter vector

of auxiliary parameters (with dφ = 3 in this case), and B−j ⊂ R(dφ−1) be the parameter

space associated with β−j. For p(β−j|βj) the conditional prior probability of β−j, define

the integrated likelihood LIa(y; βj) as

LIa(y; βj) =

∫
B−j

La(y; β)p(β−j|βj)dβ−j. (32)

For the given auxiliary model and conditional prior specification, LIa(y; βj) can be used to

obtain a convenient scalar summary statistic for use in estimating the marginal posterior

p(φj|y) via ABC, using the integrated score,

SI(z(φ); β̂j) =
∂ log

(
LIa(z(φ); βj)

)
∂βj

|βj=β̂j ,

evaluated at β̂j = arg maxβj L
I
a(y; βj), where φj represents the true parameter that most

closely matches the role played by βj in the auxiliary model. If the marginal posteriors only

are of interest, then all dφ marginals can be estimated in this way, with dφ applications

of (dφ − 1)-dimensional integration required at each step within ABC to produce the

relevant score statistics. For the particular auxiliary model used here, the three integrated

likelihoods are produced using a deterministic numerical method. If the joint posterior of

φ were of interest, the sort of techniques advocated by Nott et al. (2014), amongst others,

could be used to yield joint inference from the estimated marginal posteriors.

7See Blum et al. (2013) for further elaboration on the dimensionality issue in ABC and a review of
current approaches for dealing with the problem.
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5.1.3 Numerical results

We summarize accuracy by reporting the average, over 50 runs of ABC, of the root mean

squared error (RMSE) of each ABC-based estimate of the exact (marginal) posterior for

a given parameter, computed as:

RMSE =

√
1

G

G∑
g=1

(p̂g − pg)2, (33)

where p̂g is the ordinate of the ABC density estimate and pg the ordinate of the exact

posterior density, at the gth grid-point used to produce the plots. The (average) RMSE

associated with a given ABC method for any particular parameter is reported as a ratio

to the RMSE of the (integrated) auxiliary score (‘Int Sc.’) method.

In order to abstract initially from the impact of dimensionality on the ABC methods,

we report results in Panel A for each single parameter of the SV-SQ model, keeping the

remaining two parameters fixed at their true values. In this case the auxiliary-likelihood

method is based on the scalar score statistic, but the RMSE results are recorded in the

row headed ‘Int score’. As is clear, for 1 − φ2 the auxiliary score-based ABC method

produces the most accurate estimate of the exact posterior of all comparators. In the

case of φ1 and φ3 the summary statistic method (based on the Euclidean distance) yields

the most accurate estimate, with the dimension reduction technique of Fearnhead and

Prangle (2012) producing the least accurate posterior estimates for both parameters. The

results recorded in Panels B to D highlight that when either two or three parameters are

unknown the score-based ABC method produces the most accurate density estimates in all

cases, with the integrated likelihood technique described in Section 5.1.2 yielding further

accuracy improvements over the joint score (‘Jt Sc.’) methods in five out of the seven

cases, auguring quite well for this particular approach to dimension reduction.

5.2 Large sample performance

5.2.1 Data generation and computational details

For all three examples outlined in Section 4 we now document numerically the extent to

which the auxiliary likelihood-based ABC posteriors become increasingly concentrated (or

otherwise) around the true parameters as the sample size increases. To this end, in Table

2 we report the average probability mass (over 50 runs of ABC) within a small interval

around the true parameter, for T = 500 and 2000. Artificial ‘empirical’ data is generated

from the SV-SQ model using the same parameter settings as detailed in Section 5.1.1.

Generation from the other two models uses parameter settings that also yield empirically

plausible data. Once again, as a means of comparison, summary statistic-based results are

also produced, using both the Euclidean distance in (29) and the Fearnhead and Prangle
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Table 1: Average RMSE of an estimated marginal posterior over 50 runs of ABC (each
run using 50,000 replications, with 500 draws (1%) retained); recorded as a ratio to the

(average) RMSE for the (integrated) ABC score method. ‘Sc.’ refers to the ABC
method based on the score of the AUKF model; ‘SS’ refers to the ABC method based on
a Euclidean distance for the summary statistics in (28); ‘FP’ refers to the Fearnhead and
Prangle ABC method, based on the summary statistics in (28). For the single parameter
case, the (single) score method is documented in the row denoted by ‘Int Sc.’, whilst in
the multi-parameter case, there are results for both the joint (Jt) and integrated (Int)
score methods. The bolded figure indicates the approximate posterior that is the most

accurate in any particular instance. The sample size is T = 500.

Panel A Panel B Panel C Panel D
One unknown Two unknowns Two unknowns Three unknowns

φ1 1− φ2 φ3 φ1 1− φ2 φ2 φ3 φ1 1− φ2 φ3

ABC
Meth.

Jt Sc. - - - 1.689 1.613 0.873 1.843 1.652 0.408 1.015
Int Sc. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SS 0.529 4.926 0.673 2.310 3.685 3.625 2.229 2.441 1.850 1.036
FP 1.142 6.148 1.380 2.253 3.789 4.365 2.013 1.959 1.850 1.039

(2012) distance in (30). In order to highlight the dependence of posterior concentration on

the particular choice of summaries, we define the statistics in (28) using both yt = ln(r2
t )

and yt = rt, with results for the latter choice recorded in the rows denoted by SS (raw) and

FP (raw). All relevant probabilities are estimated via rectangular integration of the ABC

kernel density ordinates, with the boundaries of the interval used for a given parameter

(recorded at the top of the table) determined by the grid used to numerically estimate the

kernel density.

In order to reduce the computational burden, for the SV-SQ model we compute all

probabilities for the (three) single unknown parameter cases only, and as based on 50,000

replications within each of the 50 ABC runs. For the other two models however, since

the auxiliary models employed for both examples feature likelihood functions that are

computationally simple, all parameters are estimated jointly. For both examples, we fix

φ1 = 0, leaving three free parameters, φ2 to φ4. Further, as guided by the theoretical

results in Frazier et al. (2016), for these two models the quantile used to select draws

is allowed to decline as T increases. With 250 draws retained for the purpose of density

estimation this means that 55,902 and 447,214 replications (for each of the 50 draws) are

used to produce the T = 500 and T = 2000 results respectively.
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5.2.2 Numerical results

The results in Panel A (for T = 500) show that for the SQ-SV model the score-based

method produces superior results - in terms of the extent of the probability mass around

the truth - for φ2 and φ3, with there being little to choose between the score-based esti-

mate and the (equally accurate) two FP-based estimates in the case of φ1. Importantly,

when the sample size increases the score-based estimate displays clear evidence of in-

creased concentration around the true parameter value, and with the score based method

clearly dominating all alternative (summary statistic-based) methods for T = 2000. In-

deed, the tendency towards increased concentration is not uniform across all summary

statistic methods, with the methods that exploit summaries constructed from the raw

returns not exhibiting concentration for all three parameters.

The results in Panels B and C similarly illustrate the overall superiority of the score-

based method and its consistency property, providing numerical evidence that the identi-

fication conditions hold in these particular examples. For the four alternative (summary

statistic-based) methods however, the numerical evidence of posterior concentration is not

uniform. It is also interesting to note that for the tail index parameter φ4 in the SV

model with conditionally stable returns (Panel B), the ABC method based on the raw

data summary statistics (yt = rt) performs much better than the method based on the

transformed data yt = ln (r2
t ). In short, the logarithmic transformation of the condition-

ally stable returns yields summaries that are unable to estimate (via ABC) the true index

parameter with any accuracy, no matter what the sample size, and no matter what the

nature of the distance measure used. In contrast, when the α−stable distribution charac-

terizes the errors in the volatility equation (Panel C) only the FP method applied to the

summary statistics constructed from the log squared returns exhibits this extreme lack of

concentration about the true value of φ4 (for both sample sizes). Nevertheless, none of the

summary statistic methods show a uniform tendency to concentrate further as the sample

size increases for this particular example.

6 Conclusions and discussion

This paper has explored the application of approximate Bayesian computation in the state

space setting, in which auxiliary likelihood functions are used to generate the matching

statistics. Bayesian consistency of the auxiliary likelihood-based method has been estab-

lished, under regularity conditions that exploit the state space structure of the auxiliary

model. Theoretical verification of (certain of) these conditions has been established for

one model class, with numerical evidence of posterior concentration produced for three

model types. The idea of tackling the dimensionality issue via an integrated likelihood
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Table 2: Posterior mass in given intervals around the true parameters, averaged over 50 runs of

ABC. ‘Score’ refers to the ABC method based on the score of the relevant auxiliary model; ‘SS’

refers to the ABC method based on a Euclidean distance for the summary statistics in (28);

‘FP’ refers to the Fearnhead and Prangle ABC method, based on the summary statistics in

(28); SS (raw) and FP (raw) refer, respectively to the SS and FP results but as based on yt= rt
rather than yt= ln(r2

t ). The bolded figure indicates the largest (average) posterior mass for each

case. Results in Panel A are for the SV-SQ model described in Section 4.2, with one parameter

at a time treated as unknown. The results in Panels B and C are for the models in Section 4.3

and 4.4 respectively, with all three parameters for each model treated as unknown and the

(joint) auxiliary score method used to produce the results recorded in the row headed ‘Score’.

T = 500 T = 2000

Panel A: SV-SQ Model

φ1 1− φ2 φ3 φ1 1− φ2 φ3

True: 0.004 0.9 0.062 0.004 0.9 0.062
Interval: (0.003,0.005) (0.88,0.92) (0.052,0.072) (0.003,0.005) (0.88,0.92) (0.052,0.072)

Score 0.90 0.88 0.44 1.00 0.94 0.85
SS 0.78 0.44 0.26 0.99 0.83 0.57
FP 0.92 0.26 0.10 0.99 0.82 0.71
SS (raw) 0.84 0.28 0.44 0.78 0.24 0.87
FP (raw) 0.89 0.76 0.41 0.91 0.61 0.87

Panel B: Stable returns with SV (φ1 = 0)

φ2 φ3 φ4 φ2 φ3 φ4

True: 0.9 0.36 1.8 0.9 0.36 1.8
Interval: (0.75,0.99) (0.25,0.45) (1.65,1.95) (0.75,0.99) (0.25,0.45) (1.65,1.95)

Score 0.91 0.66 0.87 1.00 0.82 0.99
SS 0.15 0.57 0.15 0.44 0.61 0.00
FP 0.70 0.57 0.00 0.75 0.62 0.00
SS (raw) 0.78 0.48 0.91 0.78 0.47 1.00
FP (raw) 0.78 0.47 0.92 0.78 0.47 0.99

Panel C: SV with stable errors (φ1 = 0)

φ2 φ3 φ4 φ2 φ3 φ4

True: 0.9 0.06 1.8 0.9 0.06 1.8
Interval: (0.75,0.99) (0.03,0.09) (1.65,1.95) (0.75,0.99) (0.03,0.09) (1.65,1.95)

Score 0.84 0.72 0.39 0.96 0.74 0.58
SS 0.78 0.67 0.35 0.78 0.66 0.35
FP 0.76 0.70 0.09 0.78 0.73 0.02
SS (raw) 0.78 0.67 0.35 0.78 0.66 0.35
FP (raw) 0.78 0.67 0.36 0.79 0.67 0.33
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approach has also been proposed. The approach has been shown to yield some benefits in

the particular numerical example explored in the paper. However, a much more compre-

hensive analysis of different non-linear settings (and auxiliary models) would be required

for a definitive conclusion to be drawn about the trade-off between the gain to be had from

marginalization and the loss that may stem from integrating over an inaccurate auxiliary

likelihood.

Indeed, the most important challenge that remains, as is common to the related fre-

quentist techniques of indirect inference and efficient methods of moments, is the specifica-

tion of a computationally efficient and accurate approximation. Given the additional need

for parsimony, in order to minimize the number of statistics used in the matching exercise,

the principle of aiming for a large nesting model, with a view to attaining full asymp-

totic sufficiency, is not an attractive one. We have illustrated the use of parsimonious

approximating models. The relative success of this approach in the particular examples

considered, certainly in comparison with methods based on other more ad hoc choices of

summary statistics, augurs well for the success of auxiliary likelihood-based methods in

the state space setting.

Finally, we note that despite the focus of this paper being on inference about the static

parameters in the state space model, there is nothing to preclude marginal inference on

the states being conducted, at a second stage. Specifically, conditional on the (accepted)

draws used to estimate p(φ|y), existing filtering and smoothing methods (including the

recent methods, referenced earlier, that exploit ABC at the filtering/smoothing level)

could be used to yield draws of the states, and (marginal) smoothed posteriors for the

states produced via the usual averaging arguments. With the asymptotic properties of

both approaches established (under relevant conditions), of particular interest would be

a comparison of both the finite sample accuracy and the computational burden of the

hybrid ABC-based methods that have appeared in the literature, with that of the method

proposed herein, in which p(φ|y) is targeted more directly via ABC principles alone.
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A Proof of Theorem 1

Before beginning, let us first set notation used in the remainder of this appendix. Let

(Ωy,Fy,P) be the fundamental space for the observed data, such that, for all ω ∈ Ωy,

yt = yt(ω) ∈ Y , with Y the state space of the observed data. For any φ ∈ Φ denote by

(Ωz,Fz, P φ
z ) the fundamental space of the simulated data, with which, for all ωz ∈ Ωz,

zt(φ) = zt(ωz,φ) ∈ Z ⊆ Y . Furthermore, we assume the model is correctly specified so

that for some φ0 ∈ Φ, P
φ0
z = P. Denote by Π(A) the prior measure of A ⊂ Φ. We index

the tolerance ε by the sample size T to denote its eventual dependence on this value, so

that εT = ε(T ) = o(1). C denotes a positive arbitrary constant. For two sequences, aT , bT ,

we say that aT � bT if aT is larger, ‘in order’, than bT , and aT � bT if aT is ‘of the same

order’ as bT . Lastly, we remind the reader that the ABC posterior measure is given by

Πε(A|β̂(y)) := Π(A|d{β̂(y), β̂(z)} ≤ εT ) =

∫
A

pε(φ|β̂(y))dφ.

To simplify notation, in what follows we use β̂ := β̂(y) and β̂(φ) := β̂(z(φ)). The proof is

broken into three parts. First, we demonstrate that the distance

d {η(y), η(z(φ))} = d
{
β̂, β̂(φ)

}
≡
√(

β̂−β̂(φ)
)′

Ω
(
β̂ − β̂(φ)

)
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converges uniformly in φ to d {β0,b(φ)} . Second, we show that the only value for which

d {β0,b(φ)} ≤ εT as εT → 0 and T →∞ is φ0. Lastly, using pieces one and two we show

that all posterior mass concentrates asymptotically on {φ ∈ Φ : d {β0,b(φ)} ≤ εT} .

A.1 Part 1

First, we demonstrate the uniform convergence of d{β̂, β̂(φ)}. The triangle inequality

yields

d{β̂,β̂(φ)} ≤ d
{
β̂,b(φ)

}
+ d

{
b(φ), β̂(φ)

}
.

Consider d
{
β̂,b(φ)

}
and note that,

d
{
β̂,b(φ)

}
≤ d

{
β̂, β0

}
+ d {β0,b(φ)} .

From Theorem 2 and Proposition 3 of Douc and Moulines (2012), it can be shown that

β̂
P−→ β0 under Assumptions (A1)-(A5). Consistency of β̂ for β0 implies

d
{
β̂,b(φ)

}
≤ oP (1) + d {β0,b(φ)} ,

and so

d{β̂,β̂(φ)} ≤ d
{
β̂,b(φ)

}
+ d

{
b(φ), β̂(φ)

}
≤ d {β0,b(φ)}+ d

{
b(φ), β̂(φ)

}
+ oP (1).

By definition,

d
{

b(φ), β̂(φ)
}
≤ sup

φ∈Φ
d
{

b(φ), β̂(φ)
}
.

The RHS of the above is oP (1) if supφ∈Φ ‖β̂(φ) − b(φ)‖ P−→ 0. Using Proposition 10, part

(iii) in Douc and Moulines, and under Assumptions (A1)-(A5), uniform convergence of

La(z(φ); β)/T over both β and φ can be shown, so that, for any δ = o(1), as T →∞

sup
φ∈Φ

sup
‖β−β0‖≤δ

|La(z(φ); β)/T − L∞(φ; β)| P−→ 0, (34)

and by (A5) the limit criterion L∞(φ; β) has unique maximizer, with respect to β, b(φ).

Using these two facts, we now show, under the maintained assumptions,

sup
φ∈Φ

∥∥∥β̂(φ)− b(φ)
∥∥∥ = oP (1). (35)

Define the following terms:

Q̃(φ; β) = La(z(φ); β)/T − L∞(φ; b(φ)),

Q̃∞(φ; β) = L∞(φ; β)− L∞(φ; b(φ)).
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By (A5) and compactness of B, for all δ > 0, if ‖β̂(φ)− b(φ)‖ > δ, there exists ε(δ) > 0,

such that ∣∣∣Q̃∞(φ;β̂(φ))
∣∣∣ > ε(δ).

From here note that

Pr

(
sup
φ∈Φ
‖β̂(φ)− b(φ)‖ > δ

)
≤ Pr

(
sup
φ∈Φ

∣∣∣Q̃∞(φ;β̂(φ))
∣∣∣ > ε(δ)

)
.

Equation (35) follows if supφ∈Φ ‖Q̃∞(φ;β̂(φ))‖ = oP (1). Uniformly in φ,∣∣∣Q̃∞(φ;β̂(φ))
∣∣∣ ≤ ∣∣∣Q̃∞(φ; β̂(φ))− Q̃(φ; β̂(φ))

∣∣∣+
∣∣∣Q̃(φ; β̂(φ))

∣∣∣
=
∣∣∣L∞(φ;β̂(φ))− La(z(φ);β̂(φ))/T

∣∣∣+
∣∣∣Q̃(φ; β̂(φ))

∣∣∣
≤ sup

β∈B
|L∞(φ; β)− La(z(φ); β)/T |+

∣∣∣Q̃(φ; β̂(φ))
∣∣∣

≤ oP (1) +
∣∣∣Q̃(φ; β̂(φ))

∣∣∣ . (36)

The first inequality follows from the triangle inequality, the second from the definition of

Q̃∞(φ; β), Q̃(φ; β), the third from the definition of sup, and the last from (34). From (36),

the result follows if

sup
φ∈Θ

∣∣∣Q̃(φ;β̂(φ))
∣∣∣ = oP (1).

By the definition of β̂(φ), uniformly in φ,∣∣∣Q̃(φ; β̂(φ))
∣∣∣ ≤ inf

β∈B

∣∣∣Q̃(φ; β)
∣∣∣+ oP (1)

≤ inf
β∈B

∣∣∣Q̃(φ; β)− Q̃∞(φ; β)
∣∣∣+ inf

β∈B

∣∣∣Q̃∞(φ; β)
∣∣∣+ oP (1)

≤ sup
β∈B
|La(z(φ); β)/T − L∞(φ; β)|+ 0 + oP (1)

≤ oP (1). (37)

Combining equations (36) and (37) yields supφ∈Φ

∥∥∥β̂(φ)− b(φ)
∥∥∥ = oP (1) and so, uni-

formly in φ,

d
{
β̂, β̂(φ)

}
P−→ d {β0,b(φ)} .

A.2 Part 2

The second portion of the proof demonstrates that, as T →∞ and εT → 0, the only value

of φ which the ABC algorithm selects is φ = φ0. From the definition of the algorithm and

the triangle inequality, for T large enough,

d
{
β̂, β̂(φ)

}
≤ d

{
β̂, β0

}
+ d

{
b(φ), β̂(φ)

}
+ d {β0,b(φ)}

≤ εT/3 + εT/3 + d {β0,b(φ)}
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where the second inequality follows from the uniform convergence in equation (35) and

β̂ = β0 +oP (1). A draw from the prior p(φ), will then be accepted, when T is large enough,

if

d {β0,b(φ)} ≤ εT/3.

By Assumption (I2), the only value of φ such that d {b(φ), β0} ≤ εT/3 as εT → 0 is

φ = φ0.

A.3 Part 3

Given the previous two pieces, we can now show that as T → ∞ and εT → 0, for any

δ > 0 and Aδ(φ0) := {φ ∈ Φ : d {φ, φ0} > δ},

Π
(
Aδ(φ0)|d{β̂, β̂(φ)} ≤ εT

)
=

∫
Aδ(φ0)

P φ
z (d{β̂, β̂(φ)} ≤ εT )Π(dφ)∫

Φ
P φ
z (d{β̂, β̂(φ)} ≤ εT )Π(dφ)

= oP (1).

For Ωε = {y : d{β̂, β0} ≤ εT/3}, by (A1)-(A5) we have that P(Ωε) = 1 + o(1), and

y ∈ Ωε with probability one. Now, consider the set

Aε(δ
′) :=

{
(z, φ) : {d{β̂, β̂(φ)} ≤ εT} ∩ {d {β0,b(φ)} > δ′}

}
For all (z, φ) ∈ Aε(δ′), we have, by the triangle inequality:

δ′ < d {β0,b(φ)} ≤ d
{

b(φ), β̂(φ)
}

+ d
{
β̂(φ), β̂

}
+ d

{
β̂, β0

}
.

For T large enough, by the results in Part 1 of the proof, d
{
β̂, β0

}
≤ εT/3 and so, using

the above inequality, we have

δ′ − (4/3)εT < d
{

b(φ), β̂(φ)
}
.

Note that, for δ′ ≥ (5/3)εT ,

Pr[Aε (δ′)] ≤
∫

Φ

P φ
z (d {β0,b(φ)} > δ′) Π(dφ)

≤
∫

Φ

P φ
z

(
d
{

b(φ), β̂(φ)
}
> δ′ − (4/3)εT

)
Π(dφ) = oP (1), (38)

by the results in Part 2 of the proof. From equation (38), we can conclude, for δ′ = 4/3εT+s

and s ≥ εT/3,

Π
(
d {β0,b(φ)} > δ′|d{β̂, β̂(φ)} ≤ εT

)
≤

∫
Φ
P φ
z

(
d
{

b(φ), β̂(φ)
}
> s
)

Π(dφ)∫
Φ
P φ
z

(
d{β̂, β̂(φ)} ≤ εT

)
Π(dφ)

. (39)

Using the above bound, the result follows if the RHS of equation (39) is oP (1).
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First, focus on the denominator in (39). By the triangle inequality

d{β̂, β̂(φ)} ≤ d{β̂, β0}+ d{b(φ), β̂(φ)}+ d{β0,b(φ)}

≤ εT/3 + εT/3 + d {β0,b(φ)}

by Part 2 of the proof. Then, for any any φ ∈ Φ with d{β0,b(φ)} ≤ εT/3∫
Φ

P φ
z

(
d{β̂, β̂(φ)} ≤ εT

)
Π(dφ) ≥

∫
d{β0,b(φ)}≤εT /3

P φ
z

(
d{b(φ), β̂(φ)} ≤ εT/3

)
Π(dφ)

≥ Π [d{β0,b(φ)} ≤ εT/3]

2
+ o(1)

≥ KεDT
2

+ o(1), (40)

where the second inequality follows from the uniform convergence in equation (35), ob-

tained in Part 1 of the proof, and the dominated convergence theorem; the last inequality

follows by Assumption (I1). Therefore, using equation (40) within equation (39) yields

Π
(
d {β0,b(φ)} > δ′|d{β̂, β̂(φ)} ≤ εT

)
≤ C

[∫
Φ

P φ
z

(
d
{

b(φ), β̂(φ)
}
> s
)

Π(dφ)

]
ε−DT .

(41)

The uniform convergence in (35) does not fully control the prior deviations. To ensure

that the RHS of (41) is oP (1) we use Assumption (I3), to conclude that[∫
Φ

P φ
z

(
d
{

b(φ), β̂(φ)
}
> s
)

Π(dφ)

]
ε−DT ≤ C

ε−DT
sκvκT

.

Taking s � εT , the RHS of (41) is oP (1) if εκ+D
T vκT → ∞, which is satisfied so long as

εT � v
−κ
κ+D

T . The result now follows from the arbitrary choice of δ′, and the continuity and

injectivity of the map φ 7→ b(φ). �

B Auxiliary score-based ABC

Given the computational benefits of replacing the auxiliary MLE with the score, as the

matching statistic, it is of interest to ascertain whether selection based on (14) will yield

identical draws of φ to selection based on (10), at least in the appropriate limiting sense.

If so, then the property of Bayesian consistency formally proven for the case of the MLE

would hold, by default, for the score-based posterior estimate under appropriate regularity

and identification conditions.

For any auxiliary likelihood (satisfying identification and regularity conditions) with

unknown parameter vector β, we expand the (scaled) score function in (15), evaluated at

β̂(y), around the point β̂(z(φi)),

S(z(φi); β̂(y)) = S(z(φi); β̂(z(φi))) + D
[
β̂(y)− β̂(z(φi))

]
= D

[
β̂(y)− β̂(z(φi))

]
, (42)
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where

D = T−1∂
2La(z(φi); β̃(z(φi)))

∂β∂β′
(43)

and β̃(z(φi)) denotes an (unknown, and coordinate-specific) intermediate value between

β̂(y) and β̂(z(φi)). Hence, using (42), the criterion in (14) becomes√[
S(z(φi); β̂(y))

]′
Σ
[
S(z(φi); β̂(y))

]
=

√[
β̂(y)− β̂(z(φi))

]′
D′ΣD

[
β̂(y)− β̂(z(φi))

]
≤ εT . (44)

Subject to standard conditions regarding the second derivatives of the auxiliary likelihood,

the matrix D in (43) will be of full rank for β̂(z(φi)) close to β̂(y). As a consequence,

and given the positive definiteness of Σ, D′ΣD will be a positive definite matrix that is

some function of φi. Hence, whilst for any εT > 0, the presence of D affects selection of

φi, as εT → 0, φi will be selected via (44) if and only if β̂(y) and β̂(z(φi)) are equal. That

is, the draws produced via the score-based criterion will be equivalent to those produced

by using the auxiliary MLE itself as the matching statistic. Clearly, a precise statement

on this equivalence requires a more rigorous discussion of the conditions required for

identification, given that this equivalence need not hold for at least two reasons: one, for

β̂(y) the auxiliary MLE, and β̂(z(φ)), the zero of S(z(φi); β), there is no guarantee that

β̂(z(φ0)) will converge to β0 = plimT→∞β̂(y) without further restrictions; two, there is no

reason to believe that, even at φi = φ0 , the zero of S(z(φi); β) is unique. For brevity, and

given the somewhat heuristic nature of this discussion, we do not consider such matters

further.

Of course, in practice ABC is implemented with εT > 0, at which point the two

ABC criteria will produce different draws. However, for the types of models entertained

in this paper, preliminary investigation has assured us that the difference between the

ABC estimates of the posteriors yielded by the alternative criteria is negligible for small

enough εT . Hence, in the numerical section we operate solely with the score-based approach

as the computationally feasible method of extracting both consistency and approximate

asymptotic sufficiency in the state space setting.

C SV-SQ Example: AUKF Algorithm and Proof of

Corollary 1

C.1 Detailed Implementation of the AUKF

Given the assumed invariance (over time) of both et and vt in (22) and (23) respectively,

the sigma points needed to implement the AUKF are determined as:

e1 = E(et); e
2 = E(et) + ae

√
var(et); e

3 = E(et)− be
√
var(et)

38



and

v1 = E(vt); v
2 = E(vt) + av

√
var(vt); v

3 = E(vt)− bv
√
var(vt)

respectively, and propagated at each t through the relevant non-linear transformations,

ht(.) and kt(.). The values ae, be, av and bv are chosen according to the assumed distribution

of et and vt, with a Gaussian assumption for both variables yielding values of ae = be =

av = bv =
√

3 as being ‘optimal’. Different choices of these values are used to reflect

higher-order distributional information and thereby improve the accuracy with which the

mean and variance of the non-linear transformations are estimated; see Julier et al. (1995;

2000) for more details. Restricted supports are also managed via appropriate truncation

of the sigma points. The same principles are applied to produce the mean and variance

of the time varying state xt, except that the sigma points need to be recalculated at each

time t to reflect the up-dated mean and variance of xt as each new value of yt is realized.

In summary, the steps of the AUKF applied to evaluate the likelihood function of (22)

and (23) are as follows:

1. Use the (assumed) marginal mean and variance of xt, along with the invariant mean

and variance of vt and et respectively, to create the (3 × 7) matrix of augmented

sigma points for t = 0, Xa,0, as follows. Define:

E(Xa,0) =

 E(xt)
E(vt)
E(et)

 , Pa,0 =

 var(xt) 0 0
0 var(vt) 0
0 0 var(et)

 , (45)

and
√
Pa,0j as the jth column of the Cholesky decomposition (say) of Pa,0. Given

the diagonal form of Pa,0 (in this case), we have

√
Pa,01

=

 √var(xt)
0
0

 ;
√
Pa,02

=

 0√
var(vt)

0

 ;
√
Pa,03

=

 0
0√

var(et)

 .
The seven columns of Xa,0 are then generated by

E(Xa,0); E(Xa,0) + aj
√
Pa,0j ; for j = 1, 2, 3; E(Xa,0)− bj

√
Pa,0j ; for j = 1, 2, 3,

where a1 = ax, a2 = av and a3 = ae, and the corresponding notation is used for bj,

j = 1, 2, 3.

2. Propagate the t = 0 sigma points through the transition equation asXx,1 = k1 (Xa,0, β)

and estimate the predictive mean and variance of x1 as:

E(x1|y0) =
7∑
i=1

wiX
i
x,1 (46)

var(x1|y0) =
7∑
i=1

wi(X
i
x,1 − E(x1|y0))2, (47)
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where X i
x,1 denotes the ith element of the (1× 7) vector Xx,1 and wi the associated

weight, determined as an appropriate function of the aj and bj; see Ponomareva and

Date (2010).

3. Produce a new matrix of sigma points, Xa,1, for t = 1 generated by

E(Xa,1); E(Xa,1) + aj
√
Pa,1j ; for j = 1, 2, 3; E(Xa,1)− bj

√
Pa,1j ; for j = 1, 2, 3,

(48)

using the updated formulae for the mean and variance of xt from (46) and (47)

respectively, in the calculation of E(Xa,1) and Pa,1.

4. Propagate the t = 1 sigma points through the measurement equation as Xy,1 =

h1 (Xa,1, β) and estimate the predictive mean and variance of y1 as:

E(y1|y0) =
7∑
i=1

wiX
i
y,1 (49)

var(y1|y0) =
7∑
i=1

wi(X
i
y,1 − E(y1|y0))2, (50)

where X i
y,1 denotes the ith element of the (1× 7) vector Xy,1 and wi is as defined in

Step 3.

5. Estimate the first component of the likelihood function, p(y1|y0), as a Gaussian

distribution with mean and variance as given in (49) and (50) respectively.

6. Given observation y1 produce the up-dated filtered mean and variance of xt via the

usual KF up-dating equations:

E(x1|y1) = E(x1|y0) +M1(y1 − E(y1|y0))

var(x1|y1) = var(x1|y0)−M2
1 var(y1|y0),

where:

M1 =

7∑
i=1

wi(X
i
x,1 − E(x1|y0))(X i

y,1 − E(y1|y0))

var(y1|y0)

and the X i
x,1, i = 1, 2, ..., 7 are as computed in Step 3.

7. Continue as for Steps 2 to 6, with the obvious up-dating of the time periods and

the associated indexing of the random variables and sigma points, and with the

likelihood function evaluated as the product of the components produced in each

implementation of Step 5, and the log-likelihood produced accordingly.
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C.2 Proof of Corollary 1

The result follows by verifying Assumptions (A2)-(A5) (Assumption (A1) can be verified

by inspection) for the SV-SQ model.

From the auxiliary model in (22) and (23) we have that the transition density is given

by

qβ(x, x′) =
1

1− Φ(ϕ)

1√
2πβ2

3(x′)2
exp

(
−(x− β1 − β2x

′)2

2β2
3x
′

)
, (51)

with x ∈ X := {x : x > ϕ+ β1}. This structure implies that

gβ(x, y) =
1√
2π

exp

(
−(y − ln(x))2

2

)
. (52)

(A2) The stated restrictions on Φ guarantee the satisfaction of this condition.

(A3.1) Satisfaction follows from the definition of X, B and the definition of qβ(x, x′) in

(51).

(A3.2) To verify this condition, we have

sup
β∈B

sup
x,x′∈X

qβ(x, x′) = sup
β∈B

1

1− Φ(ϕ)

1√
2πβ2

3

sup
x,x′∈X

1

x′
exp

(
−(x− β1 − β2x

′)2

2β2
3x
′

)
≤ sup

β∈B

1

1− Φ(ϕ)

1√
2πβ2

3

sup
x′∈X

1

x′
<∞

(A.4.1) Satisfaction follows from the definition of gβ(x, y) in equation (52).

(A.4.2) Note that supx∈X gβ(x, y) = exp(y) exp(1/2). For any compact set K,

lim
x→∞

sup
y∈K

gβ(y, x)

supx′∈X gβ(y, x′)
= lim

x→∞
sup
y∈K

exp(−1/2)√
2π

exp

(
−1

2
(y − ln(x))2 − y

)
which is finite for all fixed x > 0, and any K ⊂ Y compact. The term converges to zero

as x→∞ for any y ∈ K ⊂ Y .

(A.4.3) From the definition ln+(h(z)) = max{0, ln(h(z))} and h(z) = supx∈X gβ(x, z) =

exp(z) exp(1/2), we have that

Eφ[ln+(h(z0(φ)))] = Eφ[z0(φ)] <∞

for stationary distribution f0(z) with finite mean and supz∈Y f0(z) <∞.

(A.4.4) This result follows similarly to (A.4.3) and is thus omitted.

(A5) Verification of (A5) depends on the specific structure of the filtering mechanism used

to obtain the likelihood. To this end, we are required to explicitly incorporate the AUKF

approach in construction of the likelihood. Define Xa,0 to be the (3× 7) matrix of initial

sigma-points, as referenced in Appendix C.1, where Xa,0(j, i) is the element in the j-th row
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and i-th column of Xa,0. For fixed weights {wi}7
i=1, with

∑7
i=1wi = 1, wi > 0, i = 1, .., 7,

we initialize the system by propagating Xa,0 through the state equation. To build the

auxiliary likelihood using the AUKF, then define the predicted mean and variance of xt

as

x̂t|t−1 =
7∑
i=1

wik (Xa,0(1, i), Xa,0(2, i), β) ,

P x
t|t−1 =

7∑
i=1

wi
[
k (Xa,0(1, i), Xa,0(2, i), β)− x̂t|t−1

]2
,

k (Xa,0(1, i), Xa,0(2, i), β) = β1 + β2Xa,0(1, i) + β3

(√
Xa,0(1, i)

)
Xa,0(2, i),

where the sigma points reflect the positivity of the variance. From x̂t|t−1 and P x
t|t−1 the

new matrix of sigma points, Xa,1, is produced. Define the predicted mean and variance

for the observed yt, based on the Xa,t−1 matrix of sigma-points, as

ŷt|t−1 =
7∑
i=1

wih (Xa,t−1(1, i), Xa,t−1(3, i), β) ,

P y
t|t−1 =

7∑
i=1

wi
[
h (Xa,t−1(1, i), Xa,t−1(3, i), β)− ŷt|t−1

]2
,

h (Xa,t−1(1, i), Xa,t−1(3, i), β) = log (Xa,t−1(1, i)) +Xa,t−1(3, i).

For ζt = yt − ŷt|t−1, the augmented Kalman filtering steps for xt are as follows:

x̂t|t = x̂t|t−1 +Mt|tζt,

P x
t|t = P x

t|t−1 −M2
t|tP

y
t|t−1

Mt|t =

∑7
i=1wi

[
k (Xa,t1−(1, i), Xa,t−1(2, i), β)− x̂t|t−1

] [
h (Xa,t−1(1, i), Xa,t−1(3, i), β)− ŷt|t−1

]
P y
t|t−1

.

In accordance with the AUKF algorithm in the Appendix C.1, and noting the structure

of the approximating model, the time-t matrix of sigma points Xa,t is given by

Xa,t =

(
x̂t|t x̂t|t+a1

√
Px
t|t x̂t|t x̂t|t x̂t|t−b1

√
Px
t|t x̂t|t x̂t|t

λ∗ λ∗ λ∗+a2
√
var(vt) λ∗ λ∗ λ∗−b2

√
var(vt) λ∗

γ∗ γ∗ γ∗ γ∗+a3
√
π2/2 γ∗ γ∗ γ∗−b3

√
π2/2

)
, (53)

where a1 = a2 = a3 = b1 = b2 = b3 =
√

3, γ∗ = −1.27,

λ∗ =
φ
(
−β1
β3

)
1− Φ

(
−β1
β3

) and var(vt) =

[
1− λ

(
−β1

β3

)(
λ

(
−β1

β3

)
− −β1

β3

)]
. (54)

Using the definitions ŷt|t−1, P
y
t|t−1, ζt, the auxiliary log-likelihood, conditioning on y1, is

given by

La(y; β) =
T∑
t=2

`(yt|yt−1
1 ; β) = −

T∑
t=2

ln(P y
t|t−1) +

1

2

ζ2
t

P y
t|t−1

,
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where a Gaussian approximation for the components of the likelihood function is adopted

at this point.

Primitive conditions guaranteeing (A5) are as follows: 1) Eφ[|`(zt(φ); zt−1
1 (φ), β)|] <∞

for all β ∈ B, where La(z(φ); β)/T = 1
T

∑T
t=1 `(zt(φ); zt−1

1 (φ), β); 2) `(zt(φ); zt−1
1 (φ), β) 6=

`(zt(φ); zt−1
1 (φ), β̃) for all β 6= β̃. Condition 1) is satisfied by an extension of Proposition

10 part (i) in Douc and Moulines (2012) to the case of stationary z0(φ); these details

are omitted for brevity but are available from the authors upon request. For Condition

2) to be satisfied, the AUKF recursions must be unique in β. Uniqueness of the AUKF

recursions requires that the matrix of sigma-points be unique in β for each t ≥ 1. Denote

by Xa,t(β) the (3× 7) matrix of sigma-points in (53) constructed for a given β. Focusing

on the elements of Xa,t(β) due to x̂t|t, by the Kalman recursions for this model, x̂t|t is a

unique function of β and so Xa,t(β) 6= Xa,t(β̃) if β 6= β̃, and the result follows.8

8We focus on the elements within the Kalman recursion portion of Xa,t(β), since λ∗(β) is not one-to-one

in the parameters β1, β3 and so there exists β̃ 6= β such that λ∗(β) = λ∗(β̃).
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