195 research outputs found

    Frame expansions with erasures: an approach through the non-commutative operator theory

    Get PDF
    In modern communication systems such as the Internet, random losses of information can be mitigated by oversampling the source. This is equivalent to expanding the source using overcomplete systems of vectors (frames), as opposed to the traditional basis expansions. Dependencies among the coefficients in frame expansions often allow for better performance comparing to bases under random losses of coefficients. We show that for any n-dimensional frame, any source can be linearly reconstructed from only (n log n) randomly chosen frame coefficients, with a small error and with high probability. Thus every frame expansion withstands random losses better (for worst case sources) than the orthogonal basis expansion, for which the (n log n) bound is attained. The proof reduces to M.Rudelson's selection theorem on random vectors in the isotropic position, which is based on the non-commutative Khinchine's inequality.Comment: 12 page

    Geometric approach to error correcting codes and reconstruction of signals

    Full text link
    We develop an approach through geometric functional analysis to error correcting codes and to reconstruction of signals from few linear measurements. An error correcting code encodes an n-letter word x into an m-letter word y in such a way that x can be decoded correctly when any r letters of y are corrupted. We prove that most linear orthogonal transformations Q from R^n into R^m form efficient and robust robust error correcting codes over reals. The decoder (which corrects the corrupted components of y) is the metric projection onto the range of Q in the L_1 norm. An equivalent problem arises in signal processing: how to reconstruct a signal that belongs to a small class from few linear measurements? We prove that for most sets of Gaussian measurements, all signals of small support can be exactly reconstructed by the L_1 norm minimization. This is a substantial improvement of recent results of Donoho and of Candes and Tao. An equivalent problem in combinatorial geometry is the existence of a polytope with fixed number of facets and maximal number of lower-dimensional facets. We prove that most sections of the cube form such polytopes.Comment: 17 pages, 3 figure

    Message-Passing Estimation from Quantized Samples

    Full text link
    Estimation of a vector from quantized linear measurements is a common problem for which simple linear techniques are suboptimal -- sometimes greatly so. This paper develops generalized approximate message passing (GAMP) algorithms for minimum mean-squared error estimation of a random vector from quantized linear measurements, notably allowing the linear expansion to be overcomplete or undercomplete and the scalar quantization to be regular or non-regular. GAMP is a recently-developed class of algorithms that uses Gaussian approximations in belief propagation and allows arbitrary separable input and output channels. Scalar quantization of measurements is incorporated into the output channel formalism, leading to the first tractable and effective method for high-dimensional estimation problems involving non-regular scalar quantization. Non-regular quantization is empirically demonstrated to greatly improve rate-distortion performance in some problems with oversampling or with undersampling combined with a sparsity-inducing prior. Under the assumption of a Gaussian measurement matrix with i.i.d. entries, the asymptotic error performance of GAMP can be accurately predicted and tracked through the state evolution formalism. We additionally use state evolution to design MSE-optimal scalar quantizers for GAMP signal reconstruction and empirically demonstrate the superior error performance of the resulting quantizers.Comment: 12 pages, 8 figure

    Frame Permutation Quantization

    Full text link
    Frame permutation quantization (FPQ) is a new vector quantization technique using finite frames. In FPQ, a vector is encoded using a permutation source code to quantize its frame expansion. This means that the encoding is a partial ordering of the frame expansion coefficients. Compared to ordinary permutation source coding, FPQ produces a greater number of possible quantization rates and a higher maximum rate. Various representations for the partitions induced by FPQ are presented, and reconstruction algorithms based on linear programming, quadratic programming, and recursive orthogonal projection are derived. Implementations of the linear and quadratic programming algorithms for uniform and Gaussian sources show performance improvements over entropy-constrained scalar quantization for certain combinations of vector dimension and coding rate. Monte Carlo evaluation of the recursive algorithm shows that mean-squared error (MSE) decays as 1/M^4 for an M-element frame, which is consistent with previous results on optimal decay of MSE. Reconstruction using the canonical dual frame is also studied, and several results relate properties of the analysis frame to whether linear reconstruction techniques provide consistent reconstructions.Comment: 29 pages, 5 figures; detailed added to proof of Theorem 4.3 and a few minor correction

    Consistent Basis Pursuit for Signal and Matrix Estimates in Quantized Compressed Sensing

    Get PDF
    This paper focuses on the estimation of low-complexity signals when they are observed through MM uniformly quantized compressive observations. Among such signals, we consider 1-D sparse vectors, low-rank matrices, or compressible signals that are well approximated by one of these two models. In this context, we prove the estimation efficiency of a variant of Basis Pursuit Denoise, called Consistent Basis Pursuit (CoBP), enforcing consistency between the observations and the re-observed estimate, while promoting its low-complexity nature. We show that the reconstruction error of CoBP decays like M1/4M^{-1/4} when all parameters but MM are fixed. Our proof is connected to recent bounds on the proximity of vectors or matrices when (i) those belong to a set of small intrinsic "dimension", as measured by the Gaussian mean width, and (ii) they share the same quantized (dithered) random projections. By solving CoBP with a proximal algorithm, we provide some extensive numerical observations that confirm the theoretical bound as MM is increased, displaying even faster error decay than predicted. The same phenomenon is observed in the special, yet important case of 1-bit CS.Comment: Keywords: Quantized compressed sensing, quantization, consistency, error decay, low-rank, sparsity. 10 pages, 3 figures. Note abbout this version: title change, typo corrections, clarification of the context, adding a comparison with BPD

    Quantization and Compressive Sensing

    Get PDF
    Quantization is an essential step in digitizing signals, and, therefore, an indispensable component of any modern acquisition system. This book chapter explores the interaction of quantization and compressive sensing and examines practical quantization strategies for compressive acquisition systems. Specifically, we first provide a brief overview of quantization and examine fundamental performance bounds applicable to any quantization approach. Next, we consider several forms of scalar quantizers, namely uniform, non-uniform, and 1-bit. We provide performance bounds and fundamental analysis, as well as practical quantizer designs and reconstruction algorithms that account for quantization. Furthermore, we provide an overview of Sigma-Delta (ΣΔ\Sigma\Delta) quantization in the compressed sensing context, and also discuss implementation issues, recovery algorithms and performance bounds. As we demonstrate, proper accounting for quantization and careful quantizer design has significant impact in the performance of a compressive acquisition system.Comment: 35 pages, 20 figures, to appear in Springer book "Compressed Sensing and Its Applications", 201
    corecore