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Abstract

This paper focuses on the estimation of low-complexity signals when they are observed
through M uniformly quantized compressive observations. Among such signals, we consider
1-D sparse vectors, low-rank matrices, or compressible signals that are well approximated
by one of these two models. In this context, we prove the estimation efficiency of a vari-
ant of Basis Pursuit Denoise, called Consistent Basis Pursuit (CoBP), enforcing consistency
between the observations and the re-observed estimate, while promoting its low-complexity
nature. We show that the reconstruction error of CoBP decays like M−1/4 when all param-
eters but M are fixed. Our proof is connected to recent bounds on the proximity of vectors
or matrices when (i) those belong to a set of small intrinsic “dimension”, as measured by
the Gaussian mean width, and (ii) they share the same quantized (dithered) random pro-
jections. By solving CoBP with a proximal algorithm, we provide some extensive numerical
observations that confirm the theoretical bound as M is increased, displaying even faster
error decay than predicted. The same phenomenon is observed in the special, yet important
case of 1-bit CS.

Keywords: Quantized compressed sensing, quantization, consistency, error decay, low-rank,
sparsity.

1 Introduction

The theory of Compressed Sensing (CS) shows that many signals of interest can be recon-
structed from a few linear, and typically random, observations [6, 16, 17]. Interestingly, this
reconstruction is made possible if the number of observations (or measurements) is adjusted to
the intrinsic complexity of the signal, e.g., its sparsity for vectors or its low-rankness for matri-
ces. Thus, this principle is a generalization of the Shannon-Nyquist sampling theorem, where
the sampling rate is set by the bandwidth of the signal. However, a significant aspect of CS
systems is the effect of quantization on the acquired observations, in particular for the purpose
of compression and transmission [5, 13, 14, 21, 22, 27, 37]. This quantization is a non-linear
transformation that both distorts the CS observations and increases, especially at low bit rates,
the reconstruction error of CS reconstruction procedures.

This work focuses on minimizing the impact of (scalar) quantization during the reconstruc-
tion of a signal from its quantized compressive observations. While more efficient quantization
procedures exist in the literature (e.g., Σ∆ [21], universal [3], binned [27, 30], vector [29, 30]
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or analysis-by-synthesis quantizations [34]), scalar quantization remains appealing for its im-
plementation simplicity in most electronic devices, and for its robustness against measurement
lost.

Conversely to other attempts, which consider quantization distortion as additive Gaussian
measurement noise [8] and promote a Euclidean (`2) fidelity with the signal observations as in the
Basis Pursuit Denoise (BPDN) program, better signal reconstruction methods are reached by
forcing consistency between the re-observed signal estimate and the quantized observations [19,
27, 35].

We show here that a consistent version of the basis pursuit program [11], coined CoBP,
provides better signal estimates at large M than those obtained by BPDN. When reconstructing
sparse or compressible signals, CoBP is similar, up to an additional normalization constraint, to
former methods proposed in [13–15, 22]. We prove the efficiency of CoBP from recent results on
the proximity of signals when those are taken in a set K ⊂ RN of small “dimension”, i.e., with
small Gaussian width w(K) [1, 10], and when their quantized random projections are consistent
[24, 25]. In particular, we show that for sub-Gaussian sensing matrices, the `2-reconstruction
error of CoBP decays as

√
w(K)/M1/4, with an additional constant error bias arising in the case

of non-Gaussian sensing matrices. This contrasts with BPDN, whose reconstruction error is
only guaranteed to saturate when M increases.

The rest of this paper is structured as follows. Sec. 2 introduces the problem by explaining
the low-complexity signal space, our Quantized Compressed Sensing (QCS) model and the
BPDN reconstruction procedure as generally used in QCS. Sec. 3 reviews important results on
the proximity of consistent vectors; in Sec. 4 we introduce and analyze CoBP. Finally, Sec. 5
demonstrates experimentally the capabilities of this method in QCS of signals and matrices,
before concluding.

Conventions: Vectors and matrices are associated to bold symbols. The probability of an
event X is P(X ). The identity matrix is 1D ∈ RD×D (D ∈ N), [[D]] := {1, · · · , D} and |S|
is the cardinality of S ⊂ [[D]]. The `p-norm of u is ‖u‖p and the unit `p-ball is BNp = {x ∈
RN : ‖x‖p 6 1}, with BN := BN2 . Assuming N = n2 is a square number, for a matrix
U = (u1, · · · ,un) ∈ Rn×n with vectorization vec(U) := (uT1 , · · · ,uTn )T ∈ RN , rank(U), ‖U‖,
‖U‖∗ and ‖U‖F := tr(UTU)1/2 = ‖vec(U)‖2 denote its rank, operator norm, nuclear norm
and its Frobenius norm, respectively. We will often assimilate matrices in Rn×n with their
vectorization in RN , e.g., identifying {U ∈ Rn×n : ‖U‖F 6 1} with BN . Finally, we write f . g
or f = O(g) if f 6 c g for c > 0, and similarly for f & g and f = Ω(g).

2 Quantized Compressed Sensing of Low-Complexity Signals

2.1 Low-complexity Signal Model

This work focuses on the sensing of signals belonging to a low-complexity set K ⊂ RN . A typical
example is the set of K-sparse vectors K = ΣK := {u ∈ RN : ‖u‖0 := |suppu| 6 K}, as well as
the set of rank-r matrices Cr := {U ∈ Rn×n ' RN : rank(U) 6 r}.

As in [10], we assume that the (bounded) convex hull K := conv(K ∩ BN ) of K is associated
to the definition of an appropriate atomic norm1 ‖·‖] such that

K = Ks := {u ∈ RN : ‖u‖] 6 s, ‖u‖2 6 1}, (1)

1If K is convex and centrally symmetric around the origin, ‖·‖] can always be defined by the gauge of K (see
[10] for details).
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for some s > 0. For instance, for compressible signals in ΣK , ‖·‖] = ‖·‖1 and s =
√
K, while

for matrices in Cr, ‖·‖] = ‖·‖∗ for s =
√
r [32].

The “low-complexity” nature of these sets stems from their small Gaussian mean width

w(K) := E sup
u∈K
|gTu|, g ∼ N (0,1N ).

For instance, w(ΣK)2 = w(ΣK)2 . K logN/K and w(Cr)2 = w(Cr)2 6 4nr [1, 10]. The quantity
w(K), also called Gaussian complexity, has been recognized as central, e.g., for random pro-
cesses characterization [36], high-dimensional statistics and inverse problem solving [9, 10] or
classification in randomly projected domains [2]. As explained below, w(K) also determines the
minimal number of measurements for CS of signals in K [10].

2.2 Quantized Compressed Sensing

Given a certain quantization resolution δ > 0, we focus on the impact of a uniform (midrise)
quantizer Q(t) := δ(b tδ c+ 1

2) ∈ Zδ := δ(Z+ 1
2), applied componentwise, in the quantized sensing

model
q = A(x0) := Q(Φx0 + ξ) ∈ ZMδ , (2)

where Φ ∈ RM×N is a random sensing matrix and ξ ∼ UM ([−δ/2, δ/2]) (i.e., ξi ∼iid U([−δ/2, δ/2])
for i ∈ [[M ]]) is a uniform dithering2. This random dithering is known at the signal reconstruc-
tion and stabilizes the action of Q [3, 20, 23]. By slightly abusing the notation, when (2) senses
an element X0 of a matrix set in Rn×n, x0 = vec(X0) amounts to the N -length vectorization
of this element, assuming N = n2.

As often the case in CS, we consider that Φ is a sub-Gaussian random matrix, i.e., its entries
are distributed as Φij ∼iid ϕ with ϕ a symmetric, zero-mean and unit-variance sub-Gaussian
random variable (r.v.), having finite sub-Gaussian norm

‖ϕ‖ψ2 := supp>1 p
−1/2(E|ϕ|p)1/p <∞.

For such a r.v. of sub-Gaussian norm α > 0, we have in fact P[|ϕ| > t] . exp(−ct2/α2) for any
t > 0. Examples of such r.v.’s are Gaussian, uniform, bounded or Bernoulli distributed r.v.’s.
Below, we write ϕ ∼ Nsg,α(0, 1), and the shorthand Φ ∼ NM×N

sg,α (0, 1) for the associated M ×N
matrix, to specify that ϕ is a sub-Gaussian r.v. of norm α.

In the absence of quantization, if M & w(K)2, with high probability, any x0 ∈ K can be
reconstructed from sub-Gaussian observations Φx0 using convex optimization programs such
as Basis Pursuit [10]. Therefore, the minimal number of measurements needed for reconstruct-
ing K-sparse or compressible signals in RN grows like K logN/K, and like nr for rank-r and
compressible n× n matrices [1, 10].

1-bit Quantization Regime: The exponentially decaying tail bounds of the sub-Gaussian
entries of Φ show that a suitable value of δ can essentially turn (2) into a 1-bit CS model when
K is bounded [4, 26, 33]. Indeed, from the definition of Q and assuming ‖x0‖2 = 1, for i ∈ [[M ]],
P[qi /∈ {±δ/2}] = P[|ϕTi x+ ξi| > δ] = p0 6 2 exp(−1

2δ
2), with p0 = 0.0027 for δ = 3. Our study

holds in such a regime with the interesting advantage of allowing the estimation of the signal
norm, as opposed to the 1-bit CS model sign (Φx0) [4, 32]. This is due to the pre-quantization
dithering in (2). Interestingly, combining the sign operator with prequantization thresholds in
1-bit CS also removes this signal norm uncertainty [28].

2As in [25], our results remain valid if ξ ∼ UM ([t, t+ δ]) for any t ∈ R.
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2.3 Basis Pursuit Denoise

The first method used to estimate x0 from q in (2) was considering quantization as an additive
noise of bounded power under high resolution assumption (HRA), i.e., δ � ‖x0‖2 [6]. In (2), the
impact of the dithering provides q = (Φx+ ξ) +n with n := q− (Φx+ ξ) ∼ UM ([−δ/2, δ/2]).

Therefore, ‖n‖22 6 ε2 = M δ2

12+κ
√
M holds with high probability for small κ (e.g., κ = 2) [20, 22].

In such a case, the general BPDN program,

x∗BPDN := argmin
u∈RN

‖u‖] s.t. ‖Φu+ ξ − q‖2 6 ε (BPDN)

can be solved for estimating x0. When Φ/
√
M satisfies the restricted isometry property (RIP)

and when K is the set of sparse signals, then, setting ‖·‖] = ‖·‖1, [21, 22] show that

‖x∗ − x0‖2 = O(ε/
√
M) = O(δ).

A similar result holds in the case of QCS of low-rank matrices using a Lasso reconstruction that
minimizes a Lagrangian formulation of BPDN [7]. Notice that a variant of BPDN, called Basis
Pursuit DeQuantizer of moment p (BPDQ [22]), replaces the `2-norm of the BPDN constraint
by an `p-norm (2 6 p <∞). Its error decays like O(δ/

√
logM) [5].

3 Proximity of Consistent Vectors

This section summarizes a recent study showing that the proximity of vectors of a subset
K ⊂ RN with small Gaussian mean width can be bounded provided they share the same image
through the random mapping A, i.e., if they are consistent [25]. As will be clear in Sec. 4, this
property is the key for characterizing the behavior of CoBP.

This proximity is impacted by the level of anisotropy of the sub-Gaussian rows composing
Φ ∼ NM×N

sg,α (0, 1) [1], as measured by the smallest κsg > 0 such that, for ϕ ∼ NN
sg,α(0, 1),

g ∼ NN (0, 1) and all u ∈ RN ,∫ +∞
0

∣∣P(|〈ϕ,u〉| > t)− P(|〈g,u〉| > t)
∣∣ dt 6 κsg‖u‖∞. (3)

For Gaussian (isotropic) random vectors κsg = 0, while for sub-Gaussian ϕ ∼ NN
sg,α(0, 1),

κsg 6 9
√

27α3, with α 6 1 for Bernoulli r.v.’s [25].

As clarified in Prop. 1, when the mapping A integrates a non-Gaussian, but sub-Gaussian
sensing matrix Φ, the proximity of consistent elements x,y in K is guaranteed when x − y is
not “too sparse”, i.e., when it belongs to

ΣK0 := {u ∈ RN : K0‖u‖2∞ 6 ‖u‖22},
for K0 large enough compared to κ2sg . For instance, a K-sparse vector u ∈ ΣK := {v : ‖v‖0 :=
|suppv| 6 K} cannot belong to ΣK0 for K0 > K as then ‖u‖22 6 K‖u‖2∞.

Proposition 1 (Consistency width [25]). Given a quantization resolution δ > 0, ε ∈ (0, 1), a
sub-Gaussian distribution Nsg,α(0, 1) respecting (3) for 0 6 κsg < ∞, and K ⊂ BN a bounded
subset of RN , there exist some values C, c > 0 depending only on α and such that, if

M > C (2+δ)4

δ2ε4
w(K)2, (4)

then, for Φ ∼ NM×N
sg,α (0, 1), ξ ∼ UM ([−δ/2, δ/2]) and

√
K0 > 16κsg , with probability exceeding

1− 2 exp(−cεM/(1 + δ)), we have for all x,y ∈ K
x− y ∈ ΣK0 , A(x) = A(y) ⇒ ‖x− y‖2 6 ε, (5)
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with A defined in (2). Moreover, for any orthonormal basis Ψ ∈ RN×N , if K = (ΨΣK) ∩ BN
then (4) simplifies to

M > C ′ 2+δε K log
(
N
Kδ (2+δε )3/2

)
, (6)

for some C ′ > 0 depending only on α.

We remark that for Gaussian sensing matrices, the “antisparse” condition on x − y (and
on K0) vanishes since κsg = 0. This provides, in the special case of the sparse signal set, a
proximity bound in (5) formerly established in [24].

4 Consistent Basis Pursuit

The previous sections allow us now to define a suitable reconstruction procedure for estimating
any signal x0 ∈ Ks (for some s > 0 in (1)) observed through the model (2), e.g., for reconstruct-
ing compressible signals or matrices belonging to ΣK or Cr, respectively. We split the study
according to the nature of the sensing matrix.

4.1 Gaussian Sensing Matrix

When Φ is Gaussian, i.e., κsg = 0, we propose to estimate x0 with the following program coined
Consistent Basis Pursuit,

x∗ := argmin
u∈RN

‖u‖] s.t. A(u) = A(x0), u ∈ BN . (CoBP)

This is a convex optimization as the first constraint is equivalent to ‖Φu + ξ − A(x0)‖∞ 6
δ/2 [22]. The proximity of x∗ to x0 is then guaranteed by Prop. 1.

Proposition 2. If A respects (5) for all x,y ∈ Ks and K0 = 0, then for all x0 ∈ K, the
estimate x∗ obtained by CoBP from q = A(x0) satisfies ‖x0 − x∗‖2 6 ε.

Proof. Since x0 ∈ Ks is a feasible vector of the CoBP constraints, we necessarily have ‖x∗‖] 6
‖x0‖] 6 s. By definition of CoBP, x∗ ∈ BN so that x∗ ∈ Ks. The result follows from (5) with
x = x0 and y = x∗.

Prop. 2 assumes that K0 = 0 in (5). This holds if κsg = 0, e.g., if Φ ∼ NM×N (0, 1).
Therefore, combining the conditions of Prop. 1 with this last proposition, we get the following
corollary by saturating (4) with respect to M .

Corollary 1. Given some universal constant c > 0, with probability exceeding 1−2 exp(−cM3/4/
√
δ)

over the draw of Φ ∼ NM×N (0, 1) and ξ ∼ UM ([−δ/2, δ/2]), for every x0 ∈ Ks, the estimate
x∗ obtained by CoBP from q = A(x0) satisfies

‖x0 − x∗‖2 = O
(
2+δ√
δ

(w(Ks)2

M )1/4
)
,

i.e., ‖x0 − x∗‖2 = O
(
M−1/4

)
if only M varies.

At first sight, the error decay of CoBP in M−1/4 could seem slow. However, as mentioned in
Sec. 2.3, the best known error decay for BPDN under the sensing model (2) is O(δ) [21], which
does not decay with M . The same constant bound was found for a variant of CoBP without
the ball constraint [15].
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4.2 Non-Gaussian Sensing Matrix

For non-Gaussian Φ, κsg 6= 0 in general. In order to reach a meaningful estimate of x0 ∈ Ks, we
further assume that ‖x0‖∞ 6 λ, for some λ > 0. As will be clear, this allows us to characterize
the sparse nature of x0 − x∗ when x∗ is an estimate of x0 produced by the modified program:

x∗ := argmin
u∈RN

‖u‖] s.t.

{
A(u) = A(x0),

u ∈ BN ∩ λBN∞,
(CoBPλ)

with CoBPλ ≡ CoBP as soon as λ > 1 since BN ⊂ BN∞.

Proposition 3. If A respects (5) for all x,y ∈ Ks and any K0 > (16κsg )2, then for any
x0 ∈ Ks ∩ λBN∞, the solution obtained by CoBPλ from q = A(x0) respects

‖x0 − x∗‖2 6 ε+ 2λ
√
K0.

Proof. As for the proof of Prop. 2, x0 ∈ Ks implies that x∗ ∈ Ks. If ‖x0 − x∗‖2 6
√
K0‖x0 −

x∗‖∞, then, since x0,x
∗ ∈ λBN∞, ‖x0 − x∗‖2 6 2λ

√
K0. Otherwise, we have x0 − x∗ ∈ ΣK0 . In

this case, since (5) is assumed satisfied for all pairs of vectors of Ks, we have ‖x0 − x∗‖2 6 ε,
which concludes the proof.

Taking K0 = d(16κsg )2e, this corollary is easily established.
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Corollary 2. Given some universal constant c > 0, with probability exceeding 1−2 exp(−cM3/4√
δ

)

over the draw of Φ ∼ NM×N
sg,α (0, 1) and ξ ∼ UM ([−δ/2, δ/2]), the CoBPλ estimate x∗ of any

x0 ∈ Ks ∩ λBN∞ satisfies

‖x0 − x∗‖2 = O
(
2+δ√
δ

(w(Ks)2

M )1/4 + κsgλ
)
, (7)

i.e., ‖x0 − x∗‖2 = O(M−1/4 + κsgλ) if only M varies.

Loosely speaking, Cor. 2 shows that the reconstruction error is not guaranteed to decay
below a certain level fixed by κsg‖x0‖∞. A similar behavior was already observed in the case
of 1-bit CS with non-Gaussian measurements [1].

5 Experiments

In this section we run several numerical simulations in order to assess the experimental benefit
of CoBP compared to BPDN in various QCS settings. As CoBP is a convex optimization prob-
lem containing non-smooth convex functions, we solve3 it with the versatile Parallel Proximal
Algorithm (PPXA) [12], this one being efficiently implemented in the UNLocBoX toolbox [31].
We refer the reader to [18] for an example application of PPXA in the solution of low-rank
matrix recovery.

For our experiments, three different sensing contexts are tested: the two first ones consider
QCS of sparse signals (for Gaussian or Bernoulli sensing matrices), while the last one focuses
on QCS of rank-1 matrices. In all cases, the quantization resolution is fixed by δ = 6 × 21−B

with B ∈ [[4]]. As explained in Sec. 2.2, each qi can then be essentially coded with B bits, e.g.,
if B = 1, E|

{
i : qi /∈ {±δ/2}

}
| 6 0.0027M . Some of our results are compared to those of BPDN

with ε set as in Sec. 2.3. The constraint “u ∈ BN” is also added to BPDN for reaching fair
comparisons with CoBP4.

5.1 Gaussian QCS of sparse signals

In this experiment, we set N = 2048, K = 16, B = 3 and M/K ∈ [8, 128], i.e., well after
the phase transition (here around M/K ' 6) where sparse signal reconstruction from noisy CS
measurements is guaranteed [8]. For each value of M , 20 different Gaussian sensing matrices,
dithering realizations and unit-norm K-sparse signals were randomly generated. Each signal
x0 has its K-length support selected uniformly at random in [[N ]], with non-zero components
drawn as N (0, 1) before normalization. The reconstruction error decay averaged over these
20 trials is shown for BPDN, BPDQ with p = 4 (see Sec. 2.3) and CoBP in Fig. ??(left) in a
log2 / log2 plot. For indication, a linear fitting over the last 4 values of log2M/K provides slopes
of value −0.31, −0.33 and −0.95 for BPDN, BPDQ and CoBP, respectively. As already observed
experimentally in other works forcing tight or approximate consistency in signal reconstruction
[13, 14, 19, 22, 27], this clearly highlights the advantage of consistent signal reconstruction when
M/K is large. Moreover, CoBP approaches an error decay of M−1 similar to the distance decay
of consistent K-sparse vectors when (6) is saturated, i.e., better than the “M−1/4” of Cor. 1.

3Free matlab code: http://sites.uclouvain.be/ispgroup/index.php/Softwares.
4The ratio of computational times between CoBP and BPDN is about 1.3.
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5.2 Bernoulli vs Gaussian QCS

This second experiment stresses the impact of the sub-Gaussian nature of the sensing matrix
over the CoBP reconstruction error. We focus on the case of Gaussian QCS (Φ ∼ NM×N (0, 1))
and Bernoulli QCS (i.e., Φij equals ±1 with probability 1/2) when observing K-sparse signals
for K growing and M/K constant. In particular, we set N = 1024, B = 4, K ∈ [1, 64] and
M/K = 16. For each value of K, 20 different sensing matrices, dithering realizations and
unit-norm K-sparse signals are generated as in the first experiment. CoBP and CoBPλ are
compared (with an oracle assisted λ := ‖x0‖∞). Comparing the error bounds for Gaussian and
sub-Gaussian QCS in Cor. 1 and in Cor. 2, respectively, we expect that at low K and for M/K
constant, Bernoulli QCS reaches worst reconstruction error than Gaussian QCS, as then the
bias κsgλ = κsg‖x0‖∞ ' κsg/

√
K can be high. This is indeed observed in Fig. ??(middle) with

a clear gap between Bernoulli and Gaussian QCS performances when K 6 16. CoBPλ does
lead to clear improvements over CoBP.

5.3 Gaussian QCS of rank-1 matrices

We reconstruct here rank-1 matrices in R32×32 (i.e., N = 1024 and n = 32) from the Gaussian
QCS model (2) with B ∈ {1, 2}. Both CoBP and BPDN are solved with ‖·‖] = ‖·‖∗. The
intrinsic complexity of such rank-1 matrices is 63 < P := 64. For each value of the oversampling
ratio M/P ∈ [4, 32], we generate 20 different Gaussian sensing matrices, dithering realizations
and rank-1 matrices according to x0 = vec(X0) and X0 = vvT /‖v‖22 with v ∼ N n(0, 1). As for
the first experiment on K-sparse signals, CoBP reaches a faster reconstruction error decay than
BPDN. At B = 2, an indicative linear fitting over the last 4 values of M/K provides estimated
decay exponents for CoBP and BPDN of −0.85 and −0.33, respectively.

6 Conclusion

In the context of QCS of signals with low-complexity (e.g., sparse signals, low-rank matrices),
we show that the consistent reconstruction method CoBP has an estimation error decaying as
M−1/4, i.e., faster than the one of BPDN. This is confirmed numerically on several settings
with even faster effective decaying rate at quantization resolution as low as one bit per mea-
surement. As observed initially in 1-bit CS [1], QCS performances for general sub-Gaussian
sensing matrices are also impacted when the sensed signal is “too sparse”. Finally, to the best
of our knowledge, we provided the first theoretical analysis of CoBP in the case of low-rank
matrix reconstruction from QCS observations.
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