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Abstract
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ficients, with a small error and with high probability. Thus every frame expansion withstands random losse
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1. Introduction

Representation of signals using frames, which are overcomplete sets of vectors, is advantage
basis expansions in a variety of practical applications. Dependencies among the coefficients of t
complete representations guarantee a better stability in presence of noise, quantization, erasure
as greater freedom of design compared to bases. This general paradigm is confirmed by man
ments and some theoretical work, see, e.g., [1,3–8] and the bibliography cited therein.

Of particular importance are the dependencies contained in frame expansions for design of c
nication systems. The redundancy of frames can mitigate random losses of expansion coefficie
occur in packet-based communication systems such as the Internet. Detection and retransmissi
packets in such systems takes much longer than their original transmission. This is the main so
delays known to all network users. Such delays are unacceptable for many applications, such as
time video. It is thus desirable for the receiver to be able to approximately reconstruct the infor
sent to him fromwhateverpackets he receives, despite the loss of some packets. There should ex
tain dependencies among the packets, otherwise the information contained in a missing packet w
irrevocably lost. Then, what is the best way to distribute the information among the packets so th
packet is equally important? Equivalently, this is the problem of the multiple description coding (M
theory, where one wishes to communicate information over a set of parallel channels, each o
either works perfectly or not at all.

The idea originated in [6] was to use frame expansions to distribute the information among the
with some dependencies. One can view this communication scheme as follows:

x ∈ R
n → frame

expansion

y∈R
m−−−→ transmission

(losses)

ŷ∈R
k−−−→ reconstruction → x̂ ∈ R

n. (1)

The source information is viewed as a vectorx ∈ R
n. This vector is represented by itsm � n expansion

coefficients with respect to some fixed frame. These coefficients are sent over the network inm packets,
each in its own packet. Due to unpredictable communication losses, the user receives only a
subset of these packets, sayk in average. The user applies the linear reconstruction to the received
ficients in hope that the reconstruction error would be small with graceful probability. The fundam
problem is2:

How many random coefficients of a frame expansion does the user need to receive to be able to
reconstruct the source vector with a small error and with large probability?

The work on this question, both theoretical and experimental, was initiated in [6] and continued
and [3], see also a survey paper [5]. Both cases were considered:k < n, which clearly requires a statistic
model of input vectorx, andk � n. The performance of the frame representations was compared t
of the classical block channel-coded basis representations.

In the present paper we look for a best bound onk which works forall frames andall source vectorsx.
Does every frame necessarily perform better than the trivial frame, the orthonormal basis—or, mo
erally, an orthonormal basis inRn each of whose elements is repeateds times? Communicating a sourc

2 In this paper, we neglect the quantization issues, which are treated in [7] and [6].
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vectorx with the trivial frame is equivalent to sending each of then coefficients of the orthonormal ex
pansion ofx preciselys times. To be able to reconstructx, the user must receive each of then coefficients
at least once. This is possible with probability at least 1− ε only if the user receivesk � C(ε)n logn ran-
dom coefficients in total. This gives the lower bound onk in the question above. Remarkably, the up
bound matches.

Theorem 1.1. For any uniform tight frame inRn and any source vectorx, the linear reconstruction
from k random coefficients ofx yields an approximation error at mostε with probability1− ε, provided
k � C(ε)n logn.

HereC(ε) is a constant that depends only onε; this dependence is discussed in Corollary 2.2 be
which is a more explicit version of Theorem 1.1. Tightness of the frame is assumed only for simp

Note that the optimal bound onk does not depend on the sizem of the frame, so there may be ma
lost coefficients—in fact, most of them may be lost. Hence it is not the number of the lost coeffi
that determines the performance but the numberk of received coefficients.

As argued in [5], one advantage of frame representations over the traditional block channel-cod
representations is that frames allow for a real time reconstruction of the source. The receiver can
to reconstruct a source vector—such as a still image or video—in real time as the packets arrive,
from the very first successfully received coefficient. Within one communication session, the num
received coefficientsk will thus grow in time from 1 to possiblym, and the quality of reconstruction wi
improve as more coefficients arrive. (In contrast to this, in the block channel-coded basis model t
must wait untiln coefficients arrive.) Theorem 1.1 states that, withanyframe design andanysource, the
reconstruction quality will reach a nearly optimal level as soon as∼ n logn coefficients are received, s
one may stop the session then.

Theorem 1.1 shows that every frame must withstand random losses better than the trivial fra
one formed by repeating the elements of the orthogonal basis. Of course, there exist frames that
better than the trivial frame. The problem of optimal design of such frames is addressed in [6] and
noticed, e.g., in [7], a set ofm = sn random points(xi) taken independently with the uniform distributio
on the unit sphereSn−1 forms a frame which approaches a tight frame with large probability, prov
the redundancys → ∞. Consequently, a randomk-element subset of this set also forms an almost t
frame with large probability, providedk � tn andt is large. Then one can linearly reconstruct any sou
vector x from using itsk random coefficients with respect to the frame(xi) with probability 1− ε,
providedk � C(ε)n. Hence for this frame, the logarithmic factor is not needed in the number rec
coefficientsk.

Our proof of Theorem 1.1 is based on a result of M. Rudelson in the asymptotic convex ge
about vectors in the isotropic position [14]. There exists a remarkable equivalence of the theories
the following classes coincide inRn (up to an appropriate rescaling), see [16]:

• the class of tight frames,
• the class of contact points of convex bodies,
• the class of John’s decompositions of the identity,
• the class of vectors in the isotropic position.
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The selection theorem of M. Rudelson [14] can thus be interpreted as a result about frames, whi
to Theorem 1.1. In order to obtain an exponentially large probability in Theorem 1.1 and becau
slightly different model of random selection in M. Rudelson’s theorem, we will prove the latter with
necessary modifications. Two proofs of Rudelson’s theorem are known. The one which was hist
the first [13] uses majorizing measures, a deep technique in modern probability theory develo
M. Talagrand (see [15]). The other proof [14] is the one we follow in the present paper. It is based
non-commutative operator theory, more precisely on the non-commutative Khinchine’s inequality
F. Lust-Piquard and G. Pisier (see [10,12,14]).

Section 2 relates frames to the decompositions of the identity and offers a precise form of Theor
Section 3 discusses the non-commutative Khinchine’s inequality and Pisier’s proof of Rudelson’s
In Section 4 we show how Rudelson’s lemma implies a precise form of Theorem 1.1.

2. Frames as decompositions of identity and their random parts

For an introduction to frames, see [4] and [2]. A system of vectors(xi) finite or infinite, in a Hilbert
space, is called aframeif there existA > 0 andB > 0 (theframe bounds) such that

A‖x‖2 �
∑

i

∣∣〈x, xi〉
∣∣2 � B‖x‖2 holds for allx ∈ R

n.

Our Hilbert space will beRn with its canonical scalar product. We will specialize touniform frames,
those for which‖xi‖ = 1 for all i, and totight frames, for whichA = B. The reason for considering on
tight frames is the simple fact that a frame has frame bounds(A,B) if and only if it is

√
AB-equivalent

to some tight frame (see [2]). By beingM-equivalent we mean that there exists a linear operatorT that
maps elements of one frame to the other with‖T ‖‖T −1‖ � M .

We will view frame expansions as decompositions of identity. A pair of vectors(x, y) in R
n defines

a one-dimensional linear operatorx ⊗ y given by(x ⊗ y)(z) = 〈x, z〉y. Then for any system of vecto
(xi)

m
i=1 with ‖xi‖ = 1 and for the identity operatorid on R

n one has

(xi)
m
i=1 is a uniform tight frame inRn if and only if id = n

m

m∑
i=1

xi ⊗ xi. (2)

Communication scheme (1) based on a uniform tight frame(xi)
m
i=1 works as follows. A source vecto

x ∈ R
n is represented through the expansion (2), i.e.

x = n

m

m∑
i=1

〈xi, x〉xi,

and the coefficientsy(i) := 〈xi, x〉, i = 1, . . . ,m, are sent over the network. At each given time dur
the communication session, the user has received a random subsetσ ⊂ {1, . . . ,m} of these coefficients
The user applies to them the linear reconstruction, computing

x̂ = n

|σ |
∑
i∈σ

〈xi, x〉xi (3)

in hope that the error‖x − x̂‖ would be small with large probability. The question is—how large sho
|σ | for this to hold?
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More formally, the random subsetσ is realized by including each element of{1, . . . ,m} into σ inde-
pendently with probabilityk/m, where 0< k < m is some fixed number. Thenσ is a random subset o
{1, . . . ,m} of average sizek.

Theorem 2.1. Let (xi)
m
i=1 be a uniform tight frame inRn, and ε > 0. Let σ be a random subset o

{1, . . . ,m} of average sizek � C · (n/ε2) log(n/ε2). Then

P

{∥∥∥∥id − n

|σ |
∑
i∈σ

xi ⊗ xi

∥∥∥∥ > εt

}
� Ce−t2

in the(only interesting) range0< t < 1/ε.

Here and thereafterC,C1, . . . , denote absolute constants, whose values for convenience may b
ferent from line to line (but they do not depend on anything).

Theorem 2.1 gives an asymptotically optimal bound on the required numberk of received coefficients
in communication scheme (1).

Corollary 2.2. Let (xi)
m
i=1 be a uniform tight frame inRn. Let ε ∈ (0,1), t > 1 and k � C ×

(n/ε2) log(n/ε2). With probability at least1−Ce−t2
, the linear reconstruction(3) from a random subse

σ of average sizek gives the error

‖x − x̂‖ < εt for all possible sourcesx ∈ R
n.

Thus anyn-dimensional source can be reconstructed with errorεt and with probability 1−Ce−t2
from

a random subset ofC · (n/ε2) log(n/ε2) frame coefficients.
Theorem 1.1 clearly follows from Corollary 2.2.

Remark. The proof also shows that the average approximation error in Theorem 2.2 is
E‖x − x̂ ‖ < ε.

3. Non-commutative Khinchine’s inequality and Rudelson’s theorem

The main ingredient in the proof of Theorem 2.1 is the following result of M. Rudelson [14].

Lemma 3.1 (M. Rudelson).Let (zi) be a finite collection of vectors inRd . Then(
E

∥∥∥∥∑
i

εizi ⊗ zi

∥∥∥∥
p
)1/p

� C(p + logd)1/2 max
i

‖zi‖ ·
∥∥∥∥∑

i

zi ⊗ zi

∥∥∥∥
1/2

.

G. Pisier ([12], see [14]) discovered an approach to this result via the non-commutative operator
which greatly simplified the original proof of M. Rudelson [13]. For completeness, we give a pro
Lemma 3.1 since only the casep = 1 was treated explicitly in the literature.

Lemma 3.1 reduces to the non-commutative Khinchine inequality due to F. Lust-Piquard and G
(see [10,12,14]). In the non-commutative operator theory, the role of scalars is played by linear op
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ibed in
Beside the usual operator norm, an operatorZ on R
d has the norm in the Schatten classCd

p for p � 1,
defined as follows. Letsi(Z) be thes-numbers ofZ, that is the eigenvalues ofZ∗Z. The norm in the
Schatten class is then‖Z‖Cd

p
= (

∑d
i=1 si(Z)p)1/p.

Theorem 3.2 (Non-commutative Khinchine’s inequality [10,12,14]).Let 2 � p < ∞. For any finite se-
quence(Zi) in Cd

p one has

R
(
(Zi)

)
�

(
E

∥∥∥∥∑
i

εiZi

∥∥∥∥
p

Cd
p

)1/p

� C
√

p · R(
(Zi)

)
,

where

R
(
(Zi)

) = max

(∥∥∥∥(∑
Z∗

i Zi

)1/2
∥∥∥∥

Cd
p

,

∥∥∥∥(∑
ZiZ

∗
i

)1/2
∥∥∥∥

Cd
p

)
.

In the scalar case, that is ford = 1, Theorem 3.2 is the classical Khinchine’s inequality (see, e.g
Lemma 4.1).

Proof of Lemma 3.1. Note that for everyr � 1 and every operatorZ ∈ Cd
r ,

‖Z‖Cd
r
=

(
d∑

i=1

si(Z)r

)1/r

� d1/r max
i

si(Z).

Let r = p + logd . Thend1/r � e, hence

‖Z‖ � ‖Z‖Cd
r
� e‖Z‖. (4)

We apply the non-commutative Khinchine’s inequality forZi = zi ⊗ zi . Note thatZ∗
i Zi = ZiZ

∗
i =

‖zi‖2zi ⊗ zi . By (4),(
E

∥∥∥∥∑
i

εizi ⊗ zi

∥∥∥∥
p
)1/p

�
(

E

∥∥∥∥∑
i

εizi ⊗ zi

∥∥∥∥
p

Cd
r

)1/p

� C
√

r

∥∥∥∥∥
(∑

i

‖zi‖2zi ⊗ zi

)1/2
∥∥∥∥∥

p

Cd
r

� Ce
√

r max
i

‖zi‖ ·
∥∥∥∥∥
(∑

i

zi ⊗ zi

)1/2
∥∥∥∥∥.

In view of our choice ofr , this completes the proof of Lemma 3.1.�

4. Proof of Theorem 2.1

4.1. Moments and tails

The tail probability in Theorem 2.1 can be computed by estimating the moments. This is descr
the following standard lemma. For anyα � 1, theψα-norm of a random variableZ is defined as

‖Z‖ψα
= inf

{
λ > 0: Eexp|Z/λ|α � e

}
.



R. Vershynin / Appl. Comput. Harmon. Anal. 18 (2005) 167–176 173
Lemma 4.1 (See [9] Lemmae 3.7 and 4.10).Let Z be a nonnegative random variable, and letα = d/2
for some positive integerd . The following are equivalent:

(i) there exists a constantK > 0 such that(
EZp

)1/p � Kpα for all p � 2;
(ii) there exists a constantK > 0 such that

P{Z > Kt} � 2exp
(−t1/α

)
for all t > 0;

(iii) there exists a constantK > 0 such that

‖Z‖ψα
� K.

Furthermore, the constants in(i), (ii) , and(iii) depend only onα and on each other.

Corollary 4.2. LetZ be a nonnegative random variable and letp � 2. Then(
EZp

)1/p � Cp log(EexpZ)

for all p � 1.

Proof. Let M = ‖Z‖ψ1. Assume first thatM � 1. We have

Eexp(Z/M) = e.

By Lemma 4.1,(E(Z/M)p)1/p � Cp. Then by Jensen’s inequality(
EZp

)1/p � CpM = CpM log
(
Eexp(Z/M)

) = Cp log
(
Eexp(Z/M)

)M � Cp log(EexpZ).

For a general nonnegative variableZ, note that‖1+ Z‖ψ1 � 1, hence by the previous argument(
EZp

)1/p �
(
E(1+ Z)p

)1/p � Cp log
(
Eexp(1+ Z)

) = Cep log(EexpZ).

This completes the proof.�
4.2. Symmetrization

We start our proof of Theorem 2.1 with decomposition (2),

x = n

m

m∑
i=1

〈xi, x〉xi.

To realize a random subsetσ , we introduce selectors(δi)
m
i=1, that is independent{0,1}-valued random

variables with meansEδi = δ, whereδ = k/m. Thenσ = {i: δi = 1} is a random subset of{1, . . . ,m} of
average sizek.

Disregarding for a moment a difference between the random size|σ | and its meank, thanks to
Lemma 4.1 we can compute the probability estimate in Theorem 2.1 by estimating the moments

Ep =
(

E

∥∥∥∥id − n

k

∑
xi ⊗ xi

∥∥∥∥
p
)1/p

=
(

E

∥∥∥∥∥id − n

k

m∑
δixi ⊗ xi

∥∥∥∥∥
p)1/p
i∈σ i=1
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for p � 2. This will be done in several steps.
At the first step, we apply the classical symmetrization technique (see [9] 6.2). We look atY = id −

(n/k)
∑m

i=1 δixi ⊗xi as a random variable (random operator) and consider its independent copyY ′. Since
EY ′ = 0, Jensen’s inequality yieldsE‖Y‖p � E‖Y − Y ′‖p, hence

Ep �
(

E

∥∥∥∥∥n

k

m∑
i=1

(δi − δ′
i)xi ⊗ xi

∥∥∥∥∥
p)1/p

,

where(δ′
i)

m
i=1 is an independent copy of(δi)

m
i=1. Let (εi) be a sequence of independent symmetric{−1,1}-

valued random variables, independent of both(δi) and(δ′
i). Sinceδi − δ′

i is a symmetric random variabl
it is distributed identically toεi(δi − δ′

i). By Minkowski’s inequality,

Ep �
(

E

∥∥∥∥∥
(

n

k

m∑
i=1

εiδixi ⊗ xi

)
−

(
n

k

m∑
i=1

εiδ
′
ixi ⊗ xi

)∥∥∥∥∥
p)1/p

� 2

(
E

∥∥∥∥∥n

k

m∑
i=1

εiδixi ⊗ xi

∥∥∥∥∥
p)1/p

.

(5)

4.3. Bounding the moments

Let us fix a realization of the selectors(di) (hence a setσ ) and denote byEε the expectation with
respect to(εi). The number of nonzero elements amongzi = δixi , i = 1, . . . ,m, is d = |σ | = ∑m

i=1 δi .
Consequently, we can viewzi as vectors inRd . Applying Lemma 3.1 to them, we obtain(

Eε

∥∥∥∥∥n

k

m∑
i=1

εiδixi ⊗ xi

∥∥∥∥∥
p)1/p

= n

k

(
Eε

∥∥∥∥∑
i∈σ

εizi ⊗ zi

∥∥∥∥
p
)1/p

� Cn

k

(
p + log|σ |)1/2

∥∥∥∥∥
m∑

i=1

δixi ⊗ xi

∥∥∥∥∥
1/2

.

By (5) and the Cauchy–Schwartz inequality, we get

Ep � 2

(
EEε

∥∥∥∥∥n

k

m∑
i=1

εiδixi ⊗ xi

∥∥∥∥∥
p)1/p

� 2C

√
n

k

[
E

(
p + log|σ |)p]1/2p

[
E

∥∥∥∥∥n

k

m∑
i=1

δixi ⊗ xi

∥∥∥∥∥
p]1/2p

.

(6)

The first expectation in (6) is estimated by Minkowski’s inequality and Corollary 4.2 as[
E

(
p + log|σ |)p]1/2p �

[
p + (

E logp |σ |)1/p]1/2 �
[
p + Cp logE|σ |]1/2 = [p + Cp logk]1/2

� C(p logk)1/2.

The second expectation in (6) is estimated by Minkowski’s inequality as[
E

∥∥∥∥∥n

k

m∑
δixi ⊗ xi

∥∥∥∥∥
p]1/2p

� (1+ Ep)1/2.
i=1
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Summarizing, (6) becomes

E2
p � Cp

(
n logk

k

)
(1+ Ep).

Denotinga = (n logk)/k and solving forEp, we have

Ep � C(ap + √
ap ),

thus

min(Ep,1) � C
√

ap.

SinceEp = (EZp)1/p for Z = ‖id − (n/k)
∑

i∈σ xi ⊗ xi‖, we have[
E

(
min(Z,1)

)p]1/p � min(Ep,1) � C
√

ap.

By Corollary 4.1,

P
{
min(Z,1) > C1

√
at

}
� 2exp

(−t2
)

for all t > 0. (7)

Now recall the restriction onk in Theorem 2.1,k � C(n/ε2) log(n/ε2). By choosingC large enough, we
can make

C1
√

a = C1

√
n logk

k
� ε

10
.

In view of the definition ofZ, (7) implies

P

{∥∥∥∥id − n

k

∑
i∈σ

xi ⊗ xi

∥∥∥∥ >
εt

10

}
� 2exp

(−t2
)

for all 0< t <
10

ε
. (8)

4.4. Replacing the average size of the random set by its actual size

It remains to replacek by |σ | in (8). Indeed, since|σ | = ∑m
i=1 δi is a sum ofm independent{0,1}-

valued random variablesδj with Eδj = δ = k/m, Bernstein’s inequality (see [11]) shows that fors �
2δm = 2k one has

Prob
{∣∣|σ | − k

∣∣ > s
}

� 2exp

(
− s2

8δm

)
� 2exp

(
− s2

8k

)
.

Then fors = (εtk)/10,

Prob

{∣∣∣∣ |σ |
k

− 1

∣∣∣∣ >
εt

10

}
� 2exp

(
−ε2t2k

800

)
� 2exp

(−t2
)
.

If both events||σ |/k − 1| � (εt)/10 and ‖id − (n/k)
∑

i∈σ xi ⊗ xi‖ � (εt)/10 hold, which hap-
pens with probability at least 1− 4exp(−t2), then by the triangle inequality‖(n/k)

∑
i∈σ xi ⊗ xi‖ �

1+ (εt)/10< 2, hence∥∥∥∥id − n

|σ |
∑
i∈σ

xi ⊗ xi

∥∥∥∥ �
∥∥∥∥id − n

k

∑
i∈σ

xi ⊗ xi

∥∥∥∥ +
∥∥∥∥
(

1− k

|σ |
)

n

k

∑
i∈σ

xi ⊗ xi

∥∥∥∥ � εt

10
+ 4εt

10
< εt.

Thusk may be replaced by|σ | in (8) at the cost of replacing(εt)/10 byεt . This completes the proof o
Theorem 2.1. �
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