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Abstract

In modern communication systems such as the Internet, random losses of information can be mitigated by over-
sampling the source. This is equivalent to expanding the source using overcomplete systems of vectors (frames),
as opposed to the traditional basis expansions. Dependencies among the coefficients in frame expansions of-
ten allow for better performance compared to bases under random losses of coefficients. We show that for any
n-dimensional frame, any source can be linearly reconstructed from@gyogr) randomly chosen frame coef-
ficients, with a small error and with high probability. Thus every frame expansion withstands random losses better
(for worst case sources) than the orthogonal basis expansion, for whieldiye bound is attained. The proof
reduces to M. Rudelson’s selection theorem on random vectors in the isotropic position, which is based on the
non-commutative Khinchine’s inequality.
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1. Introduction

Representation of signals using frames, which are overcomplete sets of vectors, is advantageous over
basis expansions in a variety of practical applications. Dependencies among the coefficients of the over-
complete representations guarantee a better stability in presence of noise, quantization, erasures, as well
as greater freedom of design compared to bases. This general paradigm is confirmed by many experi-
ments and some theoretical work, see, e.g., [1,3-8] and the bibliography cited therein.

Of particular importance are the dependencies contained in frame expansions for design of commu-
nication systems. The redundancy of frames can mitigate random losses of expansion coefficients that
occur in packet-based communication systems such as the Internet. Detection and retransmission of lost
packets in such systems takes much longer than their original transmission. This is the main source of
delays known to all network users. Such delays are unacceptable for many applications, such as the real-
time video. It is thus desirable for the receiver to be able to approximately reconstruct the information
sent to him fromwhateverpackets he receives, despite the loss of some packets. There should exist cer-
tain dependencies among the packets, otherwise the information contained in a missing packet would be
irrevocably lost. Then, what is the best way to distribute the information among the packets so that each
packet is equally important? Equivalently, this is the problem of the multiple description coding (MDC)
theory, where one wishes to communicate information over a set of parallel channels, each of which
either works perfectly or not at all.

The idea originated in [6] was to use frame expansions to distribute the information among the packets
with some dependencies. One can view this communication scheme as follows:

Y k
yeR™ issj yeR
frame transmission

n
xeR"— expansion (losses

reconstruction|— x € R". 1)

The source information is viewed as a vectos R”. This vector is represented by its > n expansion
coefficients with respect to some fixed frame. These coefficients are sent over the netwqridkets,

each in its own packet. Due to unpredictable communication losses, the user receives only a random
subset of these packets, gain average. The user applies the linear reconstruction to the received coef-
ficients in hope that the reconstruction error would be small with graceful probability. The fundamental
problem ig:

How many random coefficients of a frame expansion does the user need to receive to be able to linearly
reconstruct the source vector with a small error and with large probability?

The work on this question, both theoretical and experimental, was initiated in [6] and continued in [8]
and [3], see also a survey paper [5]. Both cases were consideted; which clearly requires a statistical
model of input vector, andk > n. The performance of the frame representations was compared to that
of the classical block channel-coded basis representations.

In the present paper we look for a best bound evhich works forall frames andll source vectors.

Does every frame necessarily perform better than the trivial frame, the orthonormal basis—or, more gen-
erally, an orthonormal basis IR" each of whose elements is repeataiines? Communicating a source

2 n this paper, we neglect the quantization issues, which are treated in [7] and [6].
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vectorx with the trivial frame is equivalent to sending each of theoefficients of the orthonormal ex-
pansion ofc preciselys times. To be able to reconstructthe user must receive each of theoefficients

at least once. This is possible with probability at leastdlonly if the user receivek > C(¢)nlogn ran-
dom coefficients in total. This gives the lower boundkoim the question above. Remarkably, the upper
bound matches.

Theorem 1.1. For any uniform tight frame irR” and any source vectar, the linear reconstruction
from k random coefficients of yields an approximation error at mostwith probabilityl — ¢, provided
k> C(e)nlogn.

HereC (¢) is a constant that depends only grthis dependence is discussed in Corollary 2.2 below,
which is a more explicit version of Theorem 1.1. Tightness of the frame is assumed only for simplicity.

Note that the optimal bound dndoes not depend on the sizeof the frame, so there may be many
lost coefficients—in fact, most of them may be lost. Hence it is not the number of the lost coefficients
that determines the performance but the nuntbefrreceived coefficients.

As argued in [5], one advantage of frame representations over the traditional block channel-coded basis
representations is that frames allow for a real time reconstruction of the source. The receiver can attempt
to reconstruct a source vector—such as a still image or video—in real time as the packets arrive, starting
from the very first successfully received coefficient. Within one communication session, the number of
received coefficients will thus grow in time from 1 to possibly:, and the quality of reconstruction will
improve as more coefficients arrive. (In contrast to this, in the block channel-coded basis model the user
must wait untiln coefficients arrive.) Theorem 1.1 states that, vaitly frame design andnysource, the
reconstruction quality will reach a nearly optimal level as soor adogn coefficients are received, so
one may stop the session then.

Theorem 1.1 shows that every frame must withstand random losses better than the trivial frame, the
one formed by repeating the elements of the orthogonal basis. Of course, there exist frames that perform
better than the trivial frame. The problem of optimal design of such frames is addressed in [6] and [3]. As
noticed, e.g., in [7], a set @t = sn random pointgx;) taken independently with the uniform distribution
on the unit spherg”~* forms a frame which approaches a tight frame with large probability, provided
the redundancy — oo. Consequently, a randokielement subset of this set also forms an almost tight
frame with large probability, providetd> tn andt is large. Then one can linearly reconstruct any source
vector x from using itsk random coefficients with respect to the frampe) with probability 1— &,
providedk > C(¢)n. Hence for this frame, the logarithmic factor is not needed in the number received
coefficientsk.

Our proof of Theorem 1.1 is based on a result of M. Rudelson in the asymptotic convex geometry
about vectors in the isotropic position [14]. There exists a remarkable equivalence of the theories. All of
the following classes coincide R" (up to an appropriate rescaling), see [16]:

e the class of tight frames,

o the class of contact points of convex bodies,

e the class of John’s decompositions of the identity,
o the class of vectors in the isotropic position.
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The selection theorem of M. Rudelson [14] can thus be interpreted as a result about frames, which leads
to Theorem 1.1. In order to obtain an exponentially large probability in Theorem 1.1 and because of a
slightly different model of random selection in M. Rudelson’s theorem, we will prove the latter with some
necessary modifications. Two proofs of Rudelson’s theorem are known. The one which was historically
the first [13] uses majorizing measures, a deep technigue in modern probability theory developed by
M. Talagrand (see [15]). The other proof [14] is the one we follow in the present paper. It is based on the
non-commutative operator theory, more precisely on the non-commutative Khinchine’s inequality due to
F. Lust-Piquard and G. Pisier (see [10,12,14]).

Section 2 relates frames to the decompositions of the identity and offers a precise form of Theorem 1.1.
Section 3 discusses the non-commutative Khinchine’s inequality and Pisier’s proof of Rudelson’s lemma.
In Section 4 we show how Rudelson’s lemma implies a precise form of Theorem 1.1.

2. Frames as decompositions of identity and their random parts

For an introduction to frames, see [4] and [2]. A system of vectessfinite or infinite, in a Hilbert
space, is called fameif there existA > 0 andB > 0 (theframe boundgssuch that

Al < x x| < Bllx)1? holds for allx € R,

Our Hilbert space will beR”" with its canonical scalar product. We will specializeuoiform frames
those for whichj|x; || = 1 for all i, and totight frames for which A = B. The reason for considering only
tight frames is the simple fact that a frame has frame bogads) if and only if it is v/A B-equivalent
to some tight frame (see [2]). By beird-equivalent we mean that there exists a linear operattirat
maps elements of one frame to the other With||| 7 || < M.

We will view frame expansions as decompositions of identity. A pair of vegtarsg) in R" defines
a one-dimensional linear operatoR y given by (x ® y)(z) = (x, z)y. Then for any system of vectors
(x;)™ , with |lx; || = 1 and for the identity operatad on R” one has

(x;)!L; is a uniform tight frame iR" if and only ifid = z E X ® x;. 2)
m
i=1

Communication scheme (1) based on a uniform tight framg”, works as follows. A source vector
x € R" is represented through the expansion (2), i.e.

n m

X =— Xi, X)Xi,

p” ;} )
and the coefficients (i) := (x;, x), i = 1, ..., m, are sent over the network. At each given time during
the communication session, the user has received a random subsdt . .., m} of these coefficients.
The user applies to them the linear reconstruction, computing

X=—=> (xix)x 3

in hope that the errgfx — x|| would be small with large probability. The question is—how large should
|o| for this to hold?
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More formally, the random subsetis realized by including each element{df . .., m} into o inde-
pendently with probabilityc/m, where O< k < m is some fixed number. Thenis arandom subset of
{1,...,m} of average sizé.

Theorem 2.1. Let (x;)7, be a uniform tight frame irR”, ande > 0. Let o be a random subset of
{1,...,m} of average sizé > C - (n/s?)log(n/e?). Then

P{Hld — %Z)Ci ®Xl'
o

ieo

_2

>et}<Ce

in the (only interestingrange0 < ¢ < 1/¢.

Here and thereafter, Cy, ..., denote absolute constants, whose values for convenience may be dif-
ferent from line to line (but they do not depend on anything).

Theorem 2.1 gives an asymptotically optimal bound on the required nutrdfeeceived coefficients
in communication scheme (1).

Corollary 2.2. Let (x;)"; be a uniform tight frame inR". Let ¢ € (0,1), r > 1 and k > C x

(n/£?)log(n/s?). With probability at least. — Ce™"*, the linear reconstructioi3) from a random subset
o of average sizé gives the error

lx — x|l < et forall possible sources € R”".
Thus anyz-dimensional source can be reconstructed with emrand with probability 1- Ce~* from
arandom subset @ - (n/¢?) log(n/<?) frame coefficients.
Theorem 1.1 clearly follows from Corollary 2.2.
Remark. The proof also shows that the average approximation error in Theorem 2.2 is small,
Elx — x| <e.
3. Non-commutative K hinchine'sinequality and Rudelson’s theorem

The main ingredient in the proof of Theorem 2.1 is the following result of M. Rudelson [14].

Lemma 3.1 (M. Rudelson)Let (z;) be a finite collection of vectors iR?. Then

(EH Z &7z

G. Pisier ([12], see [14]) discovered an approach to this result via the non-commutative operator theory,
which greatly simplified the original proof of M. Rudelson [13]. For completeness, we give a proof of
Lemma 3.1 since only the cage= 1 was treated explicitly in the literature.

Lemma 3.1 reduces to the non-commutative Khinchine inequality due to F. Lust-Piquard and G. Pisier
(see [10,12,14]). In the non-commutative operator theory, the role of scalars is played by linear operators.

1/2

/p
p
) < C(p +logd)*max|z; | - H Y u®u
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Beside the usual operator norm, an operatan R¢ has the norm in the Schatten clag$ for p > 1,
defined as follows. Let; (Z) be thes-numbers ofZ, that is the eigenvalues &f*Z. The norm in the
Schatten class is thefZ || cs = L si(Z)P)Vr,

Theorem 3.2 (Non-commutative Khinchine’s inequality [10,12,140et 2 < p < oo. For any finite se-
quence(Z;) in C4 one has

R((Z)) < ( “Ze,

1/p
) < CJp-R((Z)),
where

R((Z) max(

(22) |(2)] )

In the scalar case, that is fdr= 1, Theorem 3.2 is the classical Khinchine’s inequality (see, e.g., [9]
Lemma 4.1).

Proof of Lemma 3.1. Note that for every > 1 and every operatd € C¢,

d 1/r
1Zlles = (Zs,-m’) < dY/" maxs;(2).

i=1
Letr = p +logd. Thend'" < e, hence
IZI <1 Zllce < ellZ]. (4)
We apply the non-commutative Khinchine’s inequality 6y = z; ® z;. Note thatZ;Z;, = Z,Z* =

Izi 1%z ® z;- By (4),
P 1/p P 1/p 1/2
<|E €izi i < CW/r 2 zzi®z,-)
) <(f]zmaeee]) <ea(zmn

(EH Y ez ®u
1/2
<Cex/;miaxllzill- ‘(Zzi ®Zi) .

In view of our choice of-, this completes the proof of Lemma 3.10

p

cd

4, Proof of Theorem 2.1
4.1. Moments and tails

The tail probability in Theorem 2.1 can be computed by estimating the moments. This is described in
the following standard lemma. For amy>> 1, the,-norm of a random variablg is defined as

1Zly, =inf{A > 0: Eexp|Z/A|* <e}.
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Lemma 4.1 (See [9] Lemmae 3.7 and 4.1Q@et Z be a nonnegative random variable, anddet d /2
for some positive integet. The following are equivalent
() there exists a constark > 0 such that
(EZ”)l/p < Kp* forall p>2;
(i) there exists a constarf > 0 such that
P{Z > Kt} < 2exp(—t"%) forallt > 0;
(iii) there exists a constarkf > 0 such that
1Zlly, < K.

Furthermore, the constants {ii), (ii), and(iii) depend only ol and on each other.

Corollary 4.2. Let Z be a nonnegative random variable and jet 2. Then
(EZ”)l/” < Cplog(EexpZ)
forall p > 1.

Proof. Let M = || Z||,,. Assume first thads > 1. We have
EexpZ/M) =e.
By Lemma 4.1(E(Z/M)?)Y? < Cp. Then by Jensen’s inequality
(Ez”)"" < CpM = CpMlog(Eexp(Z/M)) = Cplog(Eexp(Z/M))" < Cplog(E expZ).
For a general nonnegative varialdenote that|1+ Z||,, > 1, hence by the previous argument
(Ez")"" < (E(L+ 2)")"" < Cplog(Eexp(l + Z)) = Ceplog(EexpZ).
This completes the proof. O

4.2. Symmetrization

We start our proof of Theorem 2.1 with decomposition (2),
n m
X = - ;(x,-,x)xi.

To realize a random subset we introduce selector&;)! ;, that is independenD, 1}-valued random
variables with meangs; = §, where§ = k/m. Theno = {i: §; = 1} is a random subset ¢1, ..., m} of
average sizeé.

Disregarding for a moment a difference between the random |sizand its meark, thanks to
Lemma 4.1 we can compute the probability estimate in Theorem 2.1 by estimating the moments

" o\ VP 0 p\ 1/p
Ep=<]EH|d—zZ)CZ®X, ) =<]E id—gg&-xi@xi )

ieo
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for p > 2. This will be done in several steps.

At the first step, we apply the classical symmetrization technique (see [9] 6.2). We &0k & —
(n/k)Y ", 8ix; ®x; as arandom variable (random operator) and consider its independerit'c&iyce
EY’ =0, Jensen’s inequality yields| Y ||? < E||Y — Y’'||?, hence

r\ 1/p

where(s))” ; is an independent copy @f;)’" ;. Let (¢;) be a sequence of independent symmétit, 1}-
valued random variables, independent of b@th and(s}). Sinces; — §; is a symmetric random variable,
it is distributed identically ta; (§; — é;). By Minkowski’s inequality,

p) 1/p

0 n p\ 1/p
Ep < (E (E ;Si&'xi ®Xi) — <% ;S,ﬁixi ®X,‘) ) < 2<E

4.3. Bounding the moments

m
DBCETIE:ES
i=1

m
% Z €i0;x; @ x;
i=1

®)

Let us fix a realization of the selectofg;) (hence a set’) and denote by, the expectation with
respect to(e;). The number of nonzero elements amang=8;x;, i =1,...,m,isd =|o| =Y/~ §;.
Consequently, we can view as vectors irR¢. Applying Lemma 3.1 to them, we obtain

0 r\ 1/p " o\ /p
(Es E;Si&xi@xi ) =E<E8 ZS,‘Z,‘@Z,‘ )

ieo
<& (p+loglol)” 25x1®x,
k
By (5) and the Cauchy—Schwartz inequality, we get

m r\ 1/p
n 12
2(1{«:1[28 %geiéixi(}bxi ) <2C /k[ (p+loglal)” ”’[

The first expectation in (6) is estimated by Minkowski’s inequality and Corollary 4.2 as

1/2

Z(leébx,

[’:|1/2[’

(6)

[E(p +1oglo1)’]"* < [p + (Elog” |o1)"]"* < [p + CplogElo|]"* = [p + Cplogk]*?
< C(plogh)™?.

The second expectation in (6) is estimated by Minkowski’s inequality as

0 pY2p
[E z;&xi@xi } <A+ E)Y2
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Summarizing, (6) becomes
nlogk
E§<Cp< kg )(1+E,,).

Denotinga = (nlogk)/k and solving forE,, we have
E,<C(ap+/ap),
thus
min(E,, 1) < C/ap.
SinceE, = (EZP)Y? for Z = |lid — (n/k) Y, ., xi ® x;||, we have
[E(min(Z, 1))"]"” < min(E,,, 1) < C./ap.
By Corollary 4.1,
P{min(Z, 1) > C1/at} < 2exp—+*) forallt > 0. (7)

Now recall the restriction ok in Theorem 2.1k > C(n/e?)log(n/e?). By choosingC large enough, we
can make

nlo k €
Civa= Cyy/ g 10

In view of the definltlon ofz, (7) implies
{ id— — Zx, ® x;

i€o
4.4. Replacing the average size of the random set by its actual size

10
}<2exr( 2) forall0<rt<—. (8)
&

It remains to replacé by |o| in (8). Indeed, sincéo| =" | §; is a sum ofm independent0, 1}-
valued random variable® with E§; = § = k/m, Bernstein’s inequality (see [11]) shows that foK
26m = 2k one has

S2 52
Probf|lo| — k| > s} < 2exp<—%) < 2exp(—§>,

Then fors = (etk) /10,

lo| et &2tk )
Prob] |°ZL —1 <2exp — < 2exd—12).
rOb{ k ‘ 10} p( g00 ) < 2&H—")

If both events|lo|/k — 1| < (e)/10 and [lid — (n/k) Y ., xi ® x;|| < (e1)/10 hold, which hap-

pens with probability at least + 4exp(—?), then by the triangle inequality(n/k) Y, . x; ® x;| <
1+ (et)/10< 2, hence
n 4et
id— — X ® x; Hld—— X Q x; H(l——) X ® ,‘\—+—<et
lo] ; ; lo] Z 10

Thusk may be replaced bjy | in (8) at the cost of replacin¢)/10 bygt. This completes the proof of
Theorem 2.1. O
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