40 research outputs found

    A factorization algorithm to compute Pfaffians

    Full text link
    We describe an explicit algorithm to factorize an even antisymmetric N^2 matrix into triangular and trivial factors. This allows for a straight forward computation of Pfaffians (including their signs) at the cost of N^3/3 flops.Comment: 6 pages, 1 figure, V2: Minor changes in the text and refs. added, to appear in CP

    Pfaffian formula for fermion parity fluctuations in a superconductor and application to Majorana fusion detection

    Get PDF
    Kitaev's Pfaffian formula equates the ground-state fermion parity of a closed system to the sign of the Pfaffian of the Hamiltonian in the Majorana basis. Using Klich's theory of full counting statistics for paired fermions we generalize the Pfaffian formula to account for quantum fluctuations in the fermion parity of an open subsystem. A statistical description in the framework of random-matrix theory is used to answer the question when a vanishing fermion parity in a superconductor fusion experiment becomes a distinctive signature of an isolated Majorana zero-mode.Comment: 11 pages, 6 figure

    Parallel software for lattice N=4 supersymmetric Yang--Mills theory

    Get PDF
    We present new parallel software, SUSY LATTICE, for lattice studies of four-dimensional N=4\mathcal N = 4 supersymmetric Yang--Mills theory with gauge group SU(N). The lattice action is constructed to exactly preserve a single supersymmetry charge at non-zero lattice spacing, up to additional potential terms included to stabilize numerical simulations. The software evolved from the MILC code for lattice QCD, and retains a similar large-scale framework despite the different target theory. Many routines are adapted from an existing serial code, which SUSY LATTICE supersedes. This paper provides an overview of the new parallel software, summarizing the lattice system, describing the applications that are currently provided and explaining their basic workflow for non-experts in lattice gauge theory. We discuss the parallel performance of the code, and highlight some notable aspects of the documentation for those interested in contributing to its future development.Comment: Code available at https://github.com/daschaich/sus

    Robust formulation of Wick's theorem for computing matrix elements between Hartree-Fock-Bogoliubov wavefunctions

    Full text link
    Numerical difficulties associated with computing matrix elements of operators between Hartree-Fock-Bogoliubov (HFB) wavefunctions have plagued the development of HFB-based many-body theories for decades. The problem arises from divisions by zero in the standard formulation of the nonorthogonal Wick's theorem in the limit of vanishing HFB overlap. In this paper, we present a robust formulation of Wick's theorem that stays well-behaved regardless of whether the HFB states are orthogonal or not. This new formulation ensures cancellation between the zeros of the overlap and the poles of the Pfaffian, which appears naturally in fermionic systems. Our formula explicitly eliminates self-interaction, which otherwise causes additional numerical challenges. A computationally efficient version of our formalism enables robust symmetry-projected HFB calculations with the same computational cost as mean-field theories. Moreover, we avoid potentially diverging normalization factors by introducing a robust normalization procedure. The resulting formalism treats even and odd number of particles on equal footing and reduces to Hartree-Fock as a natural limit. As proof of concept, we present a numerically stable and accurate solution to a Jordan-Wigner-transformed Hamiltonian, whose singularities motivated the present work. Our robust formulation of Wick's theorem is a most promising development for methods using quasiparticle vacuum states
    corecore