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Pfaffian Formula for Fermion Parity Fluctuations in a
Superconductor and Application to Majorana Fusion
Detection

Aurélien Grabsch,* Yevheniia Cheipesh, and Carlo W. J. Beenakker

Kitaev’s Pfaffian formula equates the ground-state fermion parity of a closed
system to the sign of the Pfaffian of the Hamiltonian in the Majorana basis.
Using Klich’s theory of counting statistics for paired fermions, the Pfaffian
formula is generalized to account for quantum fluctuations in the fermion
parity of an open subsystem. A statistical description in the framework of
random-matrix theory is used to answer the question when a vanishing
fermion parity in a superconductor fusion experiment becomes a distinctive
signature of an isolated Majorana zero-mode.

1. Introduction

The pairing interaction in a superconductor favors a ground state
with an even number of electrons, but when both time-reversal
and spin-rotation symmetry are broken the ground state may
have odd parity—for example when a magnetic impurity binds
an unpaired electron.[1] While the connection between fermion-
parity switches and level crossings was noticed already in 1970 by
Sakurai,[2] these only became a topic of intense research activity
after Kitaev[3] made the connection with topological phase transi-
tions and Majorana fermions: The absence of level repulsion at
a fermion-parity switch indicates a change in a topological quan-
tum number, which Kitaev identified as the sign of the Pfaffian
of the Hamiltonian in the basis of Majorana fermions.
An open subsystem need not be in a state of definite fermion

parity P = ±1, the fermion parity expectation value 〈P〉 may
take on any value in the interval [−1, 1]. Here, we generalize
Kitaev’s Pfaffian formula so that it can describe both closed and
open systems. This generalization has a computational as well as
a conceptual merit. Computationally, it reduces the complexity
of a calculation of 〈P〉 for N levels from order 2N , when all
possible occupation numbers are enumerated, down to order
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N3. Conceptually, it allows us to make
contact with the random-matrix theory
of topological superconductivity,[4,5] and
identify the origin of a statistical peak at
〈P〉 = 0 discovered recently in computer
simulations.[6] These findings have im-
plications for proposed experiments[7] to
search for signatures of isolated Majo-
rana zero-modes in the fermion parity of
two superconductors that have first been
fused and then decoupled (see Figure 1).
The outline of the paper is as follows.

In the next section, we derive the Pfaffian
formula for the average subsystem fermion parity. This gener-
alization of Kitaev’s formula[3] can be seen either as an applica-
tion of theWick theorem forMajorana operators[8–10] (cf. a similar
application in ref. [11]), or as an application of Klich’s theory of
counting statistics for paired fermions.[12] In Section 3, we use the
fermion parity formula to establish the connection between van-
ishing average fermion parity and the presence of isolated Ma-
jorana zero-modes in the decoupled quantum dot. We continue
in Section 4 with a statistical description of the double quantum
dot geometry of Figure 1, by identifying the random-matrix en-
semble in symmetry class DIII that describes the fermion parity
fluctuations. We contrast the case of strongly coupled quantum
dots in Section 4.2 with the case of weak coupling in Section 4.3.
In Section 5, we show howweak coupling by a single-mode quan-
tum point contact can distinguish quantum dots with or without
isolated Majorana zero-modes. In the concluding Section 6, we
discuss the implications of our analysis for the detection of Ma-
jorana zero-modes by means of a fusion experiment.

2. Pfaffian Fermion-Parity Formula

2.1. Kitaev’s Formula for an Isolated System

To set the stage we recall some basic facts[13] needed to present
Kitaev’s formula[3] for the ground-state fermion parity of an iso-
lated superconductor.
At the mean-field level the Hamiltonian of a superconductor is

a Hermitian quadratic form in the fermion creation and annihi-
lation operators a†, a,

H =
N∑

n,m=1
Vnm

(
a†nam − 1

2
δnm

)

+1
2

N∑
n,m=1

(
�nmanam + �∗

nma
†
ma

†
n

)
(1)
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Figure 1. The left panel shows two superconducting regions (quantum
dots) connected (fused) by a point contact. The entire system is in a state
of definite fermion parity P0, even (+1) or odd (−1). The parity PL of the
occupation number of the NL electronic levels in one single quantum dot
has quantum fluctuations. The expectation value 〈PL〉 ∈ [−1, 1] may be
obtained by rapidly closing the point contact and decoupling the quantum
dots (right panel), followed by a measurement of the fermion parity of a
single dot. The effective number of levels Ndot � �/δ0τc in each quantum
dot that contributes to the fermion parity fluctuations is determined by the
single-particle level spacing δ0 and the time scale τc on which the interdot
coupling is broken.[6] We address the question when a vanishing fermion
parity 〈PL〉 ≈ 0 in such a fusion experiment is a signature of isolated Ma-
jorana zero-modes.

The indices n,m label spin and orbital degrees of freedom of N
fermionicmodes. The N × NHermitianmatrix V represents the
kinetic and potential energy and the antisymmetric matrix � is
the pair potential.
More compactly, Equation (1) can be written in the matrix

form

H = 1
2

N∑
n,m=1

�†
n · Bnm · �m (2a)

�n =
(
an
a†n

)
, Bnm =

(
Vnm −�∗

nm
�nm −V∗

nm

)
(2b)

The 2N × 2N Hermitian matrix B is called the Bogoliubov–De
Gennes (BdG) Hamiltonian.[14] Its eigenvalues come in pairs
±E1, ±E2, . . . ± EN of opposite sign, with the positive entries
equal to the single-particle excitation energies of the many-
particle Hamiltonian H.
The unitary transformation

Bnm 	→ UBnmU† ≡ Anm with U = 1√
2

(
1 1
−i i

)
(3)

maps B onto the 2N × 2N imaginary antisymmetric matrix A
with elements

Anm =
(
i Im (Vnm + �nm) i Re (�nm + Vnm)
i Re (�nm − Vnm) i Im (Vnm − �nm)

)
= −AT

mn (4)

The superscript T denotes the transpose. An antisymmetric ma-
trix is also referred to as “skew-symmetric”.
The transformed state

γ = (γ1, γ2, . . . , γ2N) with
(

γ2n−1
γ2n

)
= U

(
an
a†n

)
(5)

contains 2N Hermitian operators γn = γ †
n , with anticommutator

γnγm + γmγn = δnm, γ 2
n = 1/2 (6)

This is the Clifford algebra of Majorana operators.

The global fermion parity operator

P = (−1)
∑N

n=1 a
†
nan = (−2i )Nγ1γ2 · · · γ2N (7)

commutes with H, so energy eigenstates have a definite fermion
parity ±1. Kitaev’s formula[3] equates the fermion parity P0 of
the ground state to the Pfaffian[15] (Pf) of the Hamiltonian in the
Majorana basis,

P0 = sign Pf (−iA) for H = 1
2
γ · A · γ (8)

2.2. Pfaffian Formula for a Subsystem

Our objective is to calculate the ground-state expectation value of
the fermion parityPL of an open subsystem, say the left quantum
dot with NL fermionic modes in Figure 1.
A direct way to proceed, used for example in ref. [6], is to calcu-

late themany-particle ground state |�0〉 in the basis of occupation
numbers and evaluate

〈PL〉 = 〈�0|(−1)
∑NL

n=1 a
†
nan |�0〉 (9)

Since the Fock space of occupation numbers has dimension 2N ,
this direct approach scales exponentially with system size and is
therefore prohibitively expensive for large systems.
Klich[12] has developed an efficient method, with a polynomial

scaling in N, to calculate squares of expectation values of opera-
tors exp(iχ

∑
n a

†
nan). This gives 〈PL〉2 if one sets χ = π and re-

stricts the sum to indices n in L. In App. A we show how the
Klich method can be adapted to give also the sign of 〈P〉L. That
calculation is technically rather involved, but the final result can
be easily understood as follows.
Wemake the flat-band transformationA 	→ Ā, which consists

in replacing each of the 2N eigenvalues ±En of A by their sign.
(We assume that no eigenvalue is identically zero, meaning that
we are not precisely at a fermion-parity switch.) Since no eigen-
value crosses zero when it is replaced by its sign, the flat-band
transformation leaves the sign of the Pfaffian (8) invariant. And
because the Pfaffian of−iĀ can only equal±1 we no longer need
to take the sign in Equation (8), hence the global fermion parity
is

P0 = Pf (−iĀ) (10)

At this point, onemay surmise that the desired subsystem gen-
eralization of Equation (8) simply amounts to taking the Pfaffian
of the 2NL × 2NL submatrix [Ā]LL restricted to the subspace of
modes in the left quantum dot

〈PL〉 = Pf [−iĀ]LL (11)

This is indeed the correct expression, as one can see by applica-
tion of the Wick theorem for Majorana operators[8–10]

〈γ1γ2 · · · γ2s 〉 = Pf
1≤k<l≤2s

〈γkγl 〉 (12)
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Substitution of PL = (−2i )NLγ1γ2 · · · γ2NL on the left-hand-side
and −2i〈γkγl 〉 = −iĀkl on the right-hand-side results in Equa-
tion (11). This is how an equivalent formula was derived recently
for a different problem.[11]

Equation (11) is computationally efficient because the Pfaffian
of an N × N matrix can be calculated in a time that scales poly-
nomially with N:[16,17] It has the same O(N3) complexity as the
eigenvalue decomposition one needs for the flat-band transfor-
mation A 	→ Ā. Note that the flat-band transformation needs to
be performed before the subblock restriction Ā 	→ [Ā]LL — the
two operations do not commute.

3. Connection with the Majorana Fusion Rule

As a fundamental application of Equation (11), consider the case
that each quantum dot in Figure 1 has a single electronic mode
(NL = NR = 1), each consisting of two Majorana modes with
inter-dot couplingmatrix 	 but vanishing intra-dot coupling—so
these become fully isolated zero-modes when the quantum dots
are decoupled. The Hamiltonian in the Majorana basis is

A =
(

0 i	
−i	T 0

)
(13)

The global fermion parity is

P0 = sign Pf (−iA) = −signDet	 (14)

To obtain the average local fermion parity, we use that the real
2× 2 coupling matrix 	 has the singular value decomposition
	 = O1 diag (κ1, κ2)O2, with O1, O2 real orthogonal matrices and
κ1, κ2 > 0. The eigenvalues of A are ±κ1,±κ2. In the flat-band
transformation {κ1, κ2} 	→ {1, 1}, which gives

Ā =
(

0 i O1O2

−i OT
2 O

T
1 0

)
⇒ [Ā]LL = 0 ⇒ 〈PL〉 = 0 (15)

so the average fermion parity in a single quantum dot vanishes.
This is amanifestation of theMajorana fusion rule.[18] The fusion
of the two Majorana zero-modes γ1 and γ2 produces an equal-
weight superposition of a state of even and odd fermion parity.[19]

Several recent experimental proposals[6,7,20] are based on the
connection between the Majorana fusion rule and vanishing av-
erage fermion parity. The implication “isolated Majorana zero-
modes⇒ 〈PL〉 = 0” holds if there are only two pairs of Majorana
zero-modes. For NL or NR greater than 1 the implication breaks
down, as is demonstrated by the following counterexample for
NL = NR = 2.

A =
(

i� i	
−i	T i�

)
, � =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠

	 =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ (16a)

⇒ Ā = 1√
5

(
i�′ i	′

−i	′T i�′

)
, 	′ = 2	

�′ =

⎛
⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ (16b)

⇒ [Ā]LL = i√
5
�′ ⇒ Pf [−iĀ]LL = −1

5
(16c)

and hence 〈PL〉 = −1/5 does not vanish even though each quan-
tum dot has a pair ofMajorana zero-modes without intra-dot cou-
pling (γ1 and γ2 in the left dot, γ5 and γ6 in the right dot).
Since Pf (−iA) = +1 the global fermion parity is even, hence

the negative sign for 〈PL〉 means that the states with odd–odd
occupation numbers in the left and right quantum dot have a
greater weight in the ground state than the states with even–
even occupation numbers—even though the fusion of the Ma-
jorana modes γ1 and γ2 would favor equal weight of even and
odd fermion parity.
As a check on the formalism, we have also calculated the aver-

age fermion parity directly from the many-particle ground state
wave function |�0〉 of the Hamiltonian H = 1

2γ · A · γ . We find

|�0〉 =
√
5

10

[
2i

(
a†1a

†
2 + a†3a

†
4

)
− (1+

√
5)a†1a

†
3

− (1−
√
5)a†2a

†
4

]
|0〉 (17)

which indeed gives 〈PL〉 = −1/5 upon calculation of the expec-
tation value (9).
In this case with N = NL + NR = 4 electronic levels the size

2N−1 = 8 of the basis of many-particle states in the even-parity
sector is the same as the size 2N = 8 of the basis of single-particle
states, so the two calculations based on Equation (9) or on Equa-
tion (11) are equally efficient. For larger N the single-particle ap-
proach based on the Pfaffian formula has themore favorable scal-
ing (polynomial instead of exponential).

4. Random-Matrix Theory

For a statistical description of the fermion parity fluctuations,
we apply the methods of random-matrix theory (RMT). In Sec-
tion 4.2, we assume a strongmixing of the states in the two quan-
tum dots of Figure 1, and then in Section 4.3 we consider the
opposite regime of weakly coupled quantum dots. We will need
results[21] from the RMT in symmetry class DIII, which we sum-
marize in Section 4.1.

4.1. Skew Circular Real Ensemble

The matrix [−iĀ]LL which in view of Equation (11) determines
the local fermion parity is a 2NL × 2NL submatrix of a matrix
S = −iĀ that is an antisymmetric (skew-symmetric) element
of the real orthogonal group O(2N), with N = NL + NR. The
corresponding ensemble from RMT is the class-DIII circular
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ensemble, which differs from the class-D circular ensemble by
the antisymmetry restriction.[5] The latter is called the Circular
Real Ensemble (CRE) and we will refer to the former as the
skew-Circular Real Ensemble (skew-CRE). The qualifier “real” for
the O(N) ensemble is used instead of “orthogonal” because the
name Circular Orthogonal Ensemble (COE) was already used by
Dyson[22] for the coset U(N)/O(N). The switch from symmetry
class D to DIII is remarkable, because class DIII was originally
introduced[4] in superconductors with preserved time-reversal
symmetry—which is broken in our physical system.
Two equivalent methods to randomly choose amatrix from the

skew-CRE are:

1. Generate a real antisymmetric matrix −iA with independent
Gaussian elements on the upper diagonal (zero mean and
unit variance), and perform the flat-band transformation to
obtain S = −iĀ.

2. Draw a random element O from O(2N), uniformly with the
invariant Haar measure, and construct

S = O
(

0N×N 1N×N

−1N×N 0N×N

)
OT (18)

The two methods are equivalent because the distribution
P(A) ∝ exp( 14TrA2) as well as the flat-band transformationA 	→
Ā are invariant under orthogonal transformations A 	→ OAOT,
so the matrix O in the decomposition (18) is distributed accord-
ing to the invariant Haar measure.
The matrix S has the block decomposition

S =
( SLL SLR
SRL SRR

)
, SLL = [−iĀ]LL (19)

with SXY a matrix of dimension NX × NY . In the context of
scattering problems, where the skew-CRE ensemble was stud-
ied previously,[5] this is analogous to a decomposition of the scat-
tering matrix into reflection and transmission matrices. In that
context, the eigenvalues±iλn of the upper-left submatrix SLL cor-
respond to reflection amplitudes.[23] Their joint probability distri-
bution in the skew-CRE is known[21]

P(λ1, λ2, . . . λNmin ) ∝
∏
n

(
1− λ2n

)|NL−NR| ∏
j<k

(
λ2k − λ2j

)2
Nmin = min(NL, NR), 0 ≤ λn ≤ 1 (20)

If NL > NR, there are additionally 2(NL − NR) trivial eigenvalues
pinned at ±1, not included in the distribution (20).
Symmetry class DIII has the Z2 invariant Pf S = ±1, which

in view of Kitaev’s formula (10) is the global fermion parity P0.
This does not enter in Equation (20) because in the skew-CRE the
distribution of the λn’s is independent of the Z2 invariant.[21]

The density ρ(λ) of the nontrivial eigenvalues has ±λ symme-
try with a three-peak structure. There are two peaks at the band
edges ±λc , with[21]

λc = (2/N)(NLNR)1/2 (21)

Figure 2. Density ρ(λ) of the eigenvalues of the 2NL × 2NL matrix [−i Ā]LL
in the skew-CRE, calculated by integration of the distribution (20) for NL =
NR = Ndot ∈ {1, 2, 4, 6}. The density has a peak at the band edges and at
the band center.

Figure 3. Probability distribution of the local fermion parity in the ensem-
ble of antisymmetric orthogonal matrices (skew-CRE), representative of
strongly coupled quantum dots. The curves are calculated from Equa-
tion (20) for NL = NR = Ndot ∈ {1, 2, 3, 4}. It takes just a few levels in the
quantum dot to have 〈PL〉 ≈ 0 with high probability, so equal weight of
even and odd fermion parity.

and a peak at the band center[24] described by[4,25,26]

ρ(λ) = 1
δeff

+ sin(2πλ/δeff )
2πλ

, λ � 1/δeff (22)

The parameter δeff = π/2Nmin is the mean eigenvalue spacing in
the center of the band. The peak at λ = 0 is a weak antilocaliza-
tion effect in the scattering context.[27]

Figure 2 shows the eigenvalue density for NL = NR = Ndot

ranging from 1 to 6. The three-peaked structure is evident except
for Ndot = 1, when the density profile is flat.

4.2. Distribution of the Local Fermion Parity in the Skew-CRE

The peak at λ = 0 in the eigenvalue density ρ(λ) increases the
probability for vanishing local fermion parity, since

|〈PL〉| =
Nmin∏
n=1

λn =
√
DetSLL (23)

Indeed, as shown in Figure 3, while the distribution of 〈PL〉 in the
skew-CRE is broad for a single electronic level Ndot = 1 in each
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quantum dot, it quickly narrows to a sharp peak at 〈PL〉 = 0 with
just a few levels— in accordwith numerical calculations reported
by Clarke, Sau, and Das Sarma.[6]

The peak at zero 〈PL〉 ≡ p appears as a sharp cusp in Figure 3,
it has a logarithmic singularity ∝ (p2 ln |p|)Ndot−1, for example

P(〈PL〉 = p) = 45
32

(
1− p4 + 4p2 ln |p|), Ndot = 2, |p| ≤ 1

(24)

For large-Ndot the width of the distribution becomes exponen-
tially small, as follows from the variance

Var 〈PL〉 = (2Ndot)!3

(Ndot)!2(4Ndot)!
=

√
2

4Ndot
[1+ O(1/Ndot)] (25)

(see Appendix B).
We may quantify the effect of the spectral peak in ρ(λ) on the

distribution of the local fermion parity by comparing with a set
of independent λn’s with uniform density. In that uniform case
one would have the fermion parity distribution

Puniform(〈PL〉 = p) = (− ln |p|)Ndot−1
2(Ndot − 1)!

, |p| ≤ 1 (26)

with a variance 3−Ndot that decays less rapidly than Equation (25).

4.3. RMT Model of Weakly Coupled Quantum Dots

The RMT description in terms of the skew-CRE from the previ-
ous subsection assumes a strong (chaotic) mixing in the entire
phase space, appropriate for strongly coupled quantum dots. To
describe also the weakly coupled regime, we consider an alter-
native approach where the RMT ensemble is applied to the two
quantum dots individually, rather than to the system as a whole.
In the Majorana representation, the Hamiltonian H = 1

2γ ·
A · γ of the two coupled quantum dots of Figure 1 has the block
structure

A =
(

i�L i	
−i	T i�R

)
(27)

The real antisymmetric matrices �X of size 2NX × 2NX , with
X ∈ {R,L}, describe the left and right quantum dot in isolation,
while the 2NL × 2NR real matrix 	 describes the coupling via a
quantum point contact (QPC) with NQPC propagating fermionic
modes. In what follows we take NL = NR = Ndot.
The number Ndot counts the number of electronic modes in

each quantum dot. One electronic mode an corresponds to two
Majorana modes γ2n−1 and γ2n, according to

an = (γ2n−1 + iγ2n)/
√
2 (28)

cf. Equation (5). Because of this double-counting, the mean level
spacing δ0 of eigenstates of �X is one half the electronic mean
level spacing of a quantum dot (taken the same in each dot, for
simplicity).

Figure 4. Probability distribution of the local fermion parity for the RMT
model (27) of two weakly coupled quantum dots, calculated numerically
by sampling the Gaussian matrix elements in �L, �R, 	 for NQPC = 1,
NL = NR = Ndot ∈ {1, 3, 6}. In contrast to the strongly coupled skew-CRE
ensemble of Figure 3, the distribution narrows only slowly with increasing
Ndot.

For a statistical description, we take independent Gaussian dis-
tributions for the two matrices �X . Each upper-diagonal matrix
element has zero mean and variance 2Ndotδ

2
0/π

2, corresponding
to superconductors in symmetry class D (broken time-reversal
and broken spin-rotation symmetry).[4,5]

Following refs. [28,29], the quantum dots are coupled by a
Gaussian random matrix 	 of rank NQPC, with elements[30]

	kl = 2Ndotδ

π

2NQPC∑
n=1

v
(n)
k w

(n)
l (29)

in terms of 2NQPC real Gaussian vectors v(n) and w(n) of unit av-
erage length (each element independently distributed with zero
mean and variance 1/2Ndot).
For the weak coupling regime, we focus on the case of a sin-

gle propagating electronic mode in the point contact, NQPC = 1,
corresponding to two propagating Majorana modes. We do not
have an analytical solution, so we show numerical results in
Figure 4 for the probability distribution of 〈PL〉 = Pf (−iĀ) in the
ensemble of randommatrices�L,�R, and 	. The variance of the
distribution is compared with that in the skew-CRE in Figure 5.
The two figures show that the distribution of the local fermion
parity is much broader when the coupling is via a single-mode
point contact.

5. Effect of an Isolated Majorana Zero-Mode

The randomHamiltonians of the previous section do not contain
isolatedMajorana zero-modes: the 2Ndot Majoranamodes in each
quantum dot have intradot coupling as well as interdot coupling.
We may introduce a pair of isolated Majorana zero-modes in a
quantum dot by setting to zero one row and one column of the
submatrix �L or �R in the Hamiltonian (27). (The row and col-
umn number should be the same to preserve the antisymmetry
of �X .) The effect on the distribution of the local fermion parity
is shown in Figure 6. The distribution of the local fermion parity
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Figure 5. Comparison of the variance of P (〈P〉) in the skew-CRE of
strongly coupled quantum dots (red data points, calculated from Equa-
tion (25)) and in the weakly coupled ensemble (blue data points, numeri-
cal results for NQPC = 1). The inset shows that the decay is exponential in
both cases, but with widely different decay rates.

is strongly peaked at zero if and only if there is a pair of isolated
Majorana zero-modes in each of the two quantum dots.

6. Conclusion

In summary, we have studied the fusion of Majorana zero-modes
using a generalization of Kitaev’s Pfaffian formula[3] for the
global fermion parity of the superconducting ground state, to in-
clude local fermion parity fluctuations in an open subsystem. The
Pfaffian formula in Equation (11), and an equivalent formula-
tion from ref. [11], is computationally efficient since it works with
the single-particle (Bogoliubov–De Gennes) Hamiltonian rather
than with the many-particle Hamiltonian. One limitation of the
single-particle formulation is that it is limited to a mean-field de-
scription of the superconductor—in particular we are assuming
that the quantum dots in the geometry of Figure 1 have a suf-
ficiently large capacitance that Coulomb charging energies can
be neglected.

The Pfaffian fermion parity formula is particularly suited to an
analysis in terms of random-matrix theory, in an ensemble of an-
tisymmetric matrices.[5] For strongly coupled quantum dots, the
circular ensemble in symmetry class DIII is the appropriate en-
semble, which allows for analytical results for the statistical dis-
tribution of the local fermion parity. There is no eigenvalue repul-
sion at the particle-hole symmetry point in such an ensemble,[4]

and the resulting accumulation of near-zero eigenvalues enforces
a nearly equal-weight superposition of even and odd fermion par-
ity in a quantum dot.
This is a nontopological mechanism for vanishing expec-

tation value 〈PL〉 ≈ 0 of the local fermion parity. The Majo-
rana fusion rule provides a fundamentally different, topological
mechanism[18]: Themerging or “fusion” of two isolatedMajorana
zero-modes (“isolated” in the sense of zero intradot coupling,
while allowing for interdot coupling) also favors a vanishing 〈PL〉
because the two fusion channels, with or without an unpaired
quasiparticle, have equal weight.
To carry out such a fusion experiment, it is proposed[7] that

one would rapidly decouple the subsystems, on a time scale τc
sufficiently short that quasiparticles from the environment can-
not leak in. The complication[6] is that even if there are isolated
Majorana zero-modes, the presence of even a small number Ndot

of higher levels at energies below �/τc may hide the presence of
the zero-modes by favoring 〈PL〉 ≈ 0 (see Figure 3).
Figure 6 illustrates our proposal to distinguish the two mecha-

nisms for vanishing local fermion parity. A low-rank coupling be-
tween the quantum dots, via a single-mode quantum point con-
tact, suppresses the nontopological effect from levels at nonzero
energy, without affecting the topological effect from the fusion of
isolated Majorana zero-modes.

Appendix A: Derivation of the Pfaffian Formula
from Klich’s Counting Statistics Theory

We follow the steps of Klich’s theory of counting statistics of
paired fermions,[12] to reproduce his result for 〈PL〉2. Then, we
will resolve the sign ambiguity to arrive at Equation (11) for 〈PL〉.
An equivalent formula is obtained by a different method in ref.
[11], Appendix B.

Figure 6. Same as Figure 4, but now comparing the situation with or without isolated Majorana zero-modes in a quantum dot. The quantum dots are
weakly coupled (NQPC = 1) and they have the same number of electronic levels NL = NR = Ndot. For the blue histograms each quantum dot has a pair
of isolated Majorana zero-modes (no intradot coupling, only interdot coupling). a,b) For the brown histograms, there are either no isolated zero-modes
at all, or c) they are only in one of the two quantum dots. Weak coupling ensures that the peak at vanishing local fermion parity becomes a distinctive
feature of isolated Majorana zero-modes in each quantum dot.
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The superconductor in Figure 1 is assumed to be an isolated
system, so that the global fermion parity does not fluctuate. For
the derivation of the subsystem fermion parity formula (11) it is
convenient to start from the more general case that the super-
conductor is in contact with a reservoir in thermal equilibrium at
temperature T . We will then take the T → 0 limit at the end of
the calculation in order to describe an isolated system.
At inverse temperature β = 1/kBT the average fermion parity

〈PL〉 of subsystem L (the left quantum dot in Figure 1) is given
by the trace of the equilibrium density matrix

ρeq = 1
Z
e−βH, Z = Tr ρeq (A1)

acting on the fermion parity operator

PL = exp

(
iπ

∑
n∈L

a†nan

)
(A2)

Because H = 1
2

∑
n,mAnmγnγm in the basis ofMajorana operators

γn, and a†nan = iγ2n−1γ2n + 1
2 , this can be written as

〈PL〉 = eiπNL/2

Z
Tr

[
exp

(
−1
2
β

∑
n,m

Anmγnγm

)

× exp

(
−1
2
iπ

∑
n,m

(σy ⊗ PL)nmγnγm

)]
(A3)

The matrix σy is a Pauli matrix and the operator PL projects onto
NL fermionic modes in subsystem L.
Application of the identity[12]

[
Tr

∏
k

eγ ·Ok ·γ
]2

= e
∑

k Tr Ok Det

(
1+

∏
k

eOk−OT
k

)
(A4)

results in

〈PL〉2 = eiπNL
Det

[
1+ exp (−βA) exp (−iπσy ⊗ PL

)]
Det

[
1+ exp (−βA)]

= (−1)NL Det
[
1− 2

1+ exp (βA) (σ0 ⊗ PL)
]

(A5)

In the second equality, we made use of the identity

eiχ σy⊗PL = 1+ σ0 ⊗ PL(cosχ − 1)+ iσy ⊗ PL sinχ (A6)

with χ = π . (The matrix σ0 = σ 2
y is the 2× 2 unit matrix.) Note

that, in a basis of energy eigenstates of the BdGHamiltonian, the
operator (1+ eβA)−1 is the Fermi function f (E ) = (1+ eβE )−1.
Equation (A5) is Klich’s result for the square of the average

fermion parity (equation 84 in ref. [12]). Klich shows how the sign
of 〈PL〉 can be recovered if the determinant is known analytically
as a function of the matrix elements. Here, we take a different
route, more suitable for numerical calculations, which gives the
sign directly upon evaluation of a Pfaffian instead of a determi-
nant.

Any 2N × 2N imaginary anti-symmetric matrix A can be de-
composed as

A = i O(J ⊗ E)OT J =
(

0 1
−1 0

)
(A7)

where O is a 2N × 2N real orthogonal matrix and
E = diag (E1, E2, . . . EN) is an N × N real diagonal matrix.

Substitution into Equation (A5) gives

〈PL〉2 = (−1)NL Det
[
1− O

2
1+ exp (iβ J ⊗ E)O

T(σ0 ⊗ PL)
]

= (−1)NL Det
[
1− O

[
1− i J ⊗ tanh

(
1
2
βE

)]
OT(σ0 ⊗ PL)

]

(A8)

This may be written in a more compact form by defining the
restriction [M]LL of a 2N × 2N matrix M to the 2NL × 2NL sub-
matrix of modes in region L

〈PL〉2 = (−1)NL Det
[
O

[
i J ⊗ tanh

(
1
2
βE

)]
OT

]
LL

= Det
[
O

[
J ⊗ tanh

(
1
2
βE

)]
OT

]
LL

(A9)

Note that, because of the submatrix restriction, the product rule
Det (AB) = (Det A)(Det B) cannot be applied to Det[AB]LL, so the
orthogonal matrix O cannot be cancelled with the inverse OT.
We have now arrived at the determinant of a real antisymmet-

ric matrix, hence we can take the square root without introducing
branch cuts

〈PL〉 = Pf
[
O

[
J ⊗ tanh

(
1
2
βE

)]
OT

]
LL

(A10)

In the zero-temperature, β → ∞ limit this reduces to

〈PL〉 = Pf
[
O[J ⊗ (sign E)]OT]

LL (A11)

which is Equation (11) with −iĀ = O[J ⊗ (sign E)]OT. Kitaev’s
formula (8) for the global ground-state fermion parity is recov-
ered when L is the entire isolated system. This correspondence
also identifies

√
det with +Pf rather than with −Pf.

Appendix B: Moments of Determinants
of Antisymmetric Random Matrices

In Section 4.2, we used a formula for the average determinant
of a submatrix (a principal minor) of an antisymmetric real or-
thogonal matrix. This would seem like a classic result in RMT,
but we have not found it in the literature on such matrices.[31–33]

We therefore give the derivation in this appendix, and for com-
pleteness and reference also derive the corresponding result for
antisymmetric Hermitian matrices.
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B.1. Principal Minor of Antisymmetric Orthogonal Matrix

Consider a 2N × 2N antisymmetric real orthogonal matrix S,
with a uniform distribution in O(2N) subject to the antisymme-
try constraint. This is the class-DIII circular ensemble of RMT,[4,5]

referred to as the skew-Circular Real Ensemble (skew-CRE) in the
main text.[34]

The 2NL × 2NL upper-left submatrixSLL has eigenvalues±iλn,
0 ≤ λn ≤ 1. Denoting NR = N − NL and Nmin = min(NL, NR),
we have that N − Nmin of the λn’s are pinned to +1. The set
{λn} = {λ1, λ2, . . . λNmin} can vary freely in the interval [0,1], with
joint probability distribution[21]

P({λn}) ∝
∏
n

(
1− λ2n

)|NL−NR| ∏
i< j

(
λ2i − λ2j

)2
(B1)

The determinant of SLL is a principal minor given by

DetSLL =
NL∏
n=1

(iλn)(−iλn) =
Nmin∏
n=1

λ2n (B2)

We seek the moments μq = E
[
(DetSLL)q

]
of this determinant in

the skew-CRE.
For that purpose we make a change of variables from λn to

Rn = λ2n ∈ [0, 1], with distribution

P({Rn}) ∝
∏
n

R−1/2
n (1− Rn)|NL−NR| ∏

i< j

(Ri − Rj )2 (B3)

We can then compute the moments of the determinant from

μq =

∫ 1

0
d{Rn}

∏
i< j

(Ri − Rj )2
∏
n

(1− Rn)|NL−NR |Rq−1/2
n

∫ 1

0
d{Rn}

∏
i< j

(Ri − Rj )2
∏
n

(1− Rn)|NL−NR |R−1/2
n

(B4)

where we abbreviated
∫ 1
0 d{Rn} = ∫ 1

0 dR1 · · · ∫ 1
0 dRNmin .

These socalled Selberg integrals have a closed-form
expression[35]

μq =
Nmin−1∏
j=0

	
(
max(NL, NR)+ j + 1

2

)
	

(
q + j + 1

2

)
	

(
max(NL, NR)+ q + j + 1

2

)
	

(
j + 1

2

) (B5)

For the first few moments, Equation (B5) reduces to

μ1 = (2NL)!(2NR)!N!
NL!NR!(2N)!

(B6)

μ2 = (2NL + 1)(2NR + 1)
2N + 1

μ2
1 (B7)

Equation (25) in the main text is Equation (B6) for NL = NR =
Ndot = N/2.

B.2. Antisymmetric Hermitian Matrix

A similar calculation can be carried out for moments of the de-
terminant of a 2N × 2N antisymmetric Hermitian matrix A, in
the Gaussian ensemble of independent upper-diagonal elements
with a normal distribution (zero mean and unit variance).
The 2N eigenvalues come in pairs ±λn. The N eigenvalues

λn ≥ 0 have the joint distribution[25]

P({λn}) ∝
∏
n

e−λ2n/2
∏
i< j

(
λ2i − λ2j

)2
(B8)

The determinant is

DetA = (−1)N
N∏

n=1
λ2n (B9)

Let us introduce the variables xn = λ2n/2 ≥ 0, with distribution

P({xn}) ∝
∏
n

x−1/2
n e−xn

∏
i< j

(xi − xj )2 (B10)

The q -th moment μq of the determinant of A is given by

μq = (−2)Nq

∫ ∞

0
d{xn}

∏
i< j

(xi − xj )2
∏
n

xq−1/2
n e−xn

∫ ∞

0
d{xn}

∏
i< j

(xi − xj )2
∏
n

x−1/2
n e−xn

(B11)

with
∫ ∞
0 d{xn} = ∫ ∞

0 dx1 · · · ∫ ∞
0 dxN . This is the ratio of normal-

ization constants of Laguerre distributions, which is known.[35]

We thus obtain

μq = (−2)Nq
N−1∏
j=0

	
(
q + N − j − 1

2

)
	

(
N − j − 1

2

) (B12)

For q = 1, 2 this reduces to

μ1 = (−1)N (2N)!
2NN!

, μ2 = (2N + 1)!(2N)!
22N(N!)2

⇒ Var (DetA) = 2N[E(DetA)]2 (B13)

The average determinant of antisymmetric Hermitian matrices
increases exponentially with N

μ1 =
√
2(−2/e)NNN [1+ O(1/N)] (B14)

in contrast to the exponential decay for antisymmetric orthogonal
matrices, cf. Equation (25).
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