
Parallel software for lattice N = 4 supersymmetric Yang–Mills theory

David Schaicha, Thomas DeGrandb

aDepartment of Physics, Syracuse University, Syracuse, New York 13244, United States
bDepartment of Physics, University of Colorado, Boulder, Colorado 80309, United States

Abstract

We present new parallel software, SUSY LATTICE, for lattice studies of four-dimensional N = 4 supersym-
metric Yang–Mills theory with gauge group SU(N). The lattice action is constructed to exactly preserve
a single supersymmetry charge at non-zero lattice spacing, up to additional potential terms included to
stabilize numerical simulations. The software evolved from the MILC code for lattice QCD, and retains
a similar large-scale framework despite the different target theory. Many routines are adapted from an
existing serial code [1], which SUSY LATTICE supersedes. This paper provides an overview of the new par-
allel software, summarizing the lattice system, describing the applications that are currently provided and
explaining their basic workflow for non-experts in lattice gauge theory. We discuss the parallel performance
of the code, and highlight some notable aspects of the documentation for those interested in contributing
to its future development.

Keywords: Lattice gauge theory, Supersymmetric Yang–Mills, Monte Carlo methods, Parallel computing

PACS: 11.15.Ha, 12.60.Jv, 02.70.Uu

1. Introduction: Supersymmetry on the lattice

For decades, lattice field theory has played important roles in many areas of physics, from statistical
and condensed-matter physics to high-energy particle physics. Within the domain of particle physics, the
formulation of gauge theories on a space-time lattice provides a non-perturbative definition of such systems,
with large-scale numerical computations making crucial contributions to the phenomenology of quantum
chromodynamics (QCD) and the search for new physics beyond the standard model (BSM).1

An area where progress has been more difficult is the lattice formulation of supersymmetric theories [2].
This is unfortunate, because supersymmetry is an extremely important theoretical tool, and a common
ingredient in BSM physics. The simplifications resulting from supersymmetry have aided analytic in-
vestigations of many fascinating non-perturbative phenomena such as confinement, dynamical symmetry
breaking, and dualities between pairs of supersymmetric gauge theories as well as between gauge and
gravity theories [3]. Complementary studies of these issues through first-principles lattice calculations, in
addition to potential phenomenological applications to supersymmetric extensions of the standard model,
motivate continuing research into supersymmetric lattice gauge theory.

Briefly stated, the essential obstacle to lattice supersymmetry is the fact that supersymmetry transfor-
mations extend the algebra of space-time translations and rotations. The anticommutators of supersym-

metry generators produce infinitesimal translations,
{
Qα, Q

†
α̇

}
∝ σαα̇ · P , which do not exist in discrete

space-time. This problem cannot be evaded by defining a “discrete supersymmetry” based on finite lattice
translations, because lattice finite-difference operators do not satisfy the Leibniz rule [4, 5]. Naive lattice

Email addresses: dschaich@syr.edu (David Schaich), thomas.degrand@colorado.edu (Thomas DeGrand)
1The proceedings of the annual International Symposium on Lattice Field Theory provide comprehensive reviews and may

be found at http://pos.sissa.it/cgi-bin/reader/family.cgi?code=lattice.

ar
X

iv
:1

41
0.

69
71

v1
 [

he
p-

la
t]

 2
5

O
ct

 2
01

4

http://pos.sissa.it/cgi-bin/reader/family.cgi?code=lattice

discretization thus breaks supersymmetry at the classical level, leading to the generation of supersymmetry-
violating operators whose couplings must be fine-tuned to recover the supersymmetric theory of interest.
Since there are typically many such operators, such fine-tuning is generally impractical.2

For certain gauge theories with extended supersymmetry, however, significant progress was made in the
past decade through the construction of lattice formulations in which a subset of the supersymmetry algebra
is exactly preserved at non-zero lattice spacing.3 The historical development and essential features of these
constructions are thoroughly reviewed in Ref. [2]. The systems for which this approach is possible include
N = (2, 2), (4, 4) and (8, 8) supersymmetric Yang–Mills (SYM) theories in two dimensions, N = 4 SYM
in three dimensions, and the especially interesting case of N = 4 SYM in four dimensions. For all of these
theories, the method of topological twisting provides a change of variables under which the supercharges
form Kähler–Dirac multiplets of antisymmetric p-index tensors (Q,Qµ,Qµν , · · ·) with p = 0, 1, · · · , d in d
dimensions. The nilpotent 0-form supercharges Q anticommute to form a sub-algebra that can be exactly
preserved on the lattice [17, 18]. This procedure does not depend on the gauge group, and in this article
we consider SU(N) gauge theories with relatively small numbers of colors N = 2, 3 and 4.

More recently, these constructions have been used as the basis for practical numerical lattice calcula-
tions, which have passed several non-trivial consistency checks and begun to make novel contributions to
our physical understanding [19, 20, 21, 22]. Especially in the most interesting case of four-dimensional
N = 4 SYM, these lattice studies rapidly become computationally expensive, a challenge familiar from
lattice QCD. To address this challenge, we have developed new parallel software for lattice N = 4 SYM,
SUSY LATTICE, which we introduce in this article. Our starting point was the highly-optimized MIMD
Lattice Computation (MILC) software for lattice QCD [23], although the significantly different target the-
ory required substantial changes throughout the code. Many central routines are adapted from the serial
code presented in Ref. [1], which this software supersedes, and we have also added some new capabilities
that extend the scope of the supported computations.

In this work we present an overview of SUSY LATTICE, aiming to provide useful information both for
particle theorists with limited Monte Carlo experience as well as for lattice gauge theorists more familiar
with QCD-like systems. We begin in the next section by briefly reviewing the lattice formulation of N = 4
SYM, and the basic workflow of lattice investigations. Summarizing discussions recently published in
Ref. [21], we describe the degrees of freedom of the discretized system, the A∗4 lattice structure, and the
lattice action implemented by SUSY LATTICE, including potential terms that softly break the otherwise
exactly preserved 0-form supersymmetry Q. In Section 2.2 we explain the rational hybrid Monte Carlo
(RHMC) algorithm for importance sampling of gauge field configurations and introduce a few important
measurements, in particular the phase of the complex Pfaffian of the fermion operator. For users interested
in obtaining and running SUSY LATTICE without modification, in Section 3 we provide a quick-start guide
including a high-level overview of the available measurements, along with some discussion of the scaling
and parallel performance of the code. Finally, in Section 4 we highlight some notable aspects of the
documentation for those who may be interested in extending SUSY LATTICE with additional measurements
or features. We conclude with a discussion of some potential directions for future development, and invite
all who wish to contribute to do so through the publicly accessible version control repository [49].

2. The discretized theory, and methodology of lattice calculations

In this section we first write down the lattice formulation of N = 4 SYM in four dimensions, and then
review the essential ingredients of lattice gauge theory calculations. We omit the details of the relevant
topological twisting of continuum N = 4 SYM [24, 25], which is discussed in more detail in Refs. [2, 21].
Instead, in Section 2.1 we simply introduce the degrees of freedom of the lattice theory, describe the A∗4

2One notable exception is N = 1 supersymmetric Yang–Mills theory in four dimensions, where only the gaugino mass
needs to be fine-tuned [6], or controlled by working with Ginsparg–Wilson lattice fermions [7, 8, 9].

3There are, of course, other approaches that lie beyond the scope of this article [10, 11, 12, 13, 14, 15, 16].

2

lattice structure, and write down the lattice action. We explain the various terms in the lattice action,
emphasizing their invariance under lattice gauge transformations and (except for certain potential terms)
preservation of the 0-form twisted supersymmetry Q.

Given the lattice action S, we can carry out numerical computations of operator expectation values

〈O〉 =
1

Z

∫
[dX]O e−S[X] Z =

∫
[dX]e−S[X], (1)

where X is a placeholder for the lattice fields to be defined below. Section 2.2 summarizes how the
discretized path integral is stochastically evaluated through importance-sampling Monte Carlo. In broadest
terms, we use the rational hybrid Monte Carlo (RHMC) algorithm to obtain a sequence of gauge field
configurations with the appropriate probability distribution. We then measure observables of interest on a
set of n such configurations, so that 〈O〉 = 1

n

∑
iOi, with statistical uncertainties from the finite sample size

and systematic uncertainties from working in a finite discretized space-time. In Section 2.2 we will discuss
some important observables, including the low-lying eigenvalues and Pfaffian of the fermion operator.

2.1. Lattice variables, lattice structure and lattice action

Continuum N = 4 SYM is a theory of a gauge field, four Majorana fermion fields and six scalar fields,
all of which transform in the adjoint representation of the SU(N) gauge group, and are related to each
other by 16 fermionic supersymmetry charges. Working in euclidean space-time, the twisting procedure
regroups the ten bosons into a five-component complexified gauge field Aa with a = 0, · · · , 4, while the 16
fermions are assigned to the multiplet (η, ψa, χab), with χab antisymmetric. The supersymmetry charges
are similarly converted to (Q,Qa,Qab).

At this point we can move onto the lattice [17, 18, 26, 27, 21], by defining complexified gauge links
Ua(n) that are elements of the algebra gl(N,C),

Ua(n) =
N2−1∑
C=0

TCUCa (n), (2)

with complex coefficients UCa (n). The TC are antihermitian generators of u(N), with normalization
Tr
[
TATB

]
= −δAB. The fermion fields η(n), ψa(n) and χab(n) are defined in the same way, as required

by supersymmetry. As a consequence, the fields transform in the adjoint representation of U(N),

Ua(n)→ G(n)Ua(n)G†(n+ µ̂a) η(n)→ G(n)η(n)G†(n)

Ua(n)→ G(n+ µ̂a)Ua(n)G†(n) ψa(n)→ G(n)ψa(n)G†(n+ µ̂a) (3)

χab(n)→ G(n+ µ̂a + µ̂b)χab(n)G†(n),

for lattice gauge transformation G ∈ U(N). Speaking informally, we will say that the link Ua(n) points
“from” site n+ µ̂a (on the right) “to” site n (on the left), and similarly for the other fields.

Because we have five gauge links going out from each lattice site, we cannot discretize the theory on the
familiar hypercubic lattice. Instead we must use the A∗4 lattice, the four-dimensional lattice where each site
has ten symmetric nearest neighbors connected by five linearly dependent basis vectors. (The A∗d lattice
in d dimensions has coordination number 2(d+ 1); the most familiar example is the triangular lattice A∗2,
while A∗3 can be deformed into the body-centered cubic lattice.) In SUSY LATTICE we employ an extremely
convenient representation of the A∗4 lattice, which simply adds a body-diagonal link µ̂4 = (−1,−1,−1,−1)
to the usual four hypercubic basis vectors µ̂ν . Converting from this abstract hypercubic basis to physical
space-time requires some care, as discussed in Ref. [21].

3

Now we can write down the full lattice action (repeated indices summed except where noted),

S = Sexact + Sclosed + Sstab (4)

Sexact =
N

2λ

∑
n

a4 Tr

[
−Fab(n)Fab(n) +

c2

2

(
D(−)
a Ua(n)

)2
− χab(n)D(+)

[a ψb](n)− η(n)D(−)
a ψa(n)

]
(5)

Sclosed = −N
8λ

∑
n

a4 Tr
[
εabcde χde(n+ µ̂a + µ̂b + µ̂c)D

(−)
c χab(n)

]
(6)

Sstab =
N

2λ
µ2
∑
n, c

a4

(
1

N
Tr
[
Uc(n)Uc(n)

]
− 1

)2

+ κ
∑
P
a4| detP − 1|2. (7)

These require some further definitions. The field strengths Fab and Fab in the first term are

Fab(n) = Ua(n)Ub(n+ µ̂a)− Ub(n)Ua(n+ µ̂b) = D(+)
a Ub(n)

Fab(n) = Ua(n+ µ̂b)Ub(n)− Ub(n+ µ̂a)Ua(n) = D(+)
a Ub(n),

(8)

while the forward and backward finite-difference operators are [26, 27]

D(+)
a fb(n) = Ua(n)fb(n+ µ̂a)− fb(n)Ua(n+ µ̂b)

D(−)
a fa(n) = fa(n)Ua(n)− Ua(n− µ̂a)fa(n− µ̂a) (9)

D(+)
a fb(n) = Ua(n+ µ̂b)fb(n)− fb(n+ µ̂a)Ua(n)

D(−)
c fab(n) = fab(n+ µ̂c)Uc(n)− Uc(n+ µ̂a + µ̂b)fab(n).

In the final term of Eq. 7, P is the oriented product of links around a fundamental plaquette of the lattice.
For the remainder of this article we will work in lattice units where we set the lattice spacing a = 1.

With these definitions it is straightforward to confirm that the lattice action S is gauge invariant: all
terms in Eq. 4 form closed loops, and G†G = GG† = 1 for gauge transformation G ∈ U(N). With the
exception of Sstab (discussed below), S also preserves the 0-form supersymmetry Q, so that QS = 0 when
µ = 0 and κ = 0. Under the action of Q the fields transform as

Q Ua(n) = ψa(n) Q ψa(n) = 0

Q χab(n) = −Fab(n) Q Ua(n) = 0 (10)

Q η(n) = d(n) Q d(n) = 0

with d a bosonic auxiliary field that maintains off-shell supersymmetry. In Eq. 4 we replaced d by its

equation of motion d(n) → D(−)
a Ua(n). From Eq. 10 it is clear that Q2 = 0 on every field, and it is not

hard to see that Q acting on Sexact vanishes. The action of Q on Sclosed also vanishes due to a lattice
Bianchi identity, εabcdeDcFde = 0.

The other fifteen supersymmetries Qa and Qab are broken on the lattice, and must be restored in the
continuum limit to recover full N = 4 SYM. This requirement is analogous to the restoration of SO(4)
euclidean Lorentz symmetry in the continuum limit of lattice QCD calculations, where only a discrete
subgroup of SO(4) is preserved at non-zero lattice spacing.

Finally, we define the parameters in the lattice action, Eq. 4. The overall factor outside most of the
terms in S involves the number of colors N and the ’t Hooft coupling λ = g2N , where g is the gauge
coupling. The coefficient c2 in Eq. 5 takes the value c2 = 1 classically, but may be shifted by quantum
effects, potentially requiring fine-tuning to recover N = 4 SYM in the continuum limit. Preliminary
investigations suggest that the necessary fine-tuning may be negligible in practice [22], and we typically
fix c2 = 1.

Sstab with its two coefficients µ2 and κ is used to stabilize numerical computations. The “bosonic mass”
µ regulates flat directions, lifting a bosonic zero mode present due to the periodic boundary conditions

4

(BCs) in all four directions. We lift the corresponding fermionic zero mode by imposing antiperiodic
(thermal) temporal BCs for the fermions. Alternately, a fermion mass term

m
∑
n

a4
{

Tr
[
D(−)
b Ub(n)

]
Tr
[
Ua(n)Ua(n)

]
− Tr [η(n)] Tr

[
ψa(n)Ua(n)

]}
(11)

could be added to the action, but this is not currently implemented in SUSY LATTICE. Finally, when κ > 0
the plaquette determinant term projects the product of links around each plaquette P from gl(N,C) to
sl(N,C), effectively reducing the gauge group from U(N) to the target SU(N). Specifically, κ ≥ 0.5
forbids monopole condensation in the U(1) sector, protecting the lattice system from these unphysical
strong-coupling lattice artifacts [21].

Non-zero µ and κ softly break the 0-form supersymmetry Q, which is otherwise exactly preserved even
at non-zero lattice spacing: lim(µ,κ)→(0,0)QS = 0. (The fermion mass term in Eq. 11 is constructed in a
Q-invariant way, but would break a global shift symmetry under η → η + cI with c a constant Grassmann
parameter.) The bosonic mass µ must be tuned to zero in the continuum limit to recover N = 4 SYM. It
may not be necessary to tune κ to zero, since its Q-breaking effects are confined to the U(1) sector that
decouples in the continuum limit where U(N) = SU(N) ⊗ U(1). In the next subsection we will discuss
ways to monitor the effects of non-zero µ and κ in numerical calculations, along with ways to check the
restoration of the broken supersymmetries Qa and Qab.

2.2. Rational hybrid Monte Carlo algorithm and important observables

Given the lattice formulation of N = 4 SYM written above, we wish to compute operator expectation
values through importance sampling Monte Carlo evaluation of the path integral in Eq. 1. Let us divide
the lattice action into its bosonic and fermionic parts,

S[U ,U ,Ψ] = SB[U ,U] + ΨTD[U ,U]Ψ (12)

where Ψ ≡ (η, ψa, χab)
T is the Kähler–Dirac fermion field and D[U ,U] is the (antisymmetric) fermion

operator. Eq. 1 then becomes

〈O〉 =
1

Z

∫
[dU][dU][dΨ]O e−S[U ,U ,Ψ] =

1

Z

∫
[dU][dU]O e−SB [U ,U] pfD[U ,U], (13)

where the Pfaffian pfD[U ,U] results from Gaussian integration over Ψ.
Because we wish to employ [e−SB pfD] as a Boltzmann weight, both the bosonic action and Pfaffian

should be real and positive. This condition is satisfied for SB. Unfortunately, for a given gauge field
configuration the Pfaffian is generically complex, pfD = |pfD|eiα. We proceed by considering the phase-
quenched path integral

〈O〉pq =
1

Zpq

∫
[dU][dU]O e−SB [U ,U] |pfD[U ,U]| Zpq =

∫
[dU][dU]e−SB [U ,U] |pfD[U ,U]|. (14)

So long as
〈
eiα
〉
pq

is statistically non-zero, the true expectation values can be reconstructed via phase
reweighting,

〈O〉 =

〈
Oeiα

〉
pq

〈eiα〉pq
. (15)

The phase of the Pfaffian is therefore a crucial observable to monitor in phase-quenched calculations, and we
will discuss its measurement in detail in Section 4.4. In practice, we find that the Pfaffian of lattice N = 4
SYM is very nearly real and positive, so that 〈O〉pq ≈ 〈O〉 and we do not suffer from an insurmountable
sign problem [21]. Accordingly, we will omit the pq subscripts in the remainder of this article.

5

Explicitly evaluating the Pfaffian is far too computationally expensive to be a part of our configuration
generation algorithm. The standard approach we use instead employs a set of bosonic pseudofermions Φ,
of the same dimensionality as Ψ, which are introduced through the mathematical identity

|pfD| = |detD|1/2 =
(

det[D†D]
)1/4

∝
∫

[dΦ†][dΦ] exp

[
−Φ†

(
D†D

)−1/4
Φ

]
. (16)

The negative fractional power is achieved by the use of the rational hybrid Monte Carlo (RHMC) algorithm
to generate an appropriate distribution of gauge configurations [28].

There are three main steps to the RHMC algorithm. First the pseudofermion field is set to Φ(n) =(
D†D

)1/8
g(n) at each lattice site, with g(n) being 16N2-component random vectors drawn from a Gaussian

distribution. We also define random Gaussian Πa(n) ∈ gl(N,C) to serve as fictitious momenta conjugate
to the gauge fields Ua(n), leading to an effective Hamiltonian

H =
1

2

∑
n

Tr
[
Π2
a(n)

]
+ SB[U ,U] + Φ†

(
D†D

)−1/4
Φ. (17)

The core of the algorithm is molecular dynamics (MD) evolution of Πa and Ua along a trajectory of length
τ in a fictitious MD time. Since the pseudofermion field already has the proper distribution, Φ is kept
fixed along this trajectory. The equation of motion for the links is simplified by the fact that they live
in gl(N,C) rather than SU(N). The MD evolution involves inexact integration of Hamilton’s equations,
which does not conserve the effective Hamiltonian, ∆H 6= 0. The final step of the RHMC algorithm
is a Metropolis–Rosenbluth–Teller test: the new gauge field values produced by the MD evolution are
accepted with probability P = min(1, e−∆H), otherwise the original field values are restored to produce a
new configuration identical to the starting configuration. So long as the MD integration scheme is area
preserving (symplectic) and reversible (symmetric), the acceptance test makes the algorithm exact by
stochastically correcting for the integration errors.

The above summary of RHMC is almost identical to that of the more familiar HMC algorithm [29].
The main difference between the two appears in the MD evolution, each step of which requires solving

δUa
δt

=
δH

δΠa
= Πa

δΠa

δt
= − δH

δUa
= −δSB

δUa
− δ

δUa
Φ†
(
D†D

)−1/4
Φ. (18)

In order to take the Lie derivative of the pseudofermion term in the effective Hamiltonian, we approximate
the rational power of the matrix inverse by a series of P partial fractions,

(
D†D

)−1/4
= α0 +

P∑
i=1

αi

(
D†D + βi

)−1
(19)

(and similarly for the rational power
(
D†D

)1/8
needed to initialize Φ). The fermionic contribution to the

force δH
δUa then becomes

δ

δUa
Φ†
(
D†D

)−1/4
Φ =

P∑
i=1

αi

[
(D†D + βi)

−1Φ
]† δ (D†D)

δUa

[
(D†D + βi)

−1Φ
]
, (20)

and all the (D†D + βi)
−1Φ can be efficiently determined by a multi-shift conjugate gradient (CG) in-

verter [30]. These inversions dominate the cost of lattice computations.
In Sections 3 and 4 we will provide some further details about the rational approximations and MD

integration schemes currently provided by SUSY LATTICE. For now we remark that optimal shifts βi and
amplitudes αi are computed offline by minimizing the relative approximation error within a given spectral
range [λlow, λhigh], with λlow > 0 [31]. Keeping the errors negligible across larger spectral ranges requires

6

adding more terms to the partial fraction approximation, increasing computational costs. At a minimum,
we must demand that the smallest and largest eigenvalues of D†D fall within the spectral range we use,
λlow < λmin � λmax < λhigh. The extremal eigenvalues of the squared fermion operator are therefore,
like the Pfaffian, important quantities to monitor during RHMC evolution. Fortunately such eigenvalue
computations are much cheaper than Pfaffian measurements, and in SUSY LATTICE we carry them out
using the PReconditioned Iterative Multi-Method Eigensolver (PRIMME) library [32].

By repeating the steps of the RHMC algorithm to accumulate some number (typically thousands) of MD
time units, we generate an ensemble of gauge configurations. We have already discussed some important
observables to measure using these configurations, namely the Pfaffian and low-lying eigenvalues of the
fermion operator. A simpler set of common lattice observables consists of products of gauge links around
closed loops on the lattice. Since the links are elements of gl(N,C), they are not unitarized and the simplest
possible observable 1

NTr
[
Ua(x)Ua(x)

]
is non-trivial. The plaquette Tr

[
Ub(x)Ua(x+ µ̂b)Ub(x+ µ̂a)Ua(x)

]
is also straightforward to compute even on the A∗4 lattice with five basis vectors at each lattice site, and
its determinant provides information about how far the links are from sl(N,C). The average link-trace,
plaquette, Polyakov loop Tr

[∏
Nt
Ut
]
, and all contributions to the lattice action are measured and printed

after every trajectory.
Further observables are typically computed only on stored configurations. These include larger Wilson

loops oriented along the principal axes of the lattice, which can be used to monitor the restoration of the
Qa and Qab supersymmetries, as discussed in Ref. [21]. To monitor the Q supersymmetry that is broken
only by non-zero µ and κ in Sstab (Eq. 7), we measure violations of the Ward identity

QO = Tr

[∑
b

(
UbUb − UbUb

)∑
a

UaUa

]
− Tr

[
η
∑
a

ψaUa

]
= 0, (21)

which requires computing the fermion bilinear ηψa. In SUSY LATTICE we compute ηψa by inverting the
fermion operator D on Gaussian-distributed stochastic (“noisy”) sources, a standard technique used to
compute the chiral condensate in lattice QCD.4 The static potential is also extracted from Wilson loops,
but in this case it is advantageous to measure loops for all possible spatial separations ~r, not just the
“on-axis” loops that lie along the principal axes of the lattice. To do so, we gauge fix to Coulomb gauge
and compute

W (~r, t) = Tr
[
P (~x, t, t0)P †(~x+ ~r, t, t0)

]
, (22)

where P (~x, t, t0) is a product of temporal links Ut at spatial location ~x, which extends from timeslice t0 to
timeslice t0 + t.

3. Running the code: High-level overview

In this section we summarize how to obtain SUSY LATTICE, compile the provided programs, and run
the resulting executables on a generic GNU/Linux system. In the next section we will describe the code
itself in greater detail, providing information necessary to extend it with additional measurements or other
features.

SUSY LATTICE is developed in a publicly accessible version control repository [49], so that one way to
download the most recent version of the code is to run

$ git clone https://github.com/daschaich/susy.git

Alternately, a tarball containing the version of the code discussed in this article may be found at http://
github.com/daschaich/susy/archive/arXiv.tar.gz. After obtaining the code, move to the 4dSYM/susy

4The structure of the fermion operator allows us to obtain two estimates of ηψa for each stochastic source, by simultaneously
computing both the η components of D−1ψa and the ψa components of D−1η.

7

http://github.com/daschaich/susy/archive/arXiv.tar.gz
http://github.com/daschaich/susy/archive/arXiv.tar.gz

application directory. In addition to a README and other files to be discussed in the next section, this direc-
tory contains two sample Makefiles: Make_scalar uses gcc to compile serial executables, while Make_mpi

uses mpicc to compile parallel (MPI) executables. These Makefiles may need minor modifications on a
given system. (For example, Make_mpi is set up for the USQCD clusters at Fermilab.) They are both
wrappers that load architecture-independent information from the main Make_template, where all the
available executables are defined.

To compile RHMC evolution for serial (“scalar”) execution, simply run

$ make -f Make_scalar susy_hmc

This will produce an executable named susy_hmc, one of several executables that are actively maintained
and well tested:

• susy_hmc runs the RHMC algorithm for gauge configuration generation, along with inexpensive basic
measurements (e.g., of the plaquette, link-trace and Polyakov loop) that can be used to monitor the
RHMC evolution.

• susy_meas carries out more expensive measurements on saved gauge configurations, as discussed at
the end of the previous section. These include both on-axis and gauge-fixed Wilson loop compu-
tations, with optional stout smearing. Measurements of the ηψa fermion bilinear from inversions
using a given number of stochastic sources are also optional, and dominate the computational cost if
performed.

• susy_eig is an interface to PRIMME [32] that computes the smallest and largest eigenvalues of D†D
for a given gauge configuration, along with the corresponding eigenvectors.

• susy_phase computes the complex Pfaffian of the fermion operator D[U ,U] for a given gauge con-
figuration, using the algorithm described in Section 4.4.

An additional susy_hmc_meas executable carries out the same measurements as susy_meas in the course
of RHMC evolution.

In the testsuite/scalar directory we provide a script named run_tests that will compile each of
these executables, run it in serial using a fixed set of input options, and check the resulting output against
reference files distributed with the code. The run_tests script takes two optional command-line arguments.
Running

$./run_tests <N> <target>

will compile, run and check the susy_$target executable for gauge group U($N), where $N must be either
2, 3 or 4. Alternately, if run_tests is executed with no arguments it will check every executable listed
above, and then test that the Pfaffian computation can be split into multiple checkpointed pieces. Running
every test in this manner will take several hours, with the bulk of the time spent computing the Pfaffian.
Similar tests of the parallel executables can be carried out by customizing the run_tests script in the
testsuite/mpi directory to use the appropriate Makefile and mpirun for the MPI system to be tested. So
long as the parallel tests are run using two cores, the reference output should be reproduced.

All regular SUSY LATTICE output is written to stdout, and is typically redirected to a single plain-text
file. Each measurement appears on a line that starts with a corresponding label, which can easily be
selected by offline analyses using awk, python, perl, etc. The in-line documentation specifies the labels
currently used, along with other details of the output.

In the next two subsections we will summarize various options that users may specify when using
SUSY LATTICE. Some of these options have to be fixed when compiling, while others are read in by the
executables when they are run. We will then conclude this section by discussing the scaling and parallel
performance of SUSY LATTICE.

3.1. Compile-time options

The executables listed above are produced by compiling with appropriate combinations of macro defini-
tions: -DHMC_ALGORITHM for RHMC evolution; -DWLOOP for gauge-fixed Wilson loop computations; -DSTOUT

8

for stout smearing; -DBILIN for fermion bilinear measurements using stochastic sources; -DEIG for eigen-
value measurements using PRIMME; and -DPHASE to compute the complex Pfaffian. In addition, several
other features of the code must be fixed at the time of compilation. For example, the gauge group U(N)
is chosen by uncommenting one (and only one) definition of the number of colors NCOL = N and cor-
responding dimension of the adjoint fermion representation DIMF = NCOL2 at the top of the header file
include/su3.h. The default gauge group is U(2). Gauge groups U(3) and U(4) are also well tested and
available through this header file. Larger values of NCOL require further extensions of the code, as we will
discuss in Section 4.1. In practice, computational costs increase rapidly as the number of colors grows.
In Fig. 1, we observe the costs of RHMC configuration generation increasing ∝ N5, while the Pfaffian
calculation scales ∝ DIMF3 = NCOL6 as expected. This behavior makes it unlikely that computations with
N ≥ 5 will be practical in the immediate future. Even so, because deviations from the large-N limit of
N = 4 SYM go as 1/N2, investigations with N ≤ 4 should access the large-N regime up to few-percent
effects that may be comparable to statistical uncertainties.

Figure 1: Total computational costs for 83×24 RHMC generation of a single molecular dynamics time unit, and 23×4
Pfaffian measurements, for gauge groups U(2), U(3) and U(4), on log–log axes. The red dashed line illustrates the cost scaling
∝ N5 observed for RHMC configuration generation, while the blue dashed line shows the expected N6 scaling for Pfaffian
measurements.

Other important compile-time options may be found in the header file susy/defines.h. The simplest of
these is PBC, which controls the temporal boundary conditions (BCs) of the fermions. This flag can be set to
1 for periodic BCs, or −1 for antiperiodic (thermal) BCs. The default antiperiodic BCs are recommended,
to lift a fermionic zero mode that may otherwise destabilize the computations. The coefficient c2 in Sexact
(Eq. 5) may be changed by redefining the flag C2 in this file. We recommend leaving this coefficient set to
its classical value c2 = 1.

Finally, the order P of the rational approximation in Eq. 19 is set by the flag DEGREE in defines.h.

Five options are supported, each of which provides rational approximations that reproduce
(
D†D

)−1/4
and(

D†D
)1/8

up to fractional errors of at most 2× 10−5 across a given spectral range:

• DEGREE 5 is set up for the spectral range [0.1, 50]

• DEGREE 6 is set up for the spectral range [0.02, 50]

• DEGREE 8 is set up for the spectral range [10−3, 50]

• DEGREE 9 is set up for the spectral range [10−4, 45]

• DEGREE 15 is set up for the spectral range [10−7, 1000]

A smaller DEGREE allows the CG inverter to converge more quickly, but if the eigenvalues of D†D exceed

9

the spectral range of the rational approximation, significant numerical errors may result. A DEGREE of 8
or less suffices for our typical computations.

3.2. Run-time options

When run, each executable must be given a set of input parameters that specify the lattice volume,
the gauge configuration to load, and other pertinent information. All possible input parameters for every
executable discussed above are summarized in Fig. 2. Because this figure combines input options for
multiple executables, it cannot be used as an input file itself. Sample input files for each executable are
provided in the testsuite directory. Although comments and whitespace are ignored, the options must
come in the order expected by the executable, and each variable must be immediately preceded by its
name as shown in Fig. 2.

Figure 2: All possible input parameters that may be read in by a SUSY LATTICE executable, with brief in-line explanations.

0 prompt 0 # If non-zero, prompt user to manually input each parameter

nx 6 # Lattice volume is nx*ny*nz*nt

ny 6

nz 6

nt 6

5 iseed 41 # Random number generator seed

warms 0 # Number of trajectories without expensive measurements

trajecs 10 # Number of trajectories with expensive measurements

traj_length 1 # Trajectory length (tau)

10 nstep 10 # Fermion steps per trajectory; step_size = traj_length / nstep

nstep_gauge 10 # Gauge steps per fermion step

traj_between_meas 10 # How many trajectories to skip between expensive measurements

lambda 1.0 # ’t Hooft coupling

15 kappa_u1 0.5 # Plaquette determinant coupling

bmass 0.5 # Bosonic mass parameter (mu)

fmass 0.0 # Mass shift in fermion operator

The next two lines must only be included when compiling with -DSTOUT

20 Nstout 1 # Number of stout smearing steps

rho 0.1 # Stout smearing parameter

max_cg_iterations 5000 # Maximum number of CG iterations in each inversion

error_per_site 1e-5 # "Linear" CG stopping condition (squared to compare with |r|^2)

25

The next line must only be included when compiling with -DBILIN

nsrc 3 # Number of stochastic sources for fermion bilinear calculations

The next three lines must only be included when compiling with -DEIG

30 Nvec 100 # Number of eigenvalues and eigenvectors to calculate

eig_tol 1e-8 # Eigensolver tolerance (convergence criterion)

maxIter 5000 # Maximum number of eigensolver iterations

The next two lines must only be included when compiling with -DPHASE

35 ckpt_load -1 # If positive, load checkpointed pfaffian computation

from config.Q$ckpt_load and config.diag$ckpt_load

ckpt_save -1 # If positive, checkpoint pfaffian computation

to config.Q$ckpt_save and config.diag$ckpt_save

40 reload_serial config # How to set up lattice at start:

only fresh, random, continue and reload_serial supported

no_gauge_fix # Only coulomb_gauge_fix and no_gauge_fix supported

save_serial new-config # What to do with lattice at end: only forget and save_serial supported

10

While the in-line explanations in Fig. 2 should suffice to explain most options, some further comments
are called for. First, the lines starting with reload_serial, warms, trajecs and save_serial determine
the overall structure of an RHMC computation. In this case, the configuration config would be loaded
from disk, the RHMC algorithm would be run for ten trajectories (with trajectory length of τ = 1 MD
time unit between accept/reject tests set by traj_length), and the resulting configuration would be saved
to disk as new-config. A trajectory length of τ = 1 is a reasonable default. Although longer trajectories
decrease autocorrelations between subsequent configurations in the Markov chain, they also require smaller
steps in the MD evolution, to keep |∆H| . 1 and maintain reasonable acceptance. The details of optional
checkpointing in the Pfaffian computation will be discussed in Section 4.4. Finally, we emphasize that the
fmass parameter in the input is not the Q-invariant coefficient m that appears in Eq. 11. Instead this
parameter simply shifts the squared fermion operator

D†D −→ D†D + fmass2. (23)

This shift is not needed when the fermionic fields are subject to antiperiodic temporal BCs, and we
recommend using compile-time option PBC = -1 and fmass = 0.

3.3. Performance and scaling

The performance advantages from parallelization are dramatic, and greatly extend the applicability
of SUSY LATTICE compared to the serial code presented in Ref. [1]. For typical small-volume calculations
(e.g., 43×12 gauge configuration generation with N = 2), SUSY LATTICE is roughly two orders of magnitude
faster than the serial code when each is run in its standard production environment (including single-GPU
acceleration of the serial code’s multi-shift CG inverter [33], which significantly improves its performance).
More importantly, SUSY LATTICE can be scaled up to larger lattice volumes and larger gauge groups than
the serial code can handle – the restriction to a single GPU limits the serial code to lattice volumes of at
most 83×16 even for the smallest N = 2.

Efficiently studying larger lattice volumes and larger N requires that SUSY LATTICE performs well when
running across many cores. We observe good parallel scaling from SUSY LATTICE (thanks in large part to
the work done over many years to optimize the MILC code), although further performance improvements
may be feasible. First consider the strong scaling shown in Fig. 3, which considers the time to solution
for a fixed computation spread across various numbers of cores. The computation under consideration is
to generate a single MD time unit with the RHMC algorithm, for a 163×32-site lattice volume and either
gauge group U(2) or U(3). The time to solution steadily decreases as we use up to 512 cores (32 nodes) of
the USQCD pi0 cluster at Fermilab.

In particular, up to around 128 cores (eight 16-core pi0 nodes) the scaling is roughly optimal, following
a straight line with slope −1 on the logarithmic axes of Fig. 3. The local volume on 128 cores is 42×82

lattice sites per core, which decreases to 43 × 8 and 44 sites per core on 256 and 512 cores, respectively.
The performance deteriorates on more than 128 cores, as communication between all these cores begins to
take longer than the computations that each core has to carry out. Although lattice N = 4 SYM involves
more computation per site than lattice QCD with staggered or Wilson quarks, it also requires much
more intercore communication. In particular, the structure of the Sclosed term in Eq. 6 introduces dozens
of intercore data transfers (“gathers”) into each application of the fermion operator (the matrix–vector
operation in the CG algorithm).

We can also consider weak scaling, in which the problem size increases in tandem with the number of
cores being used. In Fig. 4 we plot the total computational cost in core-hours for Pfaffian measurements
with gauge group U(2) and lattice volumes 33×4, 33×6 and 33×8 on 2, 3 and 4 cores, respectively. That
is, the local volume of 33×2 sites per core is fixed, and all computations use part of a single 8-core node in
the HEP-TH cluster at the University of Colorado. The straight line on the logarithmic axes of Fig. 4 is a
fit to power-law scaling, with a power of 2.86(7). The Pfaffian computation requires O(V 3) operations, so
this power of approximately 3 indicates optimal weak scaling of the code.

11

Figure 3: Strong scaling of the time to solution for U(2) and U(3) 163×32 RHMC generation of a single molecular dynamics
time unit on the USQCD pi0 cluster at Fermilab, on log–log axes. The dashed lines illustrate optimal scaling (a power of −1),
which the computations follow fairly well through 128 cores (a local volume of 42×82 lattice sites per core), with deteriorating
performance on 256 and 512 cores (local volumes 43×8 and 44).

Figure 4: Weak scaling of the total computational cost for U(2) Pfaffian measurements with fixed local volume 33×2, on
log–log axes with a power-law fit. Since the Pfaffian computation requires O(V 3) operations, the power of approximately 3
indicates optimal scaling of the code.

12

4. Modifying the code: Underlying details

In this section we provide more information about elements of the code itself, highlighting notable
aspects of the documentation for the benefit of those who may be interested in contributing to future de-
velopment. SUSY LATTICE evolved from a version of the MILC QCD code that was extended by DeGrand,
Shamir and Svetitsky (DSS) to handle SU(N) gauge groups with arbitrary N and fermions transform-
ing in either the fundamental, adjoint, two-index symmetric or two-index antisymmetric representations.
Compared to the DSS code, further changes were required to add the fifth link required by the A∗4 lattice
structure, to implement Kähler–Dirac fermions and the N = 4 SYM lattice action, and to convert the
gauge links from SU(N) to gl(N,C). Even so, the basic structure of the code continues to resemble MILC,
and much of the information in the MILC manual remains relevant [23]. After describing the directory
tree, in the subsequent subsections we will address issues that make SUSY LATTICE different from a typical
parallel QCD code.

The five subdirectories within the 4dSYM directory are set up analogously to the MILC code:

• libraries contains simple single-processor routines, for example N×N matrix multiplication.

• include holds header files for procedures common to typical applications, as well as important
compile-time definitions such as the number of colors N and basic N -dependent data structures.

• generic implements procedures common to typical applications, such as data layout, internode
communications, and input/output (I/O).

• susy is currently the only application directory, containing code for four-dimensional N = 4 SYM.

• testsuite provides reference input and output files for all actively maintained executables, along
with scripts to test any or all of these executables, in serial or in parallel, for U(N) gauge theory
with N = 2, 3 or 4 colors.

The 2dSYM directory with the same structure is set up for two-dimensional N = (2, 2) SYM theory, which
we briefly discuss in the appendix.

4.1. Gauge group and fermion representation

To generalize the MILC code to handle arbitrary SU(N), the DSS code replaced the hardwired “3” for
the number of colors in SU(3) with a macro definition NCOL. This involved modifications to most single-
processor library routines (e.g., NCOL×NCOL matrix multiplication). The bosonic fields in SUSY LATTICE

are NCOL×NCOL complex matrices, just as the gauge fields in non-supersymmetric SU(NCOL) lattice gauge
theory would be. However, because the lattice N = 4 SYM link variables are elements of gl(N,C) rather
than SU(N), they are not unitarized in the course of the simulation.

The DSS code allows for fermions transforming in representations other than the fundamental. The
dimensionality of the fermion representation is set by the macro definition DIMF. While fermions in the
adjoint representation can be naturally encoded in a set of NCOL×NCOL complex matrices, the DSS code
remains more general by making the fermionic fields DIMF-component vectors in color space. We retain this
setup in SUSY LATTICE, with DIMF = NCOL2 fixed for the U(NCOL) adjoint representation. This approach
forces us to keep two sets of bosonic variables in the code. One set, called su3_matrix_f, denotes NCOL×NCOL
complex matrices and is used in the bosonic part of the code. The other set, called su3_matrix, denotes
DIMF×DIMF matrices and appears in the routines involving (pseudo)fermions, such as the calculation of the
pseudofermion action through Eq. 16. An su3_matrix Va is composed from an su3_matrix_f Ua by

VABa = Tr
[
λAij (Ua)jk λ

B
ki

]
, (24)

where the λA matrices are generators of U(N) defined in the file susy/setup_lambda.c. Whenever the
gauge configuration Ua is updated, the “adjoint links” Va must be regenerated by the fermion_rep()

routine. Of course, one must keep a complete set of library routines for matrix operations involving either
su3_matrix or su3_matrix_f variables.

13

As mentioned in Section 3.1, certain structures and routines are currently implemented only for NCOL ≤
4. These include the anti_hermitmat structure in include/su3.h, which explicitly lists the NCOL(NCOL+
1)/2 non-trivial components of NCOL×NCOL anti-hermitian complex matrices. This structure is used for stout
smearing, by routines that set up random gauge configurations, and by four library routines. In addition,
monitoring the restoration of the Qa and Qab supersymmetries requires inverting NCOL×NCOL gauge link
matrices, which is implemented using the cofactor matrix for NCOL ≤ 4. While it is straightforward to
extend these structures and routines to NCOL ≥ 5, the rapidly growing computational costs make such
work unlikely to prove useful at present.

4.2. Data layout and communications

The MILC code lays out its dynamical variables in two ways. “Site-wise” variables are packaged into
a site structure defined globally in the header file susy/lattice.h. The lattice itself is an array of such
sites, each of which contains, inter alia, five gauge links Ua and five adjoint links Va. This construction
dates from the earliest version of the MILC code, when this layout was optimal for the compilers and
computing architectures then in use. More recently the trend has been to define each lattice variable
as a separate “field-wise” array assigned a contiguous block of memory on each node; see Section 5.3 of
Ref. [23] for further discussion. These field-wise variables are also globally defined in susy/lattice.h,
and allocated in susy/setup.c after the lattice volume is set at run time (Fig. 2).

Because both site-wise and field-wise variables coexist in SUSY LATTICE, we must maintain two sets
of internode communication (“gather”) routines, with each set handling either site-wise or field-wise data
layout. In addition, the macro FORALLSITES is provided to simplify looping over the lattice volume. This
macro keeps track of both the linear index of field-wise variables along with a pointer to the corresponding
site, making it easy to use the two types of variables in combination.

A new structure in SUSY LATTICE that does not appear in the MILC code is called Twist_Fermion,
and bundles together all the fermion variables Ψ = (η, ψa, χab), for convenience.

The MILC code was written to deal with four-dimensional gauge fields discretized on hypercubic lattices.
Even using the convenient representation of the A∗4 lattice discussed in Section 2.1, in which four of
the five gauge links at each site are the usual hypercubic objects, accommodating the fifth link µ̂4 =
(−1,−1,−1,−1) required rewriting various low-level routines. For example, utilities for reading and writing
binary gauge configuration files had to be extended to include the fifth link.

In addition, in the MILC code each site in the lattice carries a flag labeling its parity in the sense of
an even/odd checkerboard: the parity is

p(n) = mod

(
3∑
i=0

ni, 2

)
. (25)

The first four links connect “even” (p = 0) sites to “odd” (p = 1) sites, and vice versa. This checkerboarding
is widely used in ordinary QCD codes. For example, staggered fermions are often defined to live on only
one parity, both at the level of HMC evolution and in measurements. In SUSY LATTICE it is hard to use
checkerboarding, since the fifth link connects sites of the same parity.

The only context in which we make use of the parity flag is parallel gauge fixing for static potential
analyses. A typical gauge choice is one which maximizes some set of links. The only option currently
implemented in SUSY LATTICE is Coulomb gauge, which maximizes

∑2
i=0 Tr [Ui(n)] at every site. The

formula for the gauge transformation, Ua(n) → G(n)Ua(n)G†(n + µ̂a), motivates considering an iterative
sequence of gauge transformations G that are alternately taken to be the identity on even or on odd sites.
Then for the first four links the maximization becomes linear in the Gs, reducing to multiplication on
the left for links at sites of the parity for which G is nontrivial, and on the right for links at sites of the
other parity. The fifth link always has to be multiplied on both sides, and cannot be included in the
maximization without substantially rewriting the gauge fixing code. This is not an issue for Coulomb
gauge, which includes only the first three links in the gauge condition.

14

Next, we must implement antiperiodic temporal BCs for the fermions differently than in standard QCD
codes where matter fields are defined only on the sites. In the QCD context, such BCs can be included
simply by negating the temporal gauge links on the last timeslice of the lattice. Since the ψa and χab
fermionic variables in SUSY LATTICE connect different sites, this trick doesn’t work. Instead, we include
in each site the necessary factors of PBC = ±1 (discussed in Section 3.1) to be applied to the fermion
fields whenever they cross the temporal boundary.5 This is the most straightforward implementation
of antiperiodic temporal BCs, but is unlikely to be the most efficient. These BC factors are set up in
susy/setup_offset.c after the lattice has been laid out.

The primary purpose of this setup_offset.c file is to speed up the internode communications men-
tioned above. Both site-wise and field-wise gathers come in two varieties. The usual gathers can move
data only along specific paths that are tracked by a global static gather_array set up by routines in
generic/com_mpi.c. For example, these include the paths connecting nearest-neighbor sites in the four
spacetime directions. In contrast, “general” gathers handle an arbitrary lattice displacement four-vector,
but take much longer to run. Every general gather must determine which nodes will exchange data,
while this information is precomputed for the usual gathers. In addition, only one general gather can
run at a time. Many of the usual gathers may be carried out simultaneously, which we use to overlap
communications with computations.

In order to use the usual gathers even for the several dozen two- and three-link paths required by the Q-
closed part of the action (Eq. 6), in susy/setup_offset.c we add all of these paths to the gather_array.
We also add all five A∗4 link paths to the gather_array, in addition to the four spacetime directions set
up by default in generic/com_mpi.c. We keep track of all these new gathers in the arrays gq_offset

and goffset, respectively. Although the first four A∗4 link paths duplicate the four spacetime directions,
the latter are set up to allow even/odd checkerboarding as in MILC, while the former are not. In the rare
event that checkerboarding is needed, the standard MILC-like gather paths must be used. Otherwise we
recommend gathering via the goffset array.

Avoiding general gathers in the Q-closed term significantly improves the performance of SUSY LATTICE,
by roughly a factor of two. Overlapping communications with computations in this term is also beneficial
when running on many nodes. For U(2) 124 gauge generation on 64 cores (2 nodes) of the USQCD bc

cluster at Fermilab, with local volume 32×62, such overlapping reduced costs by an additional ∼30%.

4.3. Rational hybrid Monte Carlo

As summarized in Section 2.2, the molecular dynamics (MD) evolution at the heart of the RHMC
algorithm is responsible for the bulk of computing in typical lattice calculations. Lattice QCD researchers
have developed many clever techniques to make the MD evolution more efficient, several of which we import
to SUSY LATTICE from the DSS code. Our default MD algorithm is a second-order Omelyan integrator [34,
35], with separate time scales [36] for the gauge and fermion force terms in Eq. 18. The average gauge and
fermion forces along each trajectory are printed in the output to help tune run parameters.

While developing SUSY LATTICE, it was useful first to implement a simple leapfrog integrator, against
which our current algorithm could be tested. In case similar testing is necessary in the future, we have
retained this leapfrog integrator in the source code distribution. It can be used by replacing update_o.o

with update_leapfrog.o in susy/Make_template. The leapfrog integrator has only a single time scale,
and for simplicity this is set by nstep in Fig. 2, ignoring nstep_gauge.

The five different rational approximations discussed in Section 3.1 are set up in susy/setup_rhmc.c,
simply by copying in output from the Remez algorithm implemented in Ref. [31]. For a given spectral
range, we find the smallest degree P in Eq. 19 that produces a maximum fractional approximation error less
than 2×10−5, a number set in previous work [1]. While it is straightforward to add more approximations,
those already available should provide good efficiency for foreseeable computations. The shifts βi and
amplitudes αi chosen at compile time are used by a standard multi-shift CG inverter [30]. We make it

5We are free to take any of the five links to define the temporal direction, so we use the same µ̂3 = (0, 0, 0, 1) as MILC.

15

possible to redefine P , the shifts and the amplitudes during the computation, so that the same inversion
routine also provides the basic CG used to compute the fermion bilinear ηψa.

4.4. Parallel Pfaffian computation

Computing the Pfaffian of the fermion operator D is a notoriously hard problem, but is necessary to
assess the potential sign problem in our system. In this section we present the algorithm we use to compute
the Pfaffian in parallel, and discuss the checkpointing that allows these measurements to be split up into
a sequence of computations.

The Pfaffian is formally

pfD ≡
∫

[dΨ] exp [−ΨiDijΨj] =
1

N !2N
εα0β0···αN−1βN−1

Dα0β0 · · · DαN−1βN−1
, (26)

where the indices run over the lattice volume, the 16 fermion fields Ψ = (η, ψa, χab), and the N2 generators
of U(N), so that each Ψi is a Grassmann variable. The Pfaffian is only well-defined if D is an antisymmetric
matrix of even dimension, which is the case for our fermion operator. Up to a sign, about which we care
a great deal, the Pfaffian is the square root of the determinant, detD = [pfD]2.

We can compute the Pfaffian by considering the analogue of LU factorization for antisymmetric matri-
ces, D = LTLT , where L is lower-triangular and T is a trivial (pfT = 1) tridiagonal matrix composed of
2×2 blocks Ti,i±1 = ±1. As a consequence,

pfD = pf
[
LTLT

]
= (detL) pfT = detL =

∏
i

Lii. (27)

There exist several algorithms to compute pfD based on this factorization [37, 38, 39, 40]. All scale as
O(N3

Ψ), where NΨ = 16N2L3Nt is the (even) number of elements in the fermionic fields for U(N) gauge
theory on an L3×Nt lattice.

The algorithms described in Refs. [39, 40] aim to minimize the number of floating-point operations
required to determine the Pfaffian. Our main concern is to parallelize the computation, and in this context
it is easier to consider the algorithms in Refs. [37, 38]. These employ procedures analogous to Gram–
Schmidt orthogonalization in 2×2 blocks, based on applying the fermion operator itself, for which we
already possess an efficient parallel implementation.

Specifically, the algorithm in the appendix of Ref. [38] constructs the upper-triangular matrix Q = L−1

for which

QDQT = T =⇒ (detQ) pfD = 1 =⇒ pfD = (detQ)−1 =

(∏
i

Qii

)−1

. (28)

The construction begins by initializing Q to the unit matrix, q(i) = ei, where q(i) denotes the ith column
of Q and ei is the ith basis vector. We cycle over pairs of columns, using the even column q(i) to normalize

the odd column q(i+1) → q(i+1)/
(
q

(i+1)
a Dabq

(i)
b

)
. We then propagate each pair of columns through all

subsequent columns j ≥ i+ 2,

q(j) → q(j) − q(i)
(
q(i+1)
a Dabq

(j)
b

)
+ q(i+1)

(
q(i)
a Dabq

(j)
b

)
(29)

in order to obtain QDQT = T . In components, this condition is

(
q(i)
a Dabq

(j)
b

)
=

1 if i = j + 1 and j is even
−1 if i = j − 1 and j is odd
0 otherwise

, (30)

which we have explicitly checked for the matrix Q produced by this algorithm. (This test has since been
removed from SUSY LATTICE, since it is incompatible with the optional checkpointing discussed below.)

16

Algorithm 1 Construction of upper-triangular Q with detQ =
∏
iQii = (pfD)−1

Q← diag {1, 1, · · · , 1}
for i = 0 to N − 2 by 2 do

q(i+1) ← q(i+1)/
(
q

(i+1)
a Dabq

(i)
b

)
for j = i+ 2 to N − 1 by 1 do

q(j) ← q(j) − q(i)
(
q

(i+1)
a Dabq

(j)
b

)
+ q(i+1)

(
q

(i)
a Dabq

(j)
b

)
end for

end for

Note that (as in Eq. 26) there is no complex conjugation in any of the inner products
(
q

(i)
a Dabq

(j)
b

)
. We

retain the indices a and b being summed to emphasize this.
Algorithm 1 restates the description in the previous paragraph more compactly. Obviously this al-

gorithm will break down if
(
q

(i+1)
a Dabq

(i)
b

)
= 0 for any even column q(i). Although this issue was not

encountered in studies of the two-dimensional Wess–Zumino model considered by Ref. [38], it can occur
for lattice N = 4 SYM in four dimensions. In order to guarantee that none of these inner products vanish,
we must choose an appropriate basis for the matrices D and Q, which is determined by the order we cycle
over the fermionic field components. In particular, different ηi, ψia and χiab must be considered on each
site, before looping over the i = 0, · · · , N2 − 1 generators of U(N). For the two-dimensional N = (2, 2)
SYM theory discussed in the appendix, this step suffices to make all matrix elements non-zero. For N = 4
SYM we also have to gather three χiab components from different lattice sites, instead of cycling over all
the fields on a given site. These extra gathers are a fairly small addition to the cost of each application of
the fermion operator D.

Up to this point it has gone without saying that the sparse NΨ×NΨ matrix D is never explicitly
constructed or stored in memory. Instead, its action on a fermion vector (the matrix–vector or “matvec”
operation) is implemented by the fermion_op routine in susy/utilities.c. This is standard practice in
lattice gauge theory. In contrast, we must allocate the upper-triangular matrix Q in order to compute it
through Algorithm 1, even though we only care about the resulting diagonal components Qii. The two
nested loops in Algorithm 1 require (NΨ/2)2 matvec operations to compute Dq(i) and Dq(j) for steadily
changing q(j). The cost of each matvec operation is proportional to NΨ, producing the expected O(N3

Ψ)
scaling of the overall computation.

For example, on a small 43×6 lattice with gauge group U(2), NΨ = 24, 576 and Algorithm 1 requires
roughly 151 million matvec operations. We minimize the time to solution in this case by running on 16 of
the 32 cores on a single node in the USQCD ds cluster at Fermilab, resulting in a local volume of 23×3
sites per core. This setup computes 217 matvecs per second on average, leading to a total runtime of about
8 days.

To avoid running such long jobs, we allow the Pfaffian computation to be checkpointed, by saving the
partially-computed Q to disk and reloading it in a subsequent job. Checkpointing is controlled by the
ckpt_save and ckpt_load options in Fig. 2. Since Q requires a large amount of memory (about 10 GB
in the 43×6 case discussed above), we reduce disk space usage by discarding each column of Q after its
diagonal element Qii has been determined through Algorithm 1. Both the known diagonal elements and
remaining columns that still need to be considered (specified by ckpt_save and ckpt_load) are saved
to disk in separate scratch files. In addition, we save only the non-zero elements of each column, which
significantly reduces disk usage during the early stages of the computation. This special I/O is implemented
in generic/io_phase.c.

17

5. Summary and discussion of potential future developments

In this paper we have presented new parallel software for lattice studies of four-dimensional N = 4 SYM
theory with gauge group SU(N). This system has several unusual features compared to more familiar QCD-
like lattice gauge theories, in particular the non-hypercubic A∗4 lattice with five basis vectors symmetrically
spanning four dimensions, the Kähler–Dirac fermions spread out across both sites and links, and the
complexified gauge links living in gl(N,C), requiring approximate projection to the target SU(N) gauge
theory. We reviewed the main elements of the system in Section 2, also discussing how the lattice action
exactly preserves a subset of the supersymmetry algebra, up to two soft breaking terms that stabilize
numerical computations.

SUSY LATTICE itself uses rational hybrid Monte Carlo importance sampling to compute various observ-
ables as discussed in Section 2.2. The present code allows a number of different N = 4 SYM studies using
larger lattices than could be considered by the serial code presented in Ref. [1], which SUSY LATTICE super-
sedes. In Section 3 we provided a quick-start guide explaining how to obtain, compile and run this publicly
available software [49]. Since SUSY LATTICE is based on the MILC code for lattice QCD, it is relatively
easy to modify, extend and improve. Simulations of N = 4 SYM are in their infancy, and we encourage
researchers to adapt the code as they wish, with the hope of making algorithmic improvements. To assist
such efforts, in Section 4 we discussed some notable aspects of the documentation, including details of the
adjoint representation for arbitrary N , data layout, internode communications, MD integrators, and the
algorithm we use to compute the Pfaffian in parallel.

While all the applications discussed in this paper are stable and well tested, we are currently extending
SUSY LATTICE to carry out further physics projects, including investigations of scalar correlation functions
and of the RG blocking scheme recently proposed by Ref. [22]. Algorithmic improvements are also likely to
be explored in the future. As one example, our MD integrator might be made more efficient by introducing
additional time scales to be used by different terms in the partial fraction expansion (Eq. 19), along the
lines of the algorithm described in Ref. [41]. At a purely practical level, we have observed uncomfortably
slow thermalization in RHMC runs started from a fresh or random gauge configuration, especially for
larger lattice volumes and larger values of N . Such systems may need to run for more than 2000 MD time
units before data taking can begin, introducing a significant overhead cost. It should be possible to address
this issue by designing better initial configurations.

Finally, SUSY LATTICE should serve as a convenient starting point for parallelized numerical studies
of similar lattice theories with extended supersymmetry. Promising examples include two- and three-
dimensional systems (potentially involving matter fields) with lattice actions constructed through topolog-
ical twisting [1, 42, 43, 44]. We have already carried out such an extension for two-dimensional N = (2, 2)
SYM, which we briefly describe in the appendix. Much of the parallel framework provided by SUSY LATTICE

should even remain useful for lattice formulations based on different approaches, such as that considered
in Ref. [45].

Acknowledgments

We thank our collaborators Simon Catterall, Poul Damgaard and Joel Giedt for many instructive
discussions of N = 4 SYM on and off the lattice, and Aarti Veernala for helping us compare results from
SUSY LATTICE with those from the serial code [1]. The development of SUSY LATTICE is supported in
part through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the
U.S. Department of Energy (DOE) Office of Science, Office of High Energy Physics under Award Number
DE-SC0008669, in addition to support through Award Numbers DE-SC0010005 (TD) and DE-SC0009998
(DS). Numerical calculations were carried out on the HEP-TH cluster at the University of Colorado and
on the DOE-funded USQCD facilities at Fermilab.

18

Appendix: Two-dimensional N = (2, 2) supersymmetric Yang–Mills theory

Although the main focus of SUSY LATTICE is four-dimensional N = 4 SYM, we have also adapted
the code to consider the similar N = (2, 2) SYM theory in two dimensions. We have implemented this
extension as a separate directory tree mirroring that for N = 4 SYM, rather than guaranteeing that the
four-dimensional code will reduce to N = (2, 2) SYM upon setting the input parameters ny = 1 and
nz = 1 (Fig. 2). This approach is much more computationally efficient, allowing for two dimensions to be
dropped completely, at the cost of some code duplication.

The lattice action of two-dimensional N = (2, 2) SYM is quite similar to that of N = 4 SYM:

S = Sexact + Sstab (31)

Sexact =
NLNt

2λ

∑
n

a4 Tr

[
−Fab(n)Fab(n) +

c2

2

(
D(−)
a Ua(n)

)2
− χab(n)D(+)

[a ψb](n)− η(n)D(−)
a ψa(n)

]
Sstab =

NLNt

2λ
µ2
∑
n, c

a4

(
1

N
Tr
[
Uc(n)Uc(n)

]
− 1

)2

+ κ
∑
P
a4| detP − 1|2,

which nearly matches Eqs. 4–7. The main difference is that there are now only two gauge links at each site
(forming the familiar square lattice), which forbids the Sclosed term in Eq. 6. The Kähler–Dirac multiplet
Ψ = (η, ψa, χab) involves only 2d = 4 rather than 16 fermion fields. Finally, the ’t Hooft coupling λ is now
dimensionful, and has to be divided by the lattice volume L×Nt [1].

The lower dimensionality and reduced field content of N = (2, 2) SYM compared to N = 4 SYM makes
the system more tractable numerically. Parallelization only becomes crucial for lattices larger than 642,
for which the overall factor of NLNt

2λ tends to be rather large. Since this system has already been fairly
well explored using serial codes [46, 1, 19, 47, 48], we are not currently carrying out any N = (2, 2) SYM
physics projects using SUSY LATTICE. Instead, our main interest is using this simpler and cheaper system
as a testing ground for observables and algorithms ultimately intended for our N = 4 investigations. For
example, it was helpful to debug our parallel Pfaffian algorithm (Section 4.4) in N = (2, 2) SYM before
setting up this difficult computation in four dimensions.

Since the 2dSYM portion of SUSY LATTICE was adapted from the N = 4 SYM code discussed in the body
of this paper, much of the information presented is directly applicable to this case. The executables, input
parameters and compile-time options are the same as discussed in Section 3; the directory structure and
most low-level routines are the same as discussed in Section 4. The main differences are the straightforward
square lattice and the absence of the Q-closed term, which greatly simplify the lattice action, forces and
internode communications.

References

[1] S. Catterall and A. Joseph, “An object oriented code for simulating supersymmetric Yang–Mills
theories”, Comput. Phys. Commun. 183 (2012) 1336–1353 [arXiv:1108.1503].

[2] S. Catterall, D. B. Kaplan and M. Unsal, “Exact lattice supersymmetry”, Phys. Rept. 484 (2009)
71–130 [arXiv:0903.4881].

[3] J. Terning, Modern Supersymmetry: Dynamics and Duality. Oxford University Press, Oxford, 2006.

[4] P. Dondi and H. Nicolai, “Lattice Supersymmetry”, Nuovo Cim. A41 (1977) 1.

[5] M. Kato, M. Sakamoto and H. So, “Taming the Leibniz Rule on the Lattice”, JHEP 0805 (2008)
057 [arXiv:0803.3121].

[6] G. Bergner, I. Montvay, G. Münster, U. D. Özugurel and D. Sandbrink, “Towards the spectrum of
low-lying particles in supersymmetric Yang–Mills theory”, JHEP 1311 (2013) 061
[arXiv:1304.2168].

19

http://dx.doi.org/10.1016/j.cpc.2012.01.024
http://arxiv.org/abs/1108.1503
http://dx.doi.org/10.1016/j.physrep.2009.09.001
http://dx.doi.org/10.1016/j.physrep.2009.09.001
http://arxiv.org/abs/0903.4881
http://dx.doi.org/10.1093/acprof:oso/9780198567639.001.0001
http://dx.doi.org/10.1007/BF02730448
http://dx.doi.org/10.1088/1126-6708/2008/05/057
http://dx.doi.org/10.1088/1126-6708/2008/05/057
http://arxiv.org/abs/0803.3121
http://dx.doi.org/10.1007/JHEP11(2013)061
http://arxiv.org/abs/1304.2168

[7] J. Giedt, R. Brower, S. Catterall, G. T. Fleming and P. Vranas, “Lattice super-Yang–Mills using
domain wall fermions in the chiral limit”, Phys. Rev. D79 (2009) 025015 [arXiv:0810.5746].

[8] M. G. Endres, “Dynamical simulation of N = 1 supersymmetric Yang–Mills theory with domain
wall fermions”, Phys. Rev. D79 (2009) 094503 [arXiv:0902.4267].

[9] JLQCD Collaboration: S. Kim, H. Fukaya, S. Hashimoto, H. Matsufuru, J. Nishimura and T. Onogi,
“Lattice study of 4d N = 1 super Yang–Mills theory with dynamical overlap gluino”, PoS Lattice
2011 (2011) 069 [arXiv:1111.2180].

[10] T. Ishii, G. Ishiki, S. Shimasaki and A. Tsuchiya, “N = 4 Super Yang–Mills from the Plane Wave
Matrix Model”, Phys. Rev. D78 (2008) 106001 [arXiv:0807.2352].

[11] G. Ishiki, S.-W. Kim, J. Nishimura and A. Tsuchiya, “Deconfinement phase transition in N = 4
super Yang–Mills theory on R× S3 from supersymmetric matrix quantum mechanics”, Phys. Rev.
Lett. 102 (2009) 111601 [arXiv:0810.2884].

[12] G. Ishiki, S.-W. Kim, J. Nishimura and A. Tsuchiya, “Testing a novel large-N reduction for N = 4
super Yang–Mills theory on R× S3”, JHEP 0909 (2009) 029 [arXiv:0907.1488].

[13] M. Hanada, S. Matsuura and F. Sugino, “Two-dimensional lattice for four-dimensional N = 4
supersymmetric Yang–Mills”, Prog. Theor. Phys. 126 (2011) 597–611 [arXiv:1004.5513].

[14] M. Honda, G. Ishiki, J. Nishimura and A. Tsuchiya, “Testing the AdS/CFT correspondence by
Monte Carlo calculation of BPS and non-BPS Wilson loops in 4d N = 4 super-Yang–Mills theory”,
PoS Lattice 2011 (2011) 244 [arXiv:1112.4274].

[15] M. Honda, G. Ishiki, S.-W. Kim, J. Nishimura and A. Tsuchiya, “Direct test of the AdS/CFT
correspondence by Monte Carlo studies of N = 4 super Yang–Mills theory”, JHEP 1311 (2013) 200
[arXiv:1308.3525].

[16] M. Hanada, Y. Hyakutake, G. Ishiki and J. Nishimura, “Holographic description of quantum black
hole on a computer”, Science 344 (2014) 882–885 [arXiv:1311.5607].

[17] D. B. Kaplan and M. Unsal, “A Euclidean lattice construction of supersymmetric Yang–Mills
theories with sixteen supercharges”, JHEP 0509 (2005) 042 [hep-lat/0503039].

[18] M. Ünsal, “Twisted supersymmetric gauge theories and orbifold lattices”, JHEP 0610 (2006) 089
[hep-th/0603046].

[19] S. Catterall, R. Galvez, A. Joseph and D. Mehta, “On the sign problem in 2D lattice super
Yang–Mills”, JHEP 1201 (2012) 108 [arXiv:1112.3588].

[20] S. Catterall, P. H. Damgaard, T. Degrand, R. Galvez and D. Mehta, “Phase Structure of Lattice
N = 4 Super Yang–Mills”, JHEP 1211 (2012) 072 [arXiv:1209.5285].

[21] S. Catterall, D. Schaich, P. H. Damgaard, T. DeGrand and J. Giedt, “N = 4 supersymmetry on a
space-time lattice”, Phys. Rev. D90 (2014) 065013 [arXiv:1405.0644].

[22] S. Catterall and J. Giedt, “Real space renormalization group for twisted lattice N = 4 super
Yang–Mills”, JHEP (in press, 2014) [arXiv:1408.7067].

[23] MILC Collaboration: A. Bazavov, C. Bernard, T. Burch, T. DeGrand, C. DeTar, J. Foley,
S. Gottlieb, U. Heller, J. Hetrick, L. Levkova, C. McNeile, K. Orginos, J. Osborn, K. Rummukainen,
B. Sugar and D. Toussaint, “The MILC Code” (2011),
http://www.physics.utah.edu/~detar/milc/.

20

http://dx.doi.org/10.1103/PhysRevD.79.025015
http://arxiv.org/abs/0810.5746
http://dx.doi.org/10.1103/PhysRevD.79.094503
http://arxiv.org/abs/0902.4267
http://arxiv.org/abs/1111.2180
http://dx.doi.org/10.1103/PhysRevD.78.106001
http://arxiv.org/abs/0807.2352
http://dx.doi.org/10.1103/PhysRevLett.102.111601
http://dx.doi.org/10.1103/PhysRevLett.102.111601
http://arxiv.org/abs/0810.2884
http://dx.doi.org/10.1088/1126-6708/2009/09/029
http://arxiv.org/abs/0907.1488
http://dx.doi.org/10.1143/PTP.126.597
http://arxiv.org/abs/1004.5513
http://pos.sissa.it/archive/conferences/139/244/Lattice 2011_244.pdf
http://arxiv.org/abs/1112.4274
http://dx.doi.org/10.1007/JHEP11(2013)200
http://arxiv.org/abs/1308.3525
http://dx.doi.org/10.1126/science.1250122
http://arxiv.org/abs/1311.5607
http://dx.doi.org/10.1088/1126-6708/2005/09/042
http://arxiv.org/abs/hep-lat/0503039
http://dx.doi.org/10.1088/1126-6708/2006/10/089
http://arxiv.org/abs/hep-th/0603046
http://dx.doi.org/10.1007/JHEP01(2012)108
http://arxiv.org/abs/1112.3588
http://dx.doi.org/10.1007/JHEP11(2012)072
http://arxiv.org/abs/1209.5285
http://dx.doi.org/10.1103/PhysRevD.90.065013
http://arxiv.org/abs/1405.0644
http://arxiv.org/abs/1408.7067
http://www.physics.utah.edu/~detar/milc/milcv7.pdf
http://www.physics.utah.edu/~detar/milc/

[24] N. Marcus, “The other topological twisting of N = 4 Yang–Mills”, Nucl. Phys. B452 (1995) 331–345
[hep-th/9506002].

[25] A. Kapustin and E. Witten, “Electric-Magnetic Duality And The Geometric Langlands Program”,
Commun. Num. Theor. Phys. 1 (2007) 1–236 [hep-th/0604151].

[26] S. Catterall, “From Twisted Supersymmetry to Orbifold Lattices”, JHEP 0801 (2008) 048
[arXiv:0712.2532].

[27] P. H. Damgaard and S. Matsuura, “Geometry of Orbifolded Supersymmetric Lattice Gauge
Theories”, Phys. Lett. B661 (2008) 52–56 [arXiv:0801.2936].

[28] M. A. Clark and A. D. Kennedy, “Accelerating dynamical fermion computations using the rational
hybrid Monte Carlo (RHMC) algorithm with multiple pseudofermion fields”, Phys. Rev. Lett. 98
(2007) 051601 [hep-lat/0608015].

[29] S. Duane, A. Kennedy, B. Pendleton and D. Roweth, “Hybrid Monte Carlo”, Phys. Lett. B195
(1987) 216–222.

[30] B. Jegerlehner, “Krylov space solvers for shifted linear systems”, hep-lat/9612014.

[31] M. A. Clark and A. D. Kennedy, “AlgRemez”, http://github.com/mikeaclark/AlgRemez (2005).

[32] A. Stathopoulos and J. R. McCombs, “PRIMME: preconditioned iterative multimethod
eigensolver–methods and software description”, ACM Trans. Math. Softw. 37 (2010) 21.

[33] R. Galvez and G. van Anders, “Accelerating the solution of families of shifted linear systems with
CUDA”, arXiv:1102.2143.

[34] I. P. Omelyan, I. M. Mryglod and R. Folk, “Optimized Verlet-like algorithms for molecular dynamics
simulations”, Phys. Rev. E 65 (2002) 056706.

[35] I. P. Omelyan, I. M. Mryglod and R. Folk, “Symplectic analytically integrable decomposition
algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial
mechanics simulations”, Comput. Phys. Commun. 151 (2003) 272–314.

[36] C. Urbach, K. Jansen, A. Shindler and U. Wenger, “HMC algorithm with multiple time scale
integration and mass preconditioning”, Comput. Phys. Commun. 174 (2006) 87–98
[hep-lat/0506011].

[37] DESY–Munster Collaboration: I. Campos, A. Feo, R. Kirchner, S. Luckmann, I. Montvay,
G. Münster, K. Spanderen and J. Westphalen, “Monte Carlo simulation of SU(2) Yang–Mills theory
with light gluinos”, Eur. Phys. J. C11 (1999) 507–527 [hep-lat/9903014].

[38] S. Catterall and S. Karamov, “A Lattice study of the two-dimensional Wess-Zumino model”, Phys.
Rev. D68 (2003) 014503 [hep-lat/0305002].

[39] M. Wimmer, “Algorithm 923: Efficient Numerical Computation of the Pfaffian for Dense and
Banded Skew-Symmetric Matrices”, ACM Trans. Math. Softw. 38 (2012) 30 [arXiv:1102.3440].

[40] J. Rubow and U. Wolff, “A Factorization algorithm to compute Pfaffians”, Comput. Phys. Commun.
182 (2011) 2530–2532 [arXiv:1102.3576].

[41] M. Lüscher and S. Schaefer, “openQCD” (2012),
http://luscher.web.cern.ch/luscher/openQCD/.

21

http://dx.doi.org/10.1016/0550-3213(95)00389-A
http://arxiv.org/abs/hep-th/9506002
http://dx.doi.org/10.4310/CNTP.2007.v1.n1.a1
http://arxiv.org/abs/hep-th/0604151
http://dx.doi.org/10.1088/1126-6708/2008/01/048
http://arxiv.org/abs/0712.2532
http://dx.doi.org/10.1016/j.physletb.2008.01.044
http://arxiv.org/abs/0801.2936
http://dx.doi.org/10.1103/PhysRevLett.98.051601
http://dx.doi.org/10.1103/PhysRevLett.98.051601
http://arxiv.org/abs/hep-lat/0608015
http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://arxiv.org/abs/hep-lat/9612014
http://github.com/mikeaclark/AlgRemez
http://dx.doi.org/10.1145/1731022.1731031
http://arxiv.org/abs/1102.2143
http://dx.doi.org/10.1103/PhysRevE.65.056706
http://dx.doi.org/10.1016/S0010-4655(02)00754-3
http://dx.doi.org/10.1016/j.cpc.2005.08.006
http://arxiv.org/abs/hep-lat/0506011
http://dx.doi.org/10.1007/s100520050651
http://arxiv.org/abs/hep-lat/9903014
http://dx.doi.org/10.1103/PhysRevD.68.014503
http://dx.doi.org/10.1103/PhysRevD.68.014503
http://arxiv.org/abs/hep-lat/0305002
http://dx.doi.org/10.1145/2331130.2331138
http://arxiv.org/abs/1102.3440
http://dx.doi.org/10.1016/j.cpc.2011.07.010
http://dx.doi.org/10.1016/j.cpc.2011.07.010
http://arxiv.org/abs/1102.3576
http://luscher.web.cern.ch/luscher/openQCD/

[42] A. Joseph, “Lattice formulation of three-dimensional N = 4 gauge theory with fundamental matter
fields”, JHEP 1309 (2013) 046 [arXiv:1307.3281].

[43] A. Joseph, “Supersymmetric quiver gauge theories on the lattice”, JHEP 1401 (2014) 093
[arXiv:1311.5111].

[44] A. Joseph, “Two-dimensional N = (2, 2) lattice gauge theories with matter in higher
representations”, JHEP 1407 (2014) 067 [arXiv:1403.4390].

[45] S. Matsuura and F. Sugino, “Lattice formulation for 2d N = (2, 2), (4, 4) super Yang–Mills theories
without admissibility conditions”, JHEP 1404 (2014) 088 [arXiv:1402.0952].

[46] M. Hanada and I. Kanamori, “Absence of sign problem in two-dimensional N = (2, 2) super
Yang–Mills on lattice”, JHEP 1101 (2011) 058 [arXiv:1010.2948].

[47] D. Mehta, S. Catterall, R. Galvez and A. Joseph, “Supersymmetric gauge theories on the lattice:
Pfaffian phases and the Neuberger 0/0 problem”, PoS Lattice 2011 (2011) 078 [arXiv:1112.5413].

[48] R. Galvez, S. Catterall, A. Joseph and D. Mehta, “Investigating the sign problem for
two-dimensional N = (2, 2) and N = (8, 8) lattice super Yang–Mills theories”, PoS Lattice 2011
(2011) 064 [arXiv:1201.1924].

[49] http://github.com/daschaich/susy

22

http://dx.doi.org/10.1007/JHEP09(2013)046
http://arxiv.org/abs/1307.3281
http://dx.doi.org/10.1007/JHEP01(2014)093
http://arxiv.org/abs/1311.5111
http://dx.doi.org/10.1007/JHEP07(2014)067
http://arxiv.org/abs/1403.4390
http://dx.doi.org/10.1007/JHEP04(2014)088
http://arxiv.org/abs/1402.0952
http://dx.doi.org/10.1007/JHEP01(2011)058
http://arxiv.org/abs/1010.2948
http://pos.sissa.it/archive/conferences/139/078/Lattice 2011_078.pdf
http://arxiv.org/abs/1112.5413
http://pos.sissa.it/archive/conferences/139/064/Lattice 2011_064.pdf
http://pos.sissa.it/archive/conferences/139/064/Lattice 2011_064.pdf
http://arxiv.org/abs/1201.1924
http://github.com/daschaich/susy

Program summary

Manuscript title: Parallel software for lattice N = 4 supersymmetric Yang–Mills theory

Authors: David Schaich and Thomas DeGrand

Program title: SUSY LATTICE

Journal reference:

Catalogue identifier:

Licensing provisions: None

Programming language: C

Operating system: Any, tested on Linux workstations and MPI clusters with InfiniBand

Keywords: Lattice gauge theory, Supersymmetric Yang–Mills, Monte Carlo methods, Parallel computing

PACS: 11.15.Ha, 12.60.Jv, 02.70.Uu

Has the code been vectorised or parallelized?: Code is parallelized

Classification: 11.5 Lattice Gauge Theory

Nature of problem:
To carry out non-perturbative Monte Carlo importance sampling for maximally supersymmetric Yang–
Mills theories in two and four dimensions, and thereby compute observables including Wilson loops, fermion
bilinears, eigenvalues of D†D and the Pfaffian of the sparse fermion operator D.

Solution method:
The central application is a rational hybrid Monte Carlo algorithm with a two-level Omelyan molecular
dynamics integrator. Gauge field configurations generated by this application may be saved to disk for
subsequent measurements of additional observables. Input parameters for either configuration generation
or analysis may be entered manually or read from a file.

Restrictions:
The code is currently restricted to two-dimensional N = (2, 2) and four-dimensional N = 4 supersymmetric
Yang–Mills theories. The process of topological twisting on which it is based can also be applied to a few
other systems, as discussed in Sections 1 and 5.

Additional comments:
Further documentation is provided in the distribution file, including a set of test runs with reference output
in the testsuite directory.

Running time:
From seconds to hours depending on the computational task, lattice volume, gauge group, and desired
statistics, as well as on the computing platform and number of cores used. For example, rational hybrid
Monte Carlo generation of 50 molecular dynamics time units for a 163×32 lattice volume with gauge group
U(2) takes approximately 16 hours on 512 cores of the USQCD bc cluster at Fermilab, while standard
measurements on a saved 83×24 U(2) configuration require only 8 seconds on one eight-core workstation.

References:
This program supersedes the serial code presented in Ref. [1].

23

	1 Introduction: Supersymmetry on the lattice
	2 The discretized theory, and methodology of lattice calculations
	2.1 Lattice variables, lattice structure and lattice action
	2.2 Rational hybrid Monte Carlo algorithm and important observables

	3 Running the code: High-level overview
	3.1 Compile-time options
	3.2 Run-time options
	3.3 Performance and scaling

	4 Modifying the code: Underlying details
	4.1 Gauge group and fermion representation
	4.2 Data layout and communications
	4.3 Rational hybrid Monte Carlo
	4.4 Parallel Pfaffian computation

	5 Summary and discussion of potential future developments

