284 research outputs found

    Conditional Markov Chain Search for the Generalised Travelling Salesman Problem for Warehouse Order Picking

    Full text link
    The Generalised Travelling Salesman Problem (GTSP) is a well-known problem that, among other applications, arises in warehouse order picking, where each stock is distributed between several locations -- a typical approach in large modern warehouses. However, the instances commonly used in the literature have a completely different structure, and the methods are designed with those instances in mind. In this paper, we give a new pseudo-random instance generator that reflects the warehouse order picking and publish new benchmark testbeds. We also use the Conditional Markov Chain Search framework to automatically generate new GTSP metaheuristics trained specifically for warehouse order picking. Finally, we report the computational results of our metaheuristics to enable further competition between solvers

    The Steiner Multi Cycle Problem with Applications to a Collaborative Truckload Problem

    Get PDF
    We introduce a new problem called Steiner Multi Cycle Problem that extends the Steiner Cycle problem in the same way the Steiner Forest extends the Steiner Tree problem. In this problem we are given a complete weighted graph G=(V,E), which respects the triangle inequality, a collection of terminal sets {T_1,..., T_k}, where for each a in [k] we have a subset T_a of V and these terminal sets are pairwise disjoint. The problem is to find a set of disjoint cycles of minimum cost such that for each a in [k], all vertices of T_a belong to a same cycle. Our main interest is in a restricted case where |T_a| = 2, for each a in [k], which models a collaborative less-than-truckload problem with pickup and delivery. In this problem, we have a set of agents where each agent is associated with a set T_a containing a pair of pickup and delivery vertices. This problem arises in the scenario where a company has to periodically exchange goods between two different locations, and different companies can collaborate to create a route that visits all its pairs of locations sharing the total cost of the route. We show that even the restricted problem is NP-Hard, and present some heuristics to solve it. In particular, a constructive heuristic called Refinement Search, which uses geometric properties to determine if agents are close to each other. We performed computational experiments to compare this heuristic to a GRASP based heuristic. The Refinement Search obtained the best solutions in little computational time

    4th Party Logistics Problem Optimizer

    Get PDF
    This thesis considers a pickup and delivery problem with multiple time windows, a complex cost structure and factory constraints. We formulated the problem as a mathematical model and created an instance generator based on real data. We also implemented a heuristic solution method for the problem and ran extensive statistical tests. The mathematical model shows the complexity of the problem and is implemented in AMPL to give a benchmark for the proposed solution method. The instance generator was created based on real anonymized data from a 4th party logistics (4PL) company. The proposed solution method, called the 4th Party Logis- tics Optimizer, is a meta-heuristic approach with industry specific implementations. The solution method is refined through extensive statistical experiments. The ex- periments determine which parts of the solution method have a significant positive impact on the objective value. This leads to a final composition of our solution method. The final solution method is robustly giving near optimal solutions to re- alistic sized instances in seconds, and is a powerful tool for companies facing the proposed adaptation of the pickup and delivery problem.Masteroppgave i informatikkINF399MAMN-PROGMAMN-IN

    Solution techniques for a crane sequencing problem

    Get PDF
    In shipyards and power plants, relocating resources (items) from existing positions to newly assigned locations are costly and may represent a significant portion of the overall project budget. Since the crane is the most popular material handling equipment for relocating bulky items, it is essential to develop a good crane route to ensure efficient utilization and lower cost. In this research, minimizing the total travel and loading/unloading costs for the crane to relocate resources in multiple time periods is defined as the crane sequencing problem (CSP). In other words, the objective of the CSP is to find routes such that the cost of crane travel and resource loading/unloading is minimized. However, the CSP considers the capacities of locations and intermediate drops (i.e., preemptions) during a multiple period planning horizon. Therefore, the CSP is a unique problem with many applications and is computationally intractable. A mathematical model is developed to obtain optimal solutions for small size problems. Since large size CSPs are computationally intractable, construction algorithms as well as improvement heuristics (e.g., simulated annealing, hybrid ant systems and tabu search heuristics) are proposed to solve the CSPs. Two sets of test problems with different problem sizes are generated to test the proposed heuristics. In other words, extensive computational experiments are conducted to evaluate the performances of the proposed heuristics

    GRASP with path relinking for the selective pickup and delivery problem

    Get PDF
    postprin
    • …
    corecore