450 research outputs found

    Efficient mapping of hierarchical trees on coarse-grain reconfigurable architectures

    Full text link
    Reconfigurable architectures have become increasingly important in recent years. In this paper we present an approach to the problem of executing 3D graphics interactive applications onto these architectures. The hierarchical trees are usually implemented to reduce the data processed, thereby diminishing the execution time. We have developed a mapping scheme that parallelizes the tree execution onto a SIMD reconfigurable architecture. This mapping scheme considerably reduces the time penalty caused by the possibility of executing different tree nodes in SIMD fashion. We have developed a technique that achieves an efficient hierarchical tree execution taking decisions at execution time. It also promotes the possibility of data coherence in order to reduce the execution time. The experimental results show high performance and efficient resource utilization on tested applications

    A Micro Power Hardware Fabric for Embedded Computing

    Get PDF
    Field Programmable Gate Arrays (FPGAs) mitigate many of the problemsencountered with the development of ASICs by offering flexibility, faster time-to-market, and amortized NRE costs, among other benefits. While FPGAs are increasingly being used for complex computational applications such as signal and image processing, networking, and cryptology, they are far from ideal for these tasks due to relatively high power consumption and silicon usage overheads compared to direct ASIC implementation. A reconfigurable device that exhibits ASIC-like power characteristics and FPGA-like costs and tool support is desirable to fill this void. In this research, a parameterized, reconfigurable fabric model named as domain specific fabric (DSF) is developed that exhibits ASIC-like power characteristics for Digital Signal Processing (DSP) style applications. Using this model, the impact of varying different design parameters on power and performance has been studied. Different optimization techniques like local search and simulated annealing are used to determine the appropriate interconnect for a specific set of applications. A design space exploration tool has been developed to automate and generate a tailored architectural instance of the fabric.The fabric has been synthesized on 160 nm cell-based ASIC fabrication process from OKI and 130 nm from IBM. A detailed power-performance analysis has been completed using signal and image processing benchmarks from the MediaBench benchmark suite and elsewhere with comparisons to other hardware and software implementations. The optimized fabric implemented using the 130 nm process yields energy within 3X of a direct ASIC implementation, 330X better than a Virtex-II Pro FPGA and 2016X better than an Intel XScale processor

    Domain-specific and reconfigurable instruction cells based architectures for low-power SoC

    Get PDF

    ASAM : Automatic Architecture Synthesis and Application Mapping; dl. 3.2: Instruction set synthesis

    Get PDF
    No abstract

    High-level Modelling and Exploration of Coarse-grained Re-configurable Architectures

    Full text link

    H-SIMD machine : configurable parallel computing for data-intensive applications

    Get PDF
    This dissertation presents a hierarchical single-instruction multiple-data (H-SLMD) configurable computing architecture to facilitate the efficient execution of data-intensive applications on field-programmable gate arrays (FPGAs). H-SIMD targets data-intensive applications for FPGA-based system designs. The H-SIMD machine is associated with a hierarchical instruction set architecture (HISA) which is developed for each application. The main objectives of this work are to facilitate ease of program development and high performance through ease of scheduling operations and overlapping communications with computations. The H-SIMD machine is composed of the host, FPGA and nano-processor layers. They execute host SIMD instructions (HSIs), FPGA SIMD instructions (FSIs) and nano-processor instructions (NPLs), respectively. A distinction between communication and computation instructions is intended for all the HISA layers. The H-SIMD machine also employs a memory switching scheme to bridge the omnipresent large bandwidth gaps in configurable systems. To showcase the proposed high-performance approach, the conditions to fully overlap communications with computations are investigated for important applications. The building blocks in the H-SLMD machine, such as high-performance and area-efficient register files, are presented in detail. The H-SLMD machine hierarchy is implemented on a host Dell workstation and the Annapolis Wildstar II FPGA board. Significant speedups have been achieved for matrix multiplication (MM), 2-dimensional discrete cosine transform (2D DCT) and 2-dimensional fast Fourier transform (2D FFT) which are used widely in science and engineering. In another FPGA-based programming paradigm, a high-level language (here ANSI C) can be used to program the FPGAs in a mode similar to that of the H-SIMD machine in terms of trying to minimize the effect of overheads. More specifically, a multi-threaded overlapping scheme is proposed to reduce as much as possible, or even completely hide, runtime FPGA reconfiguration overheads. Nevertheless, although the HLL-enabled reconfigurable machine allows software developers to customize FPGA functions easily, special architecture techniques are needed to achieve high-performance without significant penalty on area and clock frequency. Two important high-performance applications, matrix multiplication and image edge detection, are tested on the SRC-6 reconfigurable machine. The implemented algorithms are able to exploit the available data parallelism with independent functional units and application-specific cache support. Relevant performance and design tradeoffs are analyzed

    Generic low power reconfigurable distributed arithmetic processor

    Get PDF
    Higher performance, lower cost, increasingly minimizing integrated circuit components, and higher packaging density of chips are ongoing goals of the microelectronic and computer industry. As these goals are being achieved, however, power consumption and flexibility are increasingly becoming bottlenecks that need to be addressed with the new technology in Very Large-Scale Integrated (VLSI) design. For modern systems, more energy is required to support the powerful computational capability which accords with the increasing requirements, and these requirements cause the change of standards not only in audio and video broadcasting but also in communication such as wireless connection and network protocols. Powerful flexibility and low consumption are repellent, but their combination in one system is the ultimate goal of designers. A generic domain-specific low-power reconfigurable processor for the distributed arithmetic algorithm is presented in this dissertation. This domain reconfigurable processor features high efficiency in terms of area, power and delay, which approaches the performance of an ASIC design, while retaining the flexibility of programmable platforms. The architecture not only supports typical distributed arithmetic algorithms which can be found in most still picture compression standards and video conferencing standards, but also offers implementation ability for other distributed arithmetic algorithms found in digital signal processing, telecommunication protocols and automatic control. In this processor, a simple reconfigurable low power control unit is implemented with good performance in area, power and timing. The generic characteristic of the architecture makes it applicable for any small and medium size finite state machines which can be used as control units to implement complex system behaviour and can be found in almost all engineering disciplines. Furthermore, to map target applications efficiently onto the proposed architecture, a new algorithm is introduced for searching for the best common sharing terms set and it keeps the area and power consumption of the implementation at low level. The software implementation of this algorithm is presented, which can be used not only for the proposed architecture in this dissertation but also for all the implementations with adder-based distributed arithmetic algorithms. In addition, some low power design techniques are applied in the architecture, such as unsymmetrical design style including unsymmetrical interconnection arranging, unsymmetrical PTBs selection and unsymmetrical mapping basic computing units. All these design techniques achieve extraordinary power consumption saving. It is believed that they can be extended to more low power designs and architectures. The processor presented in this dissertation can be used to implement complex, high performance distributed arithmetic algorithms for communication and image processing applications with low cost in area and power compared with the traditional methods

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability

    Design and resource management of reconfigurable multiprocessors for data-parallel applications

    Get PDF
    FPGA (Field-Programmable Gate Array)-based custom reconfigurable computing machines have established themselves as low-cost and low-risk alternatives to ASIC (Application-Specific Integrated Circuit) implementations and general-purpose microprocessors in accelerating a wide range of computation-intensive applications. Most often they are Application Specific Programmable Circuiits (ASPCs), which are developer programmable instead of user programmable. The major disadvantages of ASPCs are minimal programmability, and significant time and energy overheads caused by required hardware reconfiguration when the problem size outnumbers the available reconfigurable resources; these problems are expected to become more serious with increases in the FPGA chip size. On the other hand, dominant high-performance computing systems, such as PC clusters and SMPs (Symmetric Multiprocessors), suffer from high communication latencies and/or scalability problems. This research introduces low-cost, user-programmable and reconfigurable MultiProcessor-on-a-Programmable-Chip (MPoPC) systems for high-performance, low-cost computing. It also proposes a relevant resource management framework that deals with performance, power consumption and energy issues. These semi-customized systems reduce significantly runtime device reconfiguration by employing userprogrammable processing elements that are reusable for different tasks in large, complex applications. For the sake of illustration, two different types of MPoPCs with hardware FPUs (floating-point units) are designed and implemented for credible performance evaluation and modeling: the coarse-grain MIMD (Multiple-Instruction, Multiple-Data) CG-MPoPC machine based on a processor IP (Intellectual Property) core and the mixed-mode (MIMD, SIMD or M-SIMD) variant-grain HERA (HEterogeneous Reconfigurable Architecture) machine. In addition to alleviating the above difficulties, MPoPCs can offer several performance and energy advantages to our data-parallel applications when compared to ASPCs; they are simpler and more scalable, and have less verification time and cost. Various common computation-intensive benchmark algorithms, such as matrix-matrix multiplication (MMM) and LU factorization, are studied and their parallel solutions are shown for the two MPoPCs. The performance is evaluated with large sparse real-world matrices primarily from power engineering. We expect even further performance gains on MPoPCs in the near future by employing ever improving FPGAs. The innovative nature of this work has the potential to guide research in this arising field of high-performance, low-cost reconfigurable computing. The largest advantage of reconfigurable logic lies in its large degree of hardware customization and reconfiguration which allows reusing the resources to match the computation and communication needs of applications. Therefore, a major effort in the presented design methodology for mixed-mode MPoPCs, like HERA, is devoted to effective resource management. A two-phase approach is applied. A mixed-mode weighted Task Flow Graph (w-TFG) is first constructed for any given application, where tasks are classified according to their most appropriate computing mode (e.g., SIMD or MIMD). At compile time, an architecture is customized and synthesized for the TFG using an Integer Linear Programming (ILP) formulation and a parameterized hardware component library. Various run-time scheduling schemes with different performanceenergy objectives are proposed. A system-level energy model for HERA, which is based on low-level implementation data and run-time statistics, is proposed to guide performance-energy trade-off decisions. A parallel power flow analysis technique based on Newton\u27s method is proposed and employed to verify the methodology
    • …
    corecore