

A Generic Low Power

Reconfigurable Distributed

Arithmetic Processor

Liu Zhenyu

A thesis submitted for the degree of Doctor of Philosophy.

The University of Edinburgh.

May 2008

To my wife Ni Yuanyuan

and

my parents Liu Ziheng, Piao Xueqin
For their love, affection and support.

~ i ~

Abstract

Higher performance, lower cost, increasingly minimizing integrated circuit components, and

higher packaging density of chips are ongoing goals of the microelectronic and computer

industry. As these goals are being achieved, however, power consumption and flexibility are

increasingly becoming bottlenecks that need to be addressed with the new technology in Very

Large-Scale Integrated (VLSI) design.

For modern systems, more energy is required to support the powerful computational capability

which accords with the increasing requirements, and these requirements cause the change of

standards not only in audio and video broadcasting but also in communication such as wireless

connection and network protocols. Powerful flexibility and low consumption are repellent, but

their combination in one system is the ultimate goal of designers.

A generic domain-specific low-power reconfigurable processor for the distributed

arithmetic algorithm is presented in this dissertation. This domain reconfigurable processor

features high efficiency in terms of area, power and delay, which approaches the

performance of an ASIC design, while retaining the flexibility of programmable platforms.

The architecture not only supports typical distributed arithmetic algorithms which can be

found in most still picture compression standards and video conferencing standards, but

also offers implementation ability for other distributed arithmetic algorithms found in

digital signal processing, telecommunication protocols and automatic control.

In this processor, a simple reconfigurable low power control unit is implemented with

good performance in area, power and timing. The generic characteristic of the architecture

makes it applicable for any small and medium size finite state machines which can be used

as control units to implement complex system behaviour and can be found in almost all

engineering disciplines. Furthermore, to map target applications efficiently onto the

proposed architecture, a new algorithm is introduced for searching for the best common

sharing terms set and it keeps the area and power consumption of the implementation at

low level. The software implementation of this algorithm is presented, which can be used

not only for the proposed architecture in this dissertation but also for all the

implementations with adder-based distributed arithmetic algorithms. In addition, some low

power design techniques are applied in the architecture, such as unsymmetrical design

style including unsymmetrical interconnection arranging, unsymmetrical PTBs selection

and unsymmetrical mapping basic computing units. All these design techniques achieve

Abstract

~ ii ~

extraordinary power consumption saving. It is believed that they can be extended to more

low power designs and architectures.

The processor presented in this dissertation can be used to implement complex, high

performance distributed arithmetic algorithms for communication and image processing

applications with low cost in area and power compared with the traditional

methods. .

~ iii ~

Declaration of originality

I hereby declare that the research recorded in this thesis and the thesis itself was composed

and originated entirely by myself in the School of Engineering and Electronics at The

University of Edinburgh, except when otherwise stated.

Zhenyu Liu

.

~ iv ~

Acknowledgments

My foremost thank goes to my supervisor, Prof. Tughrul Arslan, for giving me a big

chance to go to the door of top level research which leads me to the success of the work in

this dissertation. His valuable comments were instrumental in shaping the direction of the

research. Prof. Tughrul Arslan built a harmonious academic environment in which I could

discuss and exchange ideas with members in the lab friendly. I thank him also for leaving

enough academic space for me to cultivate the ability to carry out research independently,

which leads me to success.

This work was supported in part by the David Mayes Scholarship. I wish my successful

work can be a solid prove for the rightness of setting up this scholarship, which is also the

best gift to Dr Davis Mayes.

It was a valuable experience to work in System-Level Integration group. Many thanks go to

Dr. Ahmet T. Erdogan for being so patient and helping in sharing with me technical

knowledge whenever I needed help. His help and support contributed greatly to my work

and publications, which is deeply appreciated. I sincerely thank all of the current and

former members of the group for their precious time, helpful advice and friendship over the

last four years. Here, I would like to mention just a few in particular: Sami Khawam, Yi

Ying, Erfu Yang, Han Wei, Ming-Lang Lin, Zhan Cheng, Mark Muir, Yutian Zhao,

Jichuan Zhao. Specially, I would like to thank Miss Yuanyuan Ni and Prof. Lili Wang for

their suggestions and help in editing this manuscript.

A big thank also goes to Miss Ning Wei for her company during my time in Edinburgh. I

thank her for her caring, patience and encouragement that made my tough life easier and

carried me on through the difficult times. Her support and understanding is greatly

appreciated.

Lastly, and most importantly, I would like to express my deepest gratitude to my parents

for their forever love, unconditional sacrifices, endless encouragement and continual

support (financial and moral) throughout my academic years. They are always my loyal,

ultimate and strong backing which carried me forward and I’m forever in debt to them.

I would express my sincere gratitude to all of you again. This dissertation is only made

possible with the love and support from the various people in my life, .

~ v ~

Table of Contents

Chapter I Introduction .. 1

I.1 Introduction ... 1

I.2 Significance of This Work .. 3

I.3 Organisation of the Thesis .. 4

Chapter II Review of Reconfigurable and Low-power Architecture 7

II.1 Overview ... 7

II.1.1 Reconfigurable Architecture ... 8

II.1.2 FPGA devices .. 9

II.1.3 Domain-specific Processor .. 10

II.2 FPGA Architecture.. 11

II.2.1 Fine-grain FPGA Architecture .. 11

II.2.2 Problems with Fine-grain FPGA Architecture .. 13

II.3 Fine-grain Architecture ... 14

II.4.1 National Semiconductor's Adaptive Processing Architecture (NAPA)............... 15

II.4.2 Garp: Gate Array Processor... 16

II.4.3 Chimaera Architecture... 17

II.4 Coarse-grain Architecture ... 18

II.4.1 Pleiades Architecture ... 18

II.4.2 RaPiD: Reconfigurable Pipelined Datapath .. 20

II.4.3 MorphoSys .. 21

II.4.4 Chameleon ... 22

II.4.5 RAP ... 23

II.3 Interconnection Structure .. 25

II.4.1. Symmetrical Interconnection Network .. 25

II.4.2. Hierarchical Interconnection Network .. 26

II.4.3. Binary (Fat) Interconnection Tree ... 27

II.4 Low Power Technology .. 28

II.5 Conclusion .. 30

Chapter III Review of Distributed Arithmetic Algorithm and its Applications 31

~ vi ~

III.1 Overview ... 31

III.2 Distributed Arithmetic Algorithm ... 32

III.2.1. DA Algorithms .. 32

III.2.2. ROM Based DA .. 33

III.2.3. Adder-Based DA ... 34

III.3 Distributed Arithmetic Implements ... 35

III.3.1 Architecture for Distributed Arithmetic .. 36

III.3.2 Memory Reduced DA Architecture ... 37

III.3.3 Offset Binary Coding Architecture ... 43

III.3.4 Parallel DA Architecture ... 47

III.4 Applications of Distributed Arithmetic ... 49

III.5 Conclusion .. 50

Chapter IV Low Power Reconfigurable Architecture for DA .. 51

IV.1 Overview ... 51

IV.2 Related Work .. 52

IV.3 Reconfigurable DA Architecture .. 54

IV.4 Architecture of Algorithm Logic Unit .. 57

IV.4.1. Algorithm of Proposed Architecture ... 58

IV.4.2. Two-level Adder Structure .. 59

IV.4.3. Wallace tree multiplier Matrix .. 60

IV.4.4. Interconnection Network ... 61

IV.4.5. Memory for Reconfigure Bits ... 68

IV.4.6. Architecture Implementation: .. 71

IV.5 Algorithm Searching for Optimal Scheme .. 72

IV.5.1. Common Term Sharing Availability Analysis .. 73

IV.5.2. Dimidiate Tree ... 75

IV.5.3. Crossing Forest and Targeted Problem ... 77

IV.5.4. Algorithm Searching for Best Set .. 78

IV.5.5. Software Implementation .. 81

~ vii ~

IV.6 Comparison with Subexpression Sharing in CSD ... 85

IV.7 Conclusion .. 87

Chapter V Reconfigurable Control Unit .. 89

V.1. Overview ... 89

V.2. Background ... 92

V. 2. 1. Definition of FSM ... 92

V. 2. 2. Three Categories of FSM .. 93

V. 2. 3. State Transition Graph and State Transition Table Representation of FSM 94

V. 2. 4. Decomposition of FSM ... 95

V.3. Implementation of FSMs... 97

V.3.1. Extraction of FSM Implement FSM with Hardware Platforms 99

V.3.2. FSM Operation on Reconfigurable Device ... 100

V.3.3. Reconfigurable Hardware Platform for FSMs Implementation 101

V.4. Existing FSM Hardware Implementation Architectures ... 102

V.4.1. PLD Hardware Platform for FSMs Implementation ... 102

V.4.2. CPLD Hardware Platform and Xilinx CoolRunner XPLA3 CPLD 103

V.4.3. Limitation of CPLD ... 104

V.4.4. Existing Customer-specific Reconfigurable Architecture 105

V.5. Reconfigurable FSM Architectures ... 106

V.5.1 Reconfigurable FSM Architecture Overview .. 106

V.5.2 Functional Sections in the Architecture .. 107

V.5.3 Architecture of Logic Block and Sequential Block ... 108

V.5.4 Construction of PTB .. 108

V.6. Low Power Implementation .. 109

V.6.1 A typical Interconnection Network ... 109

V.6.2 Interconnection Network ... 110

V.6.3 Function of PTB .. 112

V.6.4 Mapping of PTB .. 112

V.7. Experimental Results and Evaluation ... 113

~ viii ~

V.7.1 Experimental Platform .. 114

V.7.2 Experimental Data Pre-process ... 115

V.7.3 Power consumption Comparison ... 120

V.7.4 Area & Delay Comparison .. 122

V.7.5 Power Consumption, Area and Delay after Decomposition 127

V.7.6 Relationship between Power, Area and Delay .. 127

V.8. Conclusion .. 128

Chapter VI Implementation of DA Application ... 130

VI.1. DCT Implementation .. 130

VI.1.1. DCT Algorithm ... 131

VI.1.2. 2-D DCT and its Implementations .. 132

VI.1.3. Control Path Implementation .. 133

VI.1.4. Registers Matrix Implementation .. 135

VI.1.5. Algorithm Logic Unit Implementation .. 135

VI.1.6. Performance & Evaluation .. 142

VI.1.7. Summary ... 147

VI.2. DFT Implementation .. 147

VI.2.1. DFT Algorithm .. 149

VI.2.2. FFT Algorithm .. 150

VI.2.3. Overview of FFT Implementation ... 154

VI.2.4. Algorithm logic Unit Implementation ... 155

VI.2.5. Performance & Evaluation .. 158

VI.3. Conclusion .. 159

Chapter VII Conclusion and Future Work ... 161

VII.1. Conclusion .. 161

VII.2. Evaluation of Results and Contributions .. 162

VII.2.1.Novel and Efficient Points of the Work .. 162

VII.2.2.Limitations... 163

VII.3. Future Work.. 164

~ ix ~

List of Figures

Figure I-1: Flexibility versus energy trade-off in implementation [1] 2

Figure I-2: Energy efficiency vs. flexibility including reconfigurable computing [2] 3

Figure II-1 : Architecture of FPGA.. 12

Figure II-2 : Reconfiguration time of two FPGA devices.. 13

Figure II-3 : NAPA processor structure [20] ... 15

Figure II-4 : Garp block diagram [23] ... 16

Figure II-5 : Overall Chimaera architecture [6] ... 17

Figure II-6 : Overall Pleiades architecture [9] ... 19

Figure II-7 : Abstract view of the Rapid architecture [34] ... 20

Figure II-8 : The MorphoSys Architecture [38] ... 22

Figure II-9 : The logic in D-Fabrix ALU and Switchbox pair [52] 24

Figure II-10 : An example of generalized hierarchical interconnection 27

Figure II-11 : A fat binary tree ... 28

Figure III-1 : General architecture for DA ... 36

Figure III-2 : Memory reduced DA architecture I ... 39

Figure III-3 : Memory reduced DA architecture II .. 46

Figure III-4 : A typical parallel DA architecture ... 48

Figure IV-1 : Reconfigurable DA architecture .. 54

Figure IV-2 : Architecture of address coding .. 55

Figure IV-3 : The architecture of algorithm logic unit .. 57

Figure IV-4 : Example of adder-based DA .. 59

Figure IV-5: Adder followed by 2-input multiplexer .. 60

Figure IV-6: Operation of the Wallace tree multiplier [74] ... 61

Figure IV-7 : An 8x6 full crossbar ... 62

Figure IV-8 : 2-sided switch block .. 63

Figure IV-9 : Multiple-bus interconnection ... 64

Figure IV-10 : An omega network [78] ... 65

~ x ~

Figure IV-11 : A partial 8x6 crossbar .. 67

Figure IV-12 : A 2-sided switch block for partial crossbar ... 68

Figure IV-13: EEPROM/EPROM programmable switch .. 69

Figure IV-14: A simple 6-transistor SRAM cell .. 69

Figure IV-15: SRAM switch based full crossbar ... 70

Figure IV-16: SRAM programmable switch application ... 70

Figure IV-17 : Examples of dimidiate tree .. 75

Figure IV-18 : Different format for the same dimidiate tree ... 76

Figure IV-19 : Example of crossing forest .. 78

Figure IV-20: Coefficient (Ph,k) matrix .. 80

Figure IV-21 : Design flow chart ... 83

Figure V-1: Mealy machine .. 93

Figure V-2: Moore machine ... 93

Figure V-3: FSM with internal states as outputs .. 93

Figure V-4: State transition graph for two-bit counter... 94

Figure V-5: Generic FSM decomposition .. 96

Figure V-6: State transition graph of an example FSM ... 96

Figure V-7: State transition graph after decomposition ... 96

Figure V-8: FSM design flow .. 98

Figure V-9: General reconfigurable hardware implementation of FSMs 99

Figure V-10: CLB of Xilinx Virtex-E FPGA [10] ... 100

Figure V-11: Xilinx XPLA3 CPLD architecture [101].. 103

Figure V-12 : The architecture of a reconfigurable FSM .. 106

Figure V-13 : The architecture of a logic block ... 108

Figure V-14: A typical FPGA interconnection network .. 110

Figure V-15: The illustration of comparison in size between FPGA devices 118

Figure V-16: The power consumption comparison of FPGA device pairs 119

Figure V-17 : The improvements compared with the FPGA device 124

Figure V-18 : The improvements compared with the CPLD device.................................... 126

~ xi ~

Figure VI-1 : A general row-column 2-D DCT implementation ... 133

Figure VI-2 : Registers matrix ... 134

Figure VI-3 : ()kF i
in 2’s complement format .. 136

Figure VI-4 : Data flow graph of an 8-point radix-2 decimation-in-time FFT 151

Figure VI-5 : Data flow graph of 16-point, radix-4 decimation-in-frequency FFT 153

Figure VI-6 : Twiddle factors of 4-point FFT .. 157

~ xii ~

List of Tables

Table III-1: The content in the ROM of original DA architecture ... 38

Table III-2 : The content in the memory reduced DA architecture II 40

Table III-3 : Transform between Table III-1 and Table III-2 .. 41

Table III-4 : The content in the ROM of reduced DA architecture III................................... 42

Table III-5 : Transform between Table III-2 and Table III-4 .. 42

Table III-6: Expansion of Equation (III-25) fo·r the case ... 45

Table IV-1: Availability analysis of common term sharing ... 74

Table V-1: State transition Table of the case ... 95

Table V-2: Test cases and their characterizations ... 114

Table V-3: Selected FPGA devices ... 116

Table V-4: Experimental results for power consumption .. 120

Table V-5: Normalized power consumption of FPGA and CPLD 121

Table V-6: Experimental results for area and delay... 122

Table V-7: Normalized area and delay of FPGA and CPLD ... 123

Table VI-1 : Eight coefficient matrixes in format of input vectors 137

Table VI-2 : Unique terms of DCT .. 138

Table VI-3 : R’h sets for DCT .. 139

Table VI-4 : First Ph,k coefficient matrix for DCT ... 140

Table VI-5 : Second Ph,k coefficient matrix for DCT ... 141

Table VI-6: Performances of some existing designs and ours ... 146

Table VI-7 : Workload for a 4096 point FFT using different radices 152

Table VI-8 : Mixed-radix algorithms for different FFT sizes .. 154

~ xiii ~

Glossary / Acronyms

ALP Adaptive Logic Processor

ALU Arithmetic Logic Unit

AVC Advanced Video Coding

ASIC Application Specific Integrated Circuit

BRASS Berkeley Reconfigurable Architecture System and Software

CAVLC Context Adaptive Variable Length Coding

C-Box Connection Boxes

CDMA Code Division Multiple Access

CIO Configurable I/O

CLB Configurable Logic Block

CMOS Complementary metal–oxide–semiconductor

CORDIC COordinate Rotation DIgital Computer

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

CSD Canonic Signed-Digit

DA Distributed Arithmetic

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DES Data Encryption Standard

DHT Discrete Hartley Transform

DIF Decimation-In-Frequency

DIT

Decimation-In-Time

~ xiv ~

DoSP Domain Specific Processor

DMA Direct Memory Access

DPU Data Path Unit

DSP Digital Signal Processor

DVB-H Digital Video Broadcasting – Handheld

DVB-T/DAB Digital Video/Audio Broadcasting

DWT Discrete Wavelet Transform

EDA Electronic Design Automation

EEPROM Electrically Erasable Programmable Read-only Memory

EPROM Erasable Programmable Read-only Memory

FFT Fast Fourier Transform

FIFO First In, First Out

FIP Fixed Instruction Processor

FIR Finite Impulse Response

FPGA Field Programmable Gate Arrays

FSM Finite State Machine

GPP General Purpose Processor

GPU Graphics Processing Units

GRM General Routing Matrix

GSM Global System for Mobile communications

HDL Hardware Description Language

JPEG Joint Photographic Experts Group

IDCT Inverse Discrete Cosine Transform

IOB Input/output block

LAN Local Area Network

LUT Look-Up-Tables

~ xv ~

LSB Least Significant Bit

MAC Multiply and Accumulate

MCD MultiCarrier Demultiplexing

MIMO Multiple-Input Multiple-Output

MIPS Microprocessor without Interlocked Pipeline Stages

MP3 MPEG-1 Audio Layer 3

MPEG-4 Moving Picture Experts Group standard 4

MSB Most Significant Bit

NAPA National Semiconductor's Adaptive Processing Architecture

NRE NonRecurring Engineering

OBC Offset Binary Coding

OFDM Orthogonal Frequency Division Multiplex

VLSI Very Large-Scale Integrated

PAL Programmable Array Logic

PE Processing Element

PDA Personal Digital Assistant

PGA Programmable Gate Array

PLA Programmable Logic Array

PLD Programmable Logic Device

PMA Pipeline Memory Array

PTB Product-Term Block

QoS Quality of Service

RAM Random Access Memory

RAP Reconfigurable Algorithm Processor

RaPiD Reconfigurable Pipelined Datapath

RISC Reduced Instruction Set Computer

~ xvi ~

ROM Read Only Memory

RPC Reconfigurable Pipeline Controller

RTL Register Transfer Level

S-Box Switch Boxes

SDA Serial Distributed Arithmetic

SIMD Single Instruction, Multiple Data

SP Simple Profile

SoC System-on-Chip

SRAM Static Random Access Memory

SMA Scratchpad Memory Array

STG State Transition Graph

STT State Transition Table

TBT Toggle Bus Transceiver

TD-SCDMA Time Division-Synchronous Code Division Multiple Access

VCEG Video Coding Experts Group

VHDL Verilog hardware description language

VLSI Very Large-Scale Integrated

VLIW Very-Long Instruction-Word

WCDMA Wideband Code Division Multiple Access

WFTA Winograd Fourier Transform Algorithm

WLAN Wireless Local Area Network

XPC External Memory Controller

XPLA eXtended Programmable Logic Array

ZIA Zero-power Interconnect Array

~ 1 ~

I.1 Introduction

Higher performance, lower cost, increasingly minimizing integrated circuit components, and

higher packaging density of chips are ongoing goals of the microelectronic and computer

industry. As these goals are being achieved, however, power consumption and flexibility are

increasingly becoming bottlenecks that need to be addressed with the new technology in

Very Large-Scale Integrated (VLSI) design.

Both powerful computing ability and long running time are the key features of the handheld

and portable devices such as wireless communication terminals, personal digital assistants

(PDAs), laptops, etc. The outstanding system performance requires more energy to support

powerful computational capability. However, high power consumption directly shortens the

running time of portable devices which, in a sense, directly determines the future of devices

in the market. Therefore, the success of low-power techniques not only implies battery life in

mobile system will be extended, but also reliability in high-performance systems will be

improved.

The powerful processing ability of modern system accords with the increasing requirements

which cause the change of standards not only in audio and video broadcasting but also in

communication such as wireless connection and network protocols. The frequent updates in

media and communication standards raise higher requirements in flexibility to support

changes. Generally speaking, the more complex the system is, the more power is consumed.

Powerful flexibility and low consumption are repellent, but their combination in one system

is the ultimate goal of designers.

Chapter I

Introduction

Introduction

~ 2 ~

Programmable solutions such as Field Programmable Gate Arrays (FPGA) devices have

become more popular among the applications in multimedia and communication because of

their low design cost and fast time-to-market. However, compared with Application Specific

Integrated Circuit (ASIC) solutions, there is a large power and delay overhead for these

programmable solutions.

Despite the common notion of FPGA’s large power consumption, Jan Rabaey has shown in

[1] that, for certain type of digital signal processing applications, the energy efficiency of

FPGAs is orders of magnitude better than that of general purpose processors. This

observation is shown in Figure I-1. Although ASICs or hardwired solutions provide the best

energy-efficiency, their longer design cycles make the time-to-market unacceptable for a

business company besides their high design costs.

Figure I-1: Flexibility versus energy trade-off in implementation [1]

Reconfigurable System-on-Chip (SoC) technology emerged to meet the simultaneous

demands for flexibility and efficiency. Compared with general SoC, one or more

programmable arrays are embedded in the reconfigurable system. The reconfigurable arrays

can be programmed to adapt to different applications so that the efficiency of the hardware

and the flexibility of the whole system are improved. A typical reconfigurable SoC

architecture consists of general purpose processor, memory, system bus, control modules and

reconfigurable arrays which handle specific complex functions.

Introduction

~ 3 ~

From the developing trends in reconfigurable logic and computing, it is found that the

reconfigurable computing consumes higher power (roughly a factor of 10) when compared

to ASICs. But compared with standard microprocessors the energy-efficiency is about two

orders of magnitude better [2], as shown in Figure I-2. Therefore, introduction of

reconfigurable architecture can lead to significant energy savings when compared with

processor solutions only [2].

Figure I-2: Energy efficiency vs. flexibility including reconfigurable computing [2]

This thesis presents a hybrid solution between ASICs and general-purpose programmable

platforms to fill up this gap. This solution is an application-specific reconfigurable processor

targeting on distributed arithmetic algorithm, which approaches the performance of an ASIC

design, while retaining the flexibility of programmable platforms.

I.2 Significance of This Work

The contributions of this research are stated as follows, including five key aspects:

• A novel domain-specific reconfigurable architecture for the distributed arithmetic

algorithm is demonstrated. The architecture not only supports the typical distributed

arithmetic algorithm, discrete cosine transform, which can be found in most still picture

compression standards and video conferencing standards, but also offers

implementation ability for other distributed arithmetic algorithms such as discrete

Fourier transform, finite impulse response, and discrete Hartley transform.

Introduction

~ 4 ~

• To achieve the best hardware efficiency, the concepts of dimidiate tree and crossing

forest are introduced. A new algorithm is accordingly developed for searching for the

best common sharing terms set when the target application is implemented with the

proposed architecture. The algorithm can find out the best set for implementation so as

to achieve the most efficient consumption of area and power.

• The software implementation of the algorithm for searching for the best common

sharing terms set is demonstrated, which can be used not only for the architecture

presented in this dissertation but also for all the implementation of adder-based

distributed arithmetic algorithm.

• A reconfigurable control unit is introduced, which is not only the key part of proposed

architecture. The core part of it, reconfigurable finite state machine architecture, can be

applied in any small and medium-sized finite state machines which are the control units

to implement complex system behaviour and can be found in almost all engineering

disciplines.

• Low power design techniques such as unsymmetrical interconnection arranging,

unsymmetrical product-term blocks (PTBs) selection and unsymmetrical mapping basic

computing units are presented in this dissertation, which can improve area and power

efficiency significantly.

I.3 Organisation of the Thesis

This section describes the organization of this dissertation by introducing main points of each

chapter.

Chapter II presents reviews of literature related to this work including basic concepts of

reconfigurable architecture, the classification of the architectures, a brief introduction to

interconnection network applied in reconfigurable architecture and low power design

technology. In addition, the implementations of fine-grain and coarse-grain architectures are

described. Typical reconfigurable coarse-grain architectures are also presented and compared

in detail.

Introduction

~ 5 ~

Chapter III first introduces basic concept of distributed arithmetic algorithm and its definition.

Two basic distributed arithmetic algorithms, Read Only Memory (ROM) based distributed

arithmetic and adder based distributed arithmetic, are then addressed after the summarization

of the distributed arithmetic concept development. Several serial and parallel architectures for

distributed arithmetic are described. The advantages of these architectures and the problems

facing them are also proposed in this chapter. At the end of this chapter, distributed arithmetic

applications in signal processing and communication fields are described briefly.

A domain-specific low power reconfigurable distributed arithmetic architecture and its

implementation are addressed in Chapter IV. The overview architecture is described first and

then the descriptions of the algorithm logic unit are detailed. To achieve the best hardware

efficiency, the concepts of dimidiate tree and crossing forest are introduced and defined in this

chapter. An algorithm is accordingly developed and presented in the chapter as well, which

makes the architecture mapped with the best efficiency.

The control unit of proposed processor will be described separately in Chapter V because if its

complexity and unique function. Based on the analysis of traditional reconfigurable

architecture given at the beginning of this chapter, a simplified one is presented with less

flexibility, but high efficiency in terms of area, power and delay. In this chapter, the

performance of the reconfigurable control unit architecture in area, power and delay of control

unit will be evaluated and analyzed as well.

After the full description of the proposed processor in Chapter IV and V, the implementations

of two typical distributed arithmetic applications, discrete cosine transform and discrete

Fourier transform, are introduced in Chapter VI for functionality verification and

performance evaluation. The implementations with the target architecture include the

configurations of control path, register matrix and algorithm logic unit specified according to

the requirements of the application. Additionally, the common term sharing scheme is

demonstrated in this chapter by applying dimidiate tree and the algorithm to search for optimal

scheme.

Introduction

~ 6 ~

Finally, Chapter 7 concludes the thesis by discussing the contributions of the dissertation,

limitations of the proposed architecture and directions for future research. .

~ 7 ~

II.1 Overview

The traditional ASIC approach has become very expensive due to large design time and

increasing photolithography cost. In addition, the relatively rapid changes in algorithms

make an ASIC tend to execute partial reuse of the chip, which has resulted in this approach

being widely considered a financially infeasible solution for most applications. This can be

overcome by adding flexibility and programmability to ASICs, which allows making

changes to the design after fabricating. Thus, design errors are greatly reduced; updated

standards are better supported and the system is better able to overcome run-time

constraints. Besides, the flexibility helps the system adapt to run-time constraints by

adopting dynamic reconfiguration. Currently, such flexibility is realized through software

solutions with processors and digital signal processors (DSPs).

However, it is not beneficial in portable devices with performance-critical application such

as Moving Picture Experts Group standard 4 (MPEG-4) and Advanced Video Coding (AVC)

whose complexity demand high operating frequency and power consumption of DSP

to achieve the high throughput required.

Efforts of researchers to find better architectures for future devices have resulted in several

novel systems on which the current work presented in this thesis is based. Existing and

established architectures like DSPs, FPGAs and ASICs were described previously. Features

of typical emerging and reported reconfigurable architectures will be demonstrated in the

rest of this chapter. As will be compared later, each architecture has its own pros and cons

Chapter II

Review of Reconfigurable and Low-

power Architecture

Review of Reconfigurable and Low-power Architecture

~ 8 ~

and only a few of them can potentially function with high performance and low-power

consumption.

This chapter first explores reconfigurable logic structures and reconfigurable computing

architectures. Since programmable interconnects contribute greatly to flexibility of

reconfigurable systems, a considerable part of this work focuses on the interconnections. The

second part of this chapter overviews the existing programmable interconnection topologies.

The last part of the chapter describes low power technologies briefly.

II.1.1 Reconfigurable Architecture

For a given application set or domain, there are generally two implementation methods:

ASICs and general purpose programmable/reconfigurable platform including Programmable

Logic Device (PLD) and general purpose processor (GPP).

Because the functionality of the architecture is fixed, ASIC platform has exactly one-to-one

correspondence between application and architecture. This fixed construction has no

redundant parts, which makes the ASIC platform the most efficient in area, power and the

least delay among all possible implementation platforms. But its Nonrecurring Engineering

(NRE) cost is very high. The mask cost is over millions pounds for the 60-nm technology

and the design cost runs into as high as tens of millions of pounds as the dimensions of chips

approach nano-scales. Besides, time to discover the design failures and repair them would be

long, making time-to-market of product uncertain, which is even a more important factor

than other cost and may lead to product failure regardless of its high performance.

PLD is an electronic device containing reconfigurable digital circuits which can be

programmed for targeted applications by users. GPP is a processor in which the programs

stored in the integrated memory can be easily modified according to the requirements of

applications and drive GPP to realize the desired function. PLD and GPP rise naturally to

deal with today’s multimedia and communication applications. These applications are

becoming larger and larger, making the chip real estate more and more costly. They can be

easily found in smart phone integrating multiple cell phone standards (e.g., Global System

for Mobile communications (GSM), Wideband Code Division Multiple Access (WCDMA),

Review of Reconfigurable and Low-power Architecture

~ 9 ~

CDMA2000, Time Division-Synchronous Code Division Multiple Access (TD-SCDMA)),

wireless Local Area Network (LAN), Bluetooth, MPEG-1 Audio Layer 3 (MP3), MPEG-2,

MPEG-4, Digital Video Broadcasting - Handheld (DVB-H), digital camera/camcorder,

graphics, games, etc. The PLD devices and programs stored in the memory of a GPP can be

easily programmed according to the changes of applications. Under the semiconductor

technology trend that the increase of memory density is outpacing that of transistor, storing

multiple programs is more cost-effective than fabricating much larger chips.

Furthermore, even for a single application, there has been a tendency that complexity is

growing rapidly. Historically, the growing complexity of applications has triggered the

digitization revolution in the 90's of the last century and has changed most aspects of human

life. Now the further growing complexity, mainly dynamics this time, will very likely

introduce another "softwarization revolution" in the next decade. One piece of evidence is

the prevalence of embedded processors. Another famous step is the Software-Defined Radio

[3]. A typical embedded processor is Graphics Processing Units (GPU) which emerged in

graphics and games application domain. It evolved from special ASIC blocks to domain-

specific processors with their own C-like high-level programming languages and even larger

than GPPs [4].

Compared with ASIC platforms, there are also other reasons for preferring a programmable

platform. Firstly, a programmable solution greatly saves NRE cost [5]. It reduces not only

mask cost but also the design cost since design efforts would shift from expensive hardware

design to relatively cheap software design if the programmable platform is available.

Secondly, programmable solution reduces uncertainty and risk. Software design takes less

time than hardware design and its failure takes less time to discover and repair than hardware.

This greatly reduces the time-to-market which is an even more important factor than cost.

II.1.2 FPGA devices

The general way to implement reconfigurable architecture is to adopt a PLD style core in the

SoC design [6-9]. There are two basic architectures, namely, Complex PLD (CPLD) and

FPGA. Using an embedded PLD is the mainstream method for a reconfigurable SoC.

Review of Reconfigurable and Low-power Architecture

~ 10 ~

Most FPGA devices are traditionally homogenous arrays of fine-grain, such as [10] and [11],

which give the most possible flexibility. In fine-grain reconfigurable architectures the

functionality of the hardware is specified at the bit-level or bits-level (less than four) and the

programmable interconnection is manipulated as individual wire. The flexibility of fine-grain

architecture comes at the cost of additional silicon area and this overhead hampers the

performance of word-level algorithms like multiplications. Fine-grained architectures are

efficient for bit-level masking and filtering or complex bit-oriented computations. Therefore

word-level operations will become relatively large and slow when they are implemented

with fine-grained architectures. To cover the gap between fine-grained FPGA devices and

coarse-grained (word-level) reconfigurable architectures, 6-input Look-Up-Tables (LUT)

based FPGA devices from Xilinx Virtex-5 family [12] are developed to meet the

requirements of large complex applications for heavy load.

Compared with 4-input LUT fine-grained FPGA devices, Xilinx Virtex-5 FPGA devices

show their merits in area and power efficiency for the computing-intensive digital signal

processing applications. Such applications often require Random Access Memory (RAM)/

First In, First Out (FIFOs), mass of adder, subtracter, accumulator and multiplication, all of

which are just integrated in Xilinx Virtex-5.

II.1.3 Domain-specific Processor

Compared with the poor configuration flexibility of ASIC platform, the flexibility of GPP

platform will never be a problem. Actually the processor could implement any target

application along with corresponding programs. But GPP platform really suffers from its

abundant flexibility and thus is limited to several categories such as superscalar, Very-Long-

Instruction-Word (VLIW), multithread, etc., which have been proved hard to maintain the

annual performance increase of 50% [13].

More and more, power consumption and flexibility are becoming bottlenecks in VLSI design.

Domain Specific Processor (DoSP) technology emerged to meet the simultaneous demands

for flexibility and efficiency. The appropriate constraints imposed onto application sets can

Review of Reconfigurable and Low-power Architecture

~ 11 ~

release the architecture from the burden caused by the unnecessarily abundant flexibility,

thus opening much larger design space for higher performance than GPP.

The lower flexibility in DoSP necessitates larger configuration bits (e.g., 8 contexts per plane

for MorphoSys) compared with one 32-bit instruction for X86 and longer time (e.g.

thousands to millions of cycles for FPGA) compared with one cycle for ARM in order to

change the configuration. Of course, longer-lasting configuration set makes DoSP work

more efficiently and reduce the cost of changing the configuration, which could be achieved

by carefully optimizing the configuration set. This type of processor is a sort of

reconfigurable architecture by definition. From the above, we observe that DoSP inherently

leads to reconfigurable architectures either fine-grained (e.g., FPGA) or coarse-grained (e.g.,

MorphoSys), and vice versa.

GPP reconfigurable platforms can be roughly divided into fine grain architecture and coarse

grain architecture in term of granularity which is determined by the width of the components

in its datapath. Generally, an architecture is considered as fine-grain one when its datapath

width is four bits or less [14]. Otherwise, it is considered coarse-grain architecture. In the

following three sub-sections, fine-grain FPGA Architecture, typical fine-grain and coarse-

grain architectures are discussed briefly.

II.2 FPGA Architecture

II.2.1 Fine-grain FPGA Architecture

The architecture model of FPGA is shown in Figure II-1. In this model, the reconfigurable

hardware platform consists of three basic elements: Configurable Logic Blocks (CLBs),

Connection Boxes (C-Box), and Switch Boxes (S-Box). The operational elements in CLBs

of FPGA are mainly LUTs with 16 single bit inputs, which store the truth tables of user-

defined combinational logic functions. These inputs are controlled by bits from the

configuration memory which makes it possible to build any 4-input logic function by

changing the content of the Static Random Access Memory (SRAM) configuration memory

[15]. A combinational logic function is realized by looking up the value stored in the LUT

that is addressed by the corresponding gate inputs. The programmable elements also have the

Review of Reconfigurable and Low-power Architecture

~ 12 ~

ability to optionally register their outputs. Furthermore, a mesh of programmable

interconnects is available to connect the CLBs together to build bigger circuits.

Figure II-1 : Architecture of FPGA

Implementing a logic network requires connecting CLBs by selecting the desired signal wire

linked to the routing tracks through horizontal and vertical wiring channels located between

two neighbouring rows or columns. A connection block can attach the signals to the logic

block and the switch box nearby. The connections in the switch boxes make the input signal

either pass through the switch box on its track or change its routing direction. To enhance the

connectivity for connecting various CLBs, it is possible to use various types of wires with

different lengths which are separated by variable numbers of blocks [14]. For example, in

Xilinx’s Virtex FPGAs, there are two types of routing devices, C-Box and S-Box, which

route the signal flows among CLBs and wires. C-Box route the inputs and outputs of a CLB

to the adjacent wires. S-Box connects horizontal and vertical crossing wires. The single-lines

connect adjacent CLBs, while 16 lines connect CLBs that are three or six blocks apart [10].

Review of Reconfigurable and Low-power Architecture

~ 13 ~

The fine-grain aspect of FPGAs makes them extremely flexible and suitable for a very wide

range of applications. Hence, FPGA chips are produced in large quantities which make their

usage come with greatly reduced NRE costs. This high flexibility is obtained at the cost of

very high power consumption which prohibits the deployment of FPGAs in portable

applications.

II.2.2 Problems with Fine-grain FPGA Architecture

One problem with fine grain FPGAs is the high reconfiguration time. Take Atmel 40K40 as

an example, which is a 48 by 48 FGPA and it needs 42063 8-bit words for full

reconfiguration with maximum 8 MHz reconfiguration clock [16]. Therefore it can be fully

reconfigured in 5.26 milliseconds. Similarly, Xilinx Virtex-E FPGA family has the array size

of 64 by 96 with 766042 bits bitstream for full reconfiguration. It needs 3.1 milliseconds for

reconfiguration by using a 50MHz clock [10]. The high reconfiguration time can be a

restriction if dynamic reconfiguration is adopted in applications where parts of the circuit

mapped on the FPGA are idle waiting for another part to finish. Dynamic reconfiguration of

the circuit in this case would lead to better use of the available silicon. Besides, FPGAs

usually have around 10 times more delays than ASICs.

Figure II-2 : Reconfiguration time of two FPGA devices

Review of Reconfigurable and Low-power Architecture

~ 14 ~

Figure II-2 gives comparison of reconfiguration times of imaginary Atmel 40K and Virtex-E

FPGA with 100 by 100 array size and reconfiguration clock of 50 MHz [17, 18].

In addition to the high reconfiguration overheads, FPGA devices also suffer from high power

dissipation. In an FPGA chip, the energy dissipated in interconnects is about 65% of the total

energy consumption, while 30% are dissipated in programmable clock-routings and I/O

blocks. For example, the power consumption of an XC4085 chip running at a system clock

of 50 MHz is approximately 6W [19]. Therefore, the high power consumption of FPGA is a

limiting factor in energy-sensitive domains for the hand-held and portable devices such as

wireless communication terminals, personal digital assistants (PDAs), laptops, etc. High

power consumption directly shortens the running time of portable devices which, in a sense,

directly determines the future of devices in the market.

As the size of the application becomes larger, the size of FPGAs has been growing steadily

over the past decade and will stay on this path. This has been made possible by staying at the

forefront in terms of the process technology. The combined effect of smaller feature sizes

and larger die area is that more and more transistors are integrated on a die. The resulting

increase in power density and total power dissipation will have an adverse effect even in the

power insensitive domains, due to the advanced packaging and the cooling techniques

required [19].

II.3 Fine-grain Architecture

Fine-grained architectures can make designers to take the benefit for implementing bit

manipulation tasks flexible without wasting reconfigurable resources. The fine granularity of

such architectures makes the implementation of large and complex calculations consuming

numerous Processing Element (PEs). This results in slower clock rate when the applications

are implemented with fewer, coarse-grained PEs.

To author’s opinion, the number of fine-grain architectures is limited so it is difficult to

classify them. Though each has its specific characters that differentiate them from others,

they have a lot in common. Thus three popular architectures are randomly selected and

introduced in this section. It is not intended to detail all industrial reconfigurable systems and

Review of Reconfigurable and Low-power Architecture

~ 15 ~

research projects; instead it is to show the overall characters of fine-grain architectures by

introducing selected systems.

II.4.1 National Semiconductor's Adaptive Processing Architecture (NAPA)

NAPA [20-22] was developed by National Semiconductors USA. Adaptive Logic Processor

(ALP) in the architecture couples a standard processor on-chip, 32-bit Reduced Instruction

Set Computer (RISC) core (Compact RISC) called the Fixed Instruction Processor (FIP),

with a reconfigurable array of fine-grained logic elements. Both ALP and FIP can access the

same memory space and ALP, therefore, retains complete generality. The structure of NAPA

processor is shown in Figure II-3. Additionally, the ALP has exclusive access to a set of

configurable I/O pins and on-chip memory resources and a general external memory

interface. This increased flexibility in interfacing and memory allocation are greatly helpful

for adaptive computing effectively, especially in embedded systems.

To overcome the problems of consistency and synchronization between ALP and FIP, there

are synchronization mechanisms such as standard status flags and interrupts with two

programming modes for FIP and ALP threads to rejoin. In the first mode, FIP initiates the

ALP operation and suspends afterwards. Once the work is done, the ALP reactivates FIP by

an interrupt. In the second mode, the FIP is free to perform computation loaded after having

initiated ALP.

Figure II-3 : NAPA processor structure [20]

Review of Reconfigurable and Low-power Architecture

~ 16 ~

II.4.2 Garp: Gate Array Processor

Garp was developed by Berkeley Reconfigurable Architecture, System, and Software

(BRASS) group at UC Berkeley, USA [23-25]. It is reserved for tasks such as interrupting

the main processor, array-initiated memory accesses, and register transfers with the host

processor. The Garp processor architecture, as shown in Figure II-4, combines a standard

Microprocessor without Interlocked Pipeline Stages II (MIPS-II) processor with a two-

dimensional reconfigurable array such as FPGA-like blocks available from Xilinx, Altera

and other manufacturers. The reason to classify this processor into fine-grain architecture is

2-bit operands in size at most for each computing element in the reconfigurable array which

is used to accelerate certain computations. Garp’s main processor executes an extended

MIPS-II instruction set and the reconfigurable array in it exchanges data between memory

and the main processor through 4 memory buses which is vertical through the rows. In Data

Encryption Standard (DES), image dithering, and a sorting algorithm, Garp processor runs at

133 MHz and speeds up from 2 to 24 over a 167 MHz UltraSPARC processor.

 Figure II-4 : Garp block diagram [23]

The main problem is a lack of memory to store intermediate data inside the reconfigurable

array. There are flip-flops only inside the logic elements, which can be used for memory

resources. The intermediate data generated in reconfigurable array must be written back to

the data cache. Due to the caching mechanism, accesses to intermediate data may cause

Review of Reconfigurable and Low-power Architecture

~ 17 ~

misses and stall array execution. Besides, large amount of data caching requires more

bandwidth and therefore forms a bottleneck for its limited buses.

II.4.3 Chimaera Architecture

The Chimaera [6, 26, 27] architecture was developed by Scott Hauck and other researchers

at Northwestern University first and University of Washington later. Figure II-5

demonstrates the overall Chimaera architecture. It consists of tightly coupled fine-grain

reconfigurable functional units (FPGA blocks) and microprocessor for hardware caching.

This integration was intended to eliminate the communications bottleneck between the two

and allow the acceleration of a broad class of functions as opcodes. Functions loaded into the

FPGA by the host processor operate speculatively on every clock cycle, with the results

written back to a register file only for those functions explicitly invoked by the processor.

Figure II-5 : Overall Chimaera architecture [6]

The execution model is that of bit-slice data which spreads horizontally across the array,

propagating downward as row-wise operations are applied. Kernels corresponding to

operating codes take up entire contiguous rows. Hence, the array is partially reconfigurable

by the row. Logic blocks have multiple LUTs and multiple inputs/outputs, allowing data

forwarding while computing. Special carry-propagation logic propagates critical paths along

each row. Horizontal wires of various reaches are available, but limited. In order to simplify

context switching, there are no pipeline registers apart from the logic block's ability to

Review of Reconfigurable and Low-power Architecture

~ 18 ~

read/write the register file of the host processor. Besides, there are not pipelining latches in

the reconfigurable array.

II.4 Coarse-grain Architecture

Coarse-grained reconfigurable architectures contain word-level function units, such as

multipliers, Arithmetic Logic Units (ALUs) or PE which can perform a limited number of

16-bit or 32-bit operations as configured. One characteristic of coarse-grain architectures is

the large size of PE and limited functions available in it. Compared with fine-grain

architectures, coarse-grain architectures will consume less power, but it also suffers from the

difficulty in implementing the control logic which is operated at bit level.

Generally, Coarse-grained architectures require less configuration data than fine-grained

architectures because of their short configuration time. A survey of coarse grain architectures

can be found in [28, 29]. The reconfiguration overhead of the coarse architectures is less than

that of the fine grain architectures [30].

Coarse-grain architectures share certain features as introduced above while each has its own

differentiating characters. Given their limited number and varied functions, it is difficult to

systematically classify coarse-grain architectures. Thus five coarse-grain architectures are

selected randomly as examples, which could make overall characters of coarse-grain

architectures better revealed.

II.4.1 Pleiades Architecture

Pleiades [31] is an important vision for InfoPad project by Jan Rabaey's group at Wireless

Research Centre at the University of California in Berkeley, which works toward multimedia

on the mobile unit of computing services available from a high-bandwidth backbone network

of computers, in which the driving need was to perform many different computationally

intense tasks with low power.

The architecture, as shown in Figure II-6, consists of a general-purpose microprocessor for

controlling and a surrounding heterogeneous array of coarse grain satellites. The main

processor executes control-dominated sections of the program while satellites execute data-

Review of Reconfigurable and Low-power Architecture

~ 19 ~

dominated computations. The system is distributed in a sense that every satellite has its own

instruction fetch and execution. The satellites communicate between each other through

dedicated interconnects. The satellite processors could be arithmetic modules such as

multipliers, memory modules, address generators or reconfigurable arrays [9, 32].

Because the configurable modules are function-specific, the paradigm is based on an ASIC

flow. However, the control core processor is linked to satellite processors of varying degrees

of specialization through a reconfigurable communication network. The task of architecture

design and the decision of which satellites to use have to be done manually. Although

dynamically configurable fine grain programmable gate array (PGA) satellites could

accelerate functions, they cannot warrant special-purpose satellites and are less efficient than

specialized circuits in the satellites. At partitioning stages the designer decides which loops

of the full high-level program need to speed up using reconfigurable fabric; then the decision

of which satellites to be deployed is made and their design started.[33]

Interconnects and the type/number of satellites can be parameterized to provide limited

reconfigurability according to the requirements in applications. But programming the

satellites requires writing low-level netlists. This technique can make the architecture

efficient; however, they become too specific for diverse targeted applications.

Figure II-6 : Overall Pleiades architecture [9]

Review of Reconfigurable and Low-power Architecture

~ 20 ~

II.4.2 RaPiD: Reconfigurable Pipelined Datapath

The RaPiD (Reconfigurable Pipelined Datapath) architecture [34], developed in 1996 at the

University of Washington, USA, is a one-dimensional array of cells. It is aimed at speeding

up highly repetitive, computationally-intensive tasks in multimedia and digital signal

processing domain by implementing deep, application-specific computation pipelines to

form a mostly linear pipeline in the RaPiD architecture.

An abstract view of the Rapid architecture is shown in Figure II-7. For RaPid-1prototype,

each cell comprises an integer multiplier, three integer ALUs, six general purpose datapath

registers and three local memories with 32 entries. Cells are connected by segmented buses

with built-in pipeline registers and FIFOs at each end. The registers, the RAM, the ALU and

all datapath operate on 16-bit data types. The multiplier performs a 16 x 16 to 32

multiplication and outputs the 32-bit result as two 16-bit words. The ALUs can be cascaded

for double-precision operations. The data-path registers can be used to store constants or

temporary values, to implement additional multiplexers, to support routing, and for

additional pipeline delays. Each memory has a specialized datapath register featuring an

incrementing feedback path. A RaPiD array is constructed by replicating identical cells from

left to right, forming a linear computing pipeline. The array can consist of hundreds of cells,

such as multipliers, adders, and comparators.[35-37]

Figure II-7 : Abstract view of the Rapid architecture [34]

RaPiD is the only architecture that defines a broad architectural approach and provides a

heterogeneous computation fabric/array. For configuration, the RaPiD architecture uses a

Review of Reconfigurable and Low-power Architecture

~ 21 ~

mix of static configuration and dynamic control, which brings plenty of flexibility for

designers to configure it for their target domain.

Mapping applications onto RaPiD needs a non-standard programming language, RaPiD -B

language, and compiler tool set, RaPiD -B compiler. All this causes the architecture to be

considerably weak. Compared to an FPGA or MATRIX routing architecture, RaPiD restricts

the connectivity among the processing elements to a linear segmented bus. This places the

designer at a significant disadvantage when the architecture is configured for the target

applications.

II.4.3 MorphoSys

Morphosys [38] is a reconfigurable processor that is a parallel system on one chip

comprising a software programmable processing unit and a reconfigurable hardware unit

from UC Irvine. It is targeted at the applications with inherent parallelism and a high level of

granularity, which can be accelerated by the reconfigurable part. The granularity of the

Morphosys processing elements is the highest among the family of reconfigurable processors.

The performance of the Morphosys architecture on MPEG2, Motion Estimations, Discrete

Cosine Transform (DCT) and Viterbi is around a 5-10 times improvement over normal

Central Processing Units (CPUs) [39, 40].

The complete MorphoSys architecture, as shown in Figure II-8, consists of a MIPS-like

TinyRISC core processor, a frame buffer, a Direct Memory Access (DMA) controller, a

context memory, and an 8x8 reconfigurable array. The main component of Morphosys is the

reconfigurable array of 8 by 8 which has a 28 bit, fixed point ALU (with a 16 x 12 multiplier)

and a register file, and is configured through a 32-bit context word. The ALUs run on RISC

instructions and the instruction set has load and store instructions for manipulation of the

DMA controller and the reconfigurable array. The context word is loaded into a register in

every execution cycle from the context memory, which is used to store the configuration data

for the reconfigurable array including the functionality of the ALU (the instruction fetch and

decode phase) and the network connections for that ALU. The frame buffer is used as data

cache to store internal data for blocks of intermediate results.[41-43]

Review of Reconfigurable and Low-power Architecture

~ 22 ~

Figure II-8 : The MorphoSys Architecture [38]

The processor uses a hierarchical routing architecture, and is therefore capable of providing

good routing flexibility. It follows that the Single Instruction, Multiple Data (SIMD) model

and all the functional units in the same row or column execute the same operation with

different data. Hence the array is only useful for data-parallel operations such as pixel

parallel-data operations. In addition to its preference for word-level applications, which is

caused by the coarse granularity of the processing elements, the architecture is also flexible

enough to support bit level operations such as control operations which are executed by the

RISC.

The Morphosys approach is well suited to some regular computation patterns but it does

little to address the increasingly irregular patterns in the latest media standards, such as

MPEG4. The regularity and simplicity of the reconfigurable array have limitations on

implementation of some media processing algorithms and the applications with time-varying

computation patterns. For example, an implementation of FIR on such an array is likely to

cause excessive stalls and repeated-redundant context reloading. Besides, the architecture

was not designed to be customised in spite of its synthesisable core.

II.4.4 Chameleon

The Chameleon reconfigurable processor [44], developed in University of Twente,

Netherlands, is a heterogeneous reconfiguration architecture in combination with a Quality

of Service (QoS) driven operating system.

Review of Reconfigurable and Low-power Architecture

~ 23 ~

It provides a platform for high-performance telecommunication and data communication

applications. Chameleon reconfigurable processor is a general processor-based

reconfigurable architecture, in which a 32-bit RISC core, the reconfigurable fabric, a fast bus,

the local memory system, Programmable Logic Arrays (PLAs) for the control path and I/O

are built in a single chip. [45]

The RISC core is employed as a host processor which schedules computation intensive tasks

onto the programmable logic. The programmable logic is the main computing engine in the

fabric, which is a 32-bit array of 108 data path units (DPUs). These DPUs are also capable of

parallelling 16-bit operations and can be dynamically reconfigured between one and eight

instruction execution. The main computational block within the DPU is an ALU capable of

two's complement arithmetic and bitwise Boolean operations. It can simultaneously monitor

and flag a number of relational and arithmetic conditions. The ALU is fed by two operand

paths with optional Boolean masking, shifting, and registers for pipelining or storing

constants. Input muxes select the operands from buses driven by other DPUs. Data can be

read/written to/from the adjacent SRAM; each SRAM memory has one read port and one

write port on the fabric side which can be used by the executing kernel. The SRAM

memories can be chained together into a contiguous address space.[46-49]

A configuration bit stream is stored in the main memory and loaded onto the fabric at

runtime by DMA. The programme logic can be configured at running time by bits stored in

the memory. There are two kinds of planes in the DPUs: active and back planes. An active

one executes the working bit stream and a back one contains the next configuration bit

stream. It only takes one cycle to switch from the back plane to the active one. Therefore, the

back plane can be treated as a cache for loading configurations.

II.4.5 RAP

The Reconfigurable Algorithm Processor (RAP) [50-52], originally developed by Bristol-

based Elixent Ltd, is a coarse-grain reconfigurable platform designed for DSP and

multimedia applications. The reconfigurable hardware, known as the D-fabrix, is made up of

an array of hundreds of 4-bit ALU's and register/buffer blocks that can be cascaded together

Review of Reconfigurable and Low-power Architecture

~ 24 ~

to accommodate larger data lengths. This allows the fabric to operate on the 8-24 bit data

lengths common in multimedia applications. The ALU's are arranged in a chessboard style,

alternating with switchboxes which can act as a cross-point switch or 64 bits of configuration

memory.

The D-Fabrix architecture is an extension of the Chess project [53] which is developed by

Hewlett-Packard Laboratories. The logic in D-Fabrix ALU and Switchbox pair is shown in

Figure II-9. Each basic 4-bit processing element of it has two 4-bit data inputs, one 4-bit data

output, 1-bit carry input and carry output terminals to create carry chains linking between

ALUs for wider words processing and a 4-bit instruction input. Besides, the array also

contains 256-byte memory blocks dispersed around the array. The choice of nibble sized

ALU's means that only a few bytes of memory are required to configure each ALU allowing

rapid reconfiguration and improved density. The large amount of on-chip memory also

allows ALUs to be fed by instruction streams generated within the array reducing off-chip

memory traffic to improve overall performance.

Multiplexers are adopted in the switchbox in D-Fabrix, which is used to construct 2-input

logic gates. One of the input ports of the multiplexer are connected to the control input and

the other port is connected to data inputs. Although one of the four available data bits is used,

the adoption of multiplexers achieves good performance in terms of area and speed

compared with ALUs because of its efficient construction for simple Boolean logic

implementation.

Figure II-9 : The logic in D-Fabrix ALU and Switchbox pair [52]

Review of Reconfigurable and Low-power Architecture

~ 25 ~

The RAP is targeted at multimedia and wireless base-station applications and they have

shown a speed-up of 238x against a 32-bit DSP processor and 38x against an FPGA in Joint

Photographic Experts Group (JPEG) compression application.

II.3 Interconnection Structure

Reconfigurable interconnection networks are the important underlying hardware

infrastructures of reconfigurable system. They not only provide the whole system with

powerful flexibility to meet the requirements from applications, but also affect the area, time,

and power efficiency. Reconfigurable interconnection networks implement required

connections among functional blocks or components through reconfiguring programmable

switches and basically consist of programmable switches and wire segments or channels [54].

In this section, three typical interconnection structures are evaluated which are symmetrical

interconnection network, hierarchical interconnection network and binary (Fat)

interconnection tree.

II.4.1. Symmetrical Interconnection Network

FPGA devices employ non-distinctive logic blocks which are embedded in a mesh of routing

sea consisting of switch boxes and connect boxes. Each function module in FPGA devices

including Boolean and routing function modules are the same. The routing network is

organized in symmetrical and balanced style.

Logic blocks in FPGA are separated by vertical and horizontal channels. There are

prefabricated parallel wire segments running between each pair of adjacent logical blocks in

both the vertical and horizontal channels. A switch block is located at each intersection of a

vertical and horizontal channel. When an FPGA is used to implement a Boolean function, a

partitioning algorithm is used to decompose the Boolean function into some smaller sub-

function so that each of them can be implemented by a single logic block. Then a placement

and routing algorithm is employed to select a logic block for each sub-function, and the wire

segments and switches are chosen to connect the selected logic blocks.

Review of Reconfigurable and Low-power Architecture

~ 26 ~

During the whole processing, the selection of logic block, switch box and connect box is no

distinction except the limitation caused by the requirement of delay.

II.4.2. Hierarchical Interconnection Network

While being effective for local connections, the symmetrical interconnection network has the

disadvantage caused by the coarse granularity architecture that distant routing wires make

communication slow and expensive since a large number of programmable switches have to

be traversed. This leads to the concept of the hierarchical interconnection network, which

continues to exploit locality while reducing the cost of the long connections.

Hierarchical interconnection network is focused on the interconnection between the coarse

block elements such as Pleiades architecture (see sub-section II.4.1) and tries to overcome

the routing problems caused by blocks with different area sizes. It is useful in applications

where data locality is high and only a few signals need to be sent across the chip.

The interconnection network is composed of two types of connections: global interconnects

and local segmented mesh structure. Global interconnects provide long distant connection

between any two parts of the array. Furthermore, switching activities of the lines are

transmitted for long distances. Local segmented mesh structures in local blocks improve

overall global interconnects as shown in Figure II-10, but it is difficult for them to adapt to

heterogeneous arrays, for a 2D regular grid has to be found. The disadvantage of hierarchical

interconnection network is that their switching elements are less generic than symmetrical

interconnection network. Besides, the complexity of two routing methods in their respective

partitions always makes mapping distribution hard to achieve an optimal status as originally

expected.

Review of Reconfigurable and Low-power Architecture

~ 27 ~

Figure II-10 : An example of generalized hierarchical interconnection

II.4.3. Binary (Fat) Interconnection Tree

The binary interconnect tree is a useful alternative to the hierarchical segmented mesh,

which is also presented by the “fat tree”. The hierarchical synchronous reconfigurable array

used in the BRASS project [55] is such an interconnection which is a network based on a

complete binary tree and the shared bus when logic block to logic block connections are

needed. Binary trees have favourable features such as constant node degree, small node

degree, scalability, etc. An example of such a network is shown in Figure II-11, in which,

functional logic blocks, represented by the symbol PE, are located at the terminals of the

network, like leaves on a tree. The routing nodes are represented by Rs. The number of buses

per channel increases with the levels of the tree. For the communication between two local

logic blocks, signals are transferred without the assistance of stem network bus which is in

the upper level. The fat tree is more like a real tree, in which the branches get thicker toward

the top.

The advantage of this architecture is that the number of switches used to route the signal

grows logarithmically with the distance, which means that the overall delays introduced by

the switches are lower.

Review of Reconfigurable and Low-power Architecture

~ 28 ~

Figure II-11 : A fat binary tree

II.4 Low Power Technology

Traditionally, low-power VLSI design techniques have been focussed on improving energy

efficiency. As the issue of low-power VLSI design techniques becomes more pervasive, the

researches to minimize power consumption in VLSI design have been carried out on

multiple lines: semiconductor technology, circuit design, system architecture, application

design, design automation tools and operating system. Energy awareness is now gaining

more and more attention in the mainstream VLSI design affecting all aspects of the design

process.

Currently, most components in VLSI design are fabricated using CMOS technology. The

reason for this bias is low cost and, inherently, efficient power consuming of Complementary

metal–oxide–semiconductor (CMOS) technology compared with other technologies. There

are two main components of power dissipation in a CMOS circuit: dynamic power and static

power. During normal operation, the power dissipation of a CMOS circuit is determined by

the dynamic power which is the switching energy consumption spent in charging and

discharging of circuit nodes. The leakage currents of the circuit are orders of magnitude less

than the operating currents when devices are switching and are negligible therefore. The

dominant factor of energy consumption in CMOS is dynamic power consumption, which is

linear with the effective switch capacitance, the square of supply voltage, and the frequency

of operations.

Lower level energy consumption can thus be archived by reducing the supply voltage, the

capacitive load and the switching frequency. Most low power technologies fall into these

R

R R

R R R R

PE PE PE PE PE PE PE PE

Review of Reconfigurable and Low-power Architecture

~ 29 ~

three categories. The low power technology is explained as follows by introducing the

mainstream low power design approaches.

• The most effective approach in minimizing power dissipation is to minimize the supply

voltage, that is, to design systems which can run at as low a supply voltage as possible

that will satisfy the performance requirements.

• An alternative approach could be adopted if the whole system cannot run at a low

supply voltage, that is, to partition a system into certain independent circuits and to

make each part run at its own optimal low supply voltage. It is an effective technique to

minimize overall power while providing higher performance in processing elements that

are timing-critical.

• The supply voltage can be dynamically adjusted to save the energy when the

performance of a system is varied in some applications. This approach makes system

always run at the lowest possible value that provides sufficient throughput.

• Concurrent processing technique can be applied to compensate the performance loss

associated with lowering the supply voltage. Increasing the throughput of a given design

by applying this technique could make the supply voltage be further decreased and

power dissipation reduced while performance requirements still met.

• Minimizing capacitance is an important approach for reducing power dissipation. This

technology is applied by adopting circuit blocks which are custom-made to perform

specific computational task required by a given application. Versatile and general-

purpose circuit blocks are generally less efficient for specific application.

• Avoid driving global signals across a chip and accessing large central memories and

functional units. A targeted algorithm generally consists of a sequence of computational

steps. Most computational steps typically interact and communicate with only a few

previous and subsequent steps. The localized algorithms can be adopted to minimize the

amount of power-hungry global interactions.

• Reducing switching activity is an effective technology to minimize power consumption

since switching events are the source of energy consumption. This can be achieved by

clock gating, minimizing glitching and powering down the sub-function modules when

they are not actually demand. An effective coding scheme will also help a lot in some

applications.

• Avoid hardware sharing which could destroy the temporal correlations present in path

or data paths/streams. The frequent changing in interconnections and data buses will

raise the power consumption dramatically.

Review of Reconfigurable and Low-power Architecture

~ 30 ~

To optimize a system for a certain application under an environment, a designer generally

has to select a particular algorithm, design or use an architecture that can be used for it, and

determine various parameters such as supply voltage and clock frequency. Therefore, the

low-power design can be carried out in these aspects.

One approach to minimize power consumption is to adopt circuit blocks that are designed

specifically to perform certain computational tasks required by a given application. This

approach can significantly reduce the energy consumption for an operation because of the

application-specific circuit blocks which are used to replace more versatile and general

purpose circuit blocks. In a general purpose circuit block, redundant parts exit for certain

application implementation. They are designed so that they can execute several different

operations and necessarily larger and more complex than domain-specific circuit blocks.

Besides, general purpose circuit blocks also have to be large enough to handle the largest

data size for all possible given applications. The custom- designed circuit blocks remove

these redundant parts to service the required operation only and consume less power than

general purpose one.

II.5 Conclusion

This chapter has presented the basic concepts of reconfigurable architectures and the

classifications of them. Fine-grain FPGA architectures and five typical coarse-grain

reconfigurable architectures have been introduced in this chapter. Reference has been made

to their features and the quality of design in which they may be carried out. Being an

important part of reconfigurable systems, interconnection network and three typical

implementations have been discussed. Lastly, the concepts about low power design

technology are introduced at the end of this chapter. .

~ 31 ~

III.1 Overview

Distributed Arithmetic (DA) has been widely adopted for its computational efficiency in

many digital signal processing applications. The most frequently used form of computation

in digital signal processing is a sum of products which is dot-product or inner-product

generation. DA is generally a bit-serial computation operation that forms a product (dot or

inner) of two vectors in one clock cycle. The typical applications include DCT, DFT

(Discrete Fourier Transform), FIR (Finite Impulse Response), and DHT (Discrete Hartley

Transform) which can be found in main stream multimedia standards and telecommunication

protocols. All these applications involve inner products computation between two vectors,

one of which is a constant.

The advantage of DA is its special non-multiplication mechanization which uses adder

replacing multiplication and therefore simplifies the hardware implementation. This

hardware characteristic limits its performances at the same time. The inherent bit-serial

nature makes the DA apparent slower than the multiplication algorithms. The final result of

DA will be obtained after N cycles where N is the bit width of input vectors. This

disadvantage will not exist if the number of elements in the input vectors is commensurate

with the number of bits in each vector element. For example, time required to input total

eight 8-bit words parallelly which is one word each cycle is exactly the same as time

required to input simultaneously all eight words serially [56].

Chapter III

Review of Distributed Arithmetic

Algorithm and its Applications

Review of Distributed Arithmetic Algorithm and its Applications

~ 32 ~

The initial DA work dates back to 1968 by Zohar who had independently invented DA and

applied it with FFT and digital filter [57-60]. DA is further developed with FIR and IIR

digital filter mechanization by Peled, which is published in the IEEE ASSP Transaction [61,

62]. The most well-known description of DA was given by Abraham Peled and Bede Liu

through a presentation on IIR digital filter mechanization at the Arden House Workshop on

Digital Signal Processing in 1974. The complete definition of DA and full description of its

application and implementation were described in the workshop. Numerous researchers

made their contribution to DA applications and implementation after that. In 1989, Stanley A.

White gave a detailed review of DA and its applications in digital signal processing [56].

This section will first review the definition of DA, followed by two basic DA extensions,

ROM based DA and adder based DA. One of them, adder based DA, is the theory base of

proposed processor in this dissertation. Three types of serial DA and one parallel DA

architecture are discussed in the following sections including advantages and problems of

constructions. Several typical DA applications will be briefly introduced at the end of this

section.

III.2 Distributed Arithmetic Algorithm

III.2.1. DA Algorithms

DA is a bit-serial operation that computes the inner product of two vectors without using

multiply operations. DA has an inherent bit-serial nature. Let us consider the computation of

the following inner (dot) product with L-dimensional vectors:

 (III-1)

where A = [C0, C1,···, CL-1] is an M bits fixed coefficient vector and X = [X0, X1,···, XL-1] is

an N bits input vector.

Ci and Xi are in two’s complement binary scaled, then they can be expressed as follows:

 (III-2)

1

0

L

i i

i

Z AX C X
−

=

= =∑

2
-1

, (1) ,

0

2 2
M

j
i i M i j

j

C C C
−

Μ
−

=

= − + ∑

Review of Distributed Arithmetic Algorithm and its Applications

~ 33 ~

 (III-3)

where Ci,j , Xi,k ∈{0,1} is the jth and kth bit of vector element Ci and Xi respectively. Ci,0 ,

Xi,0 are the least significant bit (LSB) and Ci,(M-1) , Xi,(N-1) are the sign bit. M is the word

length of Ci and N is the word length of Xi.

To realize the inner product computation, the conventional DA uses a ROM-based

architecture. Another method is to adopt an adder-based architecture.

III.2.2. ROM Based DA

ROM-based DA speeds up the multiplication process by pre-computing all possible values

and storing them in a ROM.

By substituting Equation (III-3) in Equation (III-1), the output Z is given by:

 (III-4)

By defining the term Rk as

 (III-5)

Then, we can obtain Rn-1 when k=N-1

 (III-6)

Equation (III-4) can be written as following format by substituting Equation (III-5) and

Equation (III-6).

 (III-7)

2
-1

, (1) ,

0

2 2
N

N k
i i N i k

k

X X X
−

−

=

= − + ∑

1 2
-1

, (1) ,

00

(2 2)
L N

N k
i i N i k

ki

Z AX C X X
− −

−

==

= = − + ∑∑

1 2 1
-1

, (1) ,

0 00

2 2
L N L

N k
i i N i i k

k ii

C X C X
− − −

−

= ==

 = − + ∑ ∑  
∑

1

,

0

L

k i i k

i

R C X
−

=

=∑

1

N- 1 , N- 1

0

L

i i

i

R C X
−

=

=∑

2
-1

N- 1

0

1

0

2 2

2

N
N k

k

k

N
k

k k

k

Z R R

S R

−

=

−

=

= − + ∑

= ∑

Review of Distributed Arithmetic Algorithm and its Applications

~ 34 ~

where Sk is defined as the sign of term for k= 0,1,···,N-2, N-1.

 (III-8)

Since Xi,k∈{0,1}, Rk has 2
L
 possible values for k= 0,1,···,L-1. Rather than computing these

values on line, these values can be precomputed and stored in a ROM. Then, Equation (III-5)

can be implemented with a ROM of size 2
L
.

The bits of input data ({X0,k, X1,k,···,Xi,k}) are used to form ROM addresses. The ROM

contents following with an adder and register can realize the accumulation for k rising from 0

to N-1as shown in Equation (III-6). An arithmetic shifter in the accumulator feedback path is

used to form successive scaling with powers of two. Then, after N cycles, corresponding to

the bit-width of input vector X, the final value of output Z can be obtained as the result of the

accumulation.

The serial processing pattern of ROM based DA becomes a bottleneck when the outputs data

are expected for each clock cycle. For some real-time video-streams applications, the high

data throughput is the critical feature. Another problem with ROM-based DA is that its ROM

size (2
L
 word) grows exponentially as the order L increases. As the number of inputs and the

internal precision become larger, the ROM-based DA will suffer from extremely large ROM

requirements.

III.2.3. Adder-Based DA

From the arithmetic point of view, the adder-based DA is not much different from the ROM-

based DA. In ROM-based DA, Equation (III-4) is obtained by substituting Equation (III-3)

in Equation (III-1). Where, Xi, one of the two factors in Equation (III-1), is changed to two’s

complement binary format, the other factor, Ci, is led to keep its original format. For adder-

based DA, the roles of the two factors are exchanged: Xi keeping its original format and Ci

being changed to two’s complement binary format. This role exchanging makes the DA

processing pattern switch from serial to parallel.

By substituting Equation (III-2) in Equation (III-1), the output Z is given by:

1 1

1 0 2
k

k N
S

k N

− = −
= 

≤ ≤ −

Review of Distributed Arithmetic Algorithm and its Applications

~ 35 ~

1 2 1
-1

, (1) ,

0 00

2 2
L M L

M j
i i M i i j

j ii

X C XC
− − −

−

= ==

 = − + ∑ ∑  
∑

 (III-9)

We define term Tj as

 (III-10)

then, Equation (III-9) can be written as

 (III-11)

In theory, Tj can also be implemented with a ROM since Ci,j is either 0 or 1, like Rk in ROM-

based DA. But, the size of ROM will be far larger than the one in ROM-based DA. Since Ci,j

is fixed and known, Tj can be realized with adders. Clearly, only the inputs corresponding to

nonzero coefficient bits Ci,j need to be added. In theory, this characteristic will lead the

number of adder to decrease by half on average.

III.3 Distributed Arithmetic Implements

Generally, DA applications fall into DSP algorithms which are implemented using general

purpose programmable DSP chips for low-rate applications, or special-purpose DSP chip-

sets and ASICs which are designed specifically for fixed function for higher rates.

The FPGA platform is another alternative method for implementation, which maintains the

advantages of custom functionality like an ASIC while avoiding the high development costs

and the inability to make design modifications after production. The FPGA also increases

design flexibility and adaptability with optimal device utilization while conserving both

broad space and system power, which is often not the case with DSP chips. When a design

demands the use of a DSP, or time-to-market is critical, or design adaptability is crucial, then

the FPGA may offer a better solution.

1 2
-1

, (1) ,

00

(2 2)
L M

M j
i i M i j

ji

Z AX X C C
− −

−

==

= = − + ∑∑

1

, j

0

L

j i i

i

T XC
−

=

=∑

2
-1

M- 1

0

1

0

2 2

2

M
M j

j

j

M
j

j j

j

Z T T

S T

−

=

−

=

= − + ∑

= ∑

Review of Distributed Arithmetic Algorithm and its Applications

~ 36 ~

In this section, the discussion focuses only on the general architectures for DA

implementation which are not restricted with certain platform such as DSP, ASIC, FPGA

and so on.

III.3.1 Architecture for Distributed Arithmetic

A block diagram of a general architecture for DA is shown in Figure III-1, which is capable

of 4 input vectors with 5-bit width. The architecture consists of a 2x2
L

(L=4) ROM with a

5x32 decoder, register and a left shift-accumulator. Xi,0 are the least significant bit (LSB) of

input vectors Xi (i=[0,3]); Xi,4 are the most significant bit (MSB) of input vectors Xi (i=[0,3]);

Sk is defined as the sign of term as defined in Equation (III-8), whose value is -1 when k

equals 4 and 0 when k equals other values. The memory must contain all possible 16 (2
4
)

values and their negatives in order to accommodate the value of Sk which occurs at the sign-

bit time. As a result, a ROM with 2x2
L
 word size is required.

Figure III-1 : General architecture for DA

It can be seen from the Figure III-1 that the input vectors X0, X1, X2 , X3 and Sk are serial,

2’s-complement numbers. With bit-serial input data at the LSB of word first, one bit of each

L input of length N is used to address the ROM. The sign bit S4 is the last bit to arrive. The

clock period from the LSB reaching input ports to sign bits all simultaneously arriving is the

4
 X

 1
6
 A

d
d
ress D

eco
d
er

2
L

 words ROM

Left Shift
(x2)

Register

Z

+

X
3,4

X
3,3

X
3,2

X
3,1 X

3,0

X
2,4

X
2,3

X
2,2

X
2,1 X

2,0

X
1,4

X
1,3

X
1,2

X
1,1 X

1,0

X
0,4

X
0,3

X
0,2

X
0,1 X

0,0

S
4

S
3 S

2
S

1 S
0

Review of Distributed Arithmetic Algorithm and its Applications

~ 37 ~

processing time. Within each clock cycle in the processing time, the input vectors together

with Sk arrive at address decoder and the corresponding value stored in ROM is output to the

adder followed. An adder, 1-bit left-shift unit and register construct a left-shift accumulator.

The value from ROM is left-shifted one position (i.e. multiplied by two) and added with its

next clock value. This is repeated until the sign bits are fed. Therefore, after a whole

processing time, the fully formed result is output.

III.3.2 Memory Reduced DA Architecture

The ROM size in the original DA architecture can be reduced by half to 2
L
 word by

replacing the adder to an adder/substractor.

Let us take an example to show how the size of ROM is reduced. It is supposed that C0 =

0.32, C1 = −0.48, C2 = 0.89 and C3 = 0.65. The memory in the original architecture must

contain all 16 (2
L
, L=4) possible values and their negatives according to all the input cases.

All possible input cases, corresponding terms of coefficient vector Ci and values are listed in

Table III-1.

It can be seen from the Table III-1, the absolute values in the upper half are the same as the

ones in the lower half. Therefore, Sk can be used as the control signal for an adder/subtractor

and only data in upper half of the Table III-1 is enough to implement DA computation. The

memory-reduced DA architecture is shown in Figure III-2. This configuration is now

mechanized with a 16-word ROM. The values stored in the ROM are simply the upper half

of the original one.

Review of Distributed Arithmetic Algorithm and its Applications

~ 38 ~

Table III-1: The content in the ROM of original DA architecture

Sk X3 X2 X1 X0 Sum of terms
Values

(E1)

0 0 0 0 0 0 0

0 0 0 0 1 C0 0.32

0 0 0 1 0 C1 -0.48

0 0 0 1 1 C1 + C0 -0.16

0 0 1 0 0 C2 0.89

0 0 1 0 1 C2 + C0 1.21

0 0 1 1 0 C2 + C1 0.41

0 0 1 1 1 C2 + C1 + C0 0.73

0 1 0 0 0 C3 0.65

0 1 0 0 1 C3 + C0 0.97

0 1 0 1 0 C3 + C1 0.17

0 1 0 1 1 C3 + C1 + C0 0.49

0 1 1 0 0 C3 + C2 1.54

0 1 1 0 1 C3 + C2 + C0 1.86

0 1 1 1 0 C3 + C2 + C1 1.06

0 1 1 1 1 C3 + C2 + C1+ C0 1.38

1 0 0 0 0 0 0

1 0 0 0 1 -C0 -0.32

1 0 0 1 0 -C1 0.48

1 0 0 1 1 -(C1 + C0) 0.16

1 0 1 0 0 -C2 -0.89

1 0 1 0 1 -(C2 + C0) -1.21

1 0 1 1 0 -(C2 + C1) -0.41

1 0 1 1 1 -(C2 + C1 + C0) -0.73

1 1 0 0 0 -C3 -0.65

1 1 0 0 1 -(C3 + C0) -0.97

1 1 0 1 0 -(C3 + C1) -0.17

1 1 0 1 1 -(C3 + C1 + C0) -0.49

1 1 1 0 0 -(C3 + C2) -1.54

1 1 1 0 1 -(C3 + C2 + C0) -1.86

1 1 1 1 0 -(C3 + C2 + C1) -1.06

1 1 1 1 1 -(C3 + C2 + C1+ C0) -1.38

Review of Distributed Arithmetic Algorithm and its Applications

~ 39 ~

Figure III-2 : Memory reduced DA architecture I

From the hardware point of view, the architecture in Figure III-2 is quite efficient. The extra

cost resulting from reduction of 16-word ROM is an additional subtractor. This benefit for

hardware will be enlarged by saving 32 words on ROM for an 8-input vectors application.

The memory size may be further halved again to 2
L-1

 words. We currently call this

implementation as memory reduced DA architecture II. It is supposed that there is a set of

values E2 which has one-to-one correspondence with input vectors X = [X0, X1, X2, X3] as

shown in Table III-2.

Review of Distributed Arithmetic Algorithm and its Applications

~ 40 ~

Table III-2 : The content in the memory reduced DA architecture II

X3 X2 X1 X0 Sum of terms
Values

(E2)

0 0 0 0 0 -0.69

0 0 0 1 C0 -0.37

0 0 1 0 C1 -1.17

0 0 1 1 C1 + C0 -0.85

0 1 0 0 C2 0.2

0 1 0 1 C2 + C0 0.52

0 1 1 0 C2 + C1 -0.28

0 1 1 1 C2 + C1 + C0 0.04

1 0 0 0 C3 -0.04

1 0 0 1 C3 + C0 0.28

1 0 1 0 C3 + C1 -0.52

1 0 1 1 C3 + C1 + C0 -0.2

1 1 0 0 C3 + C2 0.85

1 1 0 1 C3 + C2 + C0 1.17

1 1 1 0 C3 + C2 + C1 0.37

1 1 1 1 C3 + C2 + C1+ C0 0.69

It can be seen from the Table III-2, the absolute values in the upper half are the same as ones

in the lower half. But the one-to-one relationship is different from the one in Table III-1. The

relationship between upper and lower half values and their corresponding input vectors are

shown in Equation (III-12).

(III-12)

The values E1 in Table III-1 can be transformed to the values E2 inTable III-2 as shown in

Table III-3.

3 3
2 2 1 0 2 2 1 00 1(, ,) (, ,)X XE X X X E X X X= == −

Review of Distributed Arithmetic Algorithm and its Applications

~ 41 ~

Table III-3 : Transform between Table III-1 and Table III-2

X3 X2 X1 X0
Values

(E1)

Transform Values

(E2)

0 0 0 0 0

 − 0.69 =

-0.69

0 0 0 1 0.32 -0.37

0 0 1 0 -0.48 -1.17

0 0 1 1 -0.16 -0.85

0 1 0 0 0.89 0.2

0 1 0 1 1.21 0.52

0 1 1 0 0.41 -0.28

0 1 1 1 0.73 0.04

1 0 0 0 0.65 -0.04

1 0 0 1 0.97 0.28

1 0 1 0 0.17 -0.52

1 0 1 1 0.49 -0.2

1 1 0 0 1.54 0.85

1 1 0 1 1.86 1.17

1 1 1 0 1.06 0.37

1 1 1 1 1.38 0.69

Where 0.69 is represented as Q1 which is generated by:

 (III-13)

To implement this memory reduced DA architecture II as shown inTable III-2， Table III-3,

Equation(III-12) and Equation (III-13), an initial register is required to store the value of Q1

and several extra inverts are needed to realize memory reading according to the input vectors

in the upper and lower half of Table III-2. Besides, an adder/subtractor is necessary which

works in the way similar to the one in Figure III-2. Compared with memory reduced DA

architecture I, the memory size of the architecture is reduced by half.

Following the same method, the memory size in Table III-2 can be further reduced in halves

to 2
L-2

 words. We currently call the hardware implementation of it as memory of reduced DA

architecture III. It is supposed that there is a set of values E3 which has one-to-one

correspondence with input vectors X = [X0, X1, X2] as shown in

3 2 1 0
1

() (0.65 0.89 0.48 0.32)
0.69

2 2

C C C C
Q

+ + + + − +
= = =

Review of Distributed Arithmetic Algorithm and its Applications

~ 42 ~

Table III-4 : The content in the ROM of reduced DA architecture III

X2 X1 X0 Sum of terms
Values

(E3)

0 0 0 0 -0.365

0 0 1 C0 -0.045

0 1 0 C1 -0.845

0 1 1 C1 + C0 -0.525

1 0 0 C2 0.525

1 0 1 C2 + C0 0.845

1 1 0 C2 + C1 0.045

1 1 1 C2 + C1 + C0 0.365

It can be seen from Table III-4, the absolute values in the upper half are the same as the ones

in the lower half. The one-to-one relationship is similar to the one in Table III-2, which can

be described as shown in Equation (III-14)

 (III-14)

The transformation between the values E3 in Table III-4 and values E2 in Table III-2 closely

resembles that between Table III-1and Table III-2, which is shown in Table III-3.

Table III-5 : Transform between Table III-2 and Table III-4

X2 X1 X0 Values (E2) Transform Values (E3)

0 0 0 -0.69

- (-0.325) =

-0.365

0 0 1 -0.37 -0.045

0 1 0 -1.17 -0.845

0 1 1 -0.85 -0.525

1 0 0 0.2 0.525

1 0 1 0.52 0.845

1 1 0 -0.28 0.045

1 1 1 0.04 0.365

Where −0.325 is represented as Q2 which is generated by:

(III-15)

To implement this memory reduced DA architecture III as shown in Table III-4, Table III-5,

Equation (III-14) and Equation (III-15), compared with memory reduced DA architecture I,

an extra initial register is required to store the value of Q2 and additional control parts are

needed which act based on the value of X3. According to these extra hardware costs, the

2 2
3 1 0 3 1 0

0 1
(,) (,)

X X
E X X E X X= == −

3
2

 0.65
 0.325

2 2

C
Q

− −
= = =−

Review of Distributed Arithmetic Algorithm and its Applications

~ 43 ~

memory size is halved to 2
L-2

 words which is only one-fourth of the ROM in memory

reduced DA architecture I.

III.3.3 Offset Binary Coding Architecture

In memory reduced DA architecture II and III, the memory reduction is obtained through

adding or subtracting an initial value from original values. The initial value can be treated as

an offset value. This recoding of the coefficient is denoted by Stewart G. Smith in [63] as

Offset Binary Coding (OBC).

This method is based on a modified two's-complement representation of the values and

reduces the memory size by a factor of two. The OBC can be further extended, reducing the

memory size in steps by factor of two from 2
L
 to L in theory. However, this requires

additional hardware in terms of adders and multiplexers, thus increasing the latency.

OBC uses a (-1, 1) offset binary code to replace a (0, 1) straight binary code as the format of

input vectors. The input vector Xi can be expressed using an equivalent expression, as

follows:

 (III-16)

Being in 2’s-complement notation, the negative of Xi is expressed as

(III-17)

By substituting Equation (III-17) in Equation (III-16), Equation (III-16) can be re-written as

(III-18)

We define the term Mi as

(III-19)

(III-20)

where the possible value of the Mi is 1 or -1. Then, Equation (III-18) can be simplified as

1
[()]

2
i i iX X X= − −

2
-1

, (1) ,

0

2 2 1
N

N k
i i N i k

k

X X X
−

−

=

− = − + +∑

2 2
-1 -1

, (1) , , (1) ,

0 0

2
-1

, (1) , (1) , ,

0

1
[2 2 (2 2 1)]

2

1
 [()2 ()2 1]

2

N N
N k N k

i i N i k i N i k

k k

N
N k

i N i N i k i k

k

X X X X X

X X X X

− −

− −

= =

−

− −

=

= − + − − + +∑ ∑

= − − + − −∑

. , , (0,1,......, - 2)i k i k i kM X X k N= − =

. 2 , 2 , 2) () i N i N i NM X X− − −= − −

Review of Distributed Arithmetic Algorithm and its Applications

~ 44 ~

(III-21)

By substituting Equation (III-21) in Equation (III-1), Equation (III-1) can be written as

(III-22)

In order to simplify notation later, we define a function Ok and O0 as

(III-23)

(III-24)

Then, Equation can be written as

 (III-25)

It can be seen from the Equation (III-25) that Z still can take 2
L
 values but only 2

L-1
 different

magnitude values with a sign for Ok are consistent with the statements in the memory

reduced DA architecture II. We use a 4-coefficient (C0 = 0.32, C1 = −0.48, C2 = 0.89 and C3

= 0.65) case as an example to show the results of Equation (III-25) in the format of Ci and

the true values which are listed in Table III-6.

1

.

0

1
(2 1)

2

N
k

i i k

k

X M
−

=

= −∑

1

0

1 1

.

00

1 1 1

,

0 0 0

1
(2 1)

2

1 1
()2 ()
2 2

L

i i

i

L N
k

i i k

ki

N L L
k

i i k i

k i i

Z AX C X

C M

C M C

−

=

− −

==

− − −

= = =

= =

= −∑

= −

∑

∑

∑ ∑ ∑

1

,

0

1

2

L

k i i k

i

O C M
−

=

= ∑

1

0

0

1

2

L

i

i

O C
−

=

= ∑

1

0

0

2
L

k
k

k

Z O O
−

=

= −∑ i

Review of Distributed Arithmetic Algorithm and its Applications

~ 45 ~

Table III-6: Expansion of Equation (III-25) for the case

X3 X2 X1 X0 Contents in format of Ci
True

values

0 0 0 0 −(C3 + C2 + C1+ C0)/2 -0.69

0 0 0 1 −(C3 + C2 + C1− C0)/2 -0.37

0 0 1 0 −(C3 + C2 − C1+ C0)/2 -1.17

0 0 1 1 −(C3 + C2 − C1− C0)/2 -0.85

0 1 0 0 −(C3 − C2 + C1+ C0)/2 0.2

0 1 0 1 −(C3 − C2 + C1− C0)/2 0.52

0 1 1 0 −(C3 − C2 − C1+ C0)/2 -0.28

0 1 1 1 −(C3 − C2 − C1− C0)/2 0.04

1 0 0 0 −(−C3 + C2 + C1+ C0)/2 -0.04

1 0 0 1 −(−C3 + C2 + C1− C0)/2 0.28

1 0 1 0 −(−C3 + C2 − C1+ C0)/2 -0.52

1 0 1 1 −(−C3 + C2 − C1− C0)/2 -0.2

1 1 0 0 −(−C3 − C2 + C1+ C0)/2 0.85

1 1 0 1 −(−C3 − C2 + C1− C0)/2 1.17

1 1 1 0 −(−C3 − C2 − C1+ C0)/2 0.37

1 1 1 1 −(−C3 − C2 − C1− C0)/2 0.69

It can be seen that the true values in Table III-6 are exactly the same as the ones in Table

III-2 and the values in the lower half are the mirror image of the values in the upper half.

Using the Ci values of the example, the true value of O0 can be obtained, which is

(III-26)

This value is the same as Q1 defined in Equation (III-13). The coding format in Equation

(III-25) can be seen as an offset value subtracting from initial values, hence being named as

offset binary coding.

The architecture for OBC DA is shown in Figure III-3 which consists of 2
L-1

 word memory,

a one-word register for offset value, an adder and a single adder/subtractor with the

necessary logic gates for control.

4 1 3

0 3 2 1 0

0 0

1 1 1
() 0.69

2 2 2
i i

i i

O C C C C C C
−

= =

= = = + + + =∑ ∑

Review of Distributed Arithmetic Algorithm and its Applications

~ 46 ~

Figure III-3 : Memory reduced DA architecture II

The architecture shown in Figure III-3 is a schematic diagram. The control units between X3

and Xi (i=0, 1, 2) can be synthesized as an EXOR gate. The offset register in the architecture

stores true value of offset which can be pre-computed based on the coefficients of

application.

Let us have a look at how the architecture works. The values stored in ROM are listed in

Table III-6. The value in offset register is 0.69. It is supposed that the input vectors [X0, X1,

X2, X3, Sk] is (11111). The input [X0, X1, X2] and its complement value (000) are sent to the

three 2-to-1 multiplexers. The input vector X3 is used as the control signal for multiplexers

and the complement values (000) of the inputs are output to address decoder. Now, we have

the proper address for the ROM and the value -0.69 is correctly pulled out and sent to

adder/subtractor which is driven by X3 and configured as subtractor for this case. Then, the

result of adder/subtractor is that value in offset register is subtracted from input. The value,

-1.38, is obtained at the end of first adder/subtractor in the architecture. Until now, we have

properly addressed the 8-word ROM, taken out the value which is further processed by

3
 X

 8
 A

d
d

ress D
eco

d
er

2
L-1

 words ROM

X
3 Left Shift

(x2)

Register

Z

+/-S
k

X
3

Offset
Register

+/-

X
2,4

X
2,3 X

2,2
X

2,1 X
2,0

X
1,4

X
1,3 X

1,2
X

1,1 X
1,0

X
0,4

X
0,3 X

0,2
X

0,1 X
0,0

Review of Distributed Arithmetic Algorithm and its Applications

~ 47 ~

adder/subtract and gotten the final one. This value is exactly the same as the one in Table

III-1 addressed as (11111).

This value will be passed to the second adder/subtractor which is driven by X3 and Sk. After

1-bit left-shift and adder (subtractor), the final value of one clock cycle is stored in the

register and will be involved in the operation with the value from next clock cycle. When N

clock cycles’ accumulation is done, the architecture will output the final result for DA

computation.

III.3.4 Parallel DA Architecture

The approaches described above correspond to a bit Serial Distributed Arithmetic (SDA). All

possible linear combinations of the constant coefficient elements Ci are stored in a ROM.

The input vectors Xi is used to form the ROM address with LSB first. No matter how much

ROM is required, the final result is available in a bit parallel format after N cycle where N is

the representation of word-length of input vectors. The speed of this traditional bit SDA

implementation limits its application fields except for certain low speed applications.

Parallel Distributed Arithmetic (PDA) is used to increase the speed performance of SDA. In

each clock cycle, the number of bits being processed increases with PDA. The architecture

of PDA is implemented by employing more ROM and computing units which work in

parallel. Therefore, the number of parallel bits sampled should be increased and the speed of

processing is improved hereby. The enhanced performance makes PDA satisfied with the

requirements of some high-speed real time application such as image stream cording or

decoding.

Review of Distributed Arithmetic Algorithm and its Applications

~ 48 ~

A typical PDA architecture is shown in Figure III-4.

Figure III-4 : A typical parallel DA architecture

The PDA architecture works on the premise that all input vectors are fed parallel to input

ports. In PDA architecture, processing speed is doubled compared with SDA by increasing

the number of bits processed from 1-bit to 2-bit in half the number of processing clock

cycles. Hence, the PDA architecture in Figure III-4 results in as twice the throughput as SDA.

By adopting two left-shift registers at half the bit depth, the single serial shift register in SDA

is replaced and therefore speeds up the architecture. According to this change, the two

parallel memory blocks are employed, one being used for the even-bits and the other for the

odd-bits. It is noticed that the cost for 2X speeding up is nearly double hardware occupation.

It is a trade-off between speed and hardware cost for a system. In author’s opinion, a system

 A
d

d
ress D

eco
d

er

 2
L

 words ROM

 A
d
d

ress D
eco

d
er

 2
L

 words ROM

Left Shift
(x4)

Register

Z

Left Shift
(x2)

+

+

X
1,2n

X
1,2n-2

X
0,2n

X
0,2n-2

X
3,2n

X
3,2n-2

X
2,2n

X
2,2n-2

S
2n-2

S
2n

X
0,2

X
0,0

X
1,2

X
1,0

X
2,2

X
2,0

X
3,2

X
3,0

S
0

S
2

X
0,2n+1

X
0,2n-1

S
2n-1

S
2n+1

X
0,3

X
0,1

S
1

S
3

X
1,2n+1

X
1,2n-1 X

1,3
X

1,1

X
2,2n+1

X
2,2n-1 X

2,3
X

2,1

X
3,2n+1

X
3,2n-1 X

3,3
X

3,1

Review of Distributed Arithmetic Algorithm and its Applications

~ 49 ~

could be twice speeded up at a cost of double hardware except for some systems with lots of

redundant parts.

III.4 Applications of Distributed Arithmetic

DA can be found in many applications in fields of multimedia processing and

communication. All DA applications involve inner products computation between two

vectors, one of which is a constant.

Finite Impulse Response (FIR) can be found in almost all communication systems and digital

signal processing. The processing engine of most filter algorithms is a Multiply and

Accumulate (MAC) function. DA in filter designs works by distributing the bit arithmetic of

the sum of products used to calculate the FIR filter output given in Equation (III-27).

(III-27)

where X[n] and Y[n] are the input and output sequences of the filter, respectively; N is the

number of TAPs, and i is the i-th coefficient of the filter impulse response. It can be seen

from Equation (III-27) that the FIR filtering is based on the MAC function. Filter designs

can vary greatly in the number of MACs, from one to thousands. As the number of MACs

increases, the algorithm becomes much more complex for general programmable processor

architectures. Hence, the algorithm becomes more computing-intensive for any conventional

DSP. The MAC function can be implemented more efficiently with various DA techniques

than with conventional arithmetic methods.

DCT, one of DA application, is the most widely used algorithms in digital signal processing,

which removes artificial discontinuities from highly correlated signals. As one of the major

operations in current image/video compression, DCT can be found in JPEG for still picture

compression, ITU H.261 and H.263 for video conferencing standard, and ISO MPEG

(MPEG-1, MPEG-2, and MPEG-4) for audio, visual compression and communication. Over

last several years, significant research work has been carried out on DA techniques and their

implementations in DCT and other applications [64-66].

1

0

[] []
N

i

i

Y n h X n i
−

=

= −∑

Review of Distributed Arithmetic Algorithm and its Applications

~ 50 ~

The Discrete Wavelet Transform (DWT) is another DA application, which is one of the most

useful and efficient tools used to analyze digital signals in various signal processing areas

including compression, signal detection, communications, and time varying spectral

estimation. In signal analysis, the DWT has some inherent generic advantages and is nearly

optimal for wide class of problems. As a decomposition tool, the DWT separates

components of a signal in a way that is superior to most other methods for analysis,

processing or compression. This powerful and flexible decomposition tool also offers new

nonlinear processing option for signal and image processing, detection, filtering, and

compression.

III.5 Conclusion

This chapter has introduced DA concept and its definition first. Two basic DA computations,

ROM based DA and adder based DA, are described after summarizing the development of

DA concept. What have been presented are the principles of the DA technique and the

research directions in the field of image and signal processing. Some architectures based on

SDA and PDA have also been described. The advantages of SDA and PDA were also listed

in this chapter. Solutions to ROM size problems caused by using DA, have also been

proposed. At the end of this section, DA applications in image and signal processing

applications and communication are introduced and described briefly. .

~ 51 ~

IV.1 Overview

Distributed Arithmetic (DA) has been widely adopted for its computational efficiency in

many digital signal processing applications such as DCT, DFT, FIR, and DHT [56]. All

these applications involve inner products computation between two vectors, one of which is

a constant.

The traditional method to generate products is using a MAC (multiply and accumulate) unit

which is fast but suffers from high hardware cost in the case of long-length inner-products.

In contrast, DA provides an efficient solution to realize inner product by using memory look-

up and accumulation operations. The idea behind conventional ROM-based DA is to replace

multiplication operations by pre-computing all possible values and storing them in a ROM.

According to [56], a ROM based DA can reduce circuit size by 50-80% on average.

Custom reconfigurable technology has recently emerged to satisfy the demands for both

flexibility and efficiency. Custom/domain-specific reconfigurable arrays can be programmed

to adapt to different applications, so the efficiency of the hardware and flexibility of the

whole system can be improved. Earlier work, such as [41, 67, 68], demonstrates good

performance in area, power consumption and speed compared to conventional approach.

Since a domain-specific reconfigurable architecture targets at few application fields, it can

achieve better performance than a general purpose FPGA device.

In this section, a novel reconfigurable DA architecture is presented which can implement

inner products with less area usage and power consumption. The proposed architecture can

Chapter IV

Low Power Reconfigurable

Architecture for DA

Low Power Reconfigurable Architecture for DA

~ 52 ~

support any algorithm for inner product computation, such as DCT, DFT, FIR, and DHT. An

adder-based DA, which was introduced in [64], is adopted in the proposed reconfigurable

architecture. Compared with a ROM-based DA, the approach needs only 10% of transistor

count and 30% of ROM area with comparable performance in the specific application [64].

Our new architecture takes advantage of the common summation terms when the fixed

coefficients are decomposed into bit level. It makes the adder array take full advantage of

results from the previous level and, therefore, maximizes hardware efficiency. Due to its

inherent hardware sharing property, the proposed architecture is suitable for multiple inner

product computations. The reconfiguration characteristic makes architecture flexible to

switch from one application to another application, which implies that the same hardware

architecture can perform different algorithms at different times.

This section is organized as follows. In section IV.2, we review the related work in the

literature. The architecture is generally introduced in section IV.3. The algorithm logic unit

of the proposed architecture is described in detail in section IV.4 including two-level adder

butterfly structure, the Wallace tree multiplier matrix, interconnection network, memory for

reconfigure bits and the implementation of these structures. The common terms sharing

problem is addressed at the beginning of IV.5, and then the definitions of dimidiate tree and

crossing forest are introduced, which is followed by the algorithm developed accordingly for

mapping of architecture. Finally, the comparison with subexpression sharing in canonic-

signed-digit code is made in sections IV.6.

IV.2 Related Work

Over the last several years, significant research work has been carried out on DA techniques

and their implementations in DCT and other applications. In [65], a hardware DA method

was implemented for DCT with radix-2 multi-bit coding for minimum resource, and

symmetric transpose memory. In [64, 65], an adder-based DA was proposed to generate the

inner product of vectors for DCT. The approach reduces ROM area by 70% and transistor

count by nearly 90% with comparable performance when compared with ROM-based DA. In

[66], a DA-based algorithm is introduced which can formulate 1-D any-length DHT as cyclic

convolutions. It simplifies the ROM design process and increases the processing speed for

Low Power Reconfigurable Architecture for DA

~ 53 ~

utilizing identical ROM modules and eliminating the accumulation loop in the processing

elements. In [69], a design methodology is introduced which translates high-level

compilation algorithmic description of DCT (based on an algorithm by Liu et al. [70]) into a

fixed-point, variable-radix, digit-serial dataflow architecture. The methodology allows

different designs to be derived from a single algorithmic description and trade-off among

quantization effects, throughput, latency and area. However, only serial architecture is used

according to the special algorithmic description, which limits the architecture’s maximum

throughput.

Numerous work has been done on reconfigurable architectures and their implementations.

Unfortunately, only one architecture has been found which is designed specifically for

reconfigurable DA. In [71], a special reconfigurable architecture for DCT is described. The

architecture is designed especially for implementing DCT with different algorithms: pure-

RAM, mixed-RAM and COordinate Rotation DIgital Computer (CORDIC), whereas, the

architecture could be used only for DCT application, which limits the application fields of

the architecture. In [72], a low-power reconfigurable DCT architecture is introduced which is

based on efficient trade-off between image quality and computational-complexity. The low-

power approach in this paper is based on the modification of DCT base in a bitwise manner

with minimum image quality degradation and considerable computational complexity

reduction. Various trade-off levels are presented and the reconfigurable architecture can

dynamically change from one trade-off level to another without large hardware overhead.

The trade-off between image quality and computational complexity and its specific

architecture make the method available only for DCT application.

One paper, [73], must be mentioned, which is the first one addressing reconfigurable

architecture targeting at distributed arithmetic. This paper presents a domain-specific

reconfigurable array targeting at the algorithms that can be implemented using DA. The

architecture in [73] is based on ROM-based DA and SDA which has been discussed in detail

in previous section and is implemented with two configurable clusters: Add-shift and

memory. The elements are arranged in an array with a mesh of reconfigurable interconnects.

For different applications, the corresponding coefficients are loaded into memory. Therefore,

Low Power Reconfigurable Architecture for DA

~ 54 ~

the reconfigurability of the array permits mapping a number of distributed arithmetic

implementations such as DCT and filtering calculations used in video coding. Just like

ROM-based DA and SDA on which the architecture is based, the reconfigurable array in [73]

becomes a bottleneck when the outputs data are expected for each clock cycle and the high

data throughput is the critical feature for some real-time video streams applications. Another

problem with the architecture is that its ROM size grows exponentially as the bit-width of

coefficient increases. As the number of inputs and the internal precision become larger, the

ROM-based DA suffers from extremely large ROM requirements.

IV.3 Reconfigurable DA Architecture

The proposed reconfigurable DA architecture is shown in Figure IV-1.

Figure IV-1 : Reconfigurable DA architecture

The architecture is composed of control unit, algorithm logic unit, register matrix, input and

output matrix. A SRAM block is closely coupled with the architecture, in which reconfigure

bits are stored and will be loaded to the architecture in initialization period. The control unit

in the figure is not an independent function module but a virtual module which is made up of

the reconfigurable Finite State Machine (FSM) modules existing in algorithm logic unit,

register matrix and data paths routing.

Control unit (REconfigurable FSMs)

Algorithm logic
unit

In
p
u

ts m
atrix

O
u

tp
u

ts m
atrix

Reconfigure bits (SRAM)

Registers
matrix

D
istrib

u
ter

Low Power Reconfigurable Architecture for DA

~ 55 ~

In Figure IV-1, the input signals to be processed are sent to the input matrix first. At the

same time, the output of the register matrix is sent to the input matrix as well. The input

matrix will output the desired data controlled by the control unit. The data from the input

matrix will be routed to the algorithm logic unit directly in which input signals are multiplied

by coefficient and then accumulated. DA operation is done by the algorithm logic unit,

which is the reason why the unit is so called. The results from the algorithm logic unit will

be routed to the output matrix for export or to distributer which is closely coupled with the

register matrix for temporary storing. The results in the register matrix will be sent back to

the input matrix controlled by the control unit. Those data will be forwarded to the algorithm

logic unit for further processing.

Figure IV-2 : Architecture of address coding

The core processing block is algorithm logic unit which responds to the DA operation. The

register matrix is composed of 64 registers which are implemented with flip-flops and can be

configured as a one dimension or 8X8 two-dimension array in initialization period. It is used

Rec.

FSM

En

En

En

En

En

En

En

En

Rec.

FSM
En

Decoder

Rec.
FSM

Reg0 Reg1 Reg2 Reg3 Reg4 Reg5 Reg6 Reg7

Reg8 Reg9 Reg10 Reg11 Reg12 Reg13 Reg14 Reg15

Reg16 Reg17 Reg18 Reg19 Reg20 Reg21 Reg22 Reg23

Reg24 Reg25 Reg26 Reg27 Reg28 Reg29 Reg30 Reg31

Reg32 Reg33 Reg34 Reg35 Reg36 Reg37 Reg38 Reg39

Reg40 Reg41 Reg42 Reg43 Reg44 Reg45 Reg46 Reg47

Reg48 Reg49 Reg50 Reg51 Reg52 Reg53 Reg54 Reg55

Reg56 Reg57 Reg58 Reg59 Reg60 Reg61 Reg62 Reg63

D
ec

o
d
e
r

En

Rec.

FSM

Rec.

FSM

Rec.

FSM

Rec.

FSM

Rec.

FSM

Rec.

FSM

Rec.

FSM

Low Power Reconfigurable Architecture for DA

~ 56 ~

for temporary data when the architecture is implemented for certain application which

exceeds the handling ability of architecture in one clock cycle. The architecture of address

coding is shown in Figure IV-2. The module represented by “Rec. FSM” in the figure is

reconfigurable FSM module.

When the register matrix works in one dimension mode, the address for total 64 registers can

be expressed with 6-bit binary number. In this working mode, only the control units of row

take effect, while the control unit for column is disabled. The 6-bit address is divided into

two parts: high 3-bit part and low 3-bit part. A 3-bit reconfigurable FSM in the first level

will generate the high 3-bit part of the whole address. Through a 3-8 decoder, a 3-bit address

can control 8 outputs which are connected to enable control ports of 8 FSMs in the second

level, which have 3-bit internal state as well, for low 3-bit part as shown in Figure IV-2.

Because of the reconfigurability of FSMs, 64 registers can be reached in any order according

to the requirements of applications.

When the register matrix works in 8X8 two-dimension array mode, 64 registers are divided

into 8 banks and each bank contains 8 registers. Because the number of banks equals the

number of registers in each bank, a register bank can be a row or a column. In this work

mode, 8 registers in a bank can be read/stored in parallel at each time. To address 8 banks, a

3-bit binary number is used which is generated by a 3-bit reconfigurable FSM. As shown in

Figure IV-2, two FSMs address the banks in row and in column respectively and the enable

ports of FSMs are inphase opposition by connecting an inverter between them. This

mechanism, the invert, is only available in 8X8 two-dimension working mode and makes

two FSMs working in different time and ensures that the two working states, row and

column, of the register matrix will not operate at the same time. In row working state, the

FSM in the first level is enough for 8 addresses coding and the 8 FSMs in second level in

row control unit are therefore disabled.

It can be seen from the work flow that control unit makes the data stream ordered and drives

the data to the desired destination according to the specific application when it is configured

in initialization period. The mechanism of the control unit is a multi-input-multi-output FSM

which can be programmed and configured as a specific FSM to implement the controller

Low Power Reconfigurable Architecture for DA

~ 57 ~

output functions and next state logic. Due to its reconfigurability, the control unit can be

made arbitrarily complex and can realize any control function under its capability. Being

such an important function unit in the architecture, its architecture will be discussed in

Chapter V. Its performance in area, power and delay will be evaluated and analyzed in

Chapter V as well.

The algorithm logic unit is the core processing unit which realizes the multiplication between

input signal and coefficient vectors without multiplier. It can be reconfigured to implement

certain DA application according to the corresponding configure bits which are pre-stored in

external SRAM. More details of algorithm logic unit will be given in this chapter including

the architecture of sub-function units and its mapping algorithm.

IV.4 Architecture of Algorithm Logic Unit

The architecture of algorithm logic unit in proposed reconfigurable DA architecture is shown

in Figure IV-3.

Figure IV-3 : The architecture of algorithm logic unit

It consists of two major parts: the first part is two-input adder arrays in two levels which

realize Tj term as defined in Equation (III-10), and the second part is parallel Wallace tree

multiplier matrix which generates the final results Z. The number of input of the system is up

to 8 with 9 bits width.

Wallace Tree
Matrix

Wallace Tree
Matrix

Wallace Tree
Matrix

Inputs

Routing

Matrix
Routing

Matrix

Routing

Matrix

Routing

Matrix

Reconfigurable Bits

Outputs
Two-input

Adder Array
Two-input

Adder Array

+

+

+ +

+

+8 X 24 12 X 48 25 X 88 8 X 8

Low Power Reconfigurable Architecture for DA

~ 58 ~

For some simple cases as listed in Figure IV-4, only one level of common terms sharing is

adopted, which is enough for a simple case. For more complicated cases such as DCT, DFT,

an adder structure with two or more levels would be better for reducing the hardware area,

but at the cost of extra delay time. The more levels, the longer the delay time. Actually, a

structure with three or more levels of common terms sharing would make the whole

architecture very complicated in term of interconnection and routing network. To balance the

area usage and delay time, a two-level adder structure has been adopted in this work.

IV.4.1. Algorithm of Proposed Architecture

The adders with shifts replace the multipliers in the original DA algorithm. The adoption of

adders also makes the architecture more hardware efficient. However, the benefit of adoption

of adders is not limited to hardware efficiency; its speed also achieves N times as fast as

ROM-based DA, where N is the bit-width of the input vectors. In ROM-based DA, the

vectors are imported serially to generate the ROM addresses for computing Rk terms, while

in adder-based DA, all inputs are fed parallel to the adders for computing Tj. The time is

consumed only by adders; the wider the inputs, the more time is taken.

Besides the advantages of adder-based DA described above, common terms sharing brings

additional advantages by further reducing hardware complexity. Figure IV-4 shows an

example case for the proposed approach.

We have term Tj, defined in Equation (III-10), which is

Suppose the input vector and fixed coefficient vector are

 X = [X0, X1, X2, X3]

C00= 1101b, C10= 1011b, C20= 1110b, C30= 0011b;

Then the expanded form of Tj is shown in Figure IV-4.

1

, j

0

L

j i i

i

T XC
−

=

=∑

Low Power Reconfigurable Architecture for DA

~ 59 ~

 Figure IV-4 : Example of adder-based DA

In Figure IV-4, Ci and Xi are substituted in expression of Tj first, and then fixed coefficients

are decomposed into bit level, each bit corresponding to different power of two. After

multiplying input vectors and their corresponding coefficient in bit level, input vectors can

be found in the position where their respective coefficient bits are ones as shown in Figure

IV-4. Obviously, the vectors in different positions indicate the different power of two. The

final result can be obtained by adding all vectors with their corresponding power of two.

Notice that the additions are taken only at the nonzero bits of coefficients. From the

expression of final result in Figure IV-4, one finds that there are some common terms

between different bit weights: term X0+X2 between bit weights 2
3
 and 2

2
, term X1+X3

between bit weights 2
1
 and 2

0
.

IV.4.2. Two-level Adder Structure

In the two-level adder butterfly structure, the first level consists of up to 12 parallel 9-bit

adders. The inputs are fed to this level through a routing matrix. There is a bypass path

followed by every adder in this level, which allows the input data pass straight to the input

ports of second level adder array. The 12 output ports of first level are routed to the next

level inputs by another routing matrix. Due to the common terms sharing, one output in

current level can be shared by two or more adders in the following level. The second level

adder array consists of up to 24 parallel 10-bit adders. Compared with the first level adder

array, each adder in the second level is followed by a 2-input multiplexer, as shown in Figure

IV-5, which allows the outputs of the first level adder array to pass straight to the Wallace

T
j
=

X
0
 (1 1 0 1)

X
1
 (1 0 1 1)

X
2
 (1 1 1 0)

X
3
 (0 0 1 1)+

 =

X
0
 X

0
0 X

0

X
1
 0 X

1
X
1

X
2
 X

2
X
2
0

0 0 X
3
X
3+

= (X
0
+X

1
+X

2
) 2

3

+ (X
0
+X

2
) 2

2

+ (X
1
+X

2
+X

3
) 2

1

+ (X
0
+X

1
+X

3
) 2

0

Low Power Reconfigurable Architecture for DA

~ 60 ~

tree multiplier matrix when the application can be implemented with only one level common

terms sharing. The bypass paths in two levels adder array make input data routed directly to

Wallace tree multiplier matrix. The bypass path makes the architecture more flexible for

target application by switching between one or two-level adder structure.

Figure IV-5: Adder followed by 2-input multiplexer

The two-level adder structure with 9-bit and 10-bit adders can generate the summation of 2

or 4 inputs with 8-bit. Besides, a special 11-bit adder is set for the summation in the second

adder array for the case of 8 inputs addition. The output of two-level adder butterfly will be

fed to the parallel Wallace tree multiplier matrix through routing matrix.

IV.4.3. Wallace tree multiplier Matrix

After one or two-level adder structure, all outputs will be routed to the parallel Wallace tree

multiplier matrix to generate the final outputs Z. A serial addition approach is the easiest and

most straightforward way for obtaining Z, in which N cycles are needed to complete the

accumulation where N is the precision of coefficient Ci. Therefore, the delay incurred by a

serial addition approach cannot fully satisfy the requirements of some real time applications.

In view of the adder array, a serial addition approach will never take full advantage of the

parallel structure available. With serial addition, only one input is added at each cycle.

Obviously, a serially computing model does not make full use of the previous level hardware

and results.

To avoid timing bottleneck and inefficient use of hardware, a parallel processing approach is

adopted in the second part. A structure with 8 parallel Wallace tree multiplier blocks

provides 8 outputs at once. A traditional Wallace tree multiplier and 3:2 compressors are

used for each accumulation.

+
A

B

Mux

Low Power Reconfigurable Architecture for DA

~ 61 ~

The Wallace tree multiplier, an adder tree built from carry-save adders, is one of the well-

known methods for speeding up the accumulation of data with large word length and where

the performance is critical. It is considerably faster than a simple array multiplier because its

height is logarithmic in word size. A Wallace tree is a bit-slice adder which adds all the bits

in the same bit position. The principle of Wallace tree multiplier is shown in Figure IV-6.

Figure IV-6: Operation of the Wallace tree multiplier [74]

According to the figure shown above, 16 partial products need to be summed up. The first

step in the addition process is to group three rows of partial products with full adders for

three dots in one column and half adders for two dots in one column. The results from the

full and half adders are passed on to the second stage. The process of grouping partial

products in stage 2 and 3 with full and half adders adopt the same rules as used in Stage 1.

Finally, the product of the two 4-bit multiplication is obtained. Because summations of full

and half adders at each stage is done in parallel, the time required for the multiplication is the

delay at each stage multiplied by the stage number. Therefore, the Wallace tree multiplier

and 8 parallel Wallace tree multiplier blocks are adopted in the proposed architecture to

achieve the fastest processing speed.

IV.4.4. Interconnection Network

As discussed in previous chapters, reconfigurable processors show their attractive

characteristics including both high-performance and energy-efficiency in a domain-specific

application compared with general purpose reconfigurable architecture. The proposed

architecture in this dissertation presents such a reconfigurable solution by combining pre-

Low Power Reconfigurable Architecture for DA

~ 62 ~

designed functional units through a reconfigurable interconnect network. The routing matrix

in algorithm logic unit is one part of processor interconnect network, which connects an

arbitrarily chosen subset of inputs with desired output ports. It provides powerful

connectivity between functional blocks and flexibility for signals routing. Generally, high

flexibility comes with high energy consumption. The objective of creating routing matrix is

to maximize the routability of the interconnection network at the possible lowest power

consumption.

In this sub-section, various reconfigurable interconnect schemes and their implementations

are introduced. Based on a detailed comparison of the presented reconfigurable

interconnection, our interconnection matrix is described including concept and

implementation.

A. Full Crossbar

A full crossbar interconnect allows simultaneous connections from any input port to any

output port. An NxM crossbar consists of N parallel input wires and M parallel output wires;

they are placed orthogonally so that each input wire crosses every output wire, and

programmable switches are placed at all cross-points to join the pairs of wires. In a full

crossbar, a switch joins each pair of input and output wires [75]. Figure IV-7 shows a

diagram of a full 8 x 6 crossbar where the vertical wires are inputs and the horizontal wires

are outputs.

Figure IV-7 : An 8x6 full crossbar

Inputs

Outputs

Switch

Low Power Reconfigurable Architecture for DA

~ 63 ~

 A crossbar can be viewed as a 2-sided switch block: the input wire terminals are on left side

and output wire terminals are on the other side, and two terminals are joined by a switch if

and only if there is a switch joining the two wires of the terminals in the crossbar, as shown

in Figure IV-8.

Figure IV-8 : 2-sided switch block

It is clear that a full NxM crossbar with N ≤ M can route an input signal to an N-subset of

output wires in any given order.

B. Multiple-bus

Multiple-bus can be viewed as an extended implementation of full crossbar when input data

is not only sent to output ports. The objective of multiple-bus is to share input signals with

more integrated modules. It can be implemented by modifying outputs in full crossbar as

buses and adding a number of vertical wires as outputs. See Figure IV-9 for an example.

An NxBxM multiple-bus consists of N parallel input wires, B bus wires and m output wires.

Programmable switches are placed at all cross-points to connect the pairs of wires. Each

selected input signal is routed to the target bus wire first by conducting the switch between

input and bus wire. Output ports can get their desired data by controlling the switch between

the output wire and corresponding bus wire.

Inputs Outputs

Low Power Reconfigurable Architecture for DA

~ 64 ~

Figure IV-9 : Multiple-bus interconnection

Obviously, an NxBxM multiple-bus with N ≤ B ≤ M can route an input signal to an N-subset

of output wires in any given order in two stages: data being routed first to bus wires and then

output ports.

C. Multi-stage Interconnection

An alternative design approach of routing matrix is based on multi-stage interconnection

networks. Multi-stage interconnects were introduced and discussed in detail by Clos in [76]

and Benes in [77]. The idea behind multi-stage interconnection networks is using longer

delay time to reduce the complicity of hardware compared with full crossbar. A multi-stage

interconnection network is a non-blocking network, which can provide a connection path

from any idle input and output without interference with other active connections. Moreover,

the setup of a new path between specified input and output ports will not affect the

possibility of future connection requests.

The multi-stage network follows distributed routing. Its control units are distributed among

switches in several levels. A route path from input port to output port is separated into

several segments, not a straightforward one as used in crossbar. Each segment has different

intricate interconnect patterns at their respective switch levels, so for a given source or

destination address, the routing decisions can be made independently according to routing

strategy of the switch. All the data from input ports are routed to the first level switch

Inputs

Buses

Switch

Outputs

Low Power Reconfigurable Architecture for DA

~ 65 ~

controllers and then the data will be sent to the second level switch controllers. Just

following this method, the data will finally reach the destination output ports.

In the whole routing path, routing decision is made at each individual switch. This greatly

reduces the complexity of the switch controller. In general, the number of switches can be

reduced from N
2
 to NlogN. Also, independent switches make it possible to alter the switch

configuration without disturbing others. Another advantage of distributed routing is its easy-

to-control connection. It also makes the routing time equal to the propagation delay of the

switches. Therefore, latency introduced by the switch controller is removed owing to the

reduced complexity of the network. The number of intermediate stages grows with the

number of inputs and outputs.

Multi-stage network includes omega networks, delta networks and many other types. A

conceptual view of an omega network is shown in Figure IV-10.

Figure IV-10 : An omega network [78]

D. Comparison between Implementations

A full NxM crossbar has N⋅M switches which means M switches are required for each

output. In multiple-bus construction, B⋅(M+N) switches are used in total. For a single output

port, (B + B⋅N/M) switches are necessary. Regarding multi-stage network, it adopts MlogN

First level

 switches

Second level

 switches
Third level

 switches

Low Power Reconfigurable Architecture for DA

~ 66 ~

switch to build the whole architecture. For each output port, logN switches are used. It can

be concluded that multi-stage network is most hardware-efficient from the view of output

port. Multiple-bus construction is less efficient in hardware than multi-stage network, but it

provides extra data delivery ability compared with other modules. A full crossbar is the least

hardware-efficient in three implementations.

It can be observed that a full crossbar network requires only one switching stage, that is to

say, every input and output pair is connected through a single switching element. This

architecture provides full connection flexibility, but suffers from large area overhead as we

have discussed above. In multiple-bus construction, input data will reach output port after

two switching stages, the double of that in crossbar network. The slowest one is multi-stage

network among the three. It requires log2N switching stages for the whole signal travelling

path, a lot more times than that of crossbar network. From the view of latency, a full crossbar

is the most efficient one. But it also suffers from its high energy consumption due to the long

global buses and the large number of switches.

The comparison indicates a general rule in design that it is a trade-off relationship between

area, power and delay. Without the revolution in technology, the way to improve the speed

of architecture will be adopting more hardware to shorten crucial patch and hardware

efficiency will be improved at the cost of extra delay time.

E. Proposed Interconnection Network

The idea behind the design of interconnection network in our processor is to balance the

performance of area, power and delay and make the processor satisfy the application

requirement.

Because the system will be potentially used for high speed real-time image processing, the

slowest scheme, multi-stage network, in three implementations is out of our sight although it

is the most efficient in area. Full crossbar is the fastest one as we discussed above, but it is

too expensive when N and M are large. But crossbar will work if it can be simplified and the

number of switches can be cut down based on the targeted applications requirement. The

problem of designing crossbars with large N, M focuses on selecting cross-points where

Low Power Reconfigurable Architecture for DA

~ 67 ~

switches are going to be placed to satisfy certain routing specifications. There are several

problems in designing such crossbars. One of them is the so-called sparse crossbar design

problem [79, 80] that in designing a partial N x M (N ≥ M) crossbar with a linear number of

switches in terms of n, the percentage of routable routing vectors is indicated by the given

switch count. This percentage is so-called routability which is defined as the likelihood that

an arbitrarily chosen subset of inputs can be connected to outputs. A routing vector is an n-

dimensional 0-1 vector (x1, x2,……, xn), which is used to represent a selection of input

terminals with xi = 1 meaning that the i-th input terminal is selected. A routing vector is

routable if all the selected terminals can be routed to output terminals simultaneously.

Another problem in designing is how to build a partial N x M (N ≥ M) crossbar with a

minimum number of switches so that every group of N inputs can be routed to M outputs.

Nakamura and Masson [81] showed that an optimal design has (N - M + 1)⋅M switches.

Based on the existing crossbar theory and algorithm, several optimal crossbars are designed

according to the routing requirement. One of the optimal crossbars is shown in Figure IV-11

as an example which has 8 input ports and 6 output ports.

Figure IV-11 : A partial 8x6 crossbar

Inputs

Outputs

Switch

Low Power Reconfigurable Architecture for DA

~ 68 ~

It can be viewed as a 2-sided switch block as shown in Figure IV-12;

Figure IV-12 : A 2-sided switch block for partial crossbar

IV.4.5. Memory for Reconfigure Bits

For different field-programmable devices, different approaches to implementing

programmable switches have been developed. For commercial CPLDs the main switch

technologies are floating gate transistors like those used in erasable programmable read-only

memory (EPROM) and electrically erasable programmable read-only memory (EEPROM),

and for FPGAs they are SRAM. Each of these will be briefly discussed below.

EEPROM and flash memories retain their contents because they use floating-gate transistors:

application of extra high or low voltage differentials across a floating gate leads tunnelling to

deposit or remove electrons from the floating gate, changing the threshold of the EEPROM

or flash transistor. Regular operating voltages have negligent effects upon these floating

gates, just as the absence of power does not affect them, so they are able to retain their

programmed states even when powered off.

An EEPROM/EPROM transistor is adopted as a programmable switch in PLD/CPLD. They

are placed between two orthogonal wires acting as a controlling transistor to isolate or

connect two lines, as shown in Figure IV-13.

Inputs Outputs

Low Power Reconfigurable Architecture for DA

~ 69 ~

In the figure, two wires are connected by a transistor, with the gate of the transistor being

controlled by an EEPROM/EPROM cell. By setting the bit to 1, signals can be driven across

the transistor. When setting the bit to 0, the horizontal and vertical wires are isolated.

Figure IV-13: EEPROM/EPROM programmable switch

One constraint on our designs is that we must implement our reconfigurable architecture in

the same process technology that the rest of the SoC is going to use, since everything will be

implemented on a single piece of silicon. While floating gates are useful in creating certain

memories, they are not particularly useful in the design of processors, DSPs, or custom logic,

and it is these other blocks that will dictate the process technology of the SoC. EEPROM and

flash memories are therefore not reasonable memory choices for us, because the SoC

fabrication process will not have the ability to create the necessary floating gates.

For technical reason, EPROM or EEPROM could not be applied to FPGAs to obtain a high

density. Currently, commercial FPGA products are mainly based on SRAM technologies.

SRAM memory cells, on the other hand, are created without the need for floating gates. A

simple 6-transistor SRAM cell is shown in Figure IV-14.

Figure IV-14: A simple 6-transistor SRAM cell

Low Power Reconfigurable Architecture for DA

~ 70 ~

The function diagram for SRAM looks similar to EEPROM/EPROM cell. SRAM cells

between wires can be programmed to connect or disconnect the wires according to the

required logic function. Wires and configurable switches like the one shown in Figure IV-14

can be easily used to create a full crossbar. In the normal operation of a crossbar, each output

wire is connected to exactly one input wire, with the numbers of output wires less than or

equal to the number of input wires, as shown in Figure IV-15.

Figure IV-15: SRAM switch based full crossbar

We now have several horizontal wires each of which can be connected to any of several

vertical wires. These orthogonal wires build up a switch matrix which can route any input

signal to the desired output port. An example of usage of SRAM-controlled switches is

illustrated in Figure IV-16.

Figure IV-16: SRAM programmable switch application

Low Power Reconfigurable Architecture for DA

~ 71 ~

In this figure, SRAM works as pass-transistor switch to control the connection between

different gate nodes. As an example shown in the figure, the output signal from one logic

block in the upper left corner is switched to another logic block in the down right corner

through two pass-transistor switches in switch matrix. The SRAM cell between the

appropriate wires is set to conduct the two orthogonal wires to realize the connection.

The SRAM based switch can be fabricated using the same technology that most SoC devices

will use, and is therefore an attractive memory solution for our reconfigurable architectures.

Thus, SRAM will be used as the configuration memory in our work.

All reconfigure bits are stored in the external SRAM block. For different applications, the

corresponding reconfigure bits are loaded into SRAM. When the architecture is targeted at

certain application, the pre-stored data in SRAM will be loaded to the architecture to

configure the functional units first and then all registers and logical blocks are reset to

original value. When all works above are done, the architecture has finished its initialization

proceeding and ready for the targeted application.

IV.4.6. Architecture Implementation:

The architecture was implemented using the Verilog hardware description language. A

standard-cell based synthesis and layout was performed with Design Compiler from

Synopsys, Inc., targeting at the UMC 0.18 mµ CMOS technology library.

All the design is provided as synthesizable soft-core without the specific custom library to

allow the customization of all the aspects of the array at design-time. This also permits an

easy integration of the arrays into the SoC architecture and software flow.

To evaluate the performance of architecture, DCT and FFT algorithmic are implemented in

sections VI.1 and VI.2 respectively. The power consumption of our reconfigurable

architecture was obtained after post-layout simulation by the Synopsys PrimePower. The

experimental results and analysis will be given in sections VI.1 and VI.2 as well.

Low Power Reconfigurable Architecture for DA

~ 72 ~

IV.5 Algorithm Searching for Optimal Scheme

As discussed in section IV.4.1, the sharing common terms could save the hardware area and

reduce the redundant computing to save power consumption. One will find that the diverse

common term schemes will result in different amount of resource savings. For the example

shown in Figure IV-4, seven two-input adders are needed for accumulation without sharing

common terms. There are three common term sharing schemes: X0+X1, X1+X2 and X0+X2 &

X1+X3. In the first two schemes, six two-input adders are needed. In contrast, five two-input

adders are needed for the third scheme. Therefore, common terms sharing will make the

system area efficient and power-saving.

It is noted that the characteristics of common terms sharing are available in some cases as

discussed above. To make the architecture take full advantages of common terms sharing,

parallel multi-output construction is adopted which processes and outputs data for several

output ports simultaneously. This mechanism makes it possible to share common terms

between different output ports, not just limited to an output port itself. It will greatly improve

the utilization ratio of common terms. Currently, we adopt a structure with 8 parallel

Wallace tree blocks providing 8 outputs at one time.

Only the best scheme of common terms sharing will take full advantage of sharing

characteristic and maximize hardware efficiency in the implementation. The way to find out

optimal scheme will be discussed in detail in the following sections.

First, we will discuss the availability of common term sharing which is fundamental and the

most important issue of all. The whole architecture will become less meaningful if it is

available only for some special cases, in which common terms sharing is one of the

theoretical bases. To solve the problem of optimal scheme, the related definitions and

analysis in the mathematics field are given and a visual tree is adopted to mathematically

model our proposed architecture. The definitions of the related concepts in dimidiate tree

and crossing forest are introduced to describe the issues under consideration. Then, an

algorithm for searching for the optimal scheme is developed and analyzed.

Low Power Reconfigurable Architecture for DA

~ 73 ~

IV.5.1. Common Term Sharing Availability Analysis

Common term sharing characteristic will make the architecture, with which the application is

implemented, consume less power and reduce hardware occupation, although the

functionality of the application’s implementation with the architecture will not be affected

even without applying common term sharing.

The Figure IV-4 is a special case. Then, is the common terms sharing property available in

real applications? Let’s consider random constant vectors and take 4-input-4-bit coefficient

case as an example. The coefficient of such case is a matrix which is four lines with 4

elements on each line. Totally, there are 16 elements and 65536 (2
16

) cases. Take the number

of ‘1’ element as the index to analyse the possibility of applying common term sharing

characteristic.

The table below is used to analyse the possibility of applying common term sharing

characteristic. Numbers of ‘1’ are filled in the first column, making index 1 to 16. For index

of 16, 15, …, 10, 9, 8, …, 2, 1, 0, there are totally 1 (= 16

16
C), 16 (= 15

16
C),…, 8008 (= 10

16
C),

11440 (= 9

16
C), 12870 (= 8

16
C), …, 120 (= 2

16
C), 16 (= 1

16
C), 1 (= 0

16
C) cases respectively,

which is listed after the index number in the second column. Among the total cases, some

satisfy the requirement of common term sharing. The number of these cased is demonstrated

in the third column as “available cases” and the percentage of them in total cases is shown in

the last column.

Taking index 10 as an example, there are six zeros in the coefficient matrix. Among these

cases, only the cases with four zeros located at diagonal have the possibility to disable the

common term sharing characteristic. The number of such cases is 36. By exhaustive search,

only 6 cases cannot be applied with common term sharing, so 8002 (=8008-6) cases satisfy

the requirement of common term sharing. So, for index 10, as shown in the table, there are

totally 8008 cases. Among them, the ones satisfying the requirement of common term

sharing amounts to 8002 and takes up 99.9% of all. Similarly, index 9, 8, 7, 6, 5, 4 have

11176, 12480, 7200, 2304, 432 and 36 cases respectively that are fully fit for the sharing

characteristic. For cases in index 16, 15, 14, 13, 12, 11, common terms sharing can be

applied without any exception.

Low Power Reconfigurable Architecture for DA

~ 74 ~

Table IV-1: Availability analysis of common term sharing

To sum up index 1 to 16, 48515 cases from totally 65535 cases are available for common

terms sharing property. The effectiveness ratio for 4-input-4-bit coefficient cases is 74% and

it will rise as the number of input and coefficient bit width increases.

The ones and zeros in coefficient matrix contribute quite differently even their numbers are

the same. Taking index 12 and 4 as examples , for all the cases of the coefficient matrix with

only four ones, 36 cases are available for common terms sharing; while for all cases with

only four zeros in coefficient matrix, all of them satisfy the sharing characteristic, without

exceptions.

Therefore, in theory, the cases with at least one common term are more popular compared

with those with none. For real application such as DCT and DFT, the coefficients in the

applicable applications are symmetric and regular and this makes the application take full

advantages of common terms. An example for DCT will be introduced in the next chapter,

which will demonstrate that the common terms sharing contributes greatly to the resource

savings.

IndexIndexIndexIndex TotalTotalTotalTotalCasesCasesCasesCases AvailableAvailableAvailableAvailableCasesCasesCasesCases rate (%)0 1 0 0.0%1 16 0 0.0%2 120 0 0.0%3 560 0 0.0%4 1820 36 2.0%5 4368 432 9.9%6 8008 2304 28.8%7 11440 7200 62.9%8 12870 12480 97.0%9 11440 11176 97.7%10 8008 8002 99.9%11 4368 4368 100.0%12 1820 1820 100.0%13 560 560 100.0%14 120 120 100.0%15 16 16 100.0%16 1 1 100.0%

Low Power Reconfigurable Architecture for DA

~ 75 ~

IV.5.2. Dimidiate Tree

According to the characteristics of the adder array, two inputs from its previous level and

one output for its next level, dimidiate tree and its properties are naturally utilized to visually

define and describe the architecture. It should be noted that the tree defined here is similar to

the binary tree in the computing related data structures. The reason for defining the new

concept-dimidiate tree is that some properties of binary tree cannot be applied in our case.

To avoid confusion and misunderstanding on the problem addressed and architecture

proposed, dimidiate tree and its properties are introduced in this sub-section. Though being a

newly defined concept, the dimidiate tree can be considered a special case of binary tree.

Figure IV-17 : Examples of dimidiate tree

Tree presentation arises naturally based on the hardware architecture. The relationships

between inputs of architecture, outputs of the first level adder array and output of the second

level adder array can be presented as a tree, shown in Figure IV-17 with symbol L, B and R

respectively. A tree is a collection of elements called nodes, one of which is distinguished as

a root, along with a relation that places a hierarchical structure on the nodes. Each node in

the tree denotes the summation of certain inputs with number ranging from one to four in our

case. Generally, a tree can be defined recursively in such a manner: suppose n is a node and

T1, T2, … , Tk are trees with roots n1, n2, …, nk, respectively. A tree can be constructed by

making n the parent of nodes n1, n2, …, nk.

In Figure IV-17, R is the root of the tree and B1, B2, L1, L2, L3, L4 the subtrees of the root.

Nodes B1, B2, L1, L2, L3, L4 are called the children of the node R. The parent-child

relationship is depicted by a line as shown in Figure IV-17. This tree is defined as dimidiate

R

L1 L2 L3 L4 L1 L2 L3

B1 B1B2

R
Root Level

Leaf Level

Medium Level

Low Power Reconfigurable Architecture for DA

~ 76 ~

tree each node of which has either no child or exactly two children without order. This

characteristic of dimidiate tree accords with the two-input adder in the architecture.

If n1, n2, …, nk is a sequence of nodes in a tree and ni is the parent of ni+1 given 1≦i﹤k, then

ni is an ancestor of ni+1, and ni+1 is a descendant of ni. If a proper ancestor or proper

descendant is defined as an ancestor or descendant of a node, rather than the node itself, as

shown by the tree in Figure IV-17, the node R is the root which is the only node with no

proper ancestors. In contrast, the nodes L1, L2, L3, L4 are called leaves for they have no

proper descendants.

In our case, the leaves in a tree are related to the inputs of architecture, and the roots of a tree

then represent the outputs of two-level adder array. Three levels are defined to illustrate

different node types, root level, medium level and leaf level as shown in Figure IV-17. All

the nodes with the same property are located on the same level. At root level, nodes are the

root of each tree and represent the summation of three or four inputs. All nodes for the

summation of two inputs are located at medium level; while leaf level, the bottom level of

the tree, contains all single inputs. It is noted that the nodes location arrangement is different

from the one in binary tree. The most distinguished difference between dimidiate tree and

binary tree is the definition of level and its characteristic. The nodes in binary tree are

generally located in accordance with the parent-child relationship between two nodes.

Correspondingly, nodes in our dimidiate tree are arranged in their corresponding level

strictly based on their presentation.

Figure IV-18 : Different format for the same dimidiate tree

R

L1 L2 L3 L4

B1 B2

Root Level

Leaf Level

Medium Level

R

L1 L2 L3 L4

B1 B2

Low Power Reconfigurable Architecture for DA

~ 77 ~

Therefore, the most important characteristic of node is which level it belongs to. In dimidiate

tree, the relationship between the nodes of two levels is fixed but the specific parent-child

relationship between the two nodes can vary, which means that the format of a unique

dimidiate tree is versatile. Taking the first tree in Figure IV-17 as an example, the other two

formats of the tree are shown in Figure IV-18.

From the Figure IV-18, the node B1 can be the parent of L1, L2 pair, L1, L3 pair and L1, L4 pair.

The parent-child relationship is never changed no matter which specific relationship is

selected. In the definition of dimidiate, a tree is exclusive when the levels of all nodes of the

tree are determinate. The tree is disordered for the order of nodes in each level is inessential

for distinguishing one tree from another. According to this property, we can obtain a useful

inference for further discussion, called property of uncertainty, that is ＊In a dimidiate tree, the undetermined nodes in medium level are not unique even when

their ancestor or descendant nodes are known.

A dimidiate tree indicates the structure of two-level adder array for one output. This tree

representation is established by merging two children nodes to a parent node. With the

definition of tree, the targeted problem can be addressed and described clearly.

IV.5.3. Crossing Forest and Targeted Problem

The purpose of defining the dimidiate tree is to address the problem of common terms

sharing scheme discussed at the beginning of section IV.5 in this chapter. Selecting different

schemes will greatly affect the hardware efficiency and, thereby, power consumption.

Features of certain applications makes it necessary to consider the case that multiple trees are

put together. For the reason of the repeated nodes, one child node may be shared by different

parent nodes, that is, one child node can have more than one parent. If n denotes the number

of parent nodes, the child nodes of dimidiate tree will be less than 2n. The example in Figure

IV-19 gives an illustration of this case.

Low Power Reconfigurable Architecture for DA

~ 78 ~

R1

L1 L2 L3 L4

B1 B2

R2 Rm

Lq

BnB3

Figure IV-19 : Example of crossing forest

Two key characteristics can be drawn from the figure for the nodes at root level, namely R1,

R2, …, Rm, each has strictly two children. Different ancestor nodes may share the same

descendant nodes. The same is true with all nodes in medium level. Here, we define

Crossing Forest as the combination of multiple dimidiate trees with the same nodes at each

level merged. The difference between the forest of data structure and ours is the existence of

shared descendant. Crossing forest reveals the relationship between nodes in different levels

which respectively indicates the given inputs, the outputs of first level adder array and the

outputs of the second level adder array which are required by applications.

According to the uncertainty property of dimidiate tree, when the nodes in root and leaf

levels of crossing tree are known, the nodes that satisfy the requirement of medium level in

the forest are not unique. Now, the targeted problem can be described as how to find out the

best nodes set in medium level with the minimum number when the nodes in the other two

levels are given. From each child node side, they all have as many parents as possible.

IV.5.4. Algorithm Searching for Best Set

Because of the differences in the definition and properties between dimidiate tree and binary

tree, existing binary tree theorem and algorithm do not apply to our case. The algorithm for

optimal set for medium level is discussed in detail. Before the introduction of algorithm,

some properties of nodes in root and leaf levels in crossing forest are defined to make the

analysis logical.

Low Power Reconfigurable Architecture for DA

~ 79 ~

The nodes in root and leaf levels are not the arbitrary ones. We have the following

definitions based on the architecture introduced in section IV: each node in root level is the

set with three or four elements; each node in medium level is the set with exactly two

elements and each node in leaf level is the set with exactly one element. The number of

elements in each node determines the level the node belongs to. The sets, R1, R2, …, Rm, of

root level are dissimilar to each other and satisfy the equation,

 (IV-1)

where m is the nodes number. We define R as

(IV-2)

Then, the relationship between R and sets, L1, L2, …, Lq, of root level satisfies

 (IV-3)

where q is the nodes number. We use B1, B2, …, Bn, to denote the nodes fulfilling the

requirement of crossing forest medium level. It is assumed that there is a set of sets, B,

satisfying the requirement of optimal set, whose element number is the smallest among all

possible sets. In set B, there must exist such subsets B1, B2, …, Bp and each subset has the

most frequent employment times when it is used for constructing the nodes root level.

According to the relationship among the nodes in root, medium and leaf levels, a node in

each level can be considered a combination of its down level that is a node in root level

could be the combination of two nodes in medium level or the combination of a node in

medium level and a node in leaf level; the node in medium level is the combination of

exactly two nodes in leaf level. Therefore, even the number of nodes in leaf level is known

the numbers of nodes in root and medium levels cannot be determined. Take the number of

nodes in medium level, p, as an example. The value of p varies from 1 to C
2
q , where q is the

number of nodes in leaf level. Once the sets B1, B2, …, Bp, are known, the rest sets in B will

be obtained by subtracting the relevant set from R1, R2, …, Rm.

1 2 ,......, mR R R = ∅∩ ∩ ∩

1 2 ,......, mR R R R=∪ ∪ ∪

1 2, ,......, qL L L R⊂

Low Power Reconfigurable Architecture for DA

~ 80 ~

kh 0 P0,1 P0,2 P0,q-2 P0,q-1P1,0 0 P1,2 P1,q-2 P1,q-1P3,1 P3,2 0 P2,q-2 P2,q-1
Pq-1,1 Pq-1,2 Pq-2,2 0 Pq-2,q-1Pq,1 Pq,2 Pq-1,2 Pq-1,q-2 0…………………………… ……… ……… ………

……………………
0 1 …………

………q-1
2
q-2

q-12 q-201
………

…………

Figure IV-20: Coefficient (Ph,k) matrix

Now, we simplify the targeted problem as finding out the new set containing subsets

Bbest_all={B1, B2, …, Bp}. A key property of the new set can be concluded as follows: each

element in this set will appear as frequently as possible in the nodes of root level. On the

other hand, Bbest_all has the least elements among all possible sets which satisfy the

requirements of dimidiate tree. Based on this property, we construct new subsets of {R1,

R2, …, Rm }, denoted with R’h, where h∈(0, 1, 2, ……, q-1). It is the set that contains all the

sets in the root level with Lh element. Obviously, the number of new sets is equal to the

number of nodes in leaf level. We can easily find out the element which appears most

frequently in R’h:

We define Ph,k as representing leaf Lh (h∈{0, 1, 2, ……, q-1 }) appearance time in set R’h. A

matrix of Ph,k can be obtained from { R’1, R’2, …, R’h }, as shown in Figure IV-20. If Ph,max is

the symbol for the largest one in { Ph,1, Ph,2, ……, Ph,k} , the pair {Lh, Lk∣Ph,k = Ph,max } will

be the best pair which is employed the most in set R’h. This pair is also one element of set

Bbest_all={B0, B1, …, Bp-1}. Following this method, all pairs for R’1, R’2, …, R’h, can be

obtained. It is noted that the duplication pair must exist among them, which is caused by the

uniqueness and randomness of pair {Lh, Lk}. All pairs are generated with the index of Lh and

Lk, in which h and k vary from 0 to q-1. After elimination of duplications, the set

Bbest_stage1={Bst1_0, Bst1_1, …, Bst1_p-1} is determined. But it is just a subset of set Bbest_all.

Low Power Reconfigurable Architecture for DA

~ 81 ~

According to the property of dimidiate tree, each node in root level has strictly two children

which may be shared with other root nodes. The rest child nodes of one root node must be

one element of Bbest_all when the corresponding pair {Lh, Lk} is taken from its parent node. As

a result, we have another set Bbest_stage2={Bst2_0, Bst2_1, …, Bst2_p-1} whose elements must be

included in the set Bbest_all.

The same method is adopted after the finished root sets are taken from Bbest_all until all nodes

in root level have their children nodes. The application of the algorithm to DCT will be

detailed in the next chapter.

IV.5.5. Software Implementation

In order to apply the algorithms for obtaining optimal common terms sharing scheme

automatically, a program is implemented based on the algorithms introduced and discussed

in previous sub-sections. This program is available for any DA applications, which can

generate the coefficient matrix automatically for given application and output the best

common terms sharing scheme according to our architecture.

To make the introduction and discussion of program easy to understand, let’s begin with the

definition of DA. Equation (III-3) can be re-written in the form of matrix product as shown

below

(IV-4)

where Ci,n is the nth bit of the constant Ci , and Ci,n = 0 or 1, Ci,0 and Ci,M-1 are the LSB and

MSB of Ci respectively. The real constant coefficients are represented with M precision in

2’s complement bit representation. When the 2’s complement bit matrix of coefficients is

obtained, the duplicated lines in the matrix are removed to make each line unique. Then, a

reduced matrix is generated in which each line is different from others. In the following step,

the reduced coefficient matrix with representation of 0 and 1 is converted to the set of part

1

0

00,0 1,0 1,0

10,1 1,1 1,10 1 1

10, 1 1, 1 1, 1

 [2 2 2]

L

i i

i

L

LM

LM M L M

Z AX C X

XC C C

XC C C

XC C C

−

=

−

−−

−− − − −

= =

   
   
   =
   
   
    

∑

�

�
�

�� � � �

�

Low Power Reconfigurable Architecture for DA

~ 82 ~

product in format of Xi. Taking the line [0 0 1 1 0 0 1 1] as an example, it is converted to the

set, (X2X3X6X7), in which the position of 1 is replaced by the corresponding input vectors.

This set is one of the root nodes of the dimidiate tree and will build up set RS = { R1, R2, …,

RM }, along with other sets. For a single output Z, there is up to M lines in the coefficient

matrix if there is no duplicate one among them. It means the maximum elements number of

set R’h is M for a signal output mode. The set RS represents a single output, as indicated by

the subscript ‘S’.

For the multi-output architecture, just like the processor proposed in this dissertation, the set

for total root nodes is denoted with R, which is defined as

 (IV-5)

where RS0 is the root nodes set for output Z0. For our architecture, the maximum output

number is 8 then the root nodes set of the dimidiate tree of proposed architecture is

(IV-6)

It is noted that the elements in the set R are unique and the reduplicate elements among all

subsets {RSQ}, Q∈{0,1,……7} have been removed. By now the set R has been specified. As

described in the section IV.5.4, the rest step is to set up R’h, a subset of R which contains all

the sets in the root level with Lh element, and matrix of Ph,k, a matrix containing leaf

appearance time Lh, based on the known R.

The algorithm and ideas for searching for optimal common terms sharing is implemented

with Matlab 7.0 because of its powerful built-in mathematical functions and extensive

application-specific function libraries.

0 1 2 ,......, QR Rs Rs Rs Rs= ∪ ∪ ∪ ∪

0 1 2 7,......,R Rs Rs Rs Rs= ∪ ∪ ∪ ∪

Low Power Reconfigurable Architecture for DA

~ 83 ~

Figure IV-21 : Design flow chart

s ta rt

L > 1

G en era te co e ffic ie n t m a trix

B = L ;i= 1 ;

B = = Ln o yes

C all su b -fu n c tio n

n u m _ b = s tep _ 2 1 1 (S ,n u m);

assign va lu e : leve l(B ,1)= { n u m _ b } ;

C all su b -fu n c tio n
n u m _ b = s tep _ 2 12 (b es t,le ve l{ B ,1 });

a ss ign va lu e : S = len g th (b est) ;

c t= 0 ;

A lw a y tru e

y
es

c t= = 0 yesn o

b es t= p rim e ;
b es t= m at2 ce ll(ca t(1 ,ce ll2 m at(b es t) ,ce ll2 m at(p ri

m e)),o n es (1 ,len g th (be st)+ len g th (p rim e)),[2]);

c t= c t+ 1 ;

len g th (n u m _ b)

y
e
s

n o

leve l(i ,1)= { b es t} ;
 L = L -i;

 i= i+ 1;

o u tp u t re su lts

en d

y
es

n o

flag_ nu m _ b = len gth (n u m _ b);G _ b es t= s tep _ 2 3(s tep _ 2 2 (L ,n u m _ b),nu m _ b);

[p rim e ,m ed ia]= step _ 23 1 (n um _b ,G _ b est);
nu m _ b = m ed ia ;

C all su b -fu n c tio n ex trac t(am)

 (R em o v in g d u p lic a ted e le m e n ts ,

 C o n ve rtin g in fo rm a t o f in p u ts

 gen e ra tin g lev e l L)

Low Power Reconfigurable Architecture for DA

~ 84 ~

2log MAXL N=   

 This program is not only applicable to the proposed architecture in which two-level adder

matrix are adopted. Since the developed algorithms are general, the program for

implementing these algorithms can be directly applied to any application in which the

dimidiate tree characteristics are satisfied. Therefore, the number of levels is generated for

controlling the performing times of sub-function. This level number can be obtained with

Equation (IV-7)

(IV-7)

where NMAX is the maximum number of “1”s in each line of coefficient matrixes. ┌ ┐is

ceiling symbol, which truncates a number toward positive infinity and returns the smallest

integer not smaller than input. Taking the line [0 0 1 1 0 0 1 1] in Ph,k coefficient matrixes as

an example, it is converted to the set, (X2X3X6X7). This means that two-level dimidiate tree is

required for implementation. For the case (X2X3X6 X7X8X10X11X12) which has eight elements,

a three-level dimidiate tree is necessary.

When the duplications in set R are removed in sub-function step_211, the coefficient Ph,k

matrix for leaf Lh (h∈{1, 2, …, q }) appearance times in set R’h can be obtained in sub-

function step_22 when h ranges from 1 to q. The set Bbest_stage1 can be specified in sub-

function step_23, in which the pair of {Lh, Lk} with maximum Ph,k in each line of matrix is

selected. After that, the set Bbest_stage2 can be easily obtained in sub-function step_231.In this

sub-function, the program will check whether the selected sets can match all the nodes in

root level.

If unmatched root nodes still exist when above steps are done, they will be sent back to sub-

function step_212 for further processing. By now, the rest root nodes construct a new set

which is a subset of set R. To treat this new set, just follow the same processing steps on set

R until no unmatched root nodes exist anymore. Then, we can get the best common terms

sharing scheme in the format of the pair with two single elements. As we have discussed in

previous sub-sections, the nodes in root and leaf levels are known. The purpose of the

algorithm is to find out the best set for medium level. For the cases which require two-level

dimidiate tree, the best sets we have are the final result, which build up the only medium

level.

Low Power Reconfigurable Architecture for DA

~ 85 ~

For the cases which require a dimidiate tree with more than two levels, there is more than

one medium level. The obtained sets can only construct the medium level which is most

close to leaf level. We still need to find out the other medium levels. For these cases, each set

we got will be re-coded with a single symbol and build a new set in sub-function step_212.

Just following the same processing steps for set R to process this new set, we will get some

new sets. These sets will set up another medium level which is the one upper than the

medium level we already have. Taking the case with the one root node (X2X3X6

X7X8X10X11X12) as an example, suppose sets (X2X3), (X6X7), (X8X10) and (X11X12) are ones of

the best pairs. We use a single symbol to indicate each pair. There are A1-> (X2X3), A2->

(X6X7), A3-> (X8X10) and A4-> (X11X12). The original root node (X2X3X6 X7X8X10X11X12) then

will be re-coded as (A1A2A3A4). After all the original nodes are re-coded in the format of A,

another round of processing for searching for best common terms sharing scheme will be

performed as described previously until all are done

IV.6 Comparison with Subexpression Sharing in CSD

The idea behind common term sharing in two’s complement binary multiplier is not new,

which can be found in [82-86], namely common subexpression sharing or common

subexpression elimination. The purpose of common term sharing is the same as common

subexpression elimination’s, which is to reduce the number of adders. However, the

implementation strategies for two methods are greatly different.

Common subexpression elimination is to find multiple common subexpressions in the

coefficient set. The efficiency of common subexpression elimination is based on canonic-

signed-digit (CSD) code which is widely used as signed-powers-of-two code for its minimal

number of nonzero digits.

The CSD number system is a signed digit number system that minimizes the number of non-

zero digits and thus can reduce the number of partial product additions in a hardware

multiplier. The encoding scheme uses a digit set that is ternary and each digit can be either -1,

0, or +l. The signed-digit representation is named canonical if it contains no adjacent

nonzero. For a 2’s complement number, there can be n non-zero digits for an n-bit number. It

Low Power Reconfigurable Architecture for DA

~ 86 ~

Y c X= ⋅

can also be shown that the probability of a digit being zero is roughly 2/3 for CSD and

exactly 1/2 for 2’s complement [87, 88]. For example, we compute the canonical recoding of

x = 478 = (0111011110)2 by starting with c0 = 0, and then compute yi and ci+1 using xi+1, xi,

and ci with i = 0, 1,……, 9. The resulting vector is y = 10001̄0001̄0. Encoding the

coefficients of applications using the CSD representation reduces the number of partial

products and thus saves silicon area and power consumption in hardware implementation. It

is well known that the CSD representation can be used to reduce the complexity of

applications implementation such as DCT [89], DFT [86, 90],FIR digital filter [91-93] and

so on. But the high efficient code is obtained at the cost of extra circuit because of twice

conversions between 2’s complement number and CSD. It will consume more silicon area

and power in hardware implementation and then introduce extra delay time to system.

The idea common term sharing and common subexpression sharing is similar, but the

implementation for them are different regardless of the extra processing of coding for CSD.

Taking an example to show how common subexpression sharing works, for Y which is

(IV-8)

where X is input. Assuming c = 0.6458 = 0.101001010101= 2
-1

+ 2
-3

+ 2
-6

+ 2
-8

+ 2
-10

+ 2
-12

, the

output Y can be expressed as

(IV-9)

where the sign “» n ” indicates a n-step right shift operation. In this case, five intra-structure

adders are required to obtain Y. By applying common subexpression sharing, Equation

(IV-9) can be rewritten as

(IV-10)

where u is defined as

 (IV-11)

Hence the multiplication structure optimized using the common subexpression sharing given

by Equation (IV-10) and Equation (IV-11) requires two adders which is less than the

original structure of Equation (IV-9). Thus using common subexpression sharing, the

number of adders required to implement the multiplication is minimized. According to the

characteristics of common subexpression sharing, the operation is a serial one, from right to

left. The common subexpression sharing occurs inside one coefficient. Compared with these

1+ 3+ 6+ 8+ 10+ 12Y X X X X X X= � � � � � �

1+ 6+ 10Y u u u= � � �

+ 2u X X= �

Low Power Reconfigurable Architecture for DA

~ 87 ~

characteristics, common term sharing in proposed architecture is a parallel operation which

will improve the system performance in terms of speed. On the other hand, the shared

common terms are located at the global level, not limited to one coefficient. The common

terms are based on the searching of the entire coefficients for the application. For example,

the shared common terms for 8-point 1-D DCT with 12-bit precision in coefficient are based

on the searching result for total 96 (=8x12) coefficients. This characteristic makes our

architecture take full advantage of terms sharing and greatly improves the hardware

efficiency.

In addition, common term sharing does not make any changes in 2’s complement code and

algorithm expression. The comparison between two methods targeting at the same

application will be made in the next chapter.

IV.7 Conclusion

This chapter has presented low power reconfigurable DA architecture and its implementation.

The research work carried out on DA techniques and their implementations in DCT and

other applications, reconfigurable architectures and their implementations and a domain-

specific RA targeting DA was first introduced. The overview architecture was described and

then the detailed descriptions were given for the algorithm logic unit. The control unit of

proposed processor is separated and will be introduced and described in Chapter V because

of its complexity and uniquely important function. In Chapter V, the performance on area,

power and delay of control unit will be evaluated and analyzed as well.

The algorithm logic unit has been described in detail in the introduction of each function

module inside including two-level adder structure, Wallace tree multiplier matrix,

interconnection network and memory unit for reconfigure bits. According to the two-level

adder array adopted in our architecture, common terms sharing has been introduced in this

chapter including its availability analysis, optimal scheme searching algorithm and matlab

implementation and comparison with subexpression sharing in CSD. To obtain optimal

scheme searching algorithm, the concepts of dimidiate tree and crossing forest have been

Low Power Reconfigurable Architecture for DA

~ 88 ~

introduced and defined and accordingly the algorithm has been developed to get the

architecture mapped with the best efficiency. .

~ 89 ~

V.1. Overview

In digital systems design the use of control units to implement complex system behaviour is

ubiquitous and found in almost all engineering disciplines. Conventional controllers can be

micro-coded or hardwired finite state machines (FSMs). They make the systems which they

integrated have the abilities to allow devices to operate in an intelligent manner rather than

simply reacting to the current operating conditions of the system.

The controller design is the implementation of application-specific algorithms. In some cases,

software implements the bulk of algorithms, because microprocessors are flexible and easily

programmable for a wide range of functions with dedicated hardware to acquire and store

data on behalf of the software. The use of microprocessors allows a device to freely

determine its response to a sequence of events according to different algorithms rather than

simply producing a response based on single event. Some systems may not be able to

perform their intended tasks with software alone and the reasons for this vary by applications

and often include throughput problem that systems with a microprocessor do not practically

meet some requirements of real-time applications.

State machines are often adopted to accomplish the load when control task is implemented in

hardware. Hardwired FSMs implement the controller output functions and next state logic

using fixed logic gates, and are the more common choice given their relatively small area

and higher performance. A state machine can be made arbitrarily complex and can function

similarly to software running on a microprocessor. Just as software moves through a

sequence of tiny steps to solve a larger problem, a state machine can be designed to advance

Chapter V

Reconfigurable Control Unit

Reconfigurable Control Unit

~ 90 ~

when certain conditions are satisfied. As the state machine progresses, it can activate other

functions, just as software requests transactions from a microprocessor’s peripherals.

Although it is often unnecessary to explicitly specify the control system for simple

applications, it is inferred from the functional description of the application. For more

complex applications a high-level model is required to allow designers to specify the control

behaviour of the system. A commonly used high-level model is the FSM. FSMs are abstract

models used to describe the behaviour of a control system in response to a sequence of

inputs and are based on the theory of finite automata in computer science [94].

To implement FSMs, two steps are generally followed in the procedure: the extraction of the

FSM from the high level specification of the system and the implementation of the FSM.

The extraction of FSMs is independent of the method of implementation and is concerned

with developing a high-level description of the control aspects of the specification. The

implementation in dedicated hardware involves the production of an ASIC that implements

the required behaviour. This approach produces devices with low area and power

requirements but requires lengthy and expensive hardware design and manufacturing

processes, making it impractical for low volume applications or for developers with limited

resources.

As FSMs are used in almost all control applications, the use of a reconfigurable hardware

device specifically tailored for the implementation of these control systems has a wide

market. Using reconfigurable devices such as FPGA devices is an important hardware

implementation of FSMs. Reconfigurable hardware combines the speed and efficiency of

hardware with the flexibility and programmability of software. This flexibility and

programmability requires the introduction of programmable hardware devices which result

in a lower efficiency when compared to full-custom ASIC design.

Domain-specific reconfigurable technology has emerged to cover this gap, which has the

ability to be programmed according to the requirements of target application. But, due to the

unique flexibility of FSMs, it is difficult to implement it with a reconfigurable architecture

with reasonable resource. Finite state machines are always too complex to map to a

Reconfigurable Control Unit

~ 91 ~

reasonable number of very fine-grained logic blocks [14]. However, finite state machines are

also too dependent upon single bit values to be efficiently implemented in a very coarse-

grained architecture. This type of circuit is more suited to an architecture that provides more

connections and computational power per logic block, yet it still provides sufficient

capability for bit-level manipulation. A typical very fine-grained architecture is composed of

logic block which is the configurable functional unit embedded in a symmetry

interconnection network sea and can implement any two-input function and some three-input

functions by loading different reconfigure bits. However, although this type of architecture is

useful for very fine-grained bit manipulation, it can be too fine-grained to efficiently

implement many types of circuits, such as multipliers [14].

This chapter of the portfolio is intended to give details of the work carried out on the

development of reconfigurable hardware for FSMs implementation. This method makes use

of a novel architecture that allows the implementation of these machines to consume far less

resources than commercial devices and traditional architecture. This chapter begins by

presenting the formal definition of FSMs, categories, traditional representation and

decomposition of FSMs in section V.2 which is followed by an overview of the traditional

design flow of implementation for a range of FSMs in section V.3. Existing FSM

implementation in commercial PLD and CPLD devices is first introduced briefly and then

detailed by analysing Xilinx Coolrunner CPLD in terms of their benefits and limitations in

section V.4. Existing reconfigurable customer-specific hardware for FSMs is discussed in

this section as well for comparison with the novel method presented here.

The novel reconfigurable architecture of FSMs suggested is then presented in section V.5

including the overview of the architecture, functional sections of the architecture, logic &

sequential block and the construction of PTB inside the block. Section V.6 then presents the

low power implementation in interconnection network, PTB construction and mapping of

PTB. In order to prove the usefulness of the proposed architecture it is then compared to the

traditional implementation of FSMs and the results of this comparison are presented in

section V.7 before final conclusions are made in section V.8.

Reconfigurable Control Unit

~ 92 ~

V.2. Background

In order to make the novel method in the implementation of the proposed architecture easy to

understand, it is necessary to first understand both the theory and implementation of FSM.

This section begins by presenting a formal definition of FSM which is followed by a

description of the process of FSM extraction before the implementation. Hardware FSMs

implementation is discussed for both the ASIC and reconfigurable device design flows.

V. 2. 1. Definition of FSM

In digital systems, control logic can be expressed as a sequence of states and state transitions.

A behavioural specification can be implemented with an FSM. FSMs are abstract models

used to represent the sequential behaviour of systems. They are used in control applications

to define the response of a system to a sequence of input events. This allows designers to

implement systems with complex behaviour [94].

A Finite State Machine is a 6-tuple (I, O, S, R, T, S0):

• I is a finite set of inputs of the FSM.

• O is a finite set of outputs of the FSM.

• S is a finite set of internal states of the FSM. It consists of two parts: Sc and Sn. Two

symbols present current states and next states respectively.

• R (i, s) is a relation from the (input, current states) pairs to next state (i.e., R

I×Sc×Sn).

• T (i, s) is a relation from the (input, current states) pairs to the outputs (i.e., T

I×Sc×O).

• S0 is an initial (or reset) state.

An FSM is deterministic, if for each pair (i, p)∈I×S, there exists at most one next state ‘n’

and one output ‘o’ such that (i, p, n, o)∈R×T(It means they are defined for all elements of

their domains), otherwise FSM is nondeterministic. If at least one transition is specified for

each present state and each input, an FSM is said to be completed; otherwise, the FSM is

partial. We will call an incompletely specified deterministic FSM simply an FSM. State

transitions are assigned to each state and based on the current inputs and current state are

Reconfigurable Control Unit

~ 93 ~

used to determine the next state of the FSM. The current state of the FSM is determined by

the initial state of the FSM and the previous input sequence applied to the machine. This

means if the previous input sequence and start state of the FSM is known, it is possible to

predict the current state of the FSM.

V. 2. 2. Three Categories of FSM

From the output function point of view, there are three cases found in the practical

implementations. If the outputs of an FSM are always associated with the inputs, the FSM is

a Mealy machine, shown in Figure V-1.

Figure V-1: Mealy machine

 If the outputs are influenced directly by the internal states of the FSM and inputs affect the

outputs only through the states, the FSM is a Moore machine, see Figure V-2.

Figure V-2: Moore machine

For the third case, the internal states of the FSM are output straightway as the result of FSM,

shown in Figure V-3.

Figure V-3: FSM with internal states as outputs

STATES
current->next

logic
algorithminput

output

STATES
current->next

logic
algorithminput

output

STATES
current->nextinput

output

Reconfigurable Control Unit

~ 94 ~

V. 2. 3. State Transition Graph and State Transition Table Representation of FSM

A directed graph can also describe an FSM, called the state transition graph. In a state

transition graph, each vertices denotes an internal state, and each edge corresponding to the

state transition is labelled with an input /output pair, and is directed from current state

vertices to next state vertices.

A counter is a simple example of an FSM, though its actions are very limited. Each state

simply advances to the next state on each clock cycle. There is no conditional branching in a

typical counter. FSMs are often represented graphically before being committed to Register

Transfer Level (RTL). Figure V-4 shows a diagram representation of a two-bit counter. Each

state is presented by its own bubble, and architectures show the conditions that cause one

state to lead to any other state. An unlabeled architecture is taken to mean the default if no

other condition is valid. Because this is a simple counter, each state has one unconditional

arc that leads to the next state.

Figure V-4: State transition graph for two-bit counter

An alternative to the state transition graph (STG) is the State Transition Table (STT). A state

transition table is a truth table that shows the output and next state for a synchronous

sequential network, for a given input and current state. The table shows each of the required

state transitions of the FSM and gives the current state and input conditions required to cause

these transitions. The STT of the Mead-Conway traffic light controller is shown in Table V-1.

Reconfigurable Control Unit

~ 95 ~

Table V-1: State transition Table of the case

Current

state
Inputs Next state

Idle ==0x01 Wait02

Idle !=0x01 Wait01

Wait01 ==0x01 Wait02

Wait01 !=0x01 Wait01

Wait02 ==0x01 Wait02

Wait02 ==0x02 Wait03

Wait02
!=0x01

&& !=0x02
Wait01

Wait03 ==0x01 Wait02

Wait03
!=0x01

&& !=0x03
Wait01

Wait03 ==0x03 Wait04

Wait04 ==0x01 Wait02

Wait04
!=0x01

&& !=0x04
Wait01

Wait04
==0x04 /

Match=1
Idle

V. 2. 4. Decomposition of FSM

It is often convenient to realize a sequential circuit as an interconnection of two or more sub-

circuits. The decomposition may be useful for both area and performance reasons. The

decomposition of FSMs is adopted to improve the hardware efficiency in the complex cases.

The proposed reconfigurable FSM architecture is a hierarchical system which can implement

generic FSM for control system. The capability of the architecture is so large as to

implement a generic FSM with a maximum of 256 (2
8
) states with up to 8 inputs and can be

extended by increasing the number of sequential and logic blocks. FSM decomposition is

employed to overcome the limit on the size for the case of large FSM. The decomposition of

FSM has been proved power-saving [95-97]. In theory, any large FSM can be decomposed

into a desired set of smaller sub-FSMs. Therefore, any size FSM can be implemented with

our architecture with a maximum number of 256 states after decomposition.

Reconfigurable Control Unit

~ 96 ~

The initial FSM decomposition work dated back to 1960 by Hartmanis [98] and has been

further developed by several researchers [99, 100]. The structure of the resulting finite state

machine is shown in Figure V-5. The inputs of each sub-machine are not only the primary

inputs and its own last state, but also the state variables from the sub-machine after

decomposition.

Figure V-5: Generic FSM decomposition

To illustrate the procedure of FSM’s decomposition, consider the state transition graph of a

simple FSM shown in Figure V-6.

Figure V-6: State transition graph of an example FSM

It is assumed that a desired decomposition of the corresponding FSM is given that state A

and state B belong to sub-machine T2 and all the other states belong to sub-machine T1. So

the original FSM is divided into two smaller sub-FSMs which are depicted with two STGs as

shown in Figure V-7.

Figure V-7: State transition graph after decomposition

M1

M2

input

output1

output2

ps1

ps2

E A

D B

C

E

S

D

C

A

B

S

T1 T2

Reconfigurable Control Unit

~ 97 ~

As a result of the decomposition, a RESET state is added to both sub-FSMs, labelled with S.

The transitions between the states except the state S in T1 and T2 are the same as the original

FSM without transformation. As shown in Figure V-7, the number of inputs to each sub-

FSM is also changed because of the additional RESET state. In each sub-FSM, the extra

inputs are required for the purpose of communication between two sub-FSMs, so do for the

extra outputs.

Following this approach, a large original FSM can be decomposed into several smaller ones

with limited states which fit our architecture well and can be implemented easily.

V.3. Implementation of FSMs

The implementation of FSMs can be generally split into two sections, the extraction of the

FSM description from specification of the application and the implementation of the FSM

with the appropriate hardware platform. The FSM design flow for both full-custom ASIC

and reconfigurable hardware devices is shown in Figure V-8. It can be concluded from the

figure that the extraction of the FSM is independent of the implementation technology and is

hence applied in both design flows.

Reconfigurable Control Unit

~ 98 ~

Figure V-8: FSM design flow

Reconfigurable Control Unit

~ 99 ~

V.3.1. Extraction of FSM Implement FSM with Hardware Platforms

In Figure V-8, the conventional method of FSM extraction is shown. A high level

description of the control requirements of the proposed device are first extracted from the

initial specification of the system. This behaviour can then be expressed as an FSM using a

high level model such as a STG or STT. Based on this model it is then possible to produce a

description of the FSM suitable for the implementation of the control requirements.

After extraction of FSM, the Boolean description of FSM is generated. The main step for

hardware implementation is commonly known as synthesis which involves taking a high

level description and converting this to a description that can be used to produce hardware

implementation including ASIC and reconfigurable device. The conventional method of

implementing an FSM on both ASIC with standard cells and a reconfigurable hardware

platform is shown in Figure V-9.

Figure V-9: General reconfigurable hardware implementation of FSMs

The implementation of a FSM in full-custom hardware involves producing a description of

the required functionality in a hardware description language (HDL) such as Verilog HDL or

VHDL. This description in a high level programming language is capable of producing a

silicon implementation of the device.

The process flow for implementation of FSMs with different reconfigurable devices is

similar to the design flow used in full-custom ASIC design, but, in full-custom design flow

synthesis results in a description that can be used to produce a silicon implementation of the

Reconfigurable Control Unit

~ 100 ~

FSM, and synthesis for reconfigurable devices results in a bit-stream capable of configuring

the device to implement the FSM. The synthesis process can be considered the same for full-

custom ASIC and different reconfigurable hardware platforms. The difference exists in the

result of synthesis which can be obtained in format of netlist with standard cells in ASIC

design and is generated in certain format in reconfigurable hardware implementation but

invisible to designer.

V.3.2. FSM Operation on Reconfigurable Device

The conventional hardware FSM implementing model is shown in Figure V-9. For

reconfigurable hardware platform, the reconfigurable function units will be programmed to

realize the required function which is expressed in Boolean equation. Take Xilinx Virtex-E

device as an example [10], it comprises two major configurable elements: configurable logic

blocks (CLBs) and input/output blocks (IOBs). CLBs provide the functional elements for

constructing logic while IOBs provide the interface between the package pins and the CLBs.

A general routing matrix (GRM) makes the connection between CLBs, which comprises an

array of routing switches located at the intersections of horizontal and vertical routing

channels. The architecture of CLB of Virtex-E is shown in Figure V-10.

Figure V-10: CLB of Xilinx Virtex-E FPGA [10]

In FSM implementation with FPGA devices, CLB realize desired Boolean functions to

generate next states and output. Current state register used to store the current state of the

FSM is implemented with the flip-flop within CLB. When it is powered on, the

Reconfigurable Control Unit

~ 101 ~

configuration bit-file is loaded into the local memory within the reconfigurable device from

non-volatile memory. This configures the reconfigurable device to implement the required

transition expressions and the current state register. When configuration bit-file is loaded

onto the device the output would be calculated using the current state and input. After the

loading of reconfiguration bits, FSM would be initialized first, the process of which would

involve a specified reset state and the current inputs. At the same time, the next state would

be calculated using the current state as well. The system would then be clocked and the next

state is stored as the current state in the registers. This new current state would then be used

to calculate the next state again and output before the device is clocked. Because the

calculation of output is a combinational logic and generally without clocked data buffer, the

clock speed of the device is limited by the time required for the device to calculate the next

state and store it as the current state.

V.3.3. Reconfigurable Hardware Platform for FSMs Implementation

The main stream commercial reconfigurable devices are FPGA and CPLD/PLD as described

in previous section. Different devices provide a wild range of benefit, capability and

performance in area, power and delay. The selection of a suitable reconfigurable device is

the key point to the efficient implementation of the FSM. It is essential to ensure that the

device has sufficient hardware resources to implement the FSM without introducing

excessive redundant hardware. Being a pre-design part, the integrated reconfigurable part is

fixed for its size, area and capability. It is impossible that the device has exactly the right

amount of hardware required to implement a particular application. However, devices are

available from device manufacturers in a wide range of sizes and costs, which makes the

designer to select the device most close to the desired application.

For the FSMs implementation, the high level description of the FSM makes designers to

extract an estimation of the hardware requirements of the device. The end-user would then

select the device with as close to these parameters as possible to ensure that excessive

hardware is not introduced that would have impact on the cost, area and possibly power of

the final implementation.

Reconfigurable Control Unit

~ 102 ~

V.4. Existing FSM Hardware Implementation Architectures

The existing FSM hardware implementation architectures can be separated into two main

groups, the commercial FPGA/CPLD devices and customer-specific reconfigurable

architecture. The FSMs implementation flow with commercial FPGA/CPLD devices is

discussed in previous sub-section. The conventional architecture of FPGA is introduced in

detail in section II.2.1. In this section, the architecture of PLD/CPLD will be given in detail.

The analysis of its specification and limitation will be followed. In order to familiarize the

reader with typical device specifications, we also provide a close examination of a popular

commercial CPLD, the Xilinx CoolRunner XPLA3 (eXtended Programmable Logic Array).

At the rest part of this section, the existing customer-specific reconfigurable architecture will

be introduced and analysed.

V.4.1. PLD Hardware Platform for FSMs Implementation

PLDs devices have the capability to be dynamically reconfigured while implementing the

target application by adjusting the memory contents which control routing and logic

resources. Then, the routing structure and the functions are implemented with PLDs devices.

Several kinds of memory are adopted in the creation of PLDs: EEPROM, flash memory and

SRAM. Because EEPROM and flash have the characteristic of keeping their contents

without power, they are employed in most PLDs devices.

The basic method to perform logic in PLDs is to use PLA, a programmable logic array.

PLAs is such an architecture that directly implements two level sum-of-products Boolean

functions. It is implemented with a programmable AND-plane which is followed by a

programmable OR-plane. The input signals arrive at the array in both true and negated forms

simultaneously, not all but only the appropriate signals are fed to the AND gates as inputs

which are selected by configurable switches. The outputs of the AND-plane are then fed to

the gates in OR-plane. The outputs of these OR gates can be used as combinational signals,

being determined by the output multiplexer. The actual hardware implementation of a PLA

is constructed with NOR-NOR-plane rather than AND and OR-planes, with the former being

more efficient than the latter. The idea behind this is that any equation in sum-of-products

Reconfigurable Control Unit

~ 103 ~

form, which is implemented by AND-OR-plane, can be represented easily in NOR-NOR

format by applying De Morgan’s law.

Another type of array, called Programmable Array Logic (PAL), can also directly perform

sum-of-products style Boolean function. A PAL construction is different from a PLA in only

one way: a fixed OR-plane replacing the fully programmable OR-plane in PLA. This

characteristic makes PALs slightly smaller than PLAs at the cost of less flexibility due to the

fixed nature of their OR array.

V.4.2. CPLD Hardware Platform and Xilinx CoolRunner XPLA3 CPLD

The PLDs introduced in last sub-section can be combined to build a popular kind of PLD,

the Complex Programmable Logic Device (CPLD). Either PLAs or PALs are employed in

CPLDs as their functional units, and are connected together by crossbars in general. Because

the size of crossbars will grow exponentially for larger application, CPLDs are historically

limited to small and medium sized designs.

The interconnection network in a CPLD is typically a full network in which each input and

PLA/PAL output drives a wire separately through full crossbars with the capability to deliver

the signals to any port desired. Xilinx CoolRunner XPLA3 CPLD is taken as an example to

illustrate the CPLD architecture.

Figure V-11: Xilinx XPLA3 CPLD architecture [101]

Reconfigurable Control Unit

~ 104 ~

The architecture of Xilinx CoolRunner XPLA3 CPLD is shown in [101]. The CoolRunner

XPLA3 architecture consists of function blocks, 16 Macrocells and a Zero-power

Interconnect Array (ZIA). A function block and 16 Macrocells combine to form a PLA and

ZIA acts as a virtual crosspoint switch providing full connectivity between the PLAs. All

I/Os and PLA outputs are sent to ZIA and totally 40 PLA inputs are obtained from the ZIA

as well. In a PLA, all inputs are fed to the Product-Term Array which can create 48 product

terms. There are 16 different outputs generated in function block and each output goes to

each corresponding Macrocell. Besides, Xilinx also provides extra functionality to this basic

PLA. For example, wider logic equations can be obtained by using eight foldback NAND

product terms in each function block. CoolRunner XPLA3 CPLD also provides eight other

product terms for controlling the registers in the Macrocell, 16 product terms fed directly to

the Macrocell for timing critical signals and Variable Function Multiplexers (VFM) for

implementing some two input logic functions. [101]

The Xilinx CoolRunner XPLA3 CPLD provides all of the basic CPLD functionalities and

also introduces more hardware which can increase logic density and allows for high-speed

signal paths.

V.4.3. Limitation of CPLD

It can be drawn easily from the analysis of CPLD architecture that the method of exhaustion

is adopted to implement logic function. All the input and feed-back signals are ready for

each product term of a large number of terms. The scale of the matrix used to rout the signals

will be great and the area efficiency will be greatly reduced. The method of exhaustion is

also incarnated in the construction of AND-OR array. Only one level AND-OR is adopted in

the implementation. It means that all the Boolean equation should convert to one level sum

of product-term style. It is easy to do, but it results in a low efficiency in implementation.

Obviously, the congenital weakness existing in both FPGA and CPLD architecture leads to

the high power consumption and low area efficiency.

Reconfigurable Control Unit

~ 105 ~

V.4.4. Existing Customer-specific Reconfigurable Architecture

In [102] and [103], LUT based and product-term-based reconfigurable architectures are

introduced to implement combinational circuit based on a rectangular and triangular

constructions respectively. Combinational circuit can be used to implement any Boolean

functions if its size has not limitation. Therefore, both architectures can be used in FSMs

application.

The reconfigurable architectures in [102] is a directional construction in which no feedback

loop exist. This construction rises naturally from the observation that many synthesis tools

have problems with combinational loops when they are used to synthesize the programmable

logic core along with the fixed part of the chip. The directional construction in [102] makes

the signals flow between logic blocks flow from left to right only. To improve the hardware

efficiency, a triangular construction is evaluated from the standard island-style architecture,

also called rectangular construction. Results from [102] show that the triangular construction,

called gradual architecture as well, performed better than the island-style architecture by 15%

to 20%.

The success of the idea of directional construction helps guide the work in [103] in which a

directional architecture is developed using PLAs as logic elements instead of 3-LUTs which

is adopted as logic elements in [102]. The exploration of PLA-size discussed in [103] shows

that PLAs with 9-input, 3-output and 9 or 18 product-term achieves 35% area improvements

and 72% speed improvements over their LUT-based architectures from [102]. The

experimental data also shows that a triangular gradual architecture performs better than a

rectangular one for PLAs.

The routing architectures in both [102] and [103] are the novel one compared with traditional

construction, in which all the logic elements are arranged in several levels. Take the routing

architectures in [102] as an example, the outputs of one level PTBs can drive the inputs in all

subsequent levels and final output ports. The great amount of multiplexer is employed in the

routing network. In a 5-inputs application as shown in the architecture, there are eight 8:1

multiplexers in the second interconnection and four 12:1 multiplexers in third

interconnection. The area of 8:1 multiplexer is 191.07
2mµ based on the UMC 0.18 mµ

Reconfigurable Control Unit

~ 106 ~

CMOS technology library whereas it is only 16.262
2mµ for a AND or OR gate targeted at

the same library. In our opinion, lots of redundancies exist in the architecture.

V.5. Reconfigurable FSM Architectures

V.5.1 Reconfigurable FSM Architecture Overview

The proposed architecture is a hierarchical system which can be decomposed into different

functional modules in 3 different levels. They are the sequential section and the logic section

in the top level, sequential block and logic block in the medium level and PTBs in the base

level. Each functional module is made up of sub-modules in following level. The capacity of

architecture is the trade-off between application requirements and cost.

FSMs are usually used to describe the behaviour of digital circuits that transform sequences

over one input into sequences over another (output) alphabet. So our proposed

reconfigurable FSM is divided into two functional sections: logic and sequential, as shown in

Figure V-12. The sequential block (Sequential B.) and logic block (Logic B.) are the

functional units in their respective sections. These blocks are made up of PTBs.

 Figure V-12 : The architecture of a reconfigurable FSM

Sequen

tial B .

Sequen

tial B.

Sequen

tial B.

Sequen

tial B.

Logic

B.

Logic

B.

Logic

B.

Logic

B.

outputinput

clock

R
o

u
tin

g
 R

eso
u

rce

R
o
u

tin
g
 R

eso
u

rce

R
o
u

tin
g
 R

eso
u
rce

Reconfigurable Control Unit

~ 107 ~

V.5.2 Functional Sections in the Architecture

The function of sequential section is to implement the transition between current state and

next state. Outputs of this section respond to the current state of the FSM. The current state

associated with the external input signals is used to compute the next states through certain

Boolean equations. The changes of internal states from current state to next state will take

place only if input clock is changed.

The function of the logic section is to implement any Boolean equation which can express

the relationship among inputs, current state, next state and outputs. Outputs of this section

are only dependent on the inputs and Boolean equation and do not change with time. The

combination of logic block through interconnect switch matrix can realize any Boolean

function.

The input signals which are up to 8 can reach both sections through the routing resources.

The outputs of the sequential blocks can be routed to logic blocks and also fed back to other

sequential blocks. There is no limit on the number of logic blocks which only depends on the

number of FSM outputs. An architecture with 8 sequential blocks can implement a generic

FSM with a maximum of 256 (2
8
) states. The capability of the architecture can be extended

by increasing the number of sequential and logic blocks with the extra cost in power, area

and delay.

The current design size was derived from a benchmark set (LGSynth93 [104]) which is

adopted by many researchers and will be discussed later. This benchmark set consists of 53

FSM test cases with the largest one containing 218 states. The current parameters of

architecture make the architecture meet most of the applications’ requirements with high

efficiency in area, power and speed.

For a large FSM, decomposition is employed to overcome the limit on the size. The

decomposition of FSM has been proved power saving [95-97]. In theory, any large FSM can

be decomposed into a desired set of smaller sub-FSMs. Therefore, FSM of any size can be

implemented with our architecture with a maximum number of 256 states after

decomposition.

Reconfigurable Control Unit

~ 108 ~

V.5.3 Architecture of Logic Block and Sequential Block

The logic block which consists of PTBs is a functional module in the logic section. The

function of the logic block is to realize some combinational Boolean functions. A PTB acts

as the basic computing unit to realize some basic Boolean functions. The architecture of

logic block is shown in Figure V-13.

Figure V-13 : The architecture of a logic block

The PTBs are placed in several levels where a triangular architecture is adopted in which the

number of PTBs in the second level is half of the first level and the number of PTBs in the

third level is one fourth of its previous level. The outputs of the PTBs in each level can only

reach the inputs of the PTBs in the next level.

Like the logic block, the sequential block is a functional module in the sequential section.

Each sequential block is responsible for the changes in one state bit only. A sequential block

can implement the combination of a Boolean function and transition between two different

single bits which is synchronous with the input clock. A logic module followed by a D Flip-

Flop is employed in the sequential section to realize the transition from current state to next

state.

V.5.4 Construction of PTB

Product-term based style is adopted as a way to construct basic logic module in the

architecture. A PTB unit consists of two sub-modules: the AND sub-module and the OR sub-

PTB1

PTB1

PTB1

PTB1

PTB2

PTB2

PTB3

outputinput

First Level

internal connection

Second Level

internal connection
Third Level

internal connection

Reconfigurable Control Unit

~ 109 ~

module. The AND sub-module can generate a product term. The output of AND sub-module

is used for the OR sub-module. The OR sub-module is used to sum all the results from AND

sub-modules and finally create the desired Boolean function result. It is easy to implement

the AND sub-module and OR sub-module with the corresponding reconfigure bits and then

construct different sizes of PTBs.

FSMs are usually too complex to easily map to a reasonable number of very fine-grained

logic blocks [14]. In addition, they are too dependent upon single bit values to be efficiently

implemented in a very coarse-grained architecture. Based on the required level of flexibility

for the FSM, usually a mixture of fine and coarse grained architecture is used, except for

some domain-specific functions. The architecture is made up of PTBs of different sizes

which are assigned in their corresponding levels.

V.6. Low Power Implementation

Low power consumption is another key advantage of our architecture along with its

reconfigurability. An unbalanced unsymmetrical architecture is adopted to reduce the area

which contributes the most to the power saving. Based on the analysis of FPGA architectures,

new strategies are drawn for interconnection network arrangement, construction of

computing unit and the way of mapping PTB. More details are given in the following sub-

sections.

V.6.1 A typical Interconnection Network

The most popular routing network is the balanced symmetrical construction. The functional

modules are equally placed in relatively smooth sea of routing resources which is made up of

switch boxes and connection blocks. This architecture is widely adopted in the commercial

FPGA devices as shown in Figure V-14

Reconfigurable Control Unit

~ 110 ~

Figure V-14: A typical FPGA interconnection network

The overall reconfigurable architecture consists of functional modules (Logic Block) and

routing elements (switch boxes and connection blocks). By employing programmable

multiplexers, the connection blocks select the desired signal wire linked to the routing tracks.

A connection block can attach the signals to the logic block and the switch box nearby. The

connection in the switch boxes makes the input signal either pass through the switch box on

its track or change its routing direction. Finally the signal reaches its destination logic block

[14].

Obviously, the reconfigurability of FPGA devices is a result of the powerful interconnection

network between the rows and columns of logic blocks. But there is also an area penalty to

be paid for this flexibility. An example is given using 4-bit fully directional switch box in

which all the ports in each side are bi-directional and the signal can enter the box through

discretional port and reach any port for output. The area of such a switch box is 1433.025

2mµ based on the UMC 0.18 mµ CMOS standard cell library whereas it is only 12.197

2mµ for an NAND gate targeted at the same library. This shows that a 4-bit fully directional

switch box is equivalent to 117 NAND gates, which is enough to implement a small size

FSM.

V.6.2 Interconnection Network

An efficient construction of the interconnection network is the key for solving the power and

area problems. In some architectures, like FPGAs, where the logic blocks are embedded in

Reconfigurable Control Unit

~ 111 ~

the routing network, interconnection network is made up of connection boxes and switch

boxes; the area allocated to routing resources is over 80% of the whole system [105-107].

Therefore a high utilization ratio of interconnects will successfully reduce the area of the

whole architecture.

The fine-grained blocks are useful for bit-level manipulations, while the coarse-grained

blocks are well optimized for standard data path applications. Some architectures employ

different sizes or types of blocks within a single reconfigurable array in order to efficiently

support different types of computation. For example, memory is frequently embedded within

the reconfigurable hardware to provide temporary data storage. Our design is targeted at

general purpose applications, so only 1-bit interconnect in the architecture is considered.

Mixed interconnects can be adopted if a special application is implemented.

The first reason why the architecture is called unbalanced is that the interconnects (switch

box and fixed line) are arranged in an asymmetric manner.

Based on the area analysis of the routing resource area, our unbalanced architecture uses

certain amount of fixed connection to replace the flexible switch boxes in order to reduce the

area. There are three internal connection levels, as shown in Figure V-13. In the first level,

multiplexer based switch boxes are used to feed the inputs of the logic computing modules.

In this level, the internal connects keep their flexibility to make sure that input signals can

reach their destination. With the guarantee of the required functionalities being implemented,

the redundant connection paths are reduced to save area. In the second and third

interconnection levels, most of the interconnections are made up of fixed connections which

can greatly reduce the area compared with using switch boxes. However, a few multiplexers

are kept within these two levels in order to keep the block flexible enough. Because the

routing network area is reduced at the cost of flexibility, some redundant computing units are

employed to compensate for the inconvenience of internal data exchange. But the area of the

whole system is always kept at low level when compared with FPGAs.

Reconfigurable Control Unit

~ 112 ~

V.6.3 Function of PTB

In our opinion, the Look-Up Tables (LUTs) used in FPGA architectures are redundant for

FSM. A 4-input LUT is equally embedded in the sea of routing resource and is able to

implement all possible 4-input logic functions with 16-bit configure bits. To implement a

generic FSM, the sum of product terms is adopted as the basic way. Obviously, it is

inefficient to implement a relatively fixed algorithm with the fully flexible components such

as LUTs. So the keystone of our design is not only how to build an efficient and low area

interconnects network but also to reduce the redundancy of logic computing modules

compared with the ones in FPGA devices.

A two-input LUT, which can realize basic Boolean equations, is adopted as the basic unit to

implement an AND sub-module or an OR sub-module. Compared with the computing unit in

[108] whose area is 166.68
2mµ , the area of a two-input LUT is 73.17

2mµ based on the

same technology.

For large-sized PTBs, LUT is no longer a suitable way for implementation. As the number of

inputs increases, the area of LUT will increase rapidly, leading to an exponentially increase

in area usage. Take a four-input LUT as an example, the area of it is 3801
2mµ based on

the UMC 0.18 mµ technology library, more than fifty times larger than a two-input LUT.

Actually, it is unnecessary to implement PTBs with 4 or more inputs on fully flexible LUT.

Since PTBs have limited functionality, the computing unit will not take full advantage of the

flexibility of LUT, instead it will fully pay the cost of area and power consumption.

The combination of such computing unit, two-input LUT, in cascade and parallel mixed

mode can construct PTB of any size.

V.6.4 Mapping of PTB

The number of PTBs in a logic block determines the efficiency of the block. A single PTB

can be fully used. But the mass of data exchange between the logic blocks will increase the

size of interconnects network and the effort for mapping and routing. So in this case, the

whole system will not reach the best utilization efficiency. A large number of PTBs will

Reconfigurable Control Unit

~ 113 ~

reduce the burden of interconnect switch matrix, but it will also increase the size of the total

area. A balance is needed to resolve this problem.

The reason why the architecture is called unbalanced not only lies in arranging the

interconnects (switch box and fixed line) in an asymmetric manner but also in selecting

different type of PTBs for different levels.

We refer to the size of a PTB using the tuple (i, p, o) where i is the number of inputs, o is the

number of outputs, and p is the number of product terms. To increase the capability of the

architecture, (16,4,1) is selected for PTB1, (2,1,1) for PTB2 and (4,1,1) for PTB3. The

adoption of PTB of different parameters is one of the reasons for adopting unsymmetrical

interconnection mapping described in sub-section V.6.2. If PTB1 is selected for all levels,

less efficiency in the second and third levels will increase the area of the whole system. For

the same reason, PTB2 will result in less switch box efficiency in the first level and lead to

the same outcome as in the previous case.

V.7. Experimental Results and Evaluation

Because similar domain-specific architecture for FSMs cannot be found in the literature,

CPLD and FPGA devices are used as a reference to compare performance in area, power and

delay with our architecture. Both devices are widely adopted in many designs and CPLD

devices are especially suitable for implementing product-term applications.

The fair comparisons have been made, but some factors affect the comparison accuracy as

described below:

1. FPGAs are well optimized for layout in physical level. Our architecture is

synthesized and mapped to a standard cell technology library using standard ASIC

automation tools. Therefore, the layout is not as optimized as in FPGAs.

2. In the process of mapping, ours is mapped manually which makes the best use of the

special interconnection network and computing units. The mapping of FPGA and

CPLD is performed with tools provided by Xilinx, Inc. Compared with manual

mapping, the tools cannot achieve the best utilization of dedicated connection in

FPGA which will reduce the delay time and power consumption.

Reconfigurable Control Unit

~ 114 ~

V.7.1 Experimental Platform

The synthesis tool for our reconfigurable architecture is Ambit BuildGates from Cadence

Design Systems, Inc. The architecture is targeted at the UMC 0.18 mµ three-metal CMOS

technology library. The area and delay time is obtained from the synthesis. The power

consumption values for our reconfigurable architecture are obtained after post-layout

simulation by Synopsys PrimePower. The synthesis and mapping tools for FPGA and CPLD

devices are ISE V6.2i of Xilinx, Inc. Their power consumption data is obtained with XPower.

According to the library and voltage in the synthesis platform used for our architecture, one

typical device is adopted in FPGA and CPLD category respectively: xcv50e-6cs144 [10], the

smallest device in the FPGA Virtex-E family; xc2c128-4vq100 [109], the device has the

capability of 448 product terms in the CPLD CoolRunner-II family, whose scale is the most

close to our architecture. These two devices are used in comparisons in area, power

consumption and delay with our architecture.

Table V-2: Test cases and their characterizations

Name I O P

lion 2 1 11

dk27 1 2 14

dk512 1 3 30

s27 4 1 34

tav 4 4 49

bbara 4 2 60

dk16 2 3 108

planet 7 19 115

S1488 8 19 251

tbk 6 3 1569

Several commonly used test cases from LGSynth93 [104] have been implemented on CPLD,

FPGA and our reconfigurable array. The benchmark set is adopted by many researchers [103,

110, 111] who work on implementing FSMs. The FSMs in the benchmark are all Mealy

machines except for Cnt32 and Cnt64 which are Moore type. The test cases in the

benchmark cover the most typical applications. From this benchmark set, ten test cases

including the biggest one (tbk) were selected, all with different degrees of complexity and a

Reconfigurable Control Unit

~ 115 ~

number of inputs and outputs, as shown in Table 1. We describe the characteristic of FSM

with the tuple (I, O, P) where I is the number of inputs, O is the number of outputs, and P is

the number of product. The maximum input, output and state number among the test cases is

8, 19 and 48 respectively. The selected cases will be implemented on FPGA, CPLD and our

architecture for the comparisons.

V.7.2 Experimental Data Pre-process

For different FPGA families, various hardware resources provide improved performance in

delay and power consumption. In VirtexE family, the architecture has dedicated connections

between adjacent LUTs allowing them to be connected without using the switchboxes in the

general routing matrix [10]. Virtex-II and later families also have dedicated connections and

OR gates for implementing large sum-of-products expressions [112].

Although the smallest device is chosen in the comparison, the utilization rate of the FPGA

device is very low. In order to study how the size of devices affects the area and power

consumption, different chips are selected to perform area and power comparisons when the

same testcase is implemented on them.

It is well known that different CMOS technologies will lead to different results in area,

power and delay. It is very difficult to compare the power consumption and delay time

between distinct family devices. Therefore, the delay time and power consumption

comparisons are made between the devices using the same family with the same technology

to avoid the effects of different technology. The number of occupied Slices is adopted for

area comparison, which indicates the hardware utilization but does not give information

about the CMOS technology used.

Twenty eight FPGA devices from seven families are selected to study how the area

occupation is affected by the utilization rate and the different dedicated hardware resources,

as shown in Table V-3. The smallest and largest devices are selected from each family with

the maximal area ratio among them being 200 (xc2v40 vs. xc2v8000). The same benchmark

is implemented on all devices to obtain the hardware utilization rate which is derived from

the number of LUTs and the number of occupied Slices in the implementation summary.

Reconfigurable Control Unit

~ 116 ~

Table V-3: Selected FPGA devices

Spartan-II Spartan-IIE Spartan-3/3L Virtex

xc2s15

xc2s100

xc2s200

xc2s50e

xc2s200e

xc2s600e

xc3s50

xc3s1000

xc3s5000

xcv50

xcv400

xcv1000

Virtex-E Virtex-II Virtex-4

xcv50e xcv100e

xcv200e xcv400e

xcv600e xcv1600e

xcv2600e xcv3200e

xc2v40

xc2v500

xc2v2000

xc2v8000

xc4vfx12

xc4vfx40

xc4vfx80

xc4vfx200

Two test cases are implemented on FPGA devices. One small testcase is chosen in order to

give a low utilization rate on the smallest device (Virtex-E xcv50e), and another large

testcase is chosen, so that it gives high (97%) utilization rate on the same device.

For the small testcase, the number of used LUTs for all devices in one family is the same.

Also it is the same for all families except for Virtex-4 family. For the large testcase, the same

situation can be observed when the utilization rate is lower than 90% and the difference is

less than 1% in the case of over 90% utilization rate.

Clearly, the area occupation is slightly affected by the chip utilization rate, regardless of the

size of the FPGA device, when it is scaled by occupied number of LUTs in FPGA devices.

To quantify the degree that different FPGA devices affect the delay time, the large testcase is

implemented on 8 devices in Virtex-E family. The delay time is the same when the same

testcase is implemented on different devices. Clearly, device size has no impact on the delay

time.

Because the utilization rate of the selected FPGA device (Virtex-E xcv50e) and our

architecture are 12% and 60% respectively for case tbk, it’s estimated that FPGA device is 5

times larger than our architecture. Therefore, the FPGA device pair with the same proportion

in size is taken as the reference to reveal how the size affects power consumption.

Reconfigurable Control Unit

~ 117 ~

To find out the appropriate FPGA device pairs, all devices in VirtexE family are listed in

Figure V-15. The size of smallest device, xcv50e, is scaled as the basic unit. All the device

sizes are scaled as the multiples of the unit. The column of 5X times size of each device

follows as the reference frame as shown in Figure V-15 until the 5X times size of the device

xcv600e is larger than the biggest one in the family.

Reconfigurable Control Unit

~ 118 ~

Figure V-15: The illustration of comparison in size between FPGA devices

From Figure V-15, it is easy to find out 5 device pairs whose power consumptions are shown

in Figure V-16.

0.005.0010.0015.0020.0025.0030.0035.0040.0045.0050.00 xcv50excv
100excv20
0excv400e
xcv600excv
1000excv16
00excv2000
excv2600e
xcv3200e

Multiples

Device's Log
ic Cells

Frame of Ref
erence

Reconfigurable Control Unit

~ 119 ~

Figure V-16: The power consumption comparison of FPGA device pairs

Generally, the power consumption increases when the device size increases. From Figure

V-16, the difference in scale will lead to about 10% increase in power consumption. In the

following sub-section, this rate is used to process the raw experimental data.

10.5010.7010.9011.1011.3011.5011.7011.9012.1012.3012.50 xcv50e:xcv4
00excv1
00e:xcv600e
xcv200e:xcv
1000excv4
00e:xcv2600
excv600e:
xcv3200e

mW

Reconfigurable Control Unit

~ 120 ~

V.7.3 Power consumption Comparison

Power consumption of an FPGA device falls into two parts: Vccint is consumed by the core

inside the device, and consists of clock power consumption, inputs power consumption, logic

power consumption and signals power consumption; while Vcco is consumed by the I/Os.

Both parts can also be classified as quiescent and dynamic. Quiescent power is the power

consumed with no switching. Charging and discharging of parasitic capacitances cause

dynamic part.

Because the target FPGA device is larger than our architecture, quiescent power consumed

by unused computing units, RAM, clock manager and controller in FPGA device are very

high. To remove all these impact factors, only the Vccint dynamic power consumption is

taken as the reference, as shown in Table V-4, column four.

Table V-4: Experimental results for power consumption

Name
ASIC

Our

Archi.

FPGA

Vccint

FPGA

(Scaled)
CPLD

(10
-2

mW) (mW) (mW) (mW) (mW)

lion 0.326 0.181 0.87 0.78 0.6

tav 0. 729 0.253 1.17 1.05 1.41

s27 0. 494 0.239 1.23 1.11 0.94

dk27 2.547 0.38 1.94 1.75 2.16

dk512 2.352 0.242 0.95 0.86 1.13

bbara 1.076 0.305 2.25 2.03 1.32

tbk 2.555 0.434 2.01 1.81 1.49

dk16 7.085 0.256 1.39 1.25 1.57

planet 7.071 0.517 3.9 3.51 5.26

S1488 14.521 0.542 5.78 5.2 5.68

The scaled FPGA power consumption, listed in the fifth column in Table V-4, is obtained by

scaling down the power in the second column by 10% in order to remove the impact of

device size. Our architecture’s power consumption is listed in the third column.

Reconfigurable Control Unit

~ 121 ~

The target CPLD device has a similar capability of mapping product terms to our

architecture. The dynamic power consumption of the CPLD is listed in the sixth column in

Table V-4.

In order to simplify Table V-4 and make their comparative relations clearer, Table V-5 is

listed below. In this table, the amount of FPGA scaled power consumption and CPLD power

consumption are represented as “times” relative to the power consumption amount of our

architecture.

Table V-5: Normalized power consumption of FPGA and CPLD

Name

FPGA

(Scaled)
CPLD

(times) (times)

lion 4.3 3.3

tav 4.2 5.6

s27 4.6 3.9

dk27 4.6 5.7

dk512 3.6 4.7

bbara 6.7 4.3

tbk 4.2 3.4

dk16 4.9 6.1

planet 6.8 10.2

S1488 9.6 10.5

The comparisons made with FPGA scaled power consumption and CPLD power

consumption are listed in Figure V-17 and Figure V-18 respectively.

Clearly, our architecture achieves from 71.9% to 89.6% power savings compared with the

FPGA Vccint dynamic scaled power consumption. Compared with CPLD dynamic power

consumption, our architecture saves power consumption by 70.9% to 90.5%. Obviously, our

architecture achieves a good performance in power consumption.

It is noticed that FPGA device consumes more power in some cases, while CPLD device

consumes more in other cases. It is difficult to say that one consumes more power than the

other between FPGA and CPLD devices. Basically, a CPLD device consumes more power

than a FPGA device when the number of outputs is higher than the number of inputs.

Reconfigurable Control Unit

~ 122 ~

V.7.4 Area & Delay Comparison

All test cases were implemented with our reconfigurable architecture, CPLD and FPGA

device for comparison. CPLD is course-grained device based on product-term/macrocell

technologies with lower density. For the same capability, the area of CPLD device is larger

than FPGA device. FPGAs are usually having more gates in a given area and cost less than

their CPLD cousins. Therefore, area comparison is made only between FPGA device and our

architecture.

The area results are listed in Table V-6. The area estimation of Virtex-E is based on two

LUTs per slice where an estimated area of 3303
2mµ is used per slice and its surrounding

routing [73]. This value excludes the area of memory which is embedded in FPGA device.

Table V-6: Experimental results for area and delay

Name

Area

(
2mµ)

Delay (ns)

ASIC FPGA
Our Re.

Archi.

Our Re.

Archi.
FPGA CPLD

lion 317 13212 7185 4.87 9.27 5.70

tav 358 16515 9649 4.87 13.02 5.70

s27 407 33030 15005 4.87 11.07 5.70

dk27 610 16515 10297 4.87 8.01 3.40

dk512 1167 42939 21841 4.87 12.52 5.70

bbara 1187 46242 28052 4.87 10.3 5.70

tbk 4415 310482 180325 4.87 20.52 8.00

dk16 3638 102393 52166 4.87 15.29 5.70

planet 7891 330300 153214 4.87 22.62 11.00

S1488 9526 640782 284704 4.87 25.08 10.00

The delay time listed in Table V-6 is the period from the rising edge of the clock to the

moment when signal reaches the output port, namely, clock path plus data path. The CPLD

delay time is obtained through a timing simulation after the HDL design has been

synthesized, placed and routed.

Reconfigurable Control Unit

~ 123 ~

In order to make the relations of our architecture with FPGA and CPLD more recognizable,

Table V-7, the simplified form of Table V-6, is listed below in which the area and delay of

FPGA and CPLD are normalized and represented as “times” based on our architecture.

Table V-7: Normalized area and delay of FPGA and CPLD

It can be seen from Figure V-17 that our reconfigurable architecture achieves from 37.7% to

55.6% improvements in area compared to Virtex-E. This result proves our strategy for

reducing routing network which leads to significant saving in area, that is, a smaller area

contributes to significant power saving.

lion 1.8 1.9 1.2

tav 1.7 2.7 1.2

s27 2.2 2.3 1.2

dk27 1.6 1.6 0.7

dk512 2.0 2.6 1.2

bbara 1.6 2.1 1.2

tbk 1.7 4.2 1.6

dk16 2.0 3.1 1.2

planet 2.2 4.6 2.3

Name

Area

(times）））） Delay (times)

FPGA FPGA CPLD

Reconfigurable Control Unit

~ 124 ~

Figure V-17 : The improvements compared with the FPGA device

Because some fixed lines are adopted to save area, the flexibility of the architecture is

reduced. This makes the critical path from inputs to outputs almost the same for different

cases. The same critical path results in a constant delay time for all the test cases as shown in

Table V-6. It can be seen that the delay time of our architecture is smaller than the FPGA

2030405060708090100 liont
avs27
dk27dk
512bbar
atbk
dk16pla
netS148
8

A
r
e
a

I
m
p
r
o
v
e
m
e
n
t

D
e
l
a
y

I
m
p
r
o
v
e
m
e
n
t

P
o
w
e
r

I
m
p
r
o
v
e
m
e
n
t

Reconfigurable Control Unit

~ 125 ~

and CPLD devices except in the case of dk27. For all the test cases, the delay time of the

CPLD device is about 50% smaller than the FPGA device.

The comparisons of delay made with FPGA and CPLD devices are listed in Figure V-17 and

Figure V-18 respectively. Compared with FPGA device, our architecture achieves from

39.95% to 80.82% reduction. The average delay time of our architecture for all test cases is

20% shorter than CPLD device. It needs to be emphasized that this improvement is obtained

together with significant reduction in area occupation and power consumption.

From the comparison in area, power and delay between our architecture and PLD (FPGA

and CPLD) devices, it is clear that we use a compact architecture to implement FSM with

less occupied area, less power consumption and shorter delay time. The small hardware and

short critical path directly leads to saving on power.

Reconfigurable Control Unit

~ 126 ~

Figure V-18 : The improvements compared with the CPLD device

0102030405060708090100 l
i
o
n

t
a
v

s
2
7

d
k
5
1
2

b
b
a
r
a

t
b
k

d
k
1
6

p
l
a
n
e
t

S
1
4
8
8

D
e
l
a
y

I
m
p
r
o
v
e
m
e
n
t

P
o
w
e
r

I
m
p
r
o
v
e
m
e
n
t

Reconfigurable Control Unit

~ 127 ~

V.7.5 Power Consumption, Area and Delay after Decomposition

Because our architecture has limit on capability, FSMs decomposition is adopted frequently

for large cases and low power implementations. A test is performed in order to obtain the

performance in power, area and delay. Even the biggest testcase in the benchmark set can be

implemented with our architecture; therefore, test cases planet and S1488 are used as the two

sub-modules to present a case when a large FSM is decomposed. These two sub-modules can

also be decomposed into smaller modules as desired.

In the power consumption test, the rate of power-saving depends on the number of sub-

modules employed, the size of each sub-module and the working time of sub-modules. The

experimental data clearly shows that decomposition reduces power consumption at the cost

of more area occupation. Because of the special architecture, the delay time is fixed even

when more sub-modules are decomposed.

Obviously, decomposition will not increase power consumption and delay time for the cases

of large FSMs. The cost for large FSMs is the large occupied area which depends on FSM

size. In other words, the larger the FSM, the more the area. The results show that the area of

our architecture will be significantly smaller than an FPGA device for the case of large

FSMs.

V.7.6 Relationship between Power, Area and Delay

All the comparison of improvements on area, delay time and power are list in Figure V-17

and Figure V-18 respectively. Basically, our architecture achieves good performance in

power, area and delay in the case of large ones. For our architecture, each case is fully

optimized in mapping and routing and achieves the best utilization rate. However, the FPGA

mapping and routing performed by the tools are not the most optimized ones and can be

improved in the case of large benchmarks. It is an important reason for better achievements

of our architecture for large cases.

In the case of s27, a small size benchmark, the area improvement is a bit lower than the best

case whereas its power consumption just reaches the average level. This is because the case

just fits our architecture well. Because of the amount replacement of fixed lines in the

Reconfigurable Control Unit

~ 128 ~

interconnection network, some PTBs in three levels are cascaded to form a fixed path. In

most cases, all PTBs in one fixed path can be fully utilized. But there is an exception for case

s27, in which the hardware resource reaches the top utilization rate. For the power

consumption experiments, the major cases consumed more power when they are

implemented in CPLD than FPGA devices. The exceptional ones are the small cases in

which the number of outputs is smaller than the number of inputs.

V.8. Conclusion

A novel reconfigurable low-power domain-specific FSM architecture for control purpose has

been introduced in this chapter. Based on the analysis of traditional interconnection networks,

a reduced one is adopted at the cost of less flexibility in order to improve area efficiency.

The new product-term based computing units are employed to implement the basic Boolean

function. The unsymmetrical design style is used in arranging interconnection, the selection

of PTBs and the way of mapping basic computing units.

The reduced flexibility of interconnection and basic computing units in the new architecture

achieves a significant reduction in area which directly leads to lower power consumption.

For this reason, unlike commercial FPGA devices, the proposed architecture targeted at

generic FSMs is not flexible enough to be used in any application. Obviously, the

architecture suitable for any application will be a large construction with more redundant

parts which will lead to more area and power consumption. One of the purposes of our

architecture is to find a fine balance between size and power consumption.

Ten test cases from the widely adopted FSM benchmark set were implemented by using both

our architecture and a FPGA device. It was demonstrated that our architecture could obtain

an average reduction of 82% in power consumption, a decrease of 44% in area occupation

and 20% reduction in delay when implementing the same circuit on a commercial FPGA

device. These figures show that the proposed reconfigurable architecture for FSMs provides

an efficient hardware platform for the implementation of generic FSMs in various power-

sensitive designs. The flexibility of the architecture makes it convenient not only for the

Reconfigurable Control Unit

~ 129 ~

proposed processor in this dissertation but also for embedding them in any reconfigurable

SoC in various applications such as mobile devices, portable players, etc. .

~ 130 ~

VI.1. DCT Implementation

DCT is one of the most popular and effective compression coding scheme and can be found

in almost all standardized video coding algorithms such as ITU H.261, H.263 and H.264 for

video conferencing standard, and ISO MPEG (including MPEG-1, MPEG-2, and MPEG-4)

for visual communication and multimedia applications. The broader use of DCT in

communication and multimedia areas underlines the requirement for a more efficient and

flexible system.

MPEG4 is an ISO/IEC standard developed by MPEG (Moving Picture Experts Group), and

became an International Standard in 1999. Compared to its predecessor MPEG2, MPEG4

greatly improves the perceptual video quality by introducing some new tools in the encoding

and decoding process. A wide range of applications are supported, from 5-64k bits/s for

mobile video to 2M bits/s for TV/film applications. Nine profiles are defined in MPEG4, of

which Simple Profile (SP) is suitable for mobile video applications. The prediction errors are

DCT transformed and quantized. The control data, quantized prediction errors, and motion

data are encoded in the Entropy Coding module, which is then packed into video streams for

transmission or storage.[113]

H.264 is a joint effort between ITU-T Video Coding Experts Group (VCEG) and ISO/IEC

Motion Picture Experts Group (MPEG), and became an International Standard in 2003.

The new key features of H.264 include:

� Enhanced Motion Estimation

� Small blocks for transform coding

Chapter VI

Implementation of DA Application

Implementation of DA Application

~ 131 ~

� 4x4 Integer transform

� In-loop de-blocking filter

� Enhanced entropy coding CAVLC (Context Adaptive Variable Length Coding)

The H.264 Codec design substantially increases the complexity (memory & computation),

requiring approximately 3x computation power for the decode and 4x for the encode

compared to MPEG-2 Codec design. Three profiles are provided in H.264: I) Baseline

profile; ii) Main profile; iii) Extended profile. Of the three, Baseline profile may be adopted

for mobile application. [114]

VI.1.1. DCT Algorithm

For a given 2-D spatial input vector {Xi,j;i,j=0, 1, …, N-1}, the 2-D DCT output vector

{ Yk,l;k,l=0, 1, …, N-1} is defined as follows:

(VI-1)

where

(VI-2)

Employing row-column decomposition, 2-D DCT is separable and can be broken into two

sequential 1-D DCT operations, one along the row vector and the other along the column

vector of the preceding row vector results. Therefore, 1-D DCT implementation is targeted at

the proposed architecture.

For an input vector {X0, X1 …XN-1}, the 1-D DCT output vector {Y0, Y1 …YN-1} is given as

follows:

(VI-3)

where

1

0

(2 1)
cos

16

N

k k i

i

k i
Y C X

π−

=

+
= ∑

1 1

, ,

0 0

(2 1) (2 1)
cos cos

2 2

N N

k l k l i j

i j

k i l j
Y C C X

N N

π π− −

= =

+ +
= ∑∑

0

2 1 1
x

N x
C

N x N

 1 =
= 

1 ≤ ≤ −

Implementation of DA Application

~ 132 ~

 (VI-4)

For eight points 1-D DCT, we define coefficient matrix Fk as:

 (VI-5)

where i = 0,1……7; The coefficient matrix includes the Ck and cosine factors. Then,

Equation (VI-3) can be rewritten as:

(VI-6)

Now, the equation of DCT has been transformed into the format as shown in Equation

(III-10). The next step is to find the common terms sharing of DCT to maximize the

hardware efficiency.

VI.1.2. 2-D DCT and its Implementations

To verify the functionality of the reconfigurable architecture, an 8 bits 2-D DCT is

implemented. In the realization of the DCT, finite accuracy is achieved due to fixed DA

precision. Obviously, more accurate data can be obtained through increasing the precision of

the coefficients and the width. This, however, results in larger area and higher power

consumption, and adversely affects the computing speed in the adder array.

The requirements of DCT and Inverse Discrete Cosine Transform (IDCT) hardware

implementations are imposed by various standards, such as ISO/IEC 14496-2:2004 and

IEEE Std 1180–1990 [115]. A brief summary is given below:

• Image pixel representation: 8 bits for 8X8 DCT

• Input bits for the forward transform: 9 bits

• Coefficients representation: 12 bits

• 1-D DCT outputs: 14 bits

0

2 1 1
k

N k
C

N k N

 1 =
= 

1 ≤ ≤ −

[]
(2 1)

() cos
16

k k k
k i

F F i C
π +

= =

[]
7 7

0 0

()k k i k i

i i

Y F i X F X
= =

= =∑ ∑

Implementation of DA Application

~ 133 ~

There are many papers discussing the fast implementation of the 1-D and 2-D DCT/IDCT.

Based on the straightforward implementations in [116-118] which are computationally

expensive with 4096 multiplications, the fast algorithms reduce the computational cost.

Theses algorithms can be broken down into two broad categories: one is the so-called

indirect method based on the row-column decomposition [119-122] and the other is direct,

fast 2-D approaches [123-126]. The row-column approach results in simple and regular

implementations, but it is less computationally efficient than direct, fast 2-D

implementations.

The row-column algorithm is divided into three main stages. Stage one and stage three

compute the row and column transforms, respectively. In stage one, the one–dimensional (1-

D) DCT/IDCT of each row of input data is taken, and these intermediate values are

transposed. Then, in the stage three, the 1-D DCT/IDCT of each row of the transposed

values is fed to the 2-D DCT/IDCT in column. Both the row and column transforms are

implemented using the same 1-D DCT module shown in Figure VI-1. The second stage

performs the transposition using N
2
 registers where N is 8 in our implementation.

Figure VI-1 : A general row-column 2-D DCT implementation

VI.1.3. Control Path Implementation

The control unit in the proposed DA processor can be considered as a big multi-input-multi-

output FSM. This FSM can be divided into some separated sub-module which can perform

specific function independently.

A full row-column 2-D DCT requires two 1-D DCT modules along the data path. According

to our architecture, only one algorithm logic unit is inside, and the whole 2-D DCT must be

broken into two separated 1-D DCT stages. In these two stages, the algorithm logic unit runs

twice and the registers matrix will be used for storing data temporarily. Registers matrix is

1-D DCT

Module

Transpose

Memory
1-D DCT

Module

Implementation of DA Application

~ 134 ~

adopted not only because a whole 2-D DCT data path is broken into two separated parts.

Based on the definition of 2-D DCT in Equation (VI-1), the 8 parallel data input to the

second 1-D DCT module are not the ones obtained directly from the results of the first 1-D

DCT module. These 8 data are vertical to the results from the first 1-D DCT module.

Therefore, the inputs to the second 1-D DCT module will not be available until 8 results

from 1-D DCT module are ready. If the results from 1-D DCT module are stored row-by-

row, as shown in Figure VI-2, from Row_0 to Row_7, the data fed to the second 1-D DCT

module will be column-by-column from Col_0 to Col_7 and vice versa.

Figure VI-2 : Registers matrix

Therefore, input matrix will route 8 external signals and the 8 results from the first 1-D DCT

module to algorithm logic unit in turn. The reconfigurable FSM controlling input matrix is

configured as a 4-bit counter and the highest bit of the counter which outputs 0 and 1

alternatively is used to control the two-input multiplexer to switch the input port of algorithm

logic unit between external signals and the results from the first 1-D DCT module.

Similar to input matrix, output matrix will export 8 valid results serially every 8 clock cycles

and the reconfigurable FSM in output matrix is configured as a 4-bit counter as well. The

highest bit of the counter is used to control output buffer refreshing or not: in case of value

of 0, output buffer keeps its original value; in case of value of 1, output buffer is refreshed in

Implementation of DA Application

~ 135 ~

each clock cycle by data that arrive.

VI.1.4. Registers Matrix Implementation

The registers matrix in proposed processor has two working modes: one dimension 64

registers and 8X8 two-dimension array. In considering the 8 parallel outputs from algorithm

logic unit, the registers matrix is configured as an 8X8 two-dimension array. It means that

only two 3-bit reconfigurable FSMs in row and column control modules are used to address

coding in implementation of 8X8 2-D DCT.

To make the FSM in row control module work properly, a reconfigurable FSM is set as a 4-

bit counter whose initial value is set as binary ‘1000’. The highest bit of the counter is

connected to the enable port of row control FSM. Along with the inverter which is available

only in 8X8 two-dimension working mode and bridges the two enable ports of row and

column control FSMs, the column address coding FSM will operate every 8 clock cycles

when the address coding for rows is done. The two reconfigurable FSMs in row and column

control unit are configured as a 3-bit counter, one of the simplest FSM of all

implementations.

Under the control of enable port, 3-bit counter in row or column control unit works

independently generating address from 0 to 7 in 8 clock cycles; the counter in row control

alternates with the one in column control.

VI.1.5. Algorithm Logic Unit Implementation

A. Coefficient Matrix and Terms of DCT

The precision of DCT implementation lies in the coefficient representation when the input

vector is given with the fixed precision. To fully support international standards such as

ISO/IEC 14496-2:2004 and IEEE Std 1180–1990, the coefficient precision in our

architecture is set as 12 bits. Following the steps of adder-based DA, Equation (VI-5) can be

represented in 2’s complement format as shown in Figure VI-3, where coefficient matrixes

0()F i , 1()F i ,…, 7()F i are listed.

Implementation of DA Application

~ 136 ~

Figure VI-3 : ()kF i
in 2’s complement format

6 7

1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0

1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0

1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0

0 1 0 1 1 0 1 0 0 0 0 0 1 1 1 1

0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1

0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1
() ()

0 1 0 1 1 0 1 0 1 1 1 0 1 0 0 0

1 0 1 0 0 1 0 1 1 1 0 0 1 1 0 0

1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1

0 0 1 1 1 1 0 0 0 0 1

0 1 0 1 1 0 1 0

0 1 0 1 1 0 1 0

F i F i= =

0 1 0 1 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1

1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0
() ()

0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0

1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

F i F i= =

2 3

0 1 0 0 0

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 1 0 1 1 0 1 0 1 0 1 1 0 0 1 0

1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0

0 1 0 1 1 0 1 0 0 0 0 1 0 1 1 1

0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1

1 0 1 0 0 1 0 1 1 1 1 0 1 0 0 0

1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 1
() ()

0 0 1 1 1 1 0 0 1 0 0 1 0 1

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

1 0 1 1 1 1 0 1

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

F i F i= =

4 5

1 0

0 0 0 1 0 1 1 1

1 1 0 1 0 1 0 0

1 1 0 0 1 1 0 0

0 1 1 1 0 0 0 1

0 1 1 1 0 0 0 1

0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1

0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1

1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1

0 1 1 0 0 1 1 0 1 0 0 0 1 1 1 0

1 0 0 1 1 0 0 1 1

0 1 1 0 0 1 1 0
() ()

1 0 0 1 1 0 0 1

1 0 0 1 1 0 0 1

0 1 1 0 0 1 1 0

1 0 0 1 1 0 0 1

0 1 1 0 0 1 1 0

0 1 1 0 0 1 1 0

F i F i= =

1 0 1 0 1 0 0

1 0 0 0 1 1 1 0

0 0 1 1 0 0 1 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

1 0 0 1 0 1 1 0

0 1 0 0 1 1 0 1

0 1 0 0 1 1 0 1

Implementation of DA Application

~ 137 ~

The eight coefficient matrixes can be converted to the terms in the format of input vector {X0,

X1 …XN-1}. In theory, 96 (=12X8) terms, which are the summation of eight inputs, are needed

for 8-point 1D DCT with 12-bit coefficients based on the adder-based DA. This implies that

672 two-input adders are required when implemented directly. However, because of the

periodic conjugate symmetry inherent in the DCT, the real implementation consumes just a

small part of the theoretic hardware cost. In total, there are 96 terms of eight coefficient

matrices. In deducting the zero and duplicate terms which need no further calculation, there

are one term of 8 inputs and 22 terms of 4 inputs. The eight coefficient matrixes in format of

input vectors and set R which contains all non-repetitive terms are shown in Table VI-1 and

Table VI-2 respectively.

Table VI-1 : Eight coefficient matrixes in format of input vectors

2()F i

X1X3X4X6

X0X1X6X7

X1X3X4X6

X2X3X4X5

X0X2X5X7

X0X2X5X7

X2X3X4X5

X0X1X6X7

X0X1X6X7

X0X2X5X7

X2X3X4X5

X2X3X4X5

1()F i

X1X3X5X7

X1X3X5X7

X0X3X5X6

X0X2X4X6

X1X2X4X7

X0X2X4X6

X0X1X3X5

X0X3X5X6

X0X1X4X5

X0X1X2X4

X4X5X6X7

X4X5X6X7

0()F i

0

0

X0X1X2X3X4X5X6X7

0

X0X1X2X3X4X5X6X7

X0X1X2X3X4X5X6X7

0

X0X1X2X3X4X5X6X7

0

X0X1X2X3X4X5X6X7

0

0

3()F i

X0X2X3X6

X0X2X3X6

X3X5X6X7

X1X4X6X7

X0X1X2X4

X1X4X6X7

X0X3X5X6

X3X5X6X7

X0X1X3X5

X0X1X4X5

X1X2X3X7

X1X2X3X7

4()F i

X1X2X5X6

X1X2X5X6

X0X3X4X7

X1X2X5X6

X0X3X4X7

X1X2X5X6

X0X3X4X7

X0X3X4X7

X1X2X5X6

X0X3X4X7

X1X2X5X6

X1X2X5X6

5()F i

X1X2X3X7

X1X2X3X7

X2X4X6X7

X0X4X5X6

X0X1X3X5

X0X4X5X6

X2X3X6X7

X2X4X6X7

X3X5X6X7

X0X3X5X6

X1X4X5X7

X1X4X5X7

Implementation of DA Application

~ 138 ~

Table VI-2 : Unique terms of DCT

Input Terms

8 X0X1X2X3X4X5X6X7

4

X0X1X2X3, X4X5X6X7, X0X1X2X4, X0X1X4X5, X0X3X5X6, X0X1X3X5, X0X2X4X6

X1X2X4X7, X2X3X4X5, X1X3X5X7, X0X2X5X7, X0X1X6X7, X1X3X4X6, X1X2X3X7

X3X5X6X7, X1X4X5X7, X0X2X3X6, X1X2X5X6, X0X3X4X7, X2X4X6X7, X2X3X6X7

X0X4X5X6

For the term with 8 inputs, three levels adder matrix is required. In the first level adder

matrix, 4 two-input adders are used to generate 4. Eight input vectors are assigned to the

adders stochastically. For the second level adder matrix, two part products with 4 input

vectors will be obtained through 2 two-input adders with 4 outputs from the first level.

Similar to the setting in the first level, 4 outputs are assigned randomly to the four input ports

of the second level. In the last level, the third level, an adder will sum up the outputs from

the second level and generate final result, the term with 8 inputs for DCT. Because of the

final result containing all 8 inputs, the output of the third level can never be changed no

matter how to change the configuration in the first and second levels.

For the 22 terms with 4 inputs, a two levels adder matrix can work, in which 22 adders are in

the second level. The 44 inputs for the 22 adders are obtained from the outputs of the first

level adder matrix. In theory, there are totally 28 (= 2

8
C) different 2 inputs terms which can

be implemented in the first level adder matrix. At the most twenty eight terms will be fed to

the 44 input ports of the second level adder matrix. It means that these 2 inputs terms will be

shared by two or more adders in the second level adder matrix. For example, the three adders

generating terms X0X1X2X4, X0X2X4X6 and X1X2X4X7 respectively can share the 2 inputs term

6()F i

X0X1X6X7

X0X2X5X7

X1X2X5X6

X1X3X4X6

X2X3X4X5

X2X3X4X5

X1X3X4X6

X0X2X5X7

X0X2X5X7

X2X3X4X5

X1X3X4X6

X1X3X4X6

7()F i

X0X1X2X3

X0X1X2X3

X0X1X4X5

X4X5X6X7

X2X3X6X7

X4X5X6X7

X0X1X2X4

X0X1X4X5

X1X2X4X7

X2X4X6X7

X1X3X5X7

X1X3X5X7

Implementation of DA Application

~ 139 ~

X2X4. When only 20 or less 2-input terms are necessary to be implemented in the first level,

it indicates that some 2 inputs terms are shared by more than two adders in the second level.

Obviously, the number of adders used in first level will directly determine the efficiency of

the proposed processor. In the following paragraphs, the discussion will focus on the

implementation of first level adder matrix with minimal adders .

B. Optimal Terms Sharing Scheme

The set R and input vectors will construct root and leaf level of a dimidiate tree respectively.

Now, the 22 elements, as shown in Table VI-2, in set R and 8 inputs {X0, X1, …, X7} build up

all the nodes in their levels. Our purpose is to obtain the set Bbest_all={B0, B1, …, Bp-1} which

construct medium level of the dimidiate tree with the least elements.

Based on the discussion in section IV.5.4, a group of new subsets, R’h, of R can be obtained

as shown in Table VI-3, which contains all the sets in the root level with Lh element.

Table VI-3 : R’h sets for DCT

Lh R’h

X0
X0X1X2X3, X0X1X2X4, X0X1X4X5, X0X3X5X6, X0X1X3X5, X0X2X4X6,

 X0X2X5X7, X0X1X6X7, X0X2X3X6, X0X3X4X7, X0X4X5X6

X1
X0X1X2X3, X0X1X2X4, X0X1X4X5, X0X1X3X5, X1X2X4X7, X1X3X5X7,

X0X1X6X7, X1X3X4X6, X1X2X3X7, X1X4X5X7, X1X2X5X6

X2
X0X1X2X3, X0X1X2X4, X0X2X4X6, X1X2X4X7, X2X3X4X5, X0X2X5X7,

X1X2X3X7, X0X2X3X6, X1X2X5X6, X2X4X6X7, X2X3X6X7

X3
X0X1X2X3, X0X3X5X6, X0X1X3X5, X2X3X4X5, X1X3X5X7, X1X3X4X6,

X1X2X3X7, X3X5X6X7, X0X2X3X6, X0X3X4X7, X2X3X6X7

X4
X4X5X6X7, X0X1X2X4, X0X1X4X5, X0X2X4X6, X1X2X4X7, X2X3X4X5,

X1X3X4X6, X1X4X5X7, X0X3X4X7, X2X4X6X7, X0X4X5X6

X5
X4X5X6X7, X0X1X4X5, X0X3X5X6, X0X1X3X5, X2X3X4X5, X1X3X5X7,

X0X2X5X7, X3X5X6X7, X1X4X5X7, X1X2X5X6, X0X4X5X6

X6
X4X5X6X7, X0X3X5X6, X0X2X4X6, X0X1X6X7, X1X3X4X6, X3X5X6X7,

X0X2X3X6, X1X2X5X6, X2X4X6X7, X2X3X6X7, X0X4X5X6

X7
X4X5X6X7, X1X2X4X7, X1X3X5X7, X0X2X5X7, X0X1X6X7, X1X2X3X7

X3X5X6X7, X1X4X5X7, X0X3X4X7, X2X4X6X7, X2X3X6X7

Implementation of DA Application

~ 140 ~

Based on these subsets in Table VI-3, a matrix of Ph,k can be obtained as shown in Table

VI-4, which contains leaf Lh (h∈{0, 1, …, q-1 }) appearance time in set R’h.

Table VI-4 : First Ph,k coefficient matrix for DCT

The figures in Table VI-4 show that DCT is the special case for its coefficients are the same

for most cases. But it does not affect the applying of the algorithm on it. First, we take 8 best

{Lh, Lk∣Ph,k = Ph,max } pairs with the index of Lh (h∈{0, 1, …, 7 }), randomly selecting one

if the appearance times are the same for each Lh. Eight pairs can be obtained, which are:

X0X6, X1X7, X2X4, X3X5, X4X2, X5X3, X6X0, X7X1

By eliminating duplicated pairs, we get the first 4 pairs as part of set Bbest_all based on Table

VI-4: X0X6, X1X7, X2X4 and X3X5. Subtracting these four pairs from 22 elements in set R,

another 4 pairs are obtained which are also the elements of set Bbest_all. They are X0X1, X2X3,

X4X5 and X6X7. Apart from this second set of 4 pairs, there are still 8 elements in set R, which

are left when first 4 pairs are subtracted from set R. They are :

X0X1X2X3, X4X5X6X7, X0X1X4X5, X0X2X5X7,X1X3X4X6, X1X2X5X6, X0X3X4X7, X2X3X6X7

When the second set of 4 pairs is subtracted from the rest 8 elements in set R, only 4

elements are left. They are:

 X0X2X5X7,X1X3X4X6, X1X2X5X6, X0X3X4X77

k

h

0 5 5 5 5 5 5 35 0 5 5 5 5 3 55 5 0 5 5 3 5 55 5 5 0 3 5 5 55 5 5 3 0 5 5 55 5 3 5 5 0 5 55 3 5 5 5 5 0 53 5 5 5 5 5 5 0
0

1

2 3 4 5 6 7

6

7

2

3

4

5

0 1

Implementation of DA Application

~ 141 ~

After the first round processing, we have specified 8 elements in set Bbest_all and 4 nodes are

left which have not children nodes. It means that all the root nodes except 4 ones listed

above can be presented as the summations by its 8 descendant nodes in medium level

without order. The rest nodes in set Bbest_all still need to be specified to complete the whole

dimidiate tree.

By repeating the same steps, another Ph,k coefficient matrix of the rest 4 nodes in set R is

obtained, as shown in Table VI-5.

Table VI-5 : Second Ph,k coefficient matrix for DCT

In this table, the special situation found in Table VI-4 no longer happens. By selecting the

maximal Ph,k for each Lh, we obtain eight best pairs, which are:

X0X7, X1X6, X2X5, X3X4, X4X3, X5X2, X6X1, X7X0

If neglecting repeated ones, we will get 4 pairs which are X0X7, X1X6, X2X5 and X3X4. These

four pairs can represent all 4 remaining root nodes as the summations of pairs.

By now, the work of searching for all nodes in set Bbest_all for medium level is done. These

nodes are the best sharing common terms for the proposed architecture in DCT

implementation, which are:

 X0X6, X1X7, X2X4, X3X5, X0X1, X2X3, X4X5, X6X7, X0X7, X1X6, X2X5, X3X4

k

h

0 0 1 1 1 1 0 20 0 1 1 1 1 2 01 1 0 0 0 2 1 11 1 0 0 2 0 1 11 1 0 2 0 0 1 11 1 2 0 0 0 1 10 2 1 1 1 1 0 02 0 1 1 1 1 0 0
5 6 74

5

6

0 1 2 3

7

4

0

1

2

3

Implementation of DA Application

~ 142 ~

By applying the algorithm for searching for the best set, 12 elements in set Bbest_all are

obtained. Compared with a universal set with 28 (= 2

8
C) possible elements, the algorithm

achieves 57% reduction in element number which will directly deduce the area and power

consumption of hardware implementation.

It is noted that 12 elements in set Bbest_all is a necessary condition for building the whole set R.

But, for a single element, these 12 elements is a sufficient condition for implementation.

Taking the element X0X1X6X7 in set R as an example, this element can be decomposed into

X0X6+ X1X7, X0X1+ X6X7 or X0X7+ X1X6. Obviously, these six elements in set Bbest_all are

sufficient for implementing X0X1X6X7. Therefore, the rule for specifying parent-child

relationship between nodes in two levels is that the times for adopting each node in medium

level are as close as possible to average number. It can avoid occurrence of high output load

capacitance on single nodes.

Considering the overall common terms occurrence, X0X7+ X1X6 is used in our design since

these two node’s fan out is less than the other nodes.

By sharing common terms, a total of 35 (12+22+1) two-input adders are needed for the DCT

implementation, which gives 94.8% reduction in the number of adders compared with the

672 adders required by the theoretic implementation without optimization.

VI.1.6. Performance & Evaluation

With the common terms discussed in the previous sections, the 8 points 1-D and 2-D DCT

was implemented with the proposed reconfigurable architecture.

A standard-cell based synthesis and layout was performed with Design Compiler from

Synopsys, Inc., targeting the UMC 0.18 mµ CMOS technology library. The power

consumption was obtained by the Synopsys PrimePower. The area of the 2-D DCT is

1448062
2mµ and the power consumption is 19.23mW at 20MHz system clock. The area of

the 1-D DCT is 600929
2mµ and the power consumption is 15.2mW at 20MHz system

clock. The design can run with up to 144MHz (6.93ns) and 112-bits (=14bits×8) outputs.

This implies that our architecture can reach up to 16.128Gbps for the 1-D DCT. It can be

Implementation of DA Application

~ 143 ~

seen from power experimentation data that the power consumption of 2-D DCT is not twice

the power consumption of 1-D DCT.

The reason is that the power consumption we used here for comparison is not the total

consumed power for a group of data but the average consumed power in a time unit. The

proposed implementation of 2-D DCT can be treated as using a 1-D DCT hardware circuit

twice in two clock cycles for generating one 2-D DCT output. Therefore, from this point, the

difference in power consumption between 2-D DCT and 1-D DCT is the power consumption

of registers matrix which is not available for 1-D DCT. In the performance evaluation of this

section, the comparison is focused on area, power and delay for 1-D DCT because the

performance of proposed architecture can be fully revealed based on the target application.

A. Compared with the CSD Implementation

To compare with the performance of common subexpression elimination with CSD code,

two implementations from [85, 86] are taken. All the implementations including ours are

targeted at 8X8 DCT with bit width of 8. The number of required adders is 65 and 130

respectively in [85] and [86]. For our architecture, a total of 35 adders are needed in three

levels to obtain all the products. This indicates our method achieves 46% and 73% reduction

respectively compared with the implementations of existing CSD common subexpression

elimination. The figures prove that adopted strategy is efficient and scheme selected is

optimal.

B. Comparison between FPGA Device and Proposed Architecture

As similar domain-specific reconfigurable DA architecture cannot be found in the literature,

an FPGA device is used as a reference to compare performance of our architecture in terms

of area, power and delay. Based on the fact that the difference in voltage supply and CMOS

technology will greatly affect chip power consumption and area, Xilinx Virtex-E [10] is

taken as the reference FPGA device for implementing 1-D DCT, whose parameters are the

same as the proposed architecture.

The area estimation of Virtex-E is based on two LUTs per slice where an estimated area of

3303
2mµ is used per slice and its surrounding routing [73]. This value excludes the area of

Implementation of DA Application

~ 144 ~

memory which is embedded in FPGA device. The target FPGA device is larger than our

architecture, so quiescent power consumed by unused computing units, RAM, clock

manager and controller in FPGA device is very high. To remove all these impact factors,

only the Vccint dynamic power consumption is taken as the reference. The delay time of

FPGA device is the length from the rising edge of the clock to the time when signal reaches

the output port, namely clock path plus data path.

The power consumption of 1-D DCT implementation on Virtex-E FPGA is 706mW with

1460 used slices which indicates 4822380
2mµ areas are occupied. The delay of the

implementation is 36.56ns which means the maximum frequency for 1-D DCT

implementation on FPGA is 27.35MHz.

It is clear from the above experimentation data, our architecture achieves at least 97.8%

reductions in power consumption compared with the FPGA Vccint dynamic power

consumption with less than 87.5% area occupation. Our architecture can run more than 5

times faster than the FPGA implementation besides its merits in area and power consumption.

Therefore, it can be concluded that our architecture achieves a good performance in terms of

area, power consumption and speed.

It is noted that FPGA device is designed for general purpose and fits for any application if

the target device scale is large enough. The architecture in this thesis is a domain-special one

which is only available for DA applications. The comparison against FPGA device is used as

a reference to evaluate the performance of our architecture. More comparison between ours

and other ADIC designs will be made in the following sub-sections.

C. Power Consumption Comparison

To evaluate the power consumption of our architecture, an ASIC design in [127] is taken as

an example, which adopts similar algorithm with ours. The power consumption in [127] is

12.45mW for 1D DCT with STMicroelectronics, hcmos9, 0.12µm technology at 1.5V,

50MHz. Considering dissipated power is approximately proportional to the square of supply

voltage, the power consumption of the design in [127] can be scaled to 7.97mW for 1.2V.

Our architecture consumes 7.13mW with UMC 0.13 mµ CMOS technology library at 1.2V,

Implementation of DA Application

~ 145 ~

50MHz. It is noted that the power consumption of our architecture includes the power

dissipation caused by interconnection network which brings the architecture powerful

reconfigurability. The outstanding power characteristic of architecture makes it attractive to

the power sensitive applications.

D. Area & Delay Comparison

To make the fair comparison, one of the key factors is to choose a proper reference design.

To evaluate the area & delay performance of our architecture, we need to make comparisons

with alternative solutions. However, currently there has been no existing architecture

specifically designed for the distributed arithmetic applications. Therefore, only two

implementations can be used for comparison: FPGA and ASIC implementation.

The proper comparison is hard to be made between FPGA, domain-specific architecture and

ASIC. The comparison between different implementations should not only target at the

realized function, but also at the potential ability they have. Selecting an FPGA

implementation with the same function, implementation will make our architecture

successive in area, power and delay comparison. However, it is meaningless.

It is clear that the reconfigurability is obtained at the cost of time, area, and power

consumption. The more requirements are met, the higher the cost is. For a specific function,

an ASIC implementation is the most efficient among all implementations, including FPGAs

and domain-specific reconfigurable architectures. The general purpose FPGA devices, as

well as digital signal processors, can be used for a wide range of applications. However, this

powerful functionality leads to low efficiency for specific functions.

In this dissertation, to make the comparison with ASIC designs, we remove the

reconfigurability from our architecture. The internal routing network in our design is used

for re-arranging inner signals when the architecture switches to other applications, while

there is not such a part in ASIC design. Given the fact that the internal routing network of

proposed architecture consumes over 80% area of the whole architecture, the normalized

delay-area product of our design in Table VI-6 is reduced by 80%. This scale can be

regarded as the routing network which is replaced by fixed lines whose area and time

Implementation of DA Application

~ 146 ~

consumption can be ignored. The comparison between proposed reconfigurable architecture

and ASIC intends to give an idea of area &delay performance of the proposed architecture.

As area can often be traded for delay and to eliminate the impact of different technologies,

normalized delay-area product [128] is adopted to evaluate our architecture. It is defined as

the product of the hardware cost (NAND gate count) and normalized average computation

time which is the consumption time normalized by the delay of a NAND gate. This is used to

evaluate the design performance in area and speed together. The lower the normalized delay-

area product of a design, the better the performance of that design. The normalized delay-

area products for different designs are listed in Table VI-6.

Therefore, several ASIC solutions for 1D DCT with the same throughput will be taken as the

reference for evaluating the performance. The performances of some existing designs with

12-bit word length of data path are listed in Table VI-6.

It can be concluded from the table that our architecture achieves better performance than the

average of 6 selected reference designs.

Table VI-6: Performances of some existing designs and ours

Designs

normalized

delay-area

product Index

(X10
6
)

[65] 2.0

[128] 1.0

[129] 1.3

[130] 2.2

[131] 1.1

[132] 0.9

Average 1.4

Proposed

(Scaled)
1.2

Implementation of DA Application

~ 147 ~

VI.1.7. Summary

Eight points 1-D and 2-D DCT are mapped onto the architecture for the functionality

verification and performance evaluation. Based on dimidiate tree, crossing forest, algorithm

for searching for optimal scheme of common term sharing and its implementation which are

introduced and defined to efficiently mapping and fully used hardware, the adder-based DA

can achieve 94.8% reduction in area in the case of a DCT implementation. Compared with

the common subexpression elimination with CSD code, up to 73% saving is obtained in

hardware resources. The results of the proposed architecture prove its efficiency in terms of

area, power and speed.

In comparison with FPGA DCT implementation, our architecture achieves at least 97.8%

reductions in Vccint dynamic power consumption with less than 87.5% area occupation. Our

architecture can run more than 5 times faster than the FPGA implementation besides its

merits in area and power consumption.

In comparison with the existing ASIC designs, the experimental data show that the proposed

architecture achieves better performance in area and speed than the average of six selected

ASIC designs when the impact of interconnection resource in our architecture is removed.

The right policy for trading off area and speed makes the architecture even consume less

power than the ASIC designs using a similar algorithm.

It can be concluded from our results that the proposed reconfigurable architecture could

provide an efficient hardware platform for implementing in DCT application.

VI.2. DFT Implementation

In the field of digital signal processing, the discrete Fourier transform (DFT) plays an

important role in the analysis, design, and implementation of discrete-time signal-processing

algorithms and systems [129, 130]. DFT is one of the most important algorithms in

mathematical, numerical, scientific, engineering, and technical applications. Some of the

applications of the DFT algorithm include time series, wave analysis, and convolution,

solving, linear differential equations, particle simulations, Poisson's equation solver and

Implementation of DA Application

~ 148 ~

digital signal processing [131, 132]. The Fourier transform, in general, is a central

component in many signal analysis systems.

The DFT, with a transform length equal to a power of 2, is usually implemented with the fast

Fourier transform (FFT). The fast Fourier transform (FFT) is widely used in signal

processing and communication such as digital filtering, spectral analysis, and polyphase

filter multicarrier demultiplexing (MCD) [133]. The main reason for its widespread use is

the existence of efficient techniques for its computation. Furthermore, in modern genetics

and biology, the FFT is extensively applied in biological sequence analysis [134].

Due to the popularity of the orthogonal frequency division multiplex (OFDM) system, the

demand for high-speed and low-power FFT emerges from various applications. The

combination of the multiple-input multiple-output (MIMO) signal processing with OFDM

communication system is considered as a promising solution to enhancing the data rates of

the wireless communication systems of next generation operating in frequency-selective

fading environments. The High Throughput Task Group which establishes IEEE 802.11n

standard is going to draw up the next-generation wireless local area network (WLAN)

proposal to deliver higher bandwidth based on the 802.11 a/g which is the current OFDM-

based WLAN standards [135]. The fourth-generation cellular phone and the forthcoming

new WLAN systems may also incorporate OFDM system to deliver higher bandwidth [136].

The FFT is one of the most critical components in OFDM systems. It directly affects the

accuracy of the channel estimation as well as the symbol demapper. As the data transmission

rate of OFDM systems increases, generating OFDM symbols with high data rate requires

very high speed FFT processor. According to the European digital video/audio broadcasting

(DVB-T/DAB) standards, an OFDM system may require FFT length ranging from 256 to

8192 points. Wireless local area network (WLAN) and HIPERLAN/2 systems require high-

speed and low-power FFT/IFFT design [137, 138].

With the introduction of the radix-2 FFT by Cooley–Tukey in 1965 [139], considerable

research has been carried out resulting in a number of algorithms. The FFT algorithms are

based on the principle of decomposing the computation of DFT into sequences of smaller

Implementation of DA Application

~ 149 ~

DFTs. The first efficient FFT algorithm was discovered by Gauss in the 18th century and

rediscovered by Cooley and Tukey [139] in 1960s. Later advances in the research of FFT

algorithms include the higher radix FFT [140], the mixed-radix FFT [141], the prime-factor

FFT [142], Winograd Fourier Transform Algorithm (WFTA) FFT [143], the split-radix FFT

[144], the recursive FFT [145], and the combination of decimation-in-time (DIT) and

decimation-in-frequency (DIF) FFT algorithms [146]. Two widely used approaches are the

fixed radix of Cooley–Tukey and the split radix, since they provide algorithms with regular

computational structures. Most of these algorithms illustrate FFT with similar FFT diagrams,

which evolved from the recursive nature of the FFT algorithms and are constructed by basic

butterfly structure.

VI.2.1. DFT Algorithm

The N-point DFT performs the transformation of N-point time domain data into N-point

frequency domain data. Discrete means that the data is sampled at given time instead of

being continuous. The DFT operates on an N-point sequence of numbers x(n), which is

obtained through uniform sampling of a finite period of a continuous function. The DFT of

x(n) is written as X(k), and is defined by equation (VI-7) [147].

(VI-7)

where WN is defined as

(VI-8)

The
K

NW is called twiddle factor which is a periodic function in the period N. In this

dissertation, twiddle factors are also named as coefficients. It is clear in equation (VI-7) that,

for each k, N complex multiplications and N-1 complex additions are needed to calculate

X(k). Hence, roughly 2N
2
 complex operations are required for the computation of a N-point

DFT. Similar to DFT, inverse DFT can be given as follows [147].

(VI-9)

1

0

() () 0, 1, ..., -1
N

nk

N

n

X k x n W k N
−

=

= =∑

2 / cos(2 /) sin(2 /)N
j N

W e N j N
π π π−= = −

1

0

1
() () 0, 1, ..., -1

N
nk

N

k

x n X k W k N
N

−
−

=

= =∑

Implementation of DA Application

~ 150 ~

VI.2.2. FFT Algorithm

A. Basic FFT Algorithm

Fast Fourier Transform is a collection of algorithms to speed up the DFT by reducing the

number of operations required. It was popularized by Cooley and Tukey in the 1960s [139].

Actually, more than a century earlier, a German mathematician Karl Gauss had used this

method [148]. For the sake of simplicity, N is assumed to be a power of 2, meaning N = 2
m
,

where the power m is a positive integer. N-point input sequence x(n) can be separated into

two subsequences of length N=2. One subsequence consists of even components of x(n), the

other is composed of odd components. Therefore, equation (VI-7) can be deduced as

follows [149].

(VI-10)

If n in the even and odd summations are replaced by 2m and 2m+1, respectively, equation

(VI-10) can be written below.

(VI-11)

However, it is easy to prove that
2

NW = WN/2, so,

(VI-12)

(VI-13)

where subsequence xeven(m) consists of the even-indexed components of x(n), and

subsequence xodd(m) consists of the odd-indexed components of x(n). Due to the periodicity

of WN (W
k
N = WN

k+lN
), N/2-point DFTs of xeven(m) and xodd(m) can be computed for only N=2

of the N values of k. Therefore, it leads to a reduction from N
2
 to N

2
/2+N/2 in the number of

complex multiplications. For large N, about 50% multiplication operation savings can be

achieved, compared to the direct calculation of the DFT by equation (VI-7).

B. Radix-2 FFT Algorithm:

2 1

0 1

() () ()
even odd

N N
nk nk

N N

n n

X k x n W x n W
− −

= =

= +∑ ∑

/2 1 /2 1
2 2

0 0

() (2)() (2 1)()
N N

mk mk k

N N N

m m

X k x m W x m W W
− −

= =

= + +∑ ∑

/2 1 /2 1

/2 /2

0 0

() (2) (2 1)
N N

mk k mk

N N N

m m

X k x m W W x m W
− −

= =

= + +∑ ∑

/2 1 /2 1

/2 /2

0 0

() ()
N N

mk k mk

even N N odd N

m m

x m W W x m W
− −

= =

= +∑ ∑

Implementation of DA Application

~ 151 ~

Since N is a power of 2, if N > 2, the number of components of xeven(m) and xodd(m) should

also be even. Hence, they can also be separated further into subsequences consisting of their

own even and odd components. However, xeven(m) and xodd(m) are calculated from N/4-

point DFTs. Repeat this decimation procedure for log2(N)-1 times until sequences with only

two components are gained in the last stage. A total of log2(N) stages can be produced by

applying this decimation procedure. Each stage has N/2 complex multiplications by some

power of WN. The final stage is reduced to 2-point DFTs where no multiplications are

required, since the twiddle factors are trivial numbers there. In each stage, DFTs from

previous stage are broken into two smaller DFTs, and the preceding FFT is called radix-2

FFT. The input sequence (time sequence) is divided into two smaller sequences at each stage,

hence the radix-2 FFT algorithm is called decimation-in-time (DIT) algorithm. Figure VI-4

shows the dataflow graph of an 8-point radix-2 DIT FFT. As can be seen in this figure, N=2

(here N/2 is 4) multiplications are required in each stage. Hence, a total number of only

N/2*log2(N) complex multiplications are needed for computing an N-point FFT.

Figure VI-4 : Data flow graph of an 8-point radix-2 decimation-in-time FFT

C. Radix-4 and Mixed Radix FFT Algorithm

Radix-4 algorithm is more efficient than radix-2 algorithm, owing to the reduced stages and

reduced number of cascaded multiplications, presumably leading to a more accurate result at

the expense of additional computation. The radix-4 implementation only requires 1 stage

versus 2 stages for a radix-2 implementation. It is suitable for N-point DFTs, where N is a

Implementation of DA Application

~ 152 ~

power of 4. Workload for a 4096 point FFT using different radices can be found in Table

VI-7

Table VI-7 : Workload for a 4096 point FFT using different radices

The development of radix-4 decimation-in-time FFT is similar to the development of radix-2

decimation-in-time FFT. The difference is that N-point input sequence x(n) is split into four

subsequences, x(4n), x(4n+1), x(4n+2) and x(4n+3) in a radix-4 decimation-in-time FFT.

This decimation is recursive, until the final stage is implemented with 4-point DFTs. There

isn’t much difference between the Radix-8 and Radix-4 algorithms, except that the series

split is N/8 instead of N/4. This brings with it the implicit difference in number of inputs

processed in a single butterfly, the addressing of twiddle factors, number of stages being

log8(N).

 The equation (VI-7) can be re-written by breaking the N-point DFT formula into four

smaller DFTs as shown in equation (VI-14).

(VI-14)

Implementation of DA Application

~ 153 ~

Due to the definition and periodicity of WN, we have

(VI-15)

Thus, equation (VI-14) can be written as

(VI-16)

The equation (VI-16) is not an radix-4 FFT because the twiddle factor is dependent on N

but not N/4. To convert it into radix-4 FFT, we subdivide the equation into four N/4-point

subsequences, X(4k), X(4k+1), X(4k+2), and X(4k+3), k = 0, 1, ..., N/4. Thus we obtain the

radix-4 FFT as

(VI-17)

A 16-point, radix-4 decimation-in-frequency FFT algorithm is shown in Figure VI-5. Its

input is in normal order and its output is in digit-reversed order.

 Figure VI-5 : Data flow graph of 16-point, radix-4 decimation-in-frequency FFT

Implementation of DA Application

~ 154 ~

 For radix-r algorithms, such as radix-2 or radix-4, the butterfly elements used in each stage

are the same. However, FFT algorithms, where the butterfly elements used in each stage are

not all equal, are called mixed-radix algorithms [147]. For example, the butterflies in some

stages are based on radix-2 algorithm; others are based on radix-4 algorithm or higher

radices. Basically, radix-r algorithms excel mixed-radix algorithms, due to the consistency of

butterflies in radix-r algorithms. However, through mixed-radix algorithms, the advantage of

high radices can be applied to these conditions where N, the size of FFT, is not a power of

the high radices. The examples, mixed-radix algorithms, are assigned for different FFT

lengths as shown in Table VI-8, in which the higher radix is chosen first.

Table VI-8 : Mixed-radix algorithms for different FFT sizes

VI.2.3. Overview of FFT Implementation

For various points FFT applications, radix-4 or mixed radix FFT algorithms can be adopted

according to the delay, area and other performance requirements. The details for algorithms

were discussed in section VI.2.2. For these FFT applications, the proposed processor can be

used as a processing element (PE) and realize the function cooperating with other function

units and control block. The FFT applications implementation is not the concern of this

dissertation. In the following sub-sections, so we will focus on a 4-point FFT implementation

on proposed processor.

As shown in equation (VI-8), the result of FFT algorithm contains two parts, real and

imaginary part, which is different from DCT algorithm whose result has only one part. This

characteristic of FFT indicates that the algorithm logic unit with 8 output ports in proposed

FFT size Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

16 4 4

32 4 4 2

64 4 4 4

128 4 4 4 2

256 4 4 4 4

512 4 4 4 4 2

1024 4 4 4 4 4

2048 4 4 4 4 4 2

4096 4 4 4 4 4 4

Implementation of DA Application

~ 155 ~

processor can process 4 input signals in time domain and generate 4 output results in

frequency domain which contain 8 practical values.

 In 4-point FFT algorithm implementation, the path of data flow is quite simple compared

with DCT implementation. The input signals are routed to algorithm logic unit input ports

through input matrix. The results from algorithm logic unit are put forward to output matrix

and then output for further processing. It can be seen from FFT implementation that the data

flow is one-way without data routing back and the results can be exported directly without

temporary buffering.

The algorithm logic unit is divided into two function parts: real and imaginary part; The

lower half part is used to generate the real part values of 4 final results and the rest half part,

higher half part, is used to create 4 imaginary part values of results. Therefore, 4 input

signals are replicated in input matrix for high 4 input ports of algorithm logic unit.

Because all 8 values of 4 final results of 4-point FFT are obtained from output ports of

algorithm logic unit, registers matrix and its control unit are bypassed in FFT

implementation. Output matrix takes the results and then routes them to corresponding

output ports. It is noted that this configuration of registers matrix does not contradict with the

requirements when the matrix is used for storing temporary data in high points FFT

applications. The purpose of current configuration is to verify the function of proposed

processor and obtain the performance in FFT implementation for evaluation.

VI.2.4. Algorithm logic Unit Implementation

The precision of FFT implementation lies in the coefficient representation when the input

vector is given with the fixed precision. The bit-width of the twiddle factors is set to be 12

bits and the longer word-length is not cost efficient as the signal-to-quantization-noise ratio

(SQNR) performance does not increase notably while the cost of multipliers and tables

increases significantly [150]. The 12 bits word length in both real and imaginary parts for the

proposed FFT implementation will also meet IEEE 802.11 standard requirements [135].

Following the steps of adder-based DA, equation (VI-8) can be presented in 2’s

complement format as shown in Figure VI-6, in which, the 4 values in real part of twiddle

Implementation of DA Application

~ 156 ~

factors are expressed with symbols ReW
0·k

4 , ReW
1·k

 4 , ReW
2·k

 4 and ReW
3·k

 4 and 4 values in

imaginary part of twiddle factors are expressed with symbols ImW
0·k

 4 , ImW
1·k

 4 , ImW
2·k

 4

and ImW
3·k

 4.

Due to lots of zeros in twiddle factors as shown in Figure VI-6, there are a few terms left

after deducting the zero and duplicate terms which need no further calculation. Take twiddle

factors ImW
0·k

4 and ImW
2·k

 4 as an example, all factors are zero. It means that no operation is

required when input data are multiplied by the coefficient. Finally, only one term of 4 inputs,

2 terms of 2 inputs and 4 input data are required for Wallace tree multiplier matrix. They are

X0X1X2X3, X0X2, X1X3, X0, X1, X2 and X3.

Compared with the complex case, 22 terms of 4 inputs in DCT application, common terms

sharing scheme is really a simple one. In theory, there are 66 (= 3 × 22) possible common

terms for 22 terms with 4 inputs if duplications are not taken into account. For the term

X0X1X2X3 in 4-point FFT implementation, there are only three possible schemes which are

X0X1 + X2X3, X0X2 + X1X3 and X0X3 + X1X2. Considering that the two 2-input terms, X0X2 and

X1X3, are obligatory, it is natural to determine the best scheme which is X0X2 + X1X3.

According to the selected scheme and the terms to be output to Wallace tree multiplier

matrix, totally 7 terms are easily implemented with two levels adder arrays. (We consider 4

input data as terms because they are also the results output from adder arrays.) Four input

data are output through the bypass paths in two levels adder array. Two adders in the first

level adder array are used to implement the terms X0X2 and X1X3. The two outputs of these

adders go straight to Wallace tree multiplier matrix through the bypass path in the second

level adder array. Meanwhile, the outputs are also routed to an adder in the second level to

generate term X0X1X2X3.

By now, 7 terms are implemented with two levels adder arrays for 4-point FFT. Only 3

adders are used, which indicates that only a little power will be consumed by adder arrays. In

the following sub-section, the performance of 4-point FFT implementation will be scaled and

evaluated.

Implementation of DA Application

~ 157 ~

Figure VI-6 : Twiddle factors of 4-point FFT

0 1 2

4 4 4

3

4

0 0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 0 1 0 1
R e R e R e

0 0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 0 1 0 1

1 1 1 1 1 0 0 0 1 0 1 0

0 0 0 0 0 0 1 0 0 1 0 1

0 0

R e

k k k

k

W W W

W

⋅ ⋅ ⋅

⋅

= = =

= 0 1

4 4

2

4

1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1
 Im Im

0 0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0

Im

k k

k

W W

W

⋅ ⋅

⋅

= =

= 3

4

0 1 0 0

0 1 0 0

0 1 0 0

0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0
 Im

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

k
W

⋅ =

Implementation of DA Application

~ 158 ~

VI.2.5. Performance & Evaluation

Following the details of implementation discussed in the previous sections, the 4 points FFT

was implemented with the proposed reconfigurable architecture.

 A standard-cell based synthesis and layout was performed with Design Compiler from

Synopsys, Inc., employing the UMC 0.18 mµ CMOS technology library. The power

consumption was obtained with the Synopsys PrimePower. The area of the 4-point FFT is

527529
2mµ and the power consumption is 10.1mW at 20MHz system clock. The design

can run with up to 144MHz (6.93ns) and 112-bits (=14bits×8) outputs. This implies that our

architecture can reach up to 16.128Gbps for the 4 points FFT which is the same as 1-D DCT.

Because there is not such an application adopting FFT with only 4 points, the number of

points of most FFT applications ranks from 64 to 4k or even 8k, and the performance data of

4 points FFT is hard to find in ASIC implementation, domain-specific FPGAs, DSP

embedded system, programmable processors or even reconfigurable FFT architecture. On

the other hand, the implementation of high points FFT application is not the concern of this

dissertation. The implementation of 4 points FFT, one kind of DA applications, with

proposed processor is used to verify the functionality of the architecture.

As similar domain-specific reconfigurable DA architecture cannot be found in the literature,

an FPGA device is used as a reference to compare performance in area, power and delay

with our architecture. Xilinx Virtex-E [10] is taken as the reference FPGA device for

implementing 4 points FFT, which is exactly the same as the one used in 1-D DCT

evaluation and comparison. The details of this device can be found in section VI.1.6, in

terms of voltage supply, CMOS technology, area estimation, running platform, power

consumption data selection and so on.

The power consumption of 4 points FFT implementation on Virtex-E FPGA is 274mW with

902 used slices which indicates that 2979306
2mµ area is occupied. The delay of the

implementation is 36.56ns which means the maximum frequency for 4 points FFT

implementation on FPGA is 27.35MHz.

Implementation of DA Application

~ 159 ~

It is clear from the above experimental data that our architecture achieves at least 96.3%

reductions in power consumption compared with the FPGA Vccint dynamic power

consumption with less than 82.3% area occupation. Our architecture can run more than 5

times faster than the FPGA implementation except its merits in area and power consumption.

Therefore, it can be concluded that the proposed processor achieves a good performance in

terms of area, power consumption and speed compared with FPGA device in 4 points FFT

implementation.

As we have discussed in previous sections, FPGA contains a large amount of routing

resource which is redundant for FFT implementation but necessary for implementing other

applications. The proposed processor achieves a good performance in FFT implementation

when compared with FPGA device. But it is not the most efficient one in various

reconfigurable architectures which are designed specially for FFT applications [151-153].

Actually, our processor is superior to FPGA device in the same way that these architectures

achieve better performance than our processor in FFT domain, that is, the routing resource in

proposed processor is redundant for FFT implementation but necessary for implementing

other DA applications such as DCT.

VI.3. Conclusion

In this chapter, two widely-adopted DA applications, DCT and DFT, are implemented with

our architecture for the functionality verification and performance evaluation.

The definition and methods for implementations of two algorithms were introduced briefly at

the beginning of each section. In DCT implementation, the configurations for control path,

registers matrix and algorithm logic unit were discussed and specified according to the

requirements of the application. Based on dimidiate tree, crossing forest, algorithm for

searching for optimal scheme of common term sharing and its implementation which were

introduced and defined for efficient mapping and full use of hardware, the common term

sharing scheme was obtained by applying dimidiate tree and the algorithm for searching for

optimal scheme.

Implementation of DA Application

~ 160 ~

The experiential data of DCT and FFT implementation show the validity of algorithm and

efficiency and functionality of proposed processor.

Compared with FPGA implementation, our architecture achieves at least 97.8% reductions in

power consumption, less than 87.5% area occupation and more than 5 times faster for DCT

implementation and 96.3% reductions in power consumption and more than 82.3% area

saving for FFT implementation. Additionally, in comparison with existing ASIC DCT

designs, the proposed architecture achieves better performance in area and speed than the

average of six selected ASIC designs when the impact of interconnection resource in our

architecture is removed.

It can be concluded from our results that the proposed reconfigurable architecture can

provide an efficient hardware platform for implementing DA application. The right policy

for trading off area and speed, common terms sharing architecture and algorithm for optimal

scheme make this platform implement DA applications flexibly at the low cost in terms of

area, power and delay. .

~ 161 ~

VII.1. Conclusion

In this dissertation, we have presented a novel reconfigurable low-power processor for DA, a

specific domain. This domain specific reconfigurable processor features high efficiency in

terms of area, power and delay. It is a hybrid between traditional ASICs and general

reconfigurable architectures such as FPGA devices. The goal of the novel architecture is to

get close to the performance of ASICs, while maintaining the flexibility of programmable

platforms.

DA algorithms can be frequently found in a wide variety of real world algorithms, e.g. DCT,

DFT and DWT, used in digital image/signal processing including compression and beam

forming applications. Because of the complexity of these algorithms, which are

computationally intensive for large size applications, the computing power they consumed is

enormous. The processor presented in this dissertation can be used to implement complex,

high performance DA algorithms for communication and image processing applications with

low cost in area and power compared with the traditional methods.

The performance and efficiency of the proposed architecture have been demonstrated and

validated in the preceding chapters through the implementation of DCT and DFT which are

widely used in most still picture compression standards, video conferencing standards and

communication standards such as IEEE 802.11n, 802.11 a/g and WiMax.

A simple reconfigurable low power control unit in the processor is implemented with good

performance in area, power and timing. The generic characteristic of the architecture makes

it applicable for any small and medium size finite state machines which can be used as

Chapter VII

Conclusion and Future Work

Conclusion and Future Work

~ 162 ~

control units to implement complex system behaviour and can be found in almost all

engineering disciplines.

Furthermore, to map target application efficiently with the proposed architecture, a new

algorithm is introduced for searching for the best common sharing terms set, which keeps the

area and power consumption of implementation at low level. Some new concepts such as

dimidiate tree and crossing forest are introduced and defined initially. They are used to

describe the algorithm for common sharing terms set searching. A software implementation

of this algorithm is presented, which can be used not only for the proposed architecture in

this dissertation but also for all the implementations with adder-based distributed arithmetic

algorithm.

In addition, some low power design techniques are applied in the architecture, such as

unsymmetrical design style including unsymmetrical interconnection arranging,

unsymmetrical PTBs selection and unsymmetrical mapping of basic computing units. All

these design techniques achieve extraordinary power consumption saving. It is believed that

they can be extended to more low power designs and architectures.

VII.2. Evaluation of Results and Contributions

VII.2.1. Novel and Efficient Points of the Work

Eight points 1-D and 2-D DCT are mapped onto the architecture for the functionality

verification and performance evaluation. Compared with the common subexpression

elimination with CSD code, up to 73% saving is obtained in hardware resources. In

comparison with FPGA DCT implementation, our architecture achieves at least 97.8%

reductions in Vccint dynamic power consumption with less than 87.5% area occupation. Our

architecture can run more than 5 times faster than the FPGA implementation except its

merits in area and power consumption. In comparison with existing ASIC designs, the

experimental data show that the proposed architecture achieves better performance in area

and speed than the average of six selected ASIC designs when the impact of interconnection

resource in our architecture is removed.

Conclusion and Future Work

~ 163 ~

In the FFT implementation of 4 points, the proposed architecture achieves at least 96.3%

reductions compared with the FPGA Vccint dynamic power consumption and less than 82.3%

area occupation. Our architecture can run more than 5 times faster than the FPGA

implementation except its merits in area and power consumption.

Regarding the reconfigurable control unit architecture, ten test cases from the widely adopted

FSM benchmark set are implemented using both ours and a FPGA device. It is demonstrated

that our architecture can achieve an average reduction of 82% in power consumption, a

decrease of 44% in area occupation and 20% reduction in delay when implementing the

same circuit on a commercial FPGA device.

VII.2.2. Limitations

This subsection specifies exactly the extent of the restriction with the proposed low power

reconfigurable DA processor:

• The presented architecture is targeted at DA applications. This departure point limits the

applications of the processor to DA field only. Compared with FPGA devices which

are for general purpose and can be applied in any application or field regardless of the

limitation on scale or size, the scope of application fields of our processor is greatly less

than that of FPGA.

• In this dissertation, only three DA applications, 1D-DCT, 2D-DCT and FFT, are

implemented with the proposed architecture. There are still other DA applications such

as DWT, DHT and so on which are widely adopted in digital signal processing. The

functionality of processor needs further verification and more performance data with

more DA applications.

• The last, probably the most noticeable limitation of the presented processor is the

manual routing and mapping when a target application is implemented. Currently, all

sub-modules including control unit, two-level adder structure, Wallace tree multiplier

matrix, interconnection network and so on are configured based on the manual placing

and routing which can take full advantage of the novel design and achieve the best

efficiency in terms of area, power and speed. But manual routing and mapping will

become an impossible mission when the target application is large.

Conclusion and Future Work

~ 164 ~

VII.3. Future Work

The work undertaken during this Ph.D. project has concentrated on the development of novel

low power DA processor for multimedia and telecommunication applications. A set of

objectives for further research include:

• Implement more DA applications such as DWT, DHT and so on to further verify the

functionality of processor and obtain more performance data.

• A serial DA algorithm can be implemented on the architecture, which consumes less

power than parallel one but takes longer time for processing. Serial algorithm can be

used for extreme power sensitive application without speed requirement.

• To expand the reconfigurable control unit to meet the requirements of complex

applications and to make it an independent architecture to extend its applied

applications.

• Some modification might be made on the architecture to extend its applicability in more

applications or fields.

• To apply dynamic reconfigurable technology to the processor. This can make the

processor change its function when it is running. Dynamic reconfigurable technology

will improve the hardware efficiency and in the mean time, it will make the architecture

larger and more complex because of extra hardware components.

• To develop automatic routing and mapping algorithm and tools. The Electronic Design

Automation (EDA) tools are necessary and critical part in semiconductor design flow,

in which the complexity of chip designing makes the manual routing and mapping

impossible. Therefore, the algorithm and software for application placing, routing and

mapping is the key step to make the processor extend to other designs or architectures.

• To explore a more generic architecture with low power consumption which can be

applied in more fields, not just limited to certain application domain

~ 165 ~

Appendix

Publications from this work

•••• Z. Liu, T. Arslan, A.T. Erdogan, “A Novel Reconfigurable Distributed Arithmetic

Architecture and its Application in Multimedia”, 15th ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays (FPGA 2007), Monterey,

California, February 18-20, 2007

•••• Z. Liu, T. Arslan, A.T. Erdogan, “A Novel Reconfigurable Low Power Distributed

Arithmetic Architecture for Multimedia Applications”, 12th Asia and South Pacific

Design Automation Conference (ASP-DAC 2007), Pacifico Yokohama, Yokohama,

Japan, January 23-26, 2007

•••• Z. Liu, T. Arslan, A.T. Erdogan, “An Embedded Low Power Reconfigurable Fabric

for Finite State Machine Operations”, 2006 IEEE International Symposium on

Circuits and Systems (ISCAS 2006), Kos, Greece, 21-24 May 2006.

•••• Z. Liu, Khawam, T. Arslan, A.T. Erdogan, “A Low Power Heterogenous

Reconfigurable Architecture For Embedded Generic Finite State Machines”, IEEE

International SOC Conference (SOCC 2005), pp. 113-114, Washington, DC, USA,

September 25-28, 2005

•••• Z. Liu, T. Arslan, S. Khawam, I. Lindsay “A High Performance Synthesisable

Unsymmetrical Reconfigurable Fabric For Heterogeneous Finite State Machines”,

Asia and South Pacific Design Automation Conference 2005 (ASP-DAC 2005), pp.

639-642, Vol. 1, Shanghai, China, January 18 - 21, 2005

~ 166 ~

References

[1] J. M. Rabaey, M. J. Ammer, J. L. da Silva, Jr., D. Patel, and S. Roundy, "PicoRadio
supports ad hoc ultra-low power wireless networking," Computer, vol. 33, pp. 42-48,
2000.

[2] R. Hartenstein, "Trends in reconfigurable logic and reconfigurable computing," in
Electronics, Circuits and Systems, 2002. 9th International Conference on, 2002, pp.
801-808 vol.2.

[3] W. Tuttlebee, Software Defined Radio: Baseband Technology for 3G Handsets and
Basestations: John Wiley & Sons, February 2004.

[4] http://www.nvidia.com/page/home.html.

[5] "The Cost of Design." vol. 19: IEEE Computer Society Press, 2002, p. 136.

[6] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, "The Chimaera reconfigurable
functional unit," Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, vol. 12, pp. 206-217, 2004.

[7] W. J. C. Melis, P. Y. K. Cheung, and W. Luk, "Image registration of real-time video
data using the SONIC reconfigurable computer platform," in Field-Programmable
Custom Computing Machines, 2002. Proceedings. 10th Annual IEEE Symposium on,
2002, pp. 3-12.

[8] H. Z. Marlene Wan, Varghese George, Martin Benes, Arthur Abnous, Vandana
Prabhu and Jan Rabaey, "Design Methodology of a Low-Energy Reconfigurable
Single-Chip DSP System," The Journal of VLSI Signal Processing, vol. 28,
Numbers 1-2, pp. 47-61, May, 2001.

[9] J. M. Rabaey, "Reconfigurable processing: the solution to low-power programmable
DSP," in Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE
International Conference on, 1997, pp. 275-278 vol.1.

[10] Xilinx_Inc., "Virtex™-E 1.8 V Field Programmable Gate Arrays Production Product
Specification," DS022-1 (v2.3) ed, July, 2002.

[11] Altera_Inc., Stratix II Device Family Data Sheet, ver 4.3 ed. San Jose, May 2007.

[12] Xilinx_Inc., "Virtex-5 Family Overview - Product Specification," DS100 (v5.0) ed,
February, 2009.

[13] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. A. B. D. Burger, "Clock rate
versus IPC: the end of the road for conventional microarchitectures," in Computer
Architecture, 2000. Proceedings of the 27th International Symposium on, 2000, pp.
248-259.

[14] C. Katherine and H. Scott, "Reconfigurable computing: a survey of systems and
software." vol. 34: ACM Press, 2002, pp. 171-210.

[15] L. David, B. Vaughn, J. David, L. Andy, L. Chris, L. Paul, M. Sandy, M. Cameron,
P. Bruce, P. Giles, R. Srinivas, W. Chris, C. Richard, and R. Jonathan, "The stratix
routing and logic architecture," in Proceedings of the 2003 ACM/SIGDA eleventh
international symposium on Field programmable gate arrays Monterey, California,
USA: ACM, 2003.

[16] Atmel_inc., "Datasheets for AT40K05/10/20/40AL ", 2818F–FPGA–07/06 ed, July,
2007.

Conclusion and Future Work

~ 167 ~

[17] "reconfiguration time," http://www.fpga-faq.com/archives/51175.html.

[18] S. Sezer, J. Heron, R. Woods, R. A. T. R. Turner, and A. A. M. A. Marshall, "Fast
partial reconfiguration for FCCMs," in FPGAs for Custom Computing Machines,
1998. Proceedings. IEEE Symposium on, 1998, pp. 318-319.

[19] G. Varghese, "Low energy field-programmable gate array." vol. PhD: University of
California, Berkeley, 2000.

[20] C. R. Rupp, M. Landguth, T. Garverick, E. A. G. E. Gomersall, H. A. H. H. Holt, J.
M. A. A. J. M. Arnold, and M. A. G. M. Gokhale, "The NAPA adaptive processing
architecture," in FPGAs for Custom Computing Machines, 1998. Proceedings. IEEE
Symposium on, 1998, pp. 28-37.

[21] J. M. Arnold, "An architecture simulator for National Semiconductor's adaptive
processing architecture (NAPA)," in FPGAs for Custom Computing Machines, 1998.
Proceedings. IEEE Symposium on, 1998, pp. 271-272.

[22] M. B. Gokhale and J. M. Stone, "NAPA C: compiling for a hybrid RISC/FPGA
architecture," in FPGAs for Custom Computing Machines, 1998. Proceedings. IEEE
Symposium on, 1998, pp. 126-135.

[23] J. R. H. a. J. Wawrzynek, "Garp: A MIPS Processor with a Reconfigurable
Coprocessor," in IEEE Symposium on FPGAs for Custom Computing Machines, Los
Alamitos, CA, 1997, pp. 12-21.

[24] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, "The Garp architecture and C
compiler," Computer, vol. 33, pp. 62-69, 2000.

[25] Garp: http://brass.cs.berkeley.edu/garp.html.

[26] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. A. K. J. P. Kao, "The Chimaera
reconfigurable functional unit," in FPGAs for Custom Computing Machines, 1997.
Proceedings., The 5th Annual IEEE Symposium on, 1997, pp. 87-96.

[27] Chimaera: http://www.ee.washington.edu/faculty/hauck/chimaera.html.

[28] K. Eguro and S. Hauck, "Issues and approaches to coarse-grain reconfigurable
architecture development," in Field-Programmable Custom Computing Machines,
2003. FCCM 2003. 11th Annual IEEE Symposium on, 2003, pp. 111-120.

[29] R. Hartenstein, "Coarse grain reconfigurable architectures," in Design Automation
Conference, 2001. Proceedings of the ASP-DAC 2001. Asia and South Pacific, 2001,
pp. 564-569.

[30] H. Zhining and S. Malik, "Managing dynamic reconfiguration overhead in systems-
on-a-chip design using reconfigurable datapaths and optimized interconnection
networks," in Design, Automation and Test in Europe, 2001. Conference and
Exhibition 2001. Proceedings, 2001, pp. 735-740.

[31] Pleiades: http://bwrc.eecs.berkeley.edu/research/Configurable_Architectures/.

[32] A. Abnous and J. Rabaey, "Ultra-low-power domain-specific multimedia
processors," in VLSI Signal Processing, IX, 1996., [Workshop on], 1996, pp. 461-
470.

[33] A. Abnous, K. Seno, Y. Ichikawa, M. Wan, and J. M. Rabaey, "Evaluation of a
Low-Power Reconfigurable DSP architecture," in 5 th Reconfigurable Architectures
workshop (RAW 98), March, 1998, pp. 55-60.

[34] Rapid: http://www.cs.washington.edu/research/lis/rapid/.

Conclusion and Future Work

~ 168 ~

[35] E. Carl, C. C. Darren, and F. Paul, "RaPiD - Reconfigurable Pipelined Datapath," in
Proceedings of the 6th International Workshop on Field-Programmable Logic,
Smart Applications, New Paradigms and Compilers: Springer-Verlag, 1996.

[36] C. Ebeling, D. C. Cronquist, P. Franklin, J. A. S. J. Secosky, and S. G. A. B. S. G.
Berg, "Mapping applications to the RaPiD configurable architecture," in FPGAs for
Custom Computing Machines, 1997. Proceedings., The 5th Annual IEEE Symposium
on, 1997, pp. 106-115.

[37] D. C. Cronquist, C. Fisher, M. Figueroa, P. A. F. P. Franklin, and C. A. E. C.
Ebeling, "Architecture design of reconfigurable pipelined datapaths," in Advanced
Research in VLSI, 1999. Proceedings. 20th Anniversary Conference on, 1999, pp.
23-40.

[38] MorphoSys: http://www.eng.uci.edu/morphosys/.

[39] H. Singh, L. Guangming, L. Ming-Hau, E. A. F. E. Filho, R. A. M. R. Maestre, F. A.
K. F. Kurdahi, and N. A. B. N. Bagherzadeh, "Morphosys: case study of a
reconfigurable computing system targeting multimedia applications," in Design
Automation Conference, 2000. Proceedings 2000. 37th, 2000, pp. 573-578.

[40] J. Davila, A. de Torres, J. M. Sanchez, M. A. S.-E. M. Sanchez-Elez, N. A. B. N.
Bagherzadeh, and F. A. R. F. Rivera, "Design and implementation of a rendering
algorithm in a SIMD reconfigurable architecture (MorphoSys)," in Design,
Automation and Test in Europe, 2006. DATE '06. Proceedings, 2006, p. 6 pp.

[41] H. Singh, L. Ming-Hau, L. Guangming, F. J. A. K. F. J. Kurdahi, N. A. B. N.
Bagherzadeh, and E. M. C. A. F. E. M. C. Filho, "MorphoSys: a reconfigurable
architecture for multimedia applications," in Integrated Circuit Design, 1998.
Proceedings. XI Brazilian Symposium on, 1998, pp. 134-139.

[42] L. Guangming, H. Singh, L. Ming-Hau, N. A. B. N. Bagherzadeh, F. J. A. K. F. J.
Kurdahi, E. M. C. A. F. E. M. C. Filho, and V. A. C.-A. V. Castro-Alves, "The
MorphoSys dynamically reconfigurable system-on-chip," in Evolvable Hardware,
1999. Proceedings of the First NASA/DoD Workshop on, 1999, pp. 152-160.

[43] H. Singh, L. Ming-Hau, L. Guangming, F. J. A. K. F. J. Kurdahi, N. A. B. N.
Bagherzadeh, and E. M. A. C. F. E. M. Chaves Filho, "MorphoSys: an integrated
reconfigurable system for data-parallel and computation-intensive applications,"
Computers, IEEE Transactions on, vol. 49, pp. 465-481, 2000.

[44] Chameleon: http://chameleon.ctit.utwente.nl/.

[45] G. Karypis, H. Eui-Hong, and V. Kumar, "Chameleon: hierarchical clustering using
dynamic modeling," Computer, vol. 32, pp. 68-75, 1999.

[46] J. M. S. Gerard, B. Ties, J. M. H. Paul, J. M. Sape, and S. Jaap, "Chameleon -
Reconfigurability in Hand-Held Multimedia Computers," in Proceedings of the 1st
international symposium on Handheld and Ubiquitous Computing Karlsruhe,
Germany: Springer-Verlag, 1999.

[47] A. A. Emira, A. Valdes-Garcia, X. Bo, A. N. A. M. A. N. Mohieldin, A. Y. A. V.-L.
A. Y. Valero-Lopez, S. T. A. M. S. T. Moon, A. C. X. Chunyu Xin, and E. A. S.-S.
E. Sanchez-Sinencio, "Chameleon: a dual-mode 802.11b/Bluetooth receiver system
design," Circuits and Systems I: Regular Papers, IEEE Transactions on [Circuits
and Systems I: Fundamental Theory and Applications, IEEE Transactions on], vol.
53, pp. 992-1003, 2006.

[48] G. J. M. Smit, P. J. M. Havinga, M. Bos, L. T. Smit, and P. M. Heysters,
"Reconfiguration in Mobile Multimedia Systems," in 1st PROGRESS workshop on
Embedded Systems, 2000, pp. 95-105.

Conclusion and Future Work

~ 169 ~

[49] P. M. Heysters, H. Bouma, J. Smit, G. J. M. Smit, and P. J. M. Havinga,
"Reconfigurable System Design: The Control Part," in 2nd PROGRESS workshop on
Embedded Systems, The Netherlands, 2001.

[50] Elixent_Limited, "The Reconfigurable Algorithm Processor,"
http://www.elixent.com/products/white-papers.htm.

[51] Elixent_Limited, "The Reconfigurable Algorithm Processor,"
http://www.elixent.com/assets/WP0001_D_Fabrix_Apps.pdf.

[52] T. Stansfield, "Using Multiplexers for Control and Data in D-Fabrix " in 13th
International Conference on Field-Programmable Logic and Applications , FPL
2003, Lisbon, Portugal, 2003, pp. 416-425.

[53] M. Alan, S. Tony, K. Igor, V. Jean, and H. Brad, "A reconfigurable arithmetic array
for multimedia applications," in Proceedings of the 1999 ACM/SIGDA seventh
international symposium on Field programmable gate arrays, Monterey, California,
United States, 1999, pp. 135-143.

[54] V. Betz, J. Rose, and A. Morquardt, Architecture and CAD for Deep-Submicron
FPGAs. Boston MA: Kluwer Academic Publishers, 1999.

[55] T. William, M. Kip, J. Atul, H. Randy, W. Norman, T. Tony, R. Omid, G. Varghese,
W. John, Andr, and DeHon, "HSRA: high-speed, hierarchical synchronous
reconfigurable array," in Proceedings of the 1999 ACM/SIGDA seventh international
symposium on Field programmable gate arrays Monterey, California, United States:
ACM, 1999.

[56] S. A. White, "Applications of distributed arithmetic to digital signal processing: a
tutorial review," ASSP Magazine, IEEE [see also IEEE Signal Processing
Magazine], vol. 6, pp. 4-19, 1989.

[57] S. Zohar, "Fast Hardware Fourier Transformation Through Counting," Transactions
on Computers, vol. C-22, pp. 433-441, 1973.

[58] S. Zohar, "The Counting Recursive Digital Filter," Transactions on Computers, vol.
C-22, pp. 338-347, 1973.

[59] S. Zohar, "New Hardware Realizations of Nonrecursive Digital Filters,"
Transactions on Computers, vol. C-22, pp. 328-338, 1973.

[60] S. Zohar, "A Realization of the RAM Digital Filter," Transactions on Computers,
vol. C-25, pp. 1048-1052, 1976.

[61] A. Peled and L. Bede, "A new approach to the realization of nonrecursive digital
filters," Audio and Electroacoustics, IEEE Transactions on, vol. 21, pp. 477-484,
1973.

[62] A. Peled and L. Bede, "A new hardware realization of digital filters," Acoustics,
Speech, and Signal Processing [see also IEEE Transactions on Signal Processing],
IEEE Transactions on, vol. 22, pp. 456-462, 1974.

[63] G. S. Stewart and B. D. Peter, "Serial-data computation," Kluwer Academic
Publishers, 1988, p. 239.

[64] T. S. Chang, C. Chen, and C. W. Jen, "New distributed arithmetic algorithm and its
application to IDCT," Circuits, Devices and Systems, IEE Proceedings-, vol. 146, pp.
159-163, 1999.

[65] K. Dae Won, K. Taek Won, S. Jung Min, Y. Jae Kun, L. Suk Kyu, S. Jung Hee, and
C. Jun Rim, "A compatible DCT/IDCT architecture using hardwired distributed

Conclusion and Future Work

~ 170 ~

arithmetic," in The 2001 IEEE International Symposium on Circuits and Systems,
2001, pp. 457-460 vol. 2.

[66] G. Jiun-In, "A new DA-based array for one dimensional discrete Hartley transform,"
in The 2001 IEEE International Symposium on Circuits and Systems, 2001, pp. 662-
665 vol. 4.

[67] L. Zhenyu, S. Khawam, T. Arslan, and A. T. Erdogan, "A Low Power Heterogenous
Reconfigurable Architecture For Embedded Generic Finite State Machines," in IEEE
International SOC Conference, 2005, pp. 113-114.

[68] M. R. Boschetti, A. M. S. Adario, I. S. Silva, and S. Bampi, "Techniques and
mechanisms for dynamic reconfiguration in an image processor," in 15th Symposium
on Integrated Circuits and Systems Design, 2002, pp. 177-182.

[69] M. P. Leong and P. H. W. Leong, "A variable-radix digit-serial design methodology
and its application to the discrete cosine transform," Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 11, pp. 90-104, 2003.

[70] J. G. Liu, H. F. Li, F. H. Y. Chan, and F. K. Lam, "Fast Discrete Cosine Transform
via Computation of Moments," J. VLSI Signal Process. Syst., vol. 19, pp. 257-268,
1998.

[71] A. K. Pai, K. Benkrid, and D. Crookes, "Embedded reconfigurable DCT
architectures using adder-based distributed arithmetic," in Seventh International
Workshop on Computer Architecture for Machine Perception, 2005, pp. 81-86.

[72] J. Park and K. Roy, "A low power reconfigurable DCT architecture to trade off
image quality for computational complexity," in Acoustics, Speech, and Signal
Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference on,
2004, pp. V-17-20 vol.5.

[73] S. Khawam, T. Arslan, and F. Westall, "Synthesizable reconfigurable array targeting
distributed arithmetic for system-on-chip applications," in Parallel and Distributed
Processing Symposium, 2004. Proceedings. 18th International, 2004, p. 150.

[74] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation:
John Wiley & Sons, 1999.

[75] N. Pippenger, "On Crossbar Switching Networks," Communications, IEEE
Transactions on [legacy, pre - 1988], vol. 23, pp. 646-659, 1975.

[76] Clos and Charles, A study of non-blocking switching netwroks vol. 32: Bell System
Tech Journal, 1953.

[77] V. E. Benes, Mathematical Theory of Connecting Networks and Telephone Traffic:
Academic Pr June 1965.

[78] G. H. Chapman and K. Fang, "Comparison of laser link crossbar and Omega
network switching for wafer-scale integration defect avoidance," in Wafer Scale
Integration, 1994. Proceedings., Sixth Annual IEEE International Conference on,
1994, pp. 352-361.

[79] L. Guy and L. David, "Using sparse crossbars within LUT," in Proceedings of the
2001 ACM/SIGDA ninth international symposium on Field programmable gate
arrays Monterey, California, United States: ACM Press, 2001.

[80] A. Yavuz Oruc and H. M. Huang, "Crosspoint complexity of sparse crossbar
concentrators," Information Theory, IEEE Transactions on, vol. 42, pp. 1466-1471,
1996.

Conclusion and Future Work

~ 171 ~

[81] S. Nakamura and G. M. Masson, "Lower Bounds on Crosspoints in Concentrators,"
Transactions on Computers, vol. C-31, pp. 1173-1179, 1982.

[82] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and D. Durackova, "A new
algorithm for elimination of common subexpressions," Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 18, pp. 58-68, 1999.

[83] M. Martinez-Peiro, E. I. Boemo, and L. Wanhammar, "Design of high-speed
multiplierless filters using a nonrecursive signed common subexpression algorithm,"
Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions
on [see also Circuits and Systems II: Express Briefs, IEEE Transactions on], vol. 49,
pp. 196-203, 2002.

[84] O. Gustafsson and L. Wanhammar, "ILP modelling of the common subexpression
sharing problem," in 9th International Conference on Electronics, Circuits and
Systems, 2002, pp. 1171-1174 vol.3.

[85] M. D. Macleod and A. G. Dempster, "Common subexpression elimination algorithm
for low-cost multiplierless implementation of matrix multipliers," Electronics
Letters, vol. 40, pp. 651-652, 2004.

[86] C. Tian-Sheuan, G. Jiun-In, and J. Chein-Wei, "Hardware-efficient DFT designs
with cyclic convolution and subexpression sharing," Circuits and Systems II: Analog
and Digital Signal Processing, IEEE Transactions on [see also Circuits and Systems
II: Express Briefs, IEEE Transactions on], vol. 47, pp. 886-892, 2000.

[87] K. Hwang, Computer Arithmetic, Principles, Architecture, and Design. New York:
John Wiley & Sons, 1979.

[88] I. Koren, Computer Arithmetic Algorithms. Englewood Clis: Prentice-Hall, 1993.

[89] A. P. Vinod and E. M. K. Lai, "Hardware efficient DCT implementation for portable
multimedia terminals using subexpression sharing," in TENCON 2004. 2004 IEEE
Region 10 Conference, 2004, pp. 227-230 Vol. 1.

[90] M. Benhamid and M. Othman, "FPGA Implementation of a Canonical Signed Digit
Multiplier-less based FFT Processor for Wireless Communication Applications," in
Semiconductor Electronics, 2006. ICSE '06. IEEE International Conference on,
2006, pp. 641-645.

[91] S. He and M. Torkelson, "FPGA implementation of FIR filters using pipelined bit-
serial canonical signed digit multipliers," in Custom Integrated Circuits Conference,
1994., Proceedings of the IEEE 1994, 1994, pp. 81-84.

[92] A. T. G. Fuller, B. Nowrouzian, and F. Ashrafzadeh, "Optimization of FIR digital
filters over the canonical signed-digit coefficient space using genetic algorithms," in
Circuits and Systems, 1998. Proceedings. 1998 Midwest Symposium on, 1998, pp.
456-459.

[93] R. M. Hewlitt and E. S. Swartzlantler, Jr., "Canonical signed digit representation for
FIR digital filters," in Signal Processing Systems, 2000. SiPS 2000. 2000 IEEE
Workshop on, 2000, pp. 416-426.

[94] M. L. Minsky, Computation: Finite and Infinite Machines: Prentice-Hall, 1967.

[95] W. L. Yang, R. M. Owens, and M. J. Irwin, "Multi-way FSM decomposition based
on interconnect complexity," in Design Automation Conference, 1993, with EURO-
VHDL '93. Proceedings EURO-DAC '93. European, 1993, pp. 390-395.

[96] J. C. Monteiro and A. L. Oliveira, "FSM decomposition by direct circuit
manipulation applied to low power design," in Design Automation Conference, 2000.
Proceedings of the ASP-DAC 2000. Asia and South Pacific, 2000, pp. 351-358.

Conclusion and Future Work

~ 172 ~

[97] R. S. Shelar, H. Narayanan, and M. P. Desai, "Orthogonal partitioning and gated
clock architecture for low power realization of FSMs," in ASIC/SOC Conference,
2000. Proceedings. 13th Annual IEEE International, 2000, pp. 266-270.

[98] J. Hartmanis, "Symbolic analysis of a decomposition of information processing,"
Information Control, vol. 3, pp. 154-178, June 1960.

[99] S. Devadas and A. R. Newton, "Decomposition and factorization of sequential finite
state machines," Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 8, pp. 1206-1217, 1989.

[100] M. Geiger and T. Muller-Wipperfurth, "FSM decomposition revisited: algebraic
structure theory applied to MCNC benchmark FSMs," in Design Automation
Conference, 1991. 28th ACM/IEEE, 1991, pp. 182-185.

[101] Xilinx_Inc., "CoolRunner XPLA3 CPLD Family Product Specification," DS012
(v2.3) ed, August 31, 2007.

[102] K. Noha, B. Kimberly, and J. E. W. Steven, "Architectures and algorithms for
synthesizable embedded programmable logic cores," in Proceedings of the 2003
ACM/SIGDA eleventh international symposium on Field programmable gate arrays
Monterey, California, USA: ACM, 2003.

[103] A. Yan and S. J. E. Wilton, "Product-term based synthesizable embedded
programmable logic cores," in Field-Programmable Technology (FPT), 2003.
Proceedings. 2003 IEEE International Conference on, 2003, pp. 162-169.

[104] Benchmarks: http://www.cbl.ncsu.edu/benchmarks/LGSynth93.

[105] J. Rose, R. J. Francis, D. Lewis, and P. Chow, "Architecture of field-programmable
gate arrays: the effect of logic block functionality on area efficiency," Solid-State
Circuits, IEEE Journal of, vol. 25, pp. 1217-1225, 1990.

[106] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, "Architecture of field-
programmable gate arrays," Proceedings of the IEEE, vol. 81, pp. 1013-1029, 1993.

[107] E. Ahmed and J. Rose, "The effect of LUT and cluster size on deep-submicron
FPGA performance and density," Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 12, pp. 288-298, 2004.

[108] L. Zhenyu, T. Arslan, S. Khawam, and I. Lindsay, "A high performance
synthesisable unsymmetrical reconfigurable fabric for heterogeneous finite state
machines," in Design Automation Conference, 2005. Proceedings of the ASP-DAC
2005. Asia and South Pacific, 2005, pp. 639-644 Vol. 1.

[109] Xilinx_Inc., "XC2C128 CoolRunner-II CPLD Product Specification," DS093 (v2.9)
ed, June, 2005.

[110] K. Kuusilinna, V. Lahtinen, T. Hamalainen, and J. Saarinen, "Finite state machine
encoding for VHDL synthesis," Computers and Digital Techniques, IEE
Proceedings -, vol. 148, pp. 23-30, 2001.

[111] N. Yevtushenko, S. Zharikova, and M. Vetrova, "Multi component digital circuit
optimization by solving FSM equations," in Digital System Design, 2003.
Proceedings. Euromicro Symposium on, 2003, pp. 62-68.

[112] Xilinx_Inc., "Virtex-II Platform FPGAs: Functional Description," DS031 (v3.4) ed,
March, 2005.

[113] R. Koenen, Overview of the MPEG-4 Standard vol. N4668: ISO/IEC
JTC1/SC29/WG11, March 2002

Conclusion and Future Work

~ 173 ~

[114] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra, "Overview of the
H.264/AVC video coding standard," Circuits and Systems for Video Technology,
IEEE Transactions on, vol. 13, pp. 560-576, 2003.

[115] "IEEE standard specifications for the implementations of 8x8 inverse discrete cosine
transform," IEEE Std 1180-1990, 1991.

[116] C. Wen-Hsiung, C. Smith, and S. Fralick, "A Fast Computational Algorithm for the
Discrete Cosine Transform," Communications, IEEE Transactions on [legacy, pre -
1988], vol. 25, pp. 1004-1009, 1977.

[117] B. D. Tseng and W. C. Miller, "On Computing the Discrete Cosine Transform,"
Transactions on Computers, vol. C-27, pp. 966-968, 1978.

[118] F. A. Kamangar and K. R. Rao, "Fast Algorithms for the 2-D Discrete Cosine
Transform," Transactions on Computers, vol. C-31, pp. 899-906, 1982.

[119] N. Ahmed, T. Natarajan, and K. R. Rao, "Discrete Cosine Transfom," Transactions
on Computers, vol. C-23, pp. 90-93, 1974.

[120] W. Li, "A new algorithm to compute the DCT and its inverse," Signal Processing,
IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE
Transactions on], vol. 39, pp. 1305-1313, 1991.

[121] C. Chakrabarti and J. Jaja, "Systolic architectures for the computation of the discrete
Hartley and the discrete cosine transforms based on prime factor decomposition,"
Transactions on Computers, vol. 39, pp. 1359-1368, 1990.

[122] S. C. Chan and K. L. Ho, "Fast algorithms for computing the discrete cosine
transform," Circuits and Systems II: Analog and Digital Signal Processing, IEEE
Transactions on [see also Circuits and Systems II: Express Briefs, IEEE
Transactions on], vol. 39, pp. 185-190, 1992.

[123] K. J. R. Liu, C. T. Chiu, R. K. Kolagotla, and J. F. Jala, "Optimal unified
architectures for the real-time computation of time-recursive discrete sinusoidal
transforms," Circuits and Systems for Video Technology, IEEE Transactions on, vol.
4, pp. 168-180, 1994.

[124] C. Nam Ik and L. San Uk, "Fast algorithm and implementation of 2-D discrete
cosine transform," Circuits and Systems, IEEE Transactions on, vol. 38, pp. 297-305,
1991.

[125] P. Duhamel and C. Guillemot, "Polynomial transform computation of the 2-D DCT,"
in Acoustics, Speech, and Signal Processing, 1990. ICASSP-90., 1990 International
Conference on, 1990, pp. 1515-1518 vol.3.

[126] H. R. Wu and F. J. Paoloni, "A two-dimensional fast cosine transform algorithm
based on Hou's approach," Signal Processing, IEEE Transactions on [see also
Acoustics, Speech, and Signal Processing, IEEE Transactions on], vol. 39, pp. 544-
546, 1991.

[127] S. Ghosh, S. Venigalla, and M. Bayoumi, "Design and implementaion of a 2D-DCT
architecture using architecture using coefficient distributed arithmetic," in IEEE
Computer Society Annual Symposium on VLSI, 2005, pp. 162-166.

[128] G. Jiun-In, J. Rei-Chin, and C. Jia-Wei, "An efficient 2-D DCT/IDCT core design
using cyclic convolution and adder-based realization," Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 14, pp. 416-428, 2004.

[129] C. S. Burrus and T. W. Parks, DFT/FFT and Convolution Algorithms and
Implementation. New York: Wiley, 1985.

Conclusion and Future Work

~ 174 ~

[130] A. V. Oppenheim and C. M. Rader, Discrete-Time Signal Processing, 2nd ed. Upper
Saddle River, NJ: Prentice-Hall, 1999.

[131] E. O. Brigham, The Fast Fourier Transform and Its Applications. Englewood Cliffs,
NJ: Prentice-Hall, 1988.

[132] O. K. Ersoy, Fourier-Related Transforms, Fast Algorithms and Applications.
Englewood Cliffs, NJ: Prentice-Hall, 1997.

[133] R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, 1983.

[134] W. Wei and D. H. Johnson, "Computing linear transforms of symbolic signals,"
Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal
Processing, IEEE Transactions on], vol. 50, pp. 628-634, 2002.

[135] S. A. Mujtaba, "TGn Sync Proposal Technical Specification." vol. 11-04-0889-05-
000n: IEEE 802.11, May. 2005.

[136] M. Engels, W. Eberle, and B. Gyselinckx, "Design of a 100 Mbps wireless local area
network," in Signals, Systems, and Electronics, 1998. ISSSE 98. 1998 URSI
International Symposium on, 1998, pp. 253-256.

[137] N. Weste and D. J. Skellern, "VLSI for OFDM," Communications Magazine, IEEE,
vol. 36, pp. 127-131, 1998.

[138] R. v. Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Norwell,
MA: Archtech House, 2000.

[139] J. W. Cooley and J. W. Tukey, "An Algorithm for the Machine Calculation of
Complex Fourier Series," Mathematics of Computation, vol. 19, April 1965.

[140] G. Bergland, "A radix-eight fast Fourier transform subroutine for real-valued series,"
Audio and Electroacoustics, IEEE Transactions on, vol. 17, pp. 138-144, 1969.

[141] R. Singleton, "An algorithm for computing the mixed radix fast Fourier transform,"
Audio and Electroacoustics, IEEE Transactions on, vol. 17, pp. 93-103, 1969.

[142] D. Kolba and T. Parks, "A prime factor FFT algorithm using high-speed
convolution," Acoustics, Speech, and Signal Processing [see also IEEE Transactions
on Signal Processing], IEEE Transactions on, vol. 25, pp. 281-294, 1977.

[143] S. Winograd, "On computing the discrete Fourier transform," Mathematics of
Computation, vol. 32 NO.141, pp. 175–199, Jan. 1978.

[144] P. Duhamel and H. Hollmann, "Split radix FFT algorithm," Electronics Letters, vol.
20, pp. 14-16, 1984.

[145] Z. Feihong, "Two-dimensional recursive fast Fourier transform [image processing
applications," Radar and Signal Processing, IEE Proceedings, vol. 137, pp. 262-266,
1990.

[146] A. Saidi, "Decimation-in-time-frequency FFT algorithm," in Acoustics, Speech, and
Signal Processing, 1994. ICASSP-94., 1994 IEEE International Conference on,
1994, pp. III/453-III/456 vol.3.

[147] W. W. Smith and J. M. Smith, Handbook of Real-time Fast Fourier Transforms:
Wiley-IEEE Press 2002.

[148] M. Heideman, D. Johnson, and C. Burrus, "Gauss and the history of the fast fourier
transform," ASSP Magazine, IEEE [see also IEEE Signal Processing Magazine], vol.
1, pp. 14-21, 1984.

Conclusion and Future Work

~ 175 ~

[149] N. Kalouptsidis, Sigal Processing Systems: Theory and Design: A Wiley-
Interscience publication, 1997.

[150] S. Johansson, H. Shousheng, and P. Nilsson, "Wordlength optimization of a
pipelined FFT processor," in Circuits and Systems, 1999. 42nd Midwest Symposium
on, 1999, pp. 501-503 vol. 1.

[151] N. Kazuto, Y. Shingo, and M. Yoshikazu, "A study of dynamic reconfigurable FFT
processor for OFDM based cognitive radio," in Communications and Information
Technologies, 2007. ISCIT '07. International Symposium on, 2007, pp. 1507-1510.

[152] A. Ahmadinia, B. Ahmad, and T. Arslan, "System Level Modelling of
Reconfigurable FFT Architecture for System-on-Chip Design," in Adaptive
Hardware and Systems, 2007. AHS 2007. Second NASA/ESA Conference on, 2007,
pp. 169-175.

[153] Y. Zhao, A. T. Erdogan, and T. Arslan, "A low-power and domain-specific
reconfigurable FFT fabric for system-on-chip applications," in Parallel and
Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International,
2005, p. 4 pp.

