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Abstract 

Higher performance, lower cost, increasingly minimizing integrated circuit components, and 

higher packaging density of chips are ongoing goals of the microelectronic and computer 

industry. As these goals are being achieved, however, power consumption and flexibility are 

increasingly becoming bottlenecks that need to be addressed with the new technology in Very 

Large-Scale Integrated (VLSI) design.  

For modern systems, more energy is required to support the powerful computational capability 

which accords with the increasing requirements, and these requirements cause the change of 

standards not only in audio and video broadcasting but also in communication such as wireless 

connection and network protocols. Powerful flexibility and low consumption are repellent, but 

their combination in one system is the ultimate goal of designers. 

A generic domain-specific low-power reconfigurable processor for the distributed 

arithmetic algorithm is presented in this dissertation. This domain reconfigurable processor  

features high efficiency in terms of area, power and delay, which approaches the 

performance of an ASIC design, while retaining the flexibility of programmable platforms. 

The architecture not only supports typical distributed arithmetic algorithms which can be 

found in most still picture compression standards and video conferencing standards, but 

also offers implementation ability for other distributed arithmetic algorithms found in 

digital signal processing, telecommunication protocols and automatic control.  

In this processor, a simple reconfigurable low power control unit is implemented with 

good performance in area, power and timing. The generic characteristic of the architecture 

makes it applicable for any small and medium size finite state machines which can be used 

as control units to implement complex system behaviour and can be found in almost all 

engineering disciplines. Furthermore, to map target applications efficiently onto the 

proposed architecture, a new algorithm is introduced for searching for the best common 

sharing terms set and it keeps the area and power consumption of the implementation at 

low level. The software implementation of this algorithm is presented, which can be used 

not only for the proposed architecture in this dissertation but also for all the 

implementations with adder-based distributed arithmetic algorithms. In addition, some low 

power design techniques are applied in the architecture, such as unsymmetrical design 

style including unsymmetrical interconnection arranging, unsymmetrical PTBs selection 

and unsymmetrical mapping basic computing units. All these design techniques achieve 
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extraordinary power consumption saving. It is believed that they can be extended to more 

low power designs and architectures.  

The processor presented in this dissertation can be used to implement complex, high 

performance distributed arithmetic algorithms for communication and image processing 

applications with low cost in area and power compared with the traditional 

methods.                                      . 
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I.1 Introduction 

Higher performance, lower cost, increasingly minimizing integrated circuit components, and 

higher packaging density of chips are ongoing goals of the microelectronic and computer 

industry. As these goals are being achieved, however, power consumption and flexibility are 

increasingly becoming bottlenecks that need to be addressed with the new technology in 

Very Large-Scale Integrated (VLSI) design.  

Both powerful computing ability and long running time are the key features of the handheld 

and portable devices such as wireless communication terminals, personal digital assistants 

(PDAs), laptops, etc. The outstanding system performance requires more energy to support 

powerful computational capability. However, high power consumption directly shortens the 

running time of portable devices which, in a sense, directly determines the future of devices 

in the market. Therefore, the success of low-power techniques not only implies battery life in 

mobile system will be extended, but also reliability in high-performance systems will be 

improved.  

The powerful processing ability of modern system accords with the increasing requirements 

which cause the change of standards not only in audio and video broadcasting but also in 

communication such as wireless connection and network protocols. The frequent updates in 

media and communication standards raise higher requirements in flexibility to support 

changes. Generally speaking, the more complex the system is, the more power is consumed. 

Powerful flexibility and low consumption are repellent, but their combination in one system 

is the ultimate goal of designers. 

Chapter I 

Introduction
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Programmable solutions such as Field Programmable Gate Arrays (FPGA) devices have 

become more popular among the applications in multimedia and communication because of 

their low design cost and fast time-to-market. However, compared with Application Specific 

Integrated Circuit (ASIC) solutions, there is a large power and delay overhead for these 

programmable solutions.  

Despite the common notion of FPGA’s large power consumption, Jan Rabaey has shown in 

[1] that, for certain type of digital signal processing applications, the energy efficiency of 

FPGAs is orders of magnitude better than that of general purpose processors. This 

observation is shown in Figure I-1. Although ASICs or hardwired solutions provide the best 

energy-efficiency, their longer design cycles make the time-to-market unacceptable for a 

business company besides their high design costs. 

Figure I-1: Flexibility versus energy trade-off in implementation [1] 

Reconfigurable System-on-Chip (SoC) technology emerged to meet the simultaneous 

demands for flexibility and efficiency. Compared with general SoC, one or more 

programmable arrays are embedded in the reconfigurable system. The reconfigurable arrays 

can be programmed to adapt to different applications so that the efficiency of the hardware 

and the flexibility of the whole system are improved. A typical reconfigurable SoC 

architecture consists of general purpose processor, memory, system bus, control modules and 

reconfigurable arrays which handle specific complex functions. 
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From the developing trends in reconfigurable logic and computing, it is found that the 

reconfigurable computing consumes higher power (roughly a factor of 10) when compared 

to ASICs. But compared with standard microprocessors the energy-efficiency is about two 

orders of magnitude better [2], as shown in Figure I-2. Therefore, introduction of 

reconfigurable architecture can lead to significant energy savings when compared with 

processor solutions only [2]. 

Figure I-2: Energy efficiency vs. flexibility including reconfigurable computing [2] 

This thesis presents a hybrid solution between ASICs and general-purpose programmable 

platforms to fill up this gap. This solution is an application-specific reconfigurable processor 

targeting on distributed arithmetic algorithm, which approaches the performance of an ASIC 

design, while retaining the flexibility of programmable platforms. 

I.2 Significance of This Work 

The contributions of this research are stated as follows, including five key aspects: 

• A novel domain-specific reconfigurable architecture for the distributed arithmetic 

algorithm is demonstrated. The architecture not only supports the typical distributed 

arithmetic algorithm, discrete cosine transform, which can be found in most still picture 

compression standards and video conferencing standards, but also offers 

implementation ability for other distributed arithmetic algorithms such as discrete 

Fourier transform, finite impulse response, and discrete Hartley transform. 
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• To achieve the best hardware efficiency, the concepts of dimidiate tree and crossing 

forest are introduced. A new algorithm is accordingly developed for searching for the 

best common sharing terms set when the target application is implemented with the 

proposed architecture. The algorithm can find out the best set for implementation so as 

to achieve the most efficient consumption of area and power.  

  

• The software implementation of the algorithm for searching for the best common 

sharing terms set is demonstrated, which can be used not only for the architecture 

presented in this dissertation but also for all the implementation of adder-based 

distributed arithmetic algorithm. 

 

• A reconfigurable control unit is introduced, which is not only the key part of proposed 

architecture.  The core part of it, reconfigurable finite state machine architecture, can be 

applied in any small and medium-sized finite state machines which are the control units 

to implement complex system behaviour and can be found in almost all engineering 

disciplines. 

 

• Low power design techniques such as unsymmetrical interconnection arranging, 

unsymmetrical product-term blocks (PTBs) selection and unsymmetrical mapping basic 

computing units are presented in this dissertation, which can improve area and power 

efficiency significantly. 

 

I.3 Organisation of the Thesis 

This section describes the organization of this dissertation by introducing main points of each 

chapter. 

Chapter II presents reviews of literature related to this work including basic concepts of 

reconfigurable architecture, the classification of the architectures, a brief introduction to 

interconnection network applied in reconfigurable architecture and low power design 

technology. In addition, the implementations of fine-grain and coarse-grain architectures are 

described. Typical reconfigurable coarse-grain architectures are also presented and compared 

in detail. 
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Chapter III first introduces basic concept of distributed arithmetic algorithm and its definition. 

Two basic distributed arithmetic algorithms, Read Only Memory (ROM) based distributed 

arithmetic and adder based distributed arithmetic, are then addressed after the summarization 

of the distributed arithmetic concept development. Several serial and parallel architectures for 

distributed arithmetic are described. The advantages of these architectures and the problems 

facing them are also proposed in this chapter. At the end of this chapter, distributed arithmetic 

applications in signal processing and communication fields are described briefly. 

A domain-specific low power reconfigurable distributed arithmetic architecture and its 

implementation are addressed in Chapter IV. The overview architecture is described first and 

then the descriptions of the algorithm logic unit are detailed. To achieve the best hardware 

efficiency, the concepts of dimidiate tree and crossing forest are introduced and defined in this 

chapter. An algorithm is accordingly developed and presented in the chapter as well, which 

makes the architecture mapped with the best efficiency.  

The control unit of proposed processor will be described separately in Chapter V because if its 

complexity and unique function. Based on the analysis of traditional reconfigurable 

architecture given at the beginning of this chapter, a simplified one is presented with less 

flexibility, but high efficiency in terms of area, power and delay. In this chapter, the 

performance of the reconfigurable control unit architecture in area, power and delay of control 

unit will be evaluated and analyzed as well. 

After the full description of the proposed processor in Chapter IV and V, the implementations 

of two typical distributed arithmetic applications, discrete cosine transform and discrete 

Fourier transform, are introduced in Chapter VI for functionality verification and 

performance evaluation. The implementations with the target architecture include the 

configurations of control path, register matrix and algorithm logic unit specified according to 

the requirements of the application. Additionally, the common term sharing scheme is 

demonstrated in this chapter by applying dimidiate tree and the algorithm to search for optimal 

scheme. 
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Finally, Chapter 7 concludes the thesis by discussing the contributions of the dissertation, 

limitations of the proposed architecture and directions for future research.                        .



~  7 ~ 

 

II.1 Overview 

The traditional ASIC approach has become very expensive due to large design time and 

increasing photolithography cost.  In addition, the relatively rapid changes in algorithms 

make an ASIC tend to execute partial reuse of the chip, which has resulted in this approach 

being widely considered a financially infeasible solution for most applications. This can be 

overcome by adding flexibility and programmability to ASICs, which allows making 

changes to the design after fabricating. Thus, design errors are greatly reduced; updated 

standards are better supported and the system is better able to overcome run-time 

constraints. Besides, the flexibility helps the system adapt to run-time constraints by 

adopting dynamic reconfiguration. Currently, such flexibility is realized through software 

solutions with processors and digital signal processors (DSPs).   

However, it is not beneficial in portable devices with performance-critical application such 

as Moving Picture Experts Group standard 4 (MPEG-4) and Advanced Video Coding (AVC) 

whose complexity demand high operating frequency and power consumption of DSP 

to achieve the high throughput required. 

Efforts of researchers to find better architectures for future devices have resulted in several 

novel systems on which the current work presented in this thesis is based. Existing and 

established architectures like DSPs, FPGAs and ASICs were described previously. Features 

of typical emerging and reported reconfigurable architectures will be demonstrated in the 

rest of this chapter. As will be compared later, each architecture has its own pros and cons 

Chapter II 

Review of Reconfigurable and Low-

power Architecture
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and only a few of them can potentially function with high performance and low-power 

consumption. 

This chapter first explores reconfigurable logic structures and reconfigurable computing 

architectures. Since programmable interconnects contribute greatly to flexibility of 

reconfigurable systems, a considerable part of this work focuses on the interconnections. The 

second part of this chapter overviews the existing programmable interconnection topologies. 

The last part of the chapter describes low power technologies briefly.  

II.1.1 Reconfigurable Architecture 

For a given application set or domain, there are generally two implementation methods: 

ASICs and general purpose programmable/reconfigurable platform including Programmable 

Logic Device (PLD) and general purpose processor (GPP).  

Because the functionality of the architecture is fixed, ASIC platform has exactly one-to-one 

correspondence between application and architecture. This fixed construction has no 

redundant parts, which makes the ASIC platform the most efficient in area, power and the 

least delay among all possible implementation platforms. But its Nonrecurring Engineering 

(NRE) cost is very high. The mask cost is over millions pounds for the 60-nm technology 

and the design cost runs into as high as tens of millions of pounds as the dimensions of chips 

approach nano-scales. Besides, time to discover the design failures and repair them would be 

long, making time-to-market of product uncertain, which is even a more important factor 

than other cost and may lead to product failure regardless of its high performance.  

PLD is an electronic device containing reconfigurable digital circuits which can be 

programmed for targeted applications by users. GPP is a processor in which the programs 

stored in the integrated memory can be easily modified according to the requirements of 

applications and drive GPP to realize the desired function. PLD and GPP rise naturally to 

deal with today’s multimedia and communication applications. These applications are 

becoming larger and larger, making the chip real estate more and more costly. They can be 

easily found in smart phone integrating multiple cell phone standards (e.g., Global System 

for Mobile communications (GSM), Wideband Code Division Multiple Access (WCDMA), 
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CDMA2000, Time Division-Synchronous Code Division Multiple Access (TD-SCDMA)), 

wireless Local Area Network (LAN), Bluetooth, MPEG-1 Audio Layer 3 (MP3), MPEG-2, 

MPEG-4, Digital Video Broadcasting - Handheld (DVB-H), digital camera/camcorder, 

graphics, games, etc. The PLD devices and programs stored in the memory of a GPP can be 

easily programmed according to the changes of applications. Under the semiconductor 

technology trend that the increase of memory density is outpacing that of transistor, storing 

multiple programs is more cost-effective than fabricating much larger chips.  

Furthermore, even for a single application, there has been a tendency that complexity is 

growing rapidly. Historically, the growing complexity of applications has triggered the 

digitization revolution in the 90's of the last century and has changed most aspects of human 

life. Now the further growing complexity, mainly dynamics this time, will very likely 

introduce another "softwarization revolution" in the next decade. One piece of evidence is 

the prevalence of embedded processors. Another famous step is the Software-Defined Radio 

[3]. A typical embedded processor is Graphics Processing Units (GPU) which emerged in 

graphics and games application domain. It evolved from special ASIC blocks to domain-

specific processors with their own C-like high-level programming languages and even larger 

than GPPs [4]. 

Compared with ASIC platforms, there are also other reasons for preferring a programmable 

platform. Firstly, a programmable solution greatly saves NRE cost [5]. It reduces not only 

mask cost but also the design cost since design efforts would shift from expensive hardware 

design to relatively cheap software design if the programmable platform is available. 

Secondly, programmable solution reduces uncertainty and risk. Software design takes less 

time than hardware design and its failure takes less time to discover and repair than hardware. 

This greatly reduces the time-to-market which is an even more important factor than cost.  

II.1.2 FPGA devices 

The general way to implement reconfigurable architecture is to adopt a PLD style core in the 

SoC design [6-9]. There are two basic architectures, namely, Complex PLD (CPLD) and 

FPGA. Using an embedded PLD is the mainstream method for a reconfigurable SoC. 
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Most FPGA devices are traditionally homogenous arrays of fine-grain, such as [10] and [11], 

which give the most possible flexibility. In fine-grain reconfigurable architectures the 

functionality of the hardware is specified at the bit-level or bits-level (less than four) and the 

programmable interconnection is manipulated as individual wire. The flexibility of fine-grain 

architecture comes at the cost of additional silicon area and this overhead hampers the 

performance of word-level algorithms like multiplications. Fine-grained architectures are 

efficient for bit-level masking and filtering or complex bit-oriented computations. Therefore 

word-level operations will become relatively large and slow when they are implemented 

with fine-grained architectures. To cover the gap between fine-grained FPGA devices and 

coarse-grained (word-level) reconfigurable architectures, 6-input Look-Up-Tables (LUT) 

based FPGA devices from Xilinx Virtex-5 family [12] are developed to meet the 

requirements of  large complex applications for heavy load.  

Compared with 4-input LUT fine-grained FPGA devices, Xilinx Virtex-5 FPGA devices 

show their merits in area and power efficiency for the computing-intensive digital signal 

processing applications. Such applications often require Random Access Memory (RAM)/ 

First In, First Out (FIFOs), mass of adder, subtracter, accumulator and multiplication, all of 

which are just integrated in Xilinx Virtex-5. 

II.1.3 Domain-specific Processor 

Compared with the poor configuration flexibility of ASIC platform, the flexibility of GPP 

platform will never be a problem. Actually the processor could implement any target 

application along with corresponding programs. But GPP platform really suffers from its 

abundant flexibility and thus is limited to several categories such as superscalar, Very-Long-

Instruction-Word (VLIW), multithread, etc., which have been proved hard to maintain the 

annual performance increase of 50% [13]. 

More and more, power consumption and flexibility are becoming bottlenecks in VLSI design. 

Domain Specific Processor (DoSP) technology emerged to meet the simultaneous demands 

for flexibility and efficiency. The appropriate constraints imposed onto application sets can 
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release the architecture from the burden caused by the unnecessarily abundant flexibility, 

thus opening much larger design space for higher performance than GPP. 

The lower flexibility in DoSP necessitates larger configuration bits (e.g., 8 contexts per plane 

for MorphoSys) compared with one 32-bit instruction for X86 and longer time (e.g. 

thousands to millions of cycles for FPGA) compared with one cycle for ARM in order to 

change the configuration. Of course, longer-lasting configuration set makes DoSP work 

more efficiently and reduce the cost of changing the configuration, which could be achieved 

by carefully optimizing the configuration set. This type of processor is a sort of 

reconfigurable architecture by definition. From the above, we observe that DoSP inherently 

leads to reconfigurable architectures either fine-grained (e.g., FPGA) or coarse-grained (e.g., 

MorphoSys), and vice versa.  

GPP reconfigurable platforms can be roughly divided into fine grain architecture and coarse 

grain architecture in term of granularity which is determined by the width of the components 

in its datapath. Generally, an architecture is considered as fine-grain one when its datapath 

width is four bits or less [14]. Otherwise, it is considered coarse-grain architecture. In the 

following three sub-sections, fine-grain FPGA Architecture, typical fine-grain and coarse-

grain architectures are discussed briefly. 

II.2 FPGA Architecture 

II.2.1 Fine-grain FPGA Architecture 

The architecture model of FPGA is shown in Figure II-1. In this model, the reconfigurable 

hardware platform consists of three basic elements: Configurable Logic Blocks (CLBs), 

Connection Boxes (C-Box), and Switch Boxes (S-Box). The operational elements in CLBs 

of FPGA are mainly LUTs with 16 single bit inputs, which store the truth tables of user-

defined combinational logic functions. These inputs are controlled by bits from the 

configuration memory which makes it possible to build any 4-input logic function by 

changing the content of the Static Random Access Memory (SRAM) configuration memory 

[15]. A combinational logic function is realized by looking up the value stored in the LUT 

that is addressed by the corresponding gate inputs. The programmable elements also have the 
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ability to optionally register their outputs. Furthermore, a mesh of programmable 

interconnects is available to connect the CLBs together to build bigger circuits. 

Figure II-1 : Architecture of FPGA 

Implementing a logic network requires connecting CLBs by selecting the desired signal wire 

linked to the routing tracks through horizontal and vertical wiring channels located between 

two neighbouring rows or columns. A connection block can attach the signals to the logic 

block and the switch box nearby. The connections in the switch boxes make the input signal 

either pass through the switch box on its track or change its routing direction. To enhance the 

connectivity for connecting various CLBs, it is possible to use various types of wires with 

different lengths which are separated by variable numbers of blocks [14]. For example, in 

Xilinx’s Virtex FPGAs, there are two types of routing devices, C-Box and S-Box, which 

route the signal flows among CLBs and wires. C-Box route the inputs and outputs of a CLB 

to the adjacent wires. S-Box connects horizontal and vertical crossing wires. The single-lines 

connect adjacent CLBs, while 16 lines connect CLBs that are three or six blocks apart [10].  
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The fine-grain aspect of FPGAs makes them extremely flexible and suitable for a very wide 

range of applications. Hence, FPGA chips are produced in large quantities which make their 

usage come with greatly reduced NRE costs. This high flexibility is obtained at the cost of 

very high power consumption which prohibits the deployment of FPGAs in portable 

applications. 

II.2.2 Problems with Fine-grain FPGA Architecture 

One problem with fine grain FPGAs is the high reconfiguration time. Take Atmel 40K40 as 

an example, which is a 48 by 48 FGPA and it needs 42063 8-bit words for full 

reconfiguration with maximum 8 MHz reconfiguration clock [16]. Therefore it can be fully 

reconfigured in 5.26 milliseconds. Similarly, Xilinx Virtex-E FPGA family has the array size 

of 64 by 96 with 766042 bits bitstream for full reconfiguration. It needs 3.1 milliseconds for 

reconfiguration by using a 50MHz clock [10]. The high reconfiguration time can be a 

restriction if dynamic reconfiguration is adopted in applications where parts of the circuit 

mapped on the FPGA are idle waiting for another part to finish. Dynamic reconfiguration of 

the circuit in this case would lead to better use of the available silicon. Besides, FPGAs 

usually have around 10 times more delays than ASICs. 

Figure II-2 : Reconfiguration time of two FPGA devices 
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Figure II-2 gives comparison of reconfiguration times of imaginary Atmel 40K and Virtex-E 

FPGA with 100 by 100 array size and reconfiguration clock of 50 MHz [17, 18]. 

In addition to the high reconfiguration overheads, FPGA devices also suffer from high power 

dissipation. In an FPGA chip, the energy dissipated in interconnects is about 65% of the total 

energy consumption, while 30% are dissipated in programmable clock-routings and I/O 

blocks. For example, the power consumption of an XC4085 chip running at a system clock 

of 50 MHz is approximately 6W [19]. Therefore, the high power consumption of FPGA is a 

limiting factor in energy-sensitive domains for the hand-held and portable devices such as 

wireless communication terminals, personal digital assistants (PDAs), laptops, etc. High 

power consumption directly shortens the running time of portable devices which, in a sense, 

directly determines the future of devices in the market.  

As the size of the application becomes larger, the size of FPGAs has been growing steadily 

over the past decade and will stay on this path. This has been made possible by staying at the 

forefront in terms of the process technology. The combined effect of smaller feature sizes 

and larger die area is that more and more transistors are integrated on a die. The resulting 

increase in power density and total power dissipation will have an adverse effect even in the 

power insensitive domains, due to the advanced packaging and the cooling techniques 

required [19]. 

II.3 Fine-grain Architecture 

Fine-grained architectures can make designers to take the benefit for implementing bit 

manipulation tasks flexible without wasting reconfigurable resources. The fine granularity of 

such architectures makes the implementation of large and complex calculations consuming 

numerous Processing Element (PEs).  This results in slower clock rate when the applications 

are implemented with fewer, coarse-grained PEs. 

To author’s opinion, the number of fine-grain architectures is limited so it is difficult to 

classify them. Though each has its specific characters that differentiate them from others, 

they have a lot in common. Thus three popular architectures are randomly selected and 

introduced in this section. It is not intended to detail all industrial reconfigurable systems and 
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research projects; instead it is to show the overall characters of fine-grain architectures by 

introducing selected systems. 

II.4.1 National Semiconductor's Adaptive Processing Architecture (NAPA) 

NAPA [20-22] was developed by National Semiconductors USA.  Adaptive Logic Processor 

(ALP) in the architecture couples a standard processor on-chip, 32-bit Reduced Instruction 

Set Computer (RISC) core (Compact RISC) called the Fixed Instruction Processor (FIP), 

with a reconfigurable array of fine-grained logic elements. Both ALP and FIP can access the 

same memory space and ALP, therefore, retains complete generality. The structure of NAPA 

processor is shown in Figure II-3. Additionally, the ALP has exclusive access to a set of 

configurable I/O pins and on-chip memory resources and a general external memory 

interface. This increased flexibility in interfacing and memory allocation are greatly helpful 

for adaptive computing effectively, especially in embedded systems.  

To overcome the problems of consistency and synchronization between ALP and FIP, there 

are synchronization mechanisms such as standard status flags and interrupts with two 

programming modes for FIP and ALP threads to rejoin. In the first mode, FIP initiates the 

ALP operation and suspends afterwards. Once the work is done, the ALP reactivates FIP by 

an interrupt. In the second mode, the FIP is free to perform computation loaded after having 

initiated ALP.  

Figure II-3 : NAPA processor structure [20] 
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II.4.2 Garp: Gate Array Processor 

Garp was developed by Berkeley Reconfigurable Architecture, System, and Software 

(BRASS) group at UC Berkeley, USA [23-25]. It is reserved for tasks such as interrupting 

the main processor, array-initiated memory accesses, and register transfers with the host 

processor. The Garp processor architecture, as shown in Figure II-4, combines a standard 

Microprocessor without Interlocked Pipeline Stages II (MIPS-II) processor with a two-

dimensional reconfigurable array such as FPGA-like blocks available from Xilinx, Altera 

and other manufacturers. The reason to classify this processor into fine-grain architecture is 

2-bit operands in size at most for each computing element in the reconfigurable array which 

is used to accelerate certain computations. Garp’s main processor executes an extended 

MIPS-II instruction set and the reconfigurable array in it exchanges data between memory 

and the main processor through 4 memory buses which is vertical through the rows. In Data 

Encryption Standard (DES), image dithering, and a sorting algorithm, Garp processor runs at 

133 MHz and speeds up from 2 to 24 over a 167 MHz UltraSPARC processor.    

      Figure II-4 : Garp block diagram [23] 

The main problem is a lack of memory to store intermediate data inside the reconfigurable 

array. There are flip-flops only inside the logic elements, which can be used for memory 

resources. The intermediate data generated in reconfigurable array must be written back to 

the data cache. Due to the caching mechanism, accesses to intermediate data may cause 
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misses and stall array execution. Besides, large amount of data caching requires more 

bandwidth and therefore forms a bottleneck for its limited buses. 

 

II.4.3 Chimaera Architecture 

The Chimaera [6, 26, 27] architecture was developed by Scott Hauck and other researchers 

at Northwestern University first and University of Washington later. Figure II-5 

demonstrates the overall Chimaera architecture. It consists of tightly coupled fine-grain 

reconfigurable functional units (FPGA blocks) and microprocessor for hardware caching. 

This integration was intended to eliminate the communications bottleneck between the two 

and allow the acceleration of a broad class of functions as opcodes. Functions loaded into the 

FPGA by the host processor operate speculatively on every clock cycle, with the results 

written back to a register file only for those functions explicitly invoked by the processor. 

Figure II-5 : Overall Chimaera architecture [6] 

The execution model is that of bit-slice data which spreads horizontally across the array, 

propagating downward as row-wise operations are applied. Kernels corresponding to 

operating codes take up entire contiguous rows. Hence, the array is partially reconfigurable 

by the row. Logic blocks have multiple LUTs and multiple inputs/outputs, allowing data 

forwarding while computing. Special carry-propagation logic propagates critical paths along 

each row. Horizontal wires of various reaches are available, but limited. In order to simplify 

context switching, there are no pipeline registers apart from the logic block's ability to 
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read/write the register file of the host processor. Besides, there are not pipelining latches in 

the reconfigurable array. 

 

II.4 Coarse-grain Architecture 

Coarse-grained reconfigurable architectures contain word-level function units, such as 

multipliers, Arithmetic Logic Units (ALUs) or PE which can perform a limited number of 

16-bit or 32-bit operations as configured. One characteristic of coarse-grain architectures is 

the large size of PE and limited functions available in it. Compared with fine-grain 

architectures, coarse-grain architectures will consume less power, but it also suffers from the 

difficulty in implementing the control logic which is operated at bit level.  

Generally, Coarse-grained architectures require less configuration data than fine-grained 

architectures because of their short configuration time. A survey of coarse grain architectures 

can be found in [28, 29]. The reconfiguration overhead of the coarse architectures is less than 

that of the fine grain architectures [30].  

Coarse-grain architectures share certain features as introduced above while each has its own 

differentiating characters. Given their limited number and varied functions, it is difficult to 

systematically classify coarse-grain architectures. Thus five coarse-grain architectures are 

selected randomly as examples, which could make overall characters of coarse-grain 

architectures better revealed. 

II.4.1 Pleiades Architecture 

Pleiades [31] is an important vision for InfoPad project by Jan Rabaey's group at Wireless 

Research Centre at the University of California in Berkeley, which works toward multimedia 

on the mobile unit of computing services available from a high-bandwidth backbone network 

of computers, in which the driving need was to perform many different computationally 

intense tasks with low power.  

The architecture, as shown in Figure II-6, consists of a general-purpose microprocessor for 

controlling and a surrounding heterogeneous array of coarse grain satellites. The main 

processor executes control-dominated sections of the program while satellites execute data-
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dominated computations. The system is distributed in a sense that every satellite has its own 

instruction fetch and execution. The satellites communicate between each other through 

dedicated interconnects. The satellite processors could be arithmetic modules such as 

multipliers, memory modules, address generators or reconfigurable arrays [9, 32].  

Because the configurable modules are function-specific, the paradigm is based on an ASIC 

flow. However, the control core processor is linked to satellite processors of varying degrees 

of specialization through a reconfigurable communication network. The task of architecture 

design and the decision of which satellites to use have to be done manually. Although 

dynamically configurable fine grain programmable gate array (PGA) satellites could 

accelerate functions, they cannot warrant special-purpose satellites and are less efficient than 

specialized circuits in the satellites.  At partitioning stages the designer decides which loops 

of the full high-level program need to speed up using reconfigurable fabric; then the decision 

of which satellites to be deployed is made and their design started.[33] 

Interconnects and the type/number of satellites can be parameterized to provide limited 

reconfigurability according to the requirements in applications. But programming the 

satellites requires writing low-level netlists. This technique can make the architecture 

efficient; however, they become too specific for diverse targeted applications.  

 

Figure II-6 : Overall Pleiades architecture [9] 
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II.4.2 RaPiD: Reconfigurable Pipelined Datapath 

The RaPiD (Reconfigurable Pipelined Datapath) architecture [34], developed in 1996 at the 

University of Washington, USA, is a one-dimensional array of cells.  It is aimed at speeding 

up highly repetitive, computationally-intensive tasks in multimedia and digital signal 

processing domain by implementing deep, application-specific computation pipelines to 

form a mostly linear pipeline in the RaPiD architecture.  

An abstract view of the Rapid architecture is shown in Figure II-7. For RaPid-1prototype, 

each cell comprises an integer multiplier, three integer ALUs, six general purpose datapath 

registers and three local memories with 32 entries. Cells are connected by segmented buses 

with built-in pipeline registers and FIFOs at each end. The registers, the RAM, the ALU and 

all datapath operate on 16-bit data types. The multiplier performs a 16 x 16 to 32 

multiplication and outputs the 32-bit result as two 16-bit words. The ALUs can be cascaded 

for double-precision operations. The data-path registers can be used to store constants or 

temporary values, to implement additional multiplexers, to support routing, and for 

additional pipeline delays. Each memory has a specialized datapath register featuring an 

incrementing feedback path. A RaPiD array is constructed by replicating identical cells from 

left to right, forming a linear computing pipeline. The array can consist of hundreds of cells, 

such as multipliers, adders, and comparators.[35-37] 

 

 

Figure II-7 : Abstract view of the Rapid architecture [34] 

RaPiD is the only architecture that defines a broad architectural approach and provides a 

heterogeneous computation fabric/array. For configuration, the RaPiD architecture uses a 
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mix of static configuration and dynamic control, which brings plenty of flexibility for 

designers to configure it for their target domain. 

Mapping applications onto RaPiD needs a non-standard programming language, RaPiD -B 

language, and compiler tool set, RaPiD -B compiler. All this causes the architecture to be 

considerably weak. Compared to an FPGA or MATRIX routing architecture, RaPiD restricts 

the connectivity among the processing elements to a linear segmented bus. This places the 

designer at a significant disadvantage when the architecture is configured for the target 

applications. 

II.4.3 MorphoSys 

Morphosys [38] is a reconfigurable processor that is a parallel system on one chip 

comprising a software programmable processing unit and a reconfigurable hardware unit 

from UC Irvine. It is targeted at the applications with inherent parallelism and a high level of 

granularity, which can be accelerated by the reconfigurable part. The granularity of the 

Morphosys processing elements is the highest among the family of reconfigurable processors. 

The performance of the Morphosys architecture on MPEG2, Motion Estimations, Discrete 

Cosine Transform (DCT) and Viterbi is around a 5-10 times improvement over normal 

Central Processing Units (CPUs) [39, 40]. 

The complete MorphoSys architecture, as shown in Figure II-8, consists of a MIPS-like 

TinyRISC core processor, a frame buffer, a Direct Memory Access (DMA) controller, a 

context memory, and an 8x8 reconfigurable array. The main component of Morphosys is the 

reconfigurable array of 8 by 8 which has a 28 bit, fixed point ALU (with a 16 x 12 multiplier) 

and a register file, and is configured through a 32-bit context word. The ALUs run on RISC 

instructions and the instruction set has load and store instructions for manipulation of the 

DMA controller and the reconfigurable array. The context word is loaded into a register in 

every execution cycle from the context memory, which is used to store the configuration data 

for the reconfigurable array including the functionality of the ALU (the instruction fetch and 

decode phase) and the network connections for that ALU. The frame buffer is used as data 

cache to store internal data for blocks of intermediate results.[41-43] 
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Figure II-8 : The MorphoSys Architecture [38] 

The processor uses a hierarchical routing architecture, and is therefore capable of providing 

good routing flexibility. It follows that the Single Instruction, Multiple Data (SIMD) model 

and all the functional units in the same row or column execute the same operation with 

different data. Hence the array is only useful for data-parallel operations such as pixel 

parallel-data operations. In addition to its preference for word-level applications, which is 

caused by the coarse granularity of the processing elements, the architecture is also flexible 

enough to support bit level operations such as control operations which are executed by the 

RISC. 

The Morphosys approach is well suited to some regular computation patterns but it does 

little to address the increasingly irregular patterns in the latest media standards, such as 

MPEG4. The regularity and simplicity of the reconfigurable array have limitations on 

implementation of some media processing algorithms and the applications with time-varying 

computation patterns. For example, an implementation of FIR on such an array is likely to 

cause excessive stalls and repeated-redundant context reloading. Besides, the architecture 

was not designed to be customised in spite of its synthesisable core.  

II.4.4 Chameleon 

The Chameleon reconfigurable processor [44], developed in University of Twente, 

Netherlands, is a heterogeneous reconfiguration architecture in combination with a Quality 

of Service (QoS) driven operating system. 
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It provides a platform for high-performance telecommunication and data communication 

applications. Chameleon reconfigurable processor is a general processor-based 

reconfigurable architecture, in which a 32-bit RISC core, the reconfigurable fabric, a fast bus, 

the local memory system, Programmable Logic Arrays (PLAs) for the control path and I/O 

are built in a single chip. [45] 

The RISC core is employed as a host processor which schedules computation intensive tasks 

onto the programmable logic. The programmable logic is the main computing engine in the 

fabric, which is a 32-bit array of 108 data path units (DPUs). These DPUs are also capable of 

parallelling 16-bit operations and can be dynamically reconfigured between one and eight 

instruction execution. The main computational block within the DPU is an ALU capable of 

two's complement arithmetic and bitwise Boolean operations. It can simultaneously monitor 

and flag a number of relational and arithmetic conditions. The ALU is fed by two operand 

paths with optional Boolean masking, shifting, and registers for pipelining or storing 

constants. Input muxes select the operands from buses driven by other DPUs. Data can be 

read/written to/from the adjacent SRAM; each SRAM memory has one read port and one 

write port on the fabric side which can be used by the executing kernel. The SRAM 

memories can be chained together into a contiguous address space.[46-49]  

A configuration bit stream is stored in the main memory and loaded onto the fabric at 

runtime by DMA. The programme logic can be configured at running time by bits stored in 

the memory. There are two kinds of planes in the DPUs: active and back planes. An active 

one executes the working bit stream and a back one contains the next configuration bit 

stream. It only takes one cycle to switch from the back plane to the active one. Therefore, the 

back plane can be treated as a cache for loading configurations. 

 

II.4.5 RAP  

The Reconfigurable Algorithm Processor (RAP) [50-52], originally developed by Bristol-

based Elixent Ltd, is a coarse-grain reconfigurable platform designed for DSP and 

multimedia applications. The reconfigurable hardware, known as the D-fabrix, is made up of 

an array of hundreds of 4-bit ALU's and register/buffer blocks that can be cascaded together 
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to accommodate larger data lengths. This allows the fabric to operate on the 8-24 bit data 

lengths common in multimedia applications. The ALU's are arranged in a chessboard style, 

alternating with switchboxes which can act as a cross-point switch or 64 bits of configuration 

memory.  

The D-Fabrix architecture is an extension of the Chess project [53] which is developed by 

Hewlett-Packard Laboratories. The logic in D-Fabrix ALU and Switchbox pair is shown in 

Figure II-9. Each basic 4-bit processing element of it has two 4-bit data inputs, one 4-bit data 

output, 1-bit carry input and carry output terminals to create carry chains linking between 

ALUs for wider words processing and a 4-bit instruction input. Besides, the array also 

contains 256-byte memory blocks dispersed around the array. The choice of nibble sized 

ALU's means that only a few bytes of memory are required to configure each ALU allowing 

rapid reconfiguration and improved density. The large amount of on-chip memory also 

allows ALUs to be fed by instruction streams generated within the array reducing off-chip 

memory traffic to improve overall performance.  

Multiplexers are adopted in the switchbox in D-Fabrix, which is used to construct 2-input 

logic gates. One of the input ports of the multiplexer are connected to the control input and 

the other port is connected to data inputs. Although one of the four available data bits is used, 

the adoption of multiplexers achieves good performance in terms of area and speed 

compared with ALUs because of its efficient construction for simple Boolean logic 

implementation. 

Figure II-9 : The logic in D-Fabrix ALU and Switchbox pair [52] 
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The RAP is targeted at multimedia and wireless base-station applications and they have 

shown a speed-up of 238x against a 32-bit DSP processor and 38x against an FPGA in Joint 

Photographic Experts Group (JPEG) compression application. 

II.3 Interconnection Structure 

Reconfigurable interconnection networks are the important underlying hardware 

infrastructures of reconfigurable system. They not only provide the whole system with 

powerful flexibility to meet the requirements from applications, but also affect the area, time, 

and power efficiency. Reconfigurable interconnection networks implement required 

connections among functional blocks or components through reconfiguring programmable 

switches and basically consist of programmable switches and wire segments or channels [54]. 

In this section, three typical interconnection structures are evaluated which are symmetrical 

interconnection network, hierarchical interconnection network and binary (Fat) 

interconnection tree. 

II.4.1. Symmetrical Interconnection Network 

FPGA devices employ non-distinctive logic blocks which are embedded in a mesh of routing 

sea consisting of switch boxes and connect boxes. Each function module in FPGA devices 

including Boolean and routing function modules are the same. The routing network is 

organized in symmetrical and balanced style.  

Logic blocks in FPGA are separated by vertical and horizontal channels. There are 

prefabricated parallel wire segments running between each pair of adjacent logical blocks in 

both the vertical and horizontal channels. A switch block is located at each intersection of a 

vertical and horizontal channel. When an FPGA is used to implement a Boolean function, a 

partitioning algorithm is used to decompose the Boolean function into some smaller sub-

function so that each of them can be implemented by a single logic block. Then a placement 

and routing algorithm is employed to select a logic block for each sub-function, and the wire 

segments and switches are chosen to connect the selected logic blocks.  
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During the whole processing, the selection of logic block, switch box and connect box is no 

distinction except the limitation caused by the requirement of delay. 

II.4.2. Hierarchical Interconnection Network 

While being effective for local connections, the symmetrical interconnection network has the 

disadvantage caused by the coarse granularity architecture that distant routing wires make 

communication slow and expensive since a large number of programmable switches have to 

be traversed. This leads to the concept of the hierarchical interconnection network, which 

continues to exploit locality while reducing the cost of the long connections. 

Hierarchical interconnection network is focused on the interconnection between the coarse 

block elements such as Pleiades architecture (see sub-section II.4.1) and tries to overcome 

the routing problems caused by blocks with different area sizes. It is useful in applications 

where data locality is high and only a few signals need to be sent across the chip.  

The interconnection network is composed of two types of connections: global interconnects 

and local segmented mesh structure. Global interconnects provide long distant connection 

between any two parts of the array. Furthermore, switching activities of the lines are 

transmitted for long distances. Local segmented mesh structures in local blocks improve 

overall global interconnects as shown in Figure II-10, but it is difficult for them to adapt to 

heterogeneous arrays, for a 2D regular grid has to be found. The disadvantage of hierarchical 

interconnection network is that their switching elements are less generic than symmetrical 

interconnection network. Besides, the complexity of two routing methods in their respective 

partitions always makes mapping distribution hard to achieve an optimal status as originally 

expected.  
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Figure II-10 : An example of generalized hierarchical interconnection  

II.4.3. Binary (Fat) Interconnection Tree 

The binary interconnect tree is a useful alternative to the hierarchical segmented mesh, 

which is also presented by the “fat tree”. The hierarchical synchronous reconfigurable array 

used in the BRASS project [55] is such an interconnection which is a network based on a 

complete binary tree and the shared bus when logic block to logic block connections are 

needed. Binary trees have favourable features such as constant node degree, small node 

degree, scalability, etc. An example of such a network is shown in Figure II-11, in which, 

functional logic blocks, represented by the symbol PE, are located at the terminals of the 

network, like leaves on a tree. The routing nodes are represented by Rs. The number of buses 

per channel increases with the levels of the tree. For the communication between two local 

logic blocks, signals are transferred without the assistance of stem network bus which is in 

the upper level. The fat tree is more like a real tree, in which the branches get thicker toward 

the top. 

The advantage of this architecture is that the number of switches used to route the signal 

grows logarithmically with the distance, which means that the overall delays introduced by 

the switches are lower. 
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Figure II-11 : A fat binary tree 

II.4 Low Power Technology 

Traditionally, low-power VLSI design techniques have been focussed on improving energy 

efficiency. As the issue of low-power VLSI design techniques becomes more pervasive, the 

researches to minimize power consumption in VLSI design have been carried out on 

multiple lines: semiconductor technology, circuit design, system architecture, application 

design, design automation tools and operating system. Energy awareness is now gaining 

more and more attention in the mainstream VLSI design affecting all aspects of the design 

process.  

Currently, most components in VLSI design are fabricated using CMOS technology. The 

reason for this bias is low cost and, inherently, efficient power consuming of Complementary 

metal–oxide–semiconductor (CMOS) technology compared with other technologies. There 

are two main components of power dissipation in a CMOS circuit: dynamic power and static 

power. During normal operation, the power dissipation of a CMOS circuit is determined by 

the dynamic power which is the switching energy consumption spent in charging and 

discharging of circuit nodes. The leakage currents of the circuit are orders of magnitude less 

than the operating currents when devices are switching and are negligible therefore. The 

dominant factor of energy consumption in CMOS is dynamic power consumption, which is 

linear with the effective switch capacitance, the square of supply voltage, and the frequency 

of operations. 

Lower level energy consumption can thus be archived by reducing the supply voltage, the 

capacitive load and the switching frequency. Most low power technologies fall into these 

R

R R

R R R R

PE PE PE PE PE PE PE PE
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three categories. The low power technology is explained as follows by introducing the 

mainstream low power design approaches. 

• The most effective approach in minimizing power dissipation is to minimize the supply 

voltage, that is, to design systems which can run at as low a supply voltage as possible 

that will satisfy the performance requirements.  

• An alternative approach could be adopted if the whole system cannot run at a low 

supply voltage, that is, to partition a system into certain independent circuits and to 

make each part run at its own optimal low supply voltage. It is an effective technique to 

minimize overall power while providing higher performance in processing elements that 

are timing-critical. 

• The supply voltage can be dynamically adjusted to save the energy when the 

performance of a system is varied in some applications. This approach makes system 

always run at the lowest possible value that provides sufficient throughput.  

• Concurrent processing technique can be applied to compensate the performance loss 

associated with lowering the supply voltage. Increasing the throughput of a given design 

by applying this technique could make the supply voltage be further decreased and 

power dissipation reduced while performance requirements still met. 

• Minimizing capacitance is an important approach for reducing power dissipation. This 

technology is applied by adopting circuit blocks which are custom-made to perform 

specific computational task required by a given application. Versatile and general-

purpose circuit blocks are generally less efficient for specific application. 

• Avoid driving global signals across a chip and accessing large central memories and 

functional units. A targeted algorithm generally consists of a sequence of computational 

steps. Most computational steps typically interact and communicate with only a few 

previous and subsequent steps. The localized algorithms can be adopted to minimize the 

amount of power-hungry global interactions. 

• Reducing switching activity is an effective technology to minimize power consumption 

since switching events are the source of energy consumption. This can be achieved by 

clock gating, minimizing glitching and powering down the sub-function modules when 

they are not actually demand. An effective coding scheme will also help a lot in some 

applications. 

• Avoid hardware sharing which could destroy the temporal correlations present in path 

or data paths/streams. The frequent changing in interconnections and data buses will 

raise the power consumption dramatically. 
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To optimize a system for a certain application under an environment, a designer generally 

has to select a particular algorithm, design or use an architecture that can be used for it, and 

determine various parameters such as supply voltage and clock frequency. Therefore, the 

low-power design can be carried out in these aspects.  

One approach to minimize power consumption is to adopt circuit blocks that are designed 

specifically to perform certain computational tasks required by a given application. This 

approach can significantly reduce the energy consumption for an operation because of the 

application-specific circuit blocks which are used to replace more versatile and general 

purpose circuit blocks. In a general purpose circuit block, redundant parts exit for certain 

application implementation. They are designed so that they can execute several different 

operations and necessarily larger and more complex than domain-specific circuit blocks. 

Besides, general purpose circuit blocks also have to be large enough to handle the largest 

data size for all possible given applications. The custom- designed circuit blocks remove 

these redundant parts to service the required operation only and consume less power than 

general purpose one. 

II.5 Conclusion 

This chapter has presented the basic concepts of reconfigurable architectures and the 

classifications of them. Fine-grain FPGA architectures and five typical coarse-grain 

reconfigurable architectures have been introduced in this chapter. Reference has been made 

to their features and the quality of design in which they may be carried out. Being an 

important part of reconfigurable systems, interconnection network and three typical 

implementations have been discussed. Lastly, the concepts about low power design 

technology are introduced at the end of this chapter.                                              .
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III.1 Overview 

Distributed Arithmetic (DA) has been widely adopted for its computational efficiency in 

many digital signal processing applications. The most frequently used form of computation 

in digital signal processing is a sum of products which is dot-product or inner-product 

generation. DA is generally a bit-serial computation operation that forms a product (dot or 

inner) of two vectors in one clock cycle. The typical applications include DCT, DFT 

(Discrete Fourier Transform), FIR (Finite Impulse Response), and DHT (Discrete Hartley 

Transform) which can be found in main stream multimedia standards and telecommunication 

protocols. All these applications involve inner products computation between two vectors, 

one of which is a constant. 

The advantage of DA is its special non-multiplication mechanization which uses adder 

replacing multiplication and therefore simplifies the hardware implementation. This 

hardware characteristic limits its performances at the same time. The inherent bit-serial 

nature makes the DA apparent slower than the multiplication algorithms. The final result of 

DA will be obtained after N cycles where N is the bit width of input vectors. This 

disadvantage will not exist if the number of elements in the input vectors is commensurate 

with the number of bits in each vector element. For example, time required to input total 

eight 8-bit words parallelly which is one word each cycle is exactly the same as time 

required to input simultaneously all eight words serially [56].  

Chapter III 

Review of Distributed Arithmetic 

Algorithm and its Applications
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The initial DA work dates back to 1968 by Zohar who had independently invented DA and 

applied it with FFT and digital filter [57-60]. DA is further developed with FIR and IIR 

digital filter mechanization by Peled, which is published in the IEEE ASSP Transaction [61, 

62]. The most well-known description of DA was given by Abraham Peled and Bede Liu 

through a presentation on IIR digital filter mechanization at the Arden House Workshop on 

Digital Signal Processing in 1974. The complete definition of DA and full description of its 

application and implementation were described in the workshop. Numerous researchers 

made their contribution to DA applications and implementation after that. In 1989, Stanley A. 

White gave a detailed review of DA and its applications in digital signal processing [56]. 

This section will first review the definition of DA, followed by two basic DA extensions, 

ROM based DA and adder based DA. One of them, adder based DA, is the theory base of 

proposed processor in this dissertation. Three types of serial DA and one parallel DA 

architecture are discussed in the following sections including advantages and problems of 

constructions. Several typical DA applications will be briefly introduced at the end of this 

section. 

III.2 Distributed Arithmetic Algorithm 

III.2.1. DA Algorithms 

DA is a bit-serial operation that computes the inner product of two vectors without using 

multiply operations. DA has an inherent bit-serial nature. Let us consider the computation of 

the following inner (dot) product with L-dimensional vectors: 

 

                      (III-1) 

where A = [C0, C1,···, CL-1] is an M bits fixed coefficient vector and X = [X0, X1,···, XL-1] is 

an N bits input vector. 

Ci and Xi are in two’s complement binary scaled, then they can be expressed as follows: 
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      (III-3) 

where Ci,j , Xi,k ∈{0,1} is the jth and kth bit of vector element Ci and Xi respectively. Ci,0 , 

Xi,0 are the least significant bit (LSB) and Ci,(M-1) , Xi,(N-1) are the sign bit. M is the word 

length of Ci and N is the word length of Xi.  

To realize the inner product computation, the conventional DA uses a ROM-based 

architecture. Another method is to adopt an adder-based architecture. 

III.2.2. ROM Based DA 

ROM-based DA speeds up the multiplication process by pre-computing all possible values 

and storing them in a ROM. 

By substituting Equation (III-3) in Equation (III-1), the output Z is given by: 

 

 

 

              (III-4) 

 

By defining the term Rk as 

 

        (III-5) 

Then, we can obtain Rn-1 when k=N-1 

 

             (III-6) 

Equation (III-4) can be written as following format by substituting Equation (III-5) and 

Equation (III-6). 
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where Sk is defined as the sign of term for k= 0,1,···,N-2, N-1. 

 

         (III-8) 

 

Since Xi,k∈{0,1}, Rk has 2
L
 possible values for k= 0,1,···,L-1. Rather than computing these 

values on line, these values can be precomputed and stored in a ROM. Then, Equation (III-5) 

can be implemented with a ROM of size 2
L
.  

The bits of input data ({X0,k, X1,k,···,Xi,k}) are used to form ROM addresses. The ROM 

contents following with an adder and register can realize the accumulation for k rising from 0 

to N-1as shown in Equation (III-6). An arithmetic shifter in the accumulator feedback path is 

used to form successive scaling with powers of two. Then, after N cycles, corresponding to 

the bit-width of input vector X, the final value of output Z can be obtained as the result of the 

accumulation. 

The serial processing pattern of ROM based DA becomes a bottleneck when the outputs data 

are expected for each clock cycle.  For some real-time video-streams applications, the high 

data throughput is the critical feature. Another problem with ROM-based DA is that its ROM 

size (2
L
 word) grows exponentially as the order L increases. As the number of inputs and the 

internal precision become larger, the ROM-based DA will suffer from extremely large ROM 
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based DA. In ROM-based DA, Equation (III-4) is obtained by substituting Equation (III-3) 

in Equation (III-1). Where, Xi, one of the two factors in Equation (III-1), is changed to two’s 
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We define term Tj as 

 

             (III-10) 

then, Equation (III-9) can be written as 

             (III-11) 
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III.3 Distributed Arithmetic Implements 
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In this section, the discussion focuses only on the general architectures for DA 

implementation which are not restricted with certain platform such as DSP, ASIC, FPGA 

and so on.  

III.3.1 Architecture for Distributed Arithmetic 

A block diagram of a general architecture for DA is shown in Figure III-1, which is capable 

of 4 input vectors with 5-bit width. The architecture consists of a 2x2
L 

(L=4) ROM with a 

5x32 decoder, register and a left shift-accumulator. Xi,0 are the least significant bit (LSB) of 

input vectors Xi (i=[0,3]); Xi,4 are the most significant bit (MSB) of input vectors Xi (i=[0,3]); 

Sk is defined as the sign of term as defined in Equation (III-8), whose value is -1 when k 

equals 4 and 0 when k equals other values. The memory must contain all possible 16 (2
4
) 

values and their negatives in order to accommodate the value of Sk which occurs at the sign-

bit time. As a result, a ROM with 2x2
L
 word size is required.  

 

Figure III-1 : General architecture for DA   

It can be seen from the Figure III-1 that the input vectors X0, X1, X2 , X3 and Sk are serial, 

2’s-complement numbers.  With bit-serial input data at the LSB of word first, one bit of each 

L input of length N is used to address the ROM. The sign bit S4 is the last bit to arrive. The 

clock period from the LSB reaching input ports to sign bits all simultaneously arriving is the 
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processing time. Within each clock cycle in the processing time, the input vectors together 

with Sk arrive at address decoder and the corresponding value stored in ROM is output to the 

adder followed.  An adder, 1-bit left-shift unit and register construct a left-shift accumulator. 

The value from ROM is left-shifted one position (i.e. multiplied by two) and added with its 

next clock value. This is repeated until the sign bits are fed. Therefore, after a whole 

processing time, the fully formed result is output. 

III.3.2 Memory Reduced DA Architecture 

The ROM size in the original DA architecture can be reduced by half to 2
L
 word by 

replacing the adder to an adder/substractor. 

Let us take an example to show how the size of ROM is reduced. It is supposed that C0 = 

0.32, C1 = −0.48, C2 = 0.89 and C3 = 0.65. The memory in the original architecture must 

contain all 16 (2
L
, L=4) possible values and their negatives according to all the input cases. 

All possible input cases, corresponding terms of coefficient vector Ci and values are listed in 

Table III-1.  

It can be seen from the Table III-1, the absolute values in the upper half are the same as the 

ones in the lower half. Therefore, Sk can be used as the control signal for an adder/subtractor 

and only data in upper half of the Table III-1 is enough to implement DA computation. The 

memory-reduced DA architecture is shown in Figure III-2. This configuration is now 

mechanized with a 16-word ROM. The values stored in the ROM are simply the upper half 

of the original one. 
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Table III-1: The content in the ROM of original DA architecture 

Sk X3 X2 X1 X0 Sum of terms 
Values 

(E1) 

0 0 0 0 0 0 0 

0 0 0 0 1 C0 0.32 

0 0 0 1 0 C1 -0.48 

0 0 0 1 1 C1 + C0 -0.16 

0 0 1 0 0 C2 0.89 

0 0 1 0 1 C2 + C0 1.21 

0 0 1 1 0 C2 + C1 0.41 

0 0 1 1 1 C2 + C1 + C0 0.73 

0 1 0 0 0 C3 0.65 

0 1 0 0 1 C3 + C0 0.97 

0 1 0 1 0 C3 + C1 0.17 

0 1 0 1 1 C3 + C1 + C0 0.49 

0 1 1 0 0 C3 + C2 1.54 

0 1 1 0 1 C3 + C2 + C0 1.86 

0 1 1 1 0 C3 + C2 + C1 1.06 

0 1 1 1 1 C3 + C2 + C1+ C0 1.38 

1 0 0 0 0 0 0 

1 0 0 0 1 -C0 -0.32 

1 0 0 1 0 -C1 0.48 

1 0 0 1 1 -(C1 + C0) 0.16 

1 0 1 0 0 -C2 -0.89 

1 0 1 0 1 -(C2 + C0) -1.21 

1 0 1 1 0 -(C2 + C1) -0.41 

1 0 1 1 1 -(C2 + C1 + C0) -0.73 

1 1 0 0 0 -C3 -0.65 

1 1 0 0 1 -(C3 + C0) -0.97 

1 1 0 1 0 -(C3 + C1) -0.17 

1 1 0 1 1 -(C3 + C1 + C0) -0.49 

1 1 1 0 0 -(C3 + C2) -1.54 

1 1 1 0 1 -(C3 + C2 + C0) -1.86 

1 1 1 1 0 -( C3 + C2 + C1) -1.06 

1 1 1 1 1 -( C3 + C2 + C1+ C0) -1.38 
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Figure III-2 : Memory reduced DA architecture I 

From the hardware point of view, the architecture in Figure III-2 is quite efficient. The extra 

cost resulting from reduction of 16-word ROM is an additional subtractor. This benefit for 

hardware will be enlarged by saving 32 words on ROM for an 8-input vectors application.   

The memory size may be further halved again to 2
L-1

 words. We currently call this 

implementation as memory reduced DA architecture II. It is supposed that there is a set of 

values E2 which has one-to-one correspondence with input vectors X = [X0, X1, X2, X3] as 

shown in Table III-2. 
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Table III-2 : The content in the memory reduced DA architecture II 

 

X3 X2 X1 X0 Sum of terms 
Values 

(E2) 

0 0 0 0 0 -0.69 

0 0 0 1 C0 -0.37 

0 0 1 0 C1 -1.17 

0 0 1 1 C1 + C0 -0.85 

0 1 0 0 C2 0.2 

0 1 0 1 C2 + C0 0.52 

0 1 1 0 C2 + C1 -0.28 

0 1 1 1 C2 + C1 + C0 0.04 

1 0 0 0 C3 -0.04 

1 0 0 1 C3 + C0 0.28 

1 0 1 0 C3 + C1 -0.52 

1 0 1 1 C3 + C1 + C0 -0.2 

1 1 0 0 C3 + C2 0.85 

1 1 0 1 C3 + C2 + C0 1.17 

1 1 1 0 C3 + C2 + C1 0.37 

1 1 1 1 C3 + C2 + C1+ C0 0.69 

It can be seen from the Table III-2, the absolute values in the upper half are the same as ones 

in the lower half. But the one-to-one relationship is different from the one in Table III-1. The 

relationship between upper and lower half values and their corresponding input vectors are 

shown in Equation (III-12). 

 

(III-12) 

The values E1 in Table III-1 can be transformed to the values E2 inTable III-2  as shown in 

Table III-3. 
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Table III-3 : Transform between Table III-1 and Table III-2 

X3 X2 X1 X0 
Values 

(E1) 

Transform Values 

(E2) 

0 0 0 0 0  

 

 

 

   − 0.69 = 

-0.69 

0 0 0 1 0.32 -0.37 

0 0 1 0 -0.48 -1.17 

0 0 1 1 -0.16 -0.85 

0 1 0 0 0.89 0.2 

0 1 0 1 1.21 0.52 

0 1 1 0 0.41 -0.28 

0 1 1 1 0.73 0.04 

1 0 0 0 0.65 -0.04 

1 0 0 1 0.97 0.28 

1 0 1 0 0.17 -0.52 

1 0 1 1 0.49 -0.2 

1 1 0 0 1.54 0.85 

1 1 0 1 1.86 1.17 

1 1 1 0 1.06 0.37 

1 1 1 1 1.38 0.69 

Where 0.69 is represented as Q1 which is generated by:  

 

      (III-13) 

To implement this memory reduced DA architecture II as shown inTable III-2， Table III-3, 

Equation(III-12) and Equation (III-13), an initial register is required to store the value of Q1 

and several extra inverts are needed to realize memory reading according to the input vectors 

in the upper and lower half of Table III-2. Besides, an adder/subtractor is necessary which 

works in the way similar to the one in Figure III-2. Compared with memory reduced DA 

architecture I, the memory size of the architecture is reduced by half.  

Following the same method, the memory size in Table III-2 can be further reduced in halves 

to 2
L-2

 words. We currently call the hardware implementation of it as memory of reduced DA 

architecture III. It is supposed that there is a set of values E3 which has one-to-one 

correspondence with input vectors X = [X0, X1, X2] as shown in 
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Table III-4 : The content in the ROM of reduced DA architecture III 

X2 X1 X0 Sum of terms 
Values 

(E3) 

0 0 0 0 -0.365 

0 0 1 C0 -0.045 

0 1 0 C1 -0.845 

0 1 1 C1 + C0 -0.525 

1 0 0 C2 0.525 

1 0 1 C2 + C0 0.845 

1 1 0 C2 + C1 0.045 

1 1 1 C2 + C1 + C0 0.365 

It can be seen from Table III-4, the absolute values in the upper half are the same as the ones 

in the lower half. The one-to-one relationship is similar to the one in Table III-2, which can 

be described as shown in Equation (III-14) 

 

                                           (III-14) 

The transformation between the values E3 in Table III-4 and values E2 in Table III-2 closely 

resembles that between Table III-1and Table III-2, which is shown in Table III-3. 

Table III-5 : Transform between Table III-2 and Table III-4 

X2 X1 X0 Values (E2) Transform Values (E3) 

0 0 0 -0.69 

- (-0.325) = 

-0.365 

0 0 1 -0.37 -0.045 

0 1 0 -1.17 -0.845 

0 1 1 -0.85 -0.525 

1 0 0 0.2 0.525 

1 0 1 0.52 0.845 

1 1 0 -0.28 0.045 

1 1 1 0.04 0.365 

Where −0.325 is represented as Q2 which is generated by:  

 

(III-15) 

To implement this memory reduced DA architecture III as shown in Table III-4, Table III-5, 

Equation (III-14) and Equation (III-15), compared with memory reduced DA architecture I,  

an extra initial register is required to store the value of Q2 and additional control parts are 

needed which act based on the value of X3. According to these extra hardware costs, the 
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memory size is halved to 2
L-2

 words which is only one-fourth of the ROM in memory 

reduced DA architecture I.   

III.3.3 Offset Binary Coding Architecture 

In memory reduced DA architecture II and III, the memory reduction is obtained through 

adding or subtracting an initial value from original values. The initial value can be treated as 

an offset value. This recoding of the coefficient is denoted by Stewart G. Smith in [63] as 

Offset Binary Coding (OBC).  

This method is based on a modified two's-complement representation of the values and 

reduces the memory size by a factor of two.  The OBC can be further extended, reducing the 

memory size in steps by factor of two from 2
L
 to L in theory. However, this requires 

additional hardware in terms of adders and multiplexers, thus increasing the latency. 

OBC uses a (-1, 1) offset binary code to replace a (0, 1) straight binary code as the format of 

input vectors. The input vector Xi can be expressed using an equivalent expression, as 

follows: 

 

 (III-16) 

Being in 2’s-complement notation, the negative of Xi is expressed as 

 

(III-17) 

By substituting Equation (III-17) in Equation (III-16), Equation (III-16) can be re-written as 

 

(III-18) 

 

We define the term Mi as 

 

(III-19) 

 

(III-20) 

where the possible value of the Mi is 1 or -1. Then, Equation (III-18) can be simplified as 
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(III-21) 

By substituting Equation (III-21) in Equation (III-1), Equation (III-1) can be written as 

 

 

 

 

(III-22) 

In order to simplify notation later, we define a function Ok and O0 as 

 

(III-23) 

(III-24) 

 

Then, Equation can be written as 

 

 (III-25) 

It can be seen from the Equation (III-25) that Z still can take 2
L
 values but only 2

L-1
 different 

magnitude values with a sign for Ok are consistent with the statements in the memory 

reduced DA architecture II. We use a 4-coefficient (C0 = 0.32, C1 = −0.48, C2 = 0.89 and C3 

= 0.65) case as an example to show the results of Equation (III-25) in the format of Ci and 

the true values which are listed in Table III-6. 
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Table III-6: Expansion of Equation (III-25) for the case 

X3 X2 X1 X0 Contents in format of Ci 
True 

values 

0 0 0 0 −( C3 + C2 + C1+ C0)/2 -0.69 

0 0 0 1 −( C3 + C2 + C1− C0)/2 -0.37 

0 0 1 0 −( C3 + C2 − C1+ C0)/2 -1.17 

0 0 1 1 −( C3 + C2 − C1− C0)/2 -0.85 

0 1 0 0 −( C3 − C2 + C1+ C0)/2 0.2 

0 1 0 1 −( C3 − C2 + C1− C0)/2 0.52 

0 1 1 0 −( C3 − C2 − C1+ C0)/2 -0.28 

0 1 1 1 −( C3 − C2 − C1− C0)/2 0.04 

1 0 0 0 −( −C3 + C2 + C1+ C0)/2 -0.04 

1 0 0 1 −( −C3 + C2 + C1− C0)/2 0.28 

1 0 1 0 −( −C3 + C2 − C1+ C0)/2 -0.52 

1 0 1 1 −( −C3 + C2 − C1− C0)/2 -0.2 

1 1 0 0 −( −C3 − C2 + C1+ C0)/2 0.85 

1 1 0 1 −( −C3 − C2 + C1− C0)/2 1.17 

1 1 1 0 −( −C3 − C2 − C1+ C0)/2 0.37 

1 1 1 1 −( −C3 − C2 − C1− C0)/2 0.69 

It can be seen that the true values in Table III-6 are exactly the same as the ones in Table 

III-2 and the values in the lower half are the mirror image of the values in the upper half. 

Using the Ci values of the example, the true value of O0 can be obtained, which is 

 

(III-26) 

This value is the same as Q1 defined in Equation (III-13). The coding format in Equation 

(III-25) can be seen as an offset value subtracting from initial values, hence being named as 

offset binary coding.  

The architecture for OBC DA is shown in Figure III-3 which consists of 2
L-1

 word memory, 

a one-word register for offset value, an adder and a single adder/subtractor with the 

necessary logic gates for control.  
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Figure III-3 : Memory reduced DA architecture II 

The architecture shown in Figure III-3 is a schematic diagram. The control units between X3 

and Xi (i=0, 1, 2) can be synthesized as an EXOR gate. The offset register in the architecture 

stores true value of offset which can be pre-computed based on the coefficients of 

application.  

Let us have a look at how the architecture works. The values stored in ROM are listed in 

Table III-6. The value in offset register is 0.69. It is supposed that the input vectors [X0, X1, 

X2, X3, Sk] is (11111). The input [X0, X1, X2] and its complement value (000) are sent to the 

three 2-to-1 multiplexers. The input vector X3 is used as the control signal for multiplexers 

and the complement values (000) of the inputs are output to address decoder. Now, we have 

the proper address for the ROM and the value -0.69 is correctly pulled out and sent to 

adder/subtractor which is driven by X3 and configured as subtractor for this case. Then, the 

result of adder/subtractor is that value in offset register is subtracted from input. The value,   

-1.38, is obtained at the end of first adder/subtractor in the architecture. Until now, we have 

properly addressed the 8-word ROM, taken out the value which is further processed by 
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adder/subtract and gotten the final one. This value is exactly the same as the one in Table 

III-1 addressed as (11111). 

This value will be passed to the second adder/subtractor which is driven by X3 and Sk. After 

1-bit left-shift and adder (subtractor), the final value of one clock cycle is stored in the 

register and will be involved in the operation with the value from next clock cycle. When N 

clock cycles’ accumulation is done, the architecture will output the final result for DA 

computation. 

III.3.4 Parallel DA Architecture 

The approaches described above correspond to a bit Serial Distributed Arithmetic (SDA). All 

possible linear combinations of the constant coefficient elements Ci are stored in a ROM. 

The input vectors Xi is used to form the ROM address with LSB first. No matter how much 

ROM is required, the final result is available in a bit parallel format after N cycle where N is 

the representation of word-length of input vectors. The speed of this traditional bit SDA 

implementation limits its application fields except for certain low speed applications. 

Parallel Distributed Arithmetic (PDA) is used to increase the speed performance of SDA. In 

each clock cycle, the number of bits being processed increases with PDA. The architecture 

of PDA is implemented by employing more ROM and computing units which work in 

parallel. Therefore, the number of parallel bits sampled should be increased and the speed of 

processing is improved hereby. The enhanced performance makes PDA satisfied with the 

requirements of some high-speed real time application such as image stream cording or 

decoding. 
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A typical PDA architecture is shown in Figure III-4.  

Figure III-4 : A typical parallel DA architecture 

The PDA architecture works on the premise that all input vectors are fed parallel to input 

ports. In PDA architecture, processing speed is doubled compared with SDA by increasing 

the number of bits processed from 1-bit to 2-bit in half the number of processing clock 

cycles. Hence, the PDA architecture in Figure III-4 results in as twice the throughput as SDA. 

By adopting two left-shift registers at half the bit depth, the single serial shift register in SDA 

is replaced and therefore speeds up the architecture. According to this change, the two 

parallel memory blocks are employed, one being used for the even-bits and the other for the 

odd-bits. It is noticed that the cost for 2X speeding up is nearly double hardware occupation. 

It is a trade-off between speed and hardware cost for a system. In author’s opinion, a system 
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could be twice speeded up at a cost of double hardware except for some systems with lots of 

redundant parts. 

III.4 Applications of Distributed Arithmetic 

DA can be found in many applications in fields of multimedia processing and 

communication. All DA applications involve inner products computation between two 

vectors, one of which is a constant. 

Finite Impulse Response (FIR) can be found in almost all communication systems and digital 

signal processing. The processing engine of most filter algorithms is a Multiply and 

Accumulate (MAC) function. DA in filter designs works by distributing the bit arithmetic of 

the sum of products used to calculate the FIR filter output given in Equation (III-27). 

 

(III-27) 

where X[n] and Y[n] are the input and output sequences of the filter, respectively; N is the 

number of TAPs, and i is the i-th coefficient of the filter impulse response. It can be seen 

from Equation (III-27) that the FIR filtering is based on the MAC function. Filter designs 

can vary greatly in the number of MACs, from one to thousands. As the number of MACs 

increases, the algorithm becomes much more complex for general programmable processor 

architectures. Hence, the algorithm becomes more computing-intensive for any conventional 

DSP. The MAC function can be implemented more efficiently with various DA techniques 

than with conventional arithmetic methods.  

DCT, one of DA application, is the most widely used algorithms in digital signal processing, 

which removes artificial discontinuities from highly correlated signals. As one of the major 

operations in current image/video compression, DCT can be found in JPEG for still picture 

compression, ITU H.261 and H.263 for video conferencing standard, and ISO MPEG 

(MPEG-1, MPEG-2, and MPEG-4) for audio, visual compression and communication. Over  

last several years, significant research work has been carried out on DA techniques and their 

implementations in DCT and other applications [64-66]. 
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The Discrete Wavelet Transform (DWT) is another DA application, which is one of the most 

useful and efficient tools used to analyze digital signals in various signal processing areas 

including compression, signal detection, communications, and time varying spectral 

estimation. In signal analysis, the DWT has some inherent generic advantages and is nearly 

optimal for wide class of problems. As a decomposition tool, the DWT separates 

components of a signal in a way that is superior to most other methods for analysis, 

processing or compression. This powerful and flexible decomposition tool also offers new 

nonlinear processing option for signal and image processing, detection, filtering, and 

compression. 

III.5 Conclusion 

This chapter has introduced DA concept and its definition first. Two basic DA computations, 

ROM based DA and adder based DA, are described after summarizing the development of 

DA concept. What have been presented are the principles of the DA technique and the 

research directions in the field of image and signal processing. Some architectures based on 

SDA and PDA have also been described. The advantages of SDA and PDA were also listed 

in this chapter. Solutions to ROM size problems caused by using DA, have also been 

proposed.  At the end of this section, DA applications in image and signal processing 

applications and communication are introduced and described briefly.                                    .
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IV.1 Overview 

Distributed Arithmetic (DA) has been widely adopted for its computational efficiency in 

many digital signal processing applications such as DCT, DFT, FIR, and DHT [56]. All 

these applications involve inner products computation between two vectors, one of which is 

a constant. 

The traditional method to generate products is using a MAC (multiply and accumulate) unit 

which is fast but suffers from high hardware cost in the case of long-length inner-products. 

In contrast, DA provides an efficient solution to realize inner product by using memory look-

up and accumulation operations. The idea behind conventional ROM-based DA is to replace 

multiplication operations by pre-computing all possible values and storing them in a ROM. 

According to [56], a ROM based DA can reduce circuit size by 50-80% on average. 

Custom reconfigurable technology has recently emerged to satisfy the demands for both 

flexibility and efficiency. Custom/domain-specific reconfigurable arrays can be programmed 

to adapt to different applications, so the efficiency of the hardware and flexibility of the 

whole system can be improved. Earlier work, such as [41, 67, 68], demonstrates good 

performance in area, power consumption and speed compared to conventional approach. 

Since a domain-specific reconfigurable architecture targets at few application fields, it can 

achieve better performance than a general purpose FPGA device. 

In this section, a novel reconfigurable DA architecture is presented which can implement 

inner products with less area usage and power consumption. The proposed architecture can 

Chapter IV 
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support any algorithm for inner product computation, such as DCT, DFT, FIR, and DHT. An 

adder-based DA, which was introduced in [64], is adopted in the proposed reconfigurable 

architecture. Compared with a ROM-based DA, the approach needs only 10% of transistor 

count and 30% of ROM area with comparable performance in the specific application [64]. 

Our new architecture takes advantage of the common summation terms when the fixed 

coefficients are decomposed into bit level. It makes the adder array take full advantage of 

results from the previous level and, therefore, maximizes hardware efficiency. Due to its 

inherent hardware sharing property, the proposed architecture is suitable for multiple inner 

product computations. The reconfiguration characteristic makes architecture flexible to 

switch from one application to another application, which implies that the same hardware 

architecture can perform different algorithms at different times. 

This section is organized as follows. In section IV.2, we review the related work in the 

literature. The architecture is generally introduced in section IV.3. The algorithm logic unit 

of the proposed architecture is described in detail in section IV.4 including two-level adder 

butterfly structure, the Wallace tree multiplier matrix, interconnection network, memory for 

reconfigure bits and the implementation of these structures. The common terms sharing 

problem is addressed at the beginning of IV.5, and then the definitions of dimidiate tree and 

crossing forest are introduced, which is followed by the algorithm developed accordingly for 

mapping of architecture. Finally, the comparison with subexpression sharing in canonic-

signed-digit code is made in sections IV.6. 

IV.2 Related Work  

Over the last several years, significant research work has been carried out on DA techniques 

and their implementations in DCT and other applications. In [65], a hardware DA method 

was implemented for DCT with radix-2 multi-bit coding for minimum resource, and 

symmetric transpose memory. In [64, 65], an adder-based DA was proposed to generate the 

inner product of vectors for DCT. The approach reduces ROM area by 70% and transistor 

count by nearly 90% with comparable performance when compared with ROM-based DA. In 

[66], a DA-based algorithm is introduced which can formulate 1-D any-length DHT as cyclic 

convolutions. It simplifies the ROM design process and increases the processing speed for 
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utilizing identical ROM modules and eliminating the accumulation loop in the processing 

elements. In [69], a design methodology is introduced which translates high-level 

compilation algorithmic description of DCT (based on an algorithm by Liu et al. [70]) into a 

fixed-point, variable-radix, digit-serial dataflow architecture. The methodology allows 

different designs to be derived from a single algorithmic description and trade-off among 

quantization effects, throughput, latency and area. However, only serial architecture is used 

according to the special algorithmic description, which limits the architecture’s maximum 

throughput.   

Numerous work has been done on reconfigurable architectures and their implementations. 

Unfortunately, only one architecture has been found which is designed specifically for 

reconfigurable DA. In [71], a special reconfigurable architecture for DCT is described. The 

architecture is designed especially for implementing DCT with different algorithms: pure-

RAM, mixed-RAM and COordinate Rotation DIgital Computer (CORDIC), whereas, the 

architecture could be used only for DCT application, which limits the application fields of 

the architecture. In [72], a low-power reconfigurable DCT architecture is introduced which is 

based on efficient trade-off between image quality and computational-complexity. The low-

power approach in this paper is based on the modification of DCT base in a bitwise manner 

with minimum image quality degradation and considerable computational complexity 

reduction. Various trade-off levels are presented and the reconfigurable architecture can 

dynamically change from one trade-off level to another without large hardware overhead. 

The trade-off between image quality and computational complexity and its specific 

architecture make the method available only for DCT application.   

One paper, [73], must be mentioned, which is the first one addressing reconfigurable 

architecture targeting at distributed arithmetic. This paper presents a domain-specific 

reconfigurable array targeting at the algorithms that can be implemented using DA. The 

architecture in [73] is based on ROM-based DA and SDA which has been discussed in detail 

in previous section and is implemented with two configurable clusters: Add-shift and 

memory. The elements are arranged in an array with a mesh of reconfigurable interconnects. 

For different applications, the corresponding coefficients are loaded into memory. Therefore, 
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the reconfigurability of the array permits mapping a number of distributed arithmetic 

implementations such as DCT and filtering calculations used in video coding. Just like 

ROM-based DA and SDA on which the architecture is based,  the reconfigurable array in [73] 

becomes a bottleneck when the outputs data are expected for each clock cycle and the high 

data throughput is the critical feature for some real-time video streams applications. Another 

problem with the architecture is that its ROM size grows exponentially as the bit-width of 

coefficient increases. As the number of inputs and the internal precision become larger, the 

ROM-based DA suffers from extremely large ROM requirements. 

IV.3 Reconfigurable DA Architecture 

The proposed reconfigurable DA architecture is shown in Figure IV-1. 

Figure IV-1 : Reconfigurable DA architecture 

The architecture is composed of control unit, algorithm logic unit, register matrix, input and 

output matrix. A SRAM block is closely coupled with the architecture, in which reconfigure 

bits are stored and will be loaded to the architecture in initialization period. The control unit 

in the figure is not an independent function module but a virtual module which is made up of 

the reconfigurable Finite State Machine (FSM) modules existing in algorithm logic unit, 

register matrix and data paths routing. 

Control unit (REconfigurable FSMs)

Algorithm logic
unit

In
p
u

ts m
atrix

O
u

tp
u

ts m
atrix

Reconfigure bits (SRAM)

Registers
matrix

D
istrib

u
ter



Low Power Reconfigurable Architecture for DA 

 

~  55 ~ 

In Figure IV-1, the input signals to be processed are sent to the input matrix first. At the 

same time, the output of the register matrix is sent to the input matrix as well. The input 

matrix will output the desired data controlled by the control unit. The data from the input 

matrix will be routed to the algorithm logic unit directly in which input signals are multiplied 

by coefficient and then accumulated. DA operation is done by the algorithm logic unit, 

which is the reason why the unit is so called. The results from the algorithm logic unit will 

be routed to the output matrix for export or to distributer which is closely coupled with the 

register matrix for temporary storing. The results in the register matrix will be sent back to 

the input matrix controlled by the control unit. Those data will be forwarded to the algorithm 

logic unit for further processing.  

Figure IV-2 : Architecture of address coding 

The core processing block is algorithm logic unit which responds to the DA operation. The 

register matrix is composed of 64 registers which are implemented with flip-flops and can be 

configured as a one dimension or 8X8 two-dimension array in initialization period. It is used 
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for temporary data when the architecture is implemented for certain application which 

exceeds the handling ability of architecture in one clock cycle. The architecture of address 

coding is shown in Figure IV-2. The module represented by “Rec. FSM” in the figure is 

reconfigurable FSM module.  

When the register matrix works in one dimension mode, the address for total 64 registers can 

be expressed with 6-bit binary number. In this working mode, only the control units of row 

take effect, while the control unit for column is disabled. The 6-bit address is divided into 

two parts: high 3-bit part and low 3-bit part. A 3-bit reconfigurable FSM in the first level 

will generate the high 3-bit part of the whole address. Through a 3-8 decoder, a 3-bit address 

can control 8 outputs which are connected to enable control ports of 8 FSMs in the second 

level, which have 3-bit internal state as well, for low 3-bit part as shown in Figure IV-2. 

Because of the reconfigurability of FSMs, 64 registers can be reached in any order according 

to the requirements of applications.  

When the register matrix works in 8X8 two-dimension array mode, 64 registers are divided 

into 8 banks and each bank contains 8 registers. Because the number of banks equals the 

number of registers in each bank, a register bank can be a row or a column. In this work 

mode, 8 registers in a bank can be read/stored in parallel at each time. To address 8 banks, a 

3-bit binary number is used which is generated by a 3-bit reconfigurable FSM. As shown in 

Figure IV-2, two FSMs address the banks in row and in column respectively and the enable 

ports of FSMs are inphase opposition by connecting an inverter between them. This 

mechanism, the invert, is only available in 8X8 two-dimension working mode and makes 

two FSMs working in different time and ensures that the two working states, row and 

column, of the register matrix will not operate at the same time. In row working state, the 

FSM in the first level is enough for 8 addresses coding and the 8 FSMs in second level in 

row control unit are therefore disabled.   

It can be seen from the work flow that control unit makes the data stream ordered and drives 

the data to the desired destination according to the specific application when it is configured 

in initialization period. The mechanism of the control unit is a multi-input-multi-output FSM 

which can be programmed and configured as a specific FSM to implement the controller 
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output functions and next state logic. Due to its reconfigurability, the control unit can be 

made arbitrarily complex and can realize any control function under its capability. Being 

such an important function unit in the architecture, its architecture will be discussed in 

Chapter V. Its performance in area, power and delay will be evaluated and analyzed in 

Chapter V as well. 

The algorithm logic unit is the core processing unit which realizes the multiplication between 

input signal and coefficient vectors without multiplier. It can be reconfigured to implement 

certain DA application according to the corresponding configure bits which are pre-stored in 

external SRAM.  More details of algorithm logic unit will be given in this chapter including 

the architecture of sub-function units and its mapping algorithm. 

IV.4 Architecture of Algorithm Logic Unit 

The architecture of algorithm logic unit in proposed reconfigurable DA architecture is shown 

in Figure IV-3. 

Figure IV-3 : The architecture of algorithm logic unit 

It consists of two major parts: the first part is two-input adder arrays in two levels which 

realize Tj term as defined in Equation (III-10), and the second part is parallel Wallace tree 

multiplier matrix which generates the final results Z. The number of input of the system is up 

to 8 with 9 bits width.  
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For some simple cases as listed in Figure IV-4, only one level of common terms sharing is 

adopted, which is enough for a simple case. For more complicated cases such as DCT, DFT, 

an adder structure with two or more levels would be better for reducing the hardware area, 

but at the cost of extra delay time. The more levels, the longer the delay time. Actually, a 

structure with three or more levels of common terms sharing would make the whole 

architecture very complicated in term of interconnection and routing network. To balance the 

area usage and delay time, a two-level adder structure has been adopted in this work. 

IV.4.1. Algorithm of Proposed Architecture 

The adders with shifts replace the multipliers in the original DA algorithm. The adoption of 

adders also makes the architecture more hardware efficient. However, the benefit of adoption 

of adders is not limited to hardware efficiency; its speed also achieves N times as fast as 

ROM-based DA, where N is the bit-width of the input vectors. In ROM-based DA, the 

vectors are imported serially to generate the ROM addresses for computing Rk terms, while 

in adder-based DA, all inputs are fed parallel to the adders for computing Tj. The time is 

consumed only by adders; the wider the inputs, the more time is taken.  

Besides the advantages of adder-based DA described above, common terms sharing brings 

additional advantages by further reducing hardware complexity. Figure IV-4 shows an 

example case for the proposed approach.  

We have term Tj, defined in Equation (III-10), which is 

 

 

Suppose the input vector and fixed coefficient vector are  

   X = [X0, X1, X2, X3] 

C00= 1101b, C10= 1011b, C20= 1110b, C30= 0011b; 

Then the expanded form of Tj is shown in Figure IV-4. 
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 Figure IV-4 : Example of adder-based DA 

In Figure IV-4, Ci and Xi are substituted in expression of Tj first, and then fixed coefficients 

are decomposed into bit level, each bit corresponding to different power of two. After 

multiplying input vectors and their corresponding coefficient in bit level, input vectors can 

be found in the position where their respective coefficient bits are ones as shown in Figure 

IV-4. Obviously, the vectors in different positions indicate the different power of two. The 

final result can be obtained by adding all vectors with their corresponding power of two. 

Notice that the additions are taken only at the nonzero bits of coefficients. From the 

expression of final result in Figure IV-4, one finds that there are some common terms 

between different bit weights: term X0+X2 between bit weights 2
3
 and 2

2
, term X1+X3 

between bit weights 2
1
 and 2

0
.  

IV.4.2. Two-level Adder Structure 

In the two-level adder butterfly structure, the first level consists of up to 12 parallel 9-bit 

adders. The inputs are fed to this level through a routing matrix. There is a bypass path 

followed by every adder in this level, which allows the input data pass straight to the input 

ports of second level adder array. The 12 output ports of first level are routed to the next 

level inputs by another routing matrix. Due to the common terms sharing, one output in 

current level can be shared by two or more adders in the following level. The second level 

adder array consists of up to 24 parallel 10-bit adders. Compared with the first level adder 

array, each adder in the second level is followed by a 2-input multiplexer, as shown in Figure 

IV-5, which allows the outputs of the first level adder array to pass straight to the Wallace 
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tree multiplier matrix when the application can be implemented with only one level common 

terms sharing. The bypass paths in two levels adder array make input data routed directly to 

Wallace tree multiplier matrix. The bypass path makes the architecture more flexible for 

target application by switching between one or two-level adder structure.  

Figure IV-5: Adder followed by 2-input multiplexer                

The two-level adder structure with 9-bit and 10-bit adders can generate the summation of 2 

or 4 inputs with 8-bit. Besides, a special 11-bit adder is set for the summation in the second 

adder array for the case of 8 inputs addition. The output of two-level adder butterfly will be 

fed to the parallel Wallace tree multiplier matrix through routing matrix. 

IV.4.3. Wallace tree multiplier Matrix 

After one or two-level adder structure, all outputs will be routed to the parallel Wallace tree 

multiplier matrix to generate the final outputs Z. A serial addition approach is the easiest and 

most straightforward way for obtaining Z, in which N cycles are needed to complete the 

accumulation where N is the precision of coefficient Ci. Therefore, the delay incurred by a 

serial addition approach cannot fully satisfy the requirements of some real time applications. 

In view of the adder array, a serial addition approach will never take full advantage of the 

parallel structure available. With serial addition, only one input is added at each cycle. 

Obviously, a serially computing model does not make full use of the previous level hardware 

and results.  

To avoid timing bottleneck and inefficient use of hardware, a parallel processing approach is 

adopted in the second part. A structure with 8 parallel Wallace tree multiplier blocks 

provides 8 outputs at once. A traditional Wallace tree multiplier and 3:2 compressors are 

used for each accumulation. 
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The Wallace tree multiplier, an adder tree built from carry-save adders, is one of the well-

known methods for speeding up the accumulation of data with large word length and where 

the performance is critical. It is considerably faster than a simple array multiplier because its 

height is logarithmic in word size. A Wallace tree is a bit-slice adder which adds all the bits 

in the same bit position. The principle of Wallace tree multiplier is shown in Figure IV-6. 

Figure IV-6: Operation of the Wallace tree multiplier [74] 

According to the figure shown above, 16 partial products need to be summed up. The first 

step in the addition process is to group three rows of partial products with full adders for 

three dots in one column and half adders for two dots in one column. The results from the 

full and half adders are passed on to the second stage. The process of grouping partial 

products in stage 2 and 3 with full and half adders adopt the same rules as used in Stage 1. 

Finally, the product of the two 4-bit multiplication is obtained.  Because summations of full 

and half adders at each stage is done in parallel, the time required for the multiplication is the 

delay at each stage multiplied by the stage number. Therefore, the Wallace tree multiplier 

and 8 parallel Wallace tree multiplier blocks are adopted in the proposed architecture to 

achieve the fastest processing speed. 

IV.4.4. Interconnection Network 

As discussed in previous chapters, reconfigurable processors show their attractive 

characteristics including both high-performance and energy-efficiency in a domain-specific 

application compared with general purpose reconfigurable architecture. The proposed 

architecture in this dissertation presents such a reconfigurable solution by combining pre-
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designed functional units through a reconfigurable interconnect network. The routing matrix 

in algorithm logic unit is one part of processor interconnect network, which connects an 

arbitrarily chosen subset of inputs with desired output ports. It provides powerful 

connectivity between functional blocks and flexibility for signals routing. Generally, high 

flexibility comes with high energy consumption. The objective of creating routing matrix is 

to maximize the routability of the interconnection network at the possible lowest power 

consumption.  

In this sub-section, various reconfigurable interconnect schemes and their implementations 

are introduced. Based on a detailed comparison of the presented reconfigurable 

interconnection, our interconnection matrix is described including concept and 

implementation. 

A. Full Crossbar 

A full crossbar interconnect allows simultaneous connections from any input port to any 

output port. An NxM crossbar consists of N parallel input wires and M parallel output wires; 

they are placed orthogonally so that each input wire crosses every output wire, and 

programmable switches are placed at all cross-points to join the pairs of wires. In a full 

crossbar, a switch joins each pair of input and output wires [75]. Figure IV-7 shows a 

diagram of a full 8 x 6 crossbar where the vertical wires are inputs and the horizontal wires 

are outputs. 

Figure IV-7 : An 8x6 full crossbar 
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 A crossbar can be viewed as a 2-sided switch block: the input wire terminals are on left side 

and output wire terminals are on the other side, and two terminals are joined by a switch if 

and only if there is a switch joining the two wires of the terminals in the crossbar, as shown 

in Figure IV-8.  

Figure IV-8 : 2-sided switch block 

It is clear that a full NxM crossbar with N ≤ M can route an input signal to an N-subset of 

output wires in any given order.  

B. Multiple-bus 

Multiple-bus can be viewed as an extended implementation of full crossbar when input data 

is not only sent to output ports.  The objective of multiple-bus is to share input signals with 

more integrated modules. It can be implemented by modifying outputs in full crossbar as 

buses and adding a number of vertical wires as outputs. See Figure IV-9 for an example. 

An NxBxM multiple-bus consists of N parallel input wires, B bus wires and m output wires. 

Programmable switches are placed at all cross-points to connect the pairs of wires. Each 

selected input signal is routed to the target bus wire first by conducting the switch between 

input and bus wire. Output ports can get their desired data by controlling the switch between 

the output wire and corresponding bus wire.  
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Figure IV-9 : Multiple-bus interconnection 

Obviously, an NxBxM multiple-bus with N ≤ B ≤ M can route an input signal to an N-subset 

of output wires in any given order in two stages: data being routed first to bus wires and then 

output ports.  

C. Multi-stage Interconnection 

An alternative design approach of routing matrix is based on multi-stage interconnection 

networks. Multi-stage interconnects were introduced and discussed in detail by Clos in [76] 

and Benes in [77]. The idea behind multi-stage interconnection networks is using longer 

delay time to reduce the complicity of hardware compared with full crossbar. A multi-stage 

interconnection network is a non-blocking network, which can provide a connection path 

from any idle input and output without interference with other active connections. Moreover, 

the setup of a new path between specified input and output ports will not affect the 

possibility of future connection requests. 

The multi-stage network follows distributed routing. Its control units are distributed among 

switches in several levels. A route path from input port to output port is separated into 

several segments, not a straightforward one as used in crossbar. Each segment has different 

intricate interconnect patterns at their respective switch levels, so for a given source or 

destination address, the routing decisions can be made independently according to routing 

strategy of the switch. All the data from input ports are routed to the first level switch 
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controllers and then the data will be sent to the second level switch controllers. Just 

following this method, the data will finally reach the destination output ports.    

In the whole routing path, routing decision is made at each individual switch. This greatly 

reduces the complexity of the switch controller. In general, the number of switches can be 

reduced from N
2
 to NlogN. Also, independent switches make it possible to alter the switch 

configuration without disturbing others. Another advantage of distributed routing is its easy-

to-control connection. It also makes the routing time equal to the propagation delay of the 

switches. Therefore, latency introduced by the switch controller is removed owing to the 

reduced complexity of the network. The number of intermediate stages grows with the 

number of inputs and outputs. 

Multi-stage network includes omega networks, delta networks and many other types. A 

conceptual view of an omega network is shown in Figure IV-10. 

Figure IV-10 : An omega network [78] 

D. Comparison between Implementations 

A full NxM crossbar has N⋅M switches which means M switches are required for each 

output. In multiple-bus construction, B⋅(M+N) switches are used in total. For a single output 

port, (B + B⋅N/M) switches are necessary. Regarding multi-stage network, it adopts MlogN 
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switch to build the whole architecture. For each output port, logN switches are used. It can 

be concluded that multi-stage network is most hardware-efficient from the view of output 

port. Multiple-bus construction is less efficient in hardware than multi-stage network, but it 

provides extra data delivery ability compared with other modules. A full crossbar is the least 

hardware-efficient in three implementations.  

It can be observed that a full crossbar network requires only one switching stage, that is to 

say, every input and output pair is connected through a single switching element. This 

architecture provides full connection flexibility, but suffers from large area overhead as we 

have discussed above. In multiple-bus construction, input data will reach output port after 

two switching stages, the double of that in crossbar network. The slowest one is multi-stage 

network among the three. It requires log2N switching stages for the whole signal travelling 

path, a lot more times than that of crossbar network. From the view of latency, a full crossbar 

is the most efficient one. But it also suffers from its high energy consumption due to the long 

global buses and the large number of switches. 

The comparison indicates a general rule in design that it is a trade-off relationship between 

area, power and delay. Without the revolution in technology, the way to improve the speed 

of architecture will be adopting more hardware to shorten crucial patch and hardware 

efficiency will be improved at the cost of extra delay time.  

E. Proposed Interconnection Network 

The idea behind the design of interconnection network in our processor is to balance the 

performance of area, power and delay and make the processor satisfy the application 

requirement.  

Because the system will be potentially used for high speed real-time image processing, the 

slowest scheme, multi-stage network, in three implementations is out of our sight although it 

is the most efficient in area. Full crossbar is the fastest one as we discussed above, but it is 

too expensive when N and M are large. But crossbar will work if it can be simplified and the 

number of switches can be cut down based on the targeted applications requirement. The 

problem of designing crossbars with large N, M focuses on selecting cross-points where 
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switches are going to be placed to satisfy certain routing specifications. There are several 

problems in designing such crossbars. One of them is the so-called sparse crossbar design 

problem [79, 80] that in designing a partial N x M (N ≥ M) crossbar with a linear number of 

switches in terms of n, the percentage of routable routing vectors is indicated by the given 

switch count. This percentage is so-called routability which is defined as the likelihood that 

an arbitrarily chosen subset of inputs can be connected to outputs. A routing vector is an n-

dimensional 0-1 vector (x1, x2,……, xn), which is used to represent a selection of input 

terminals with xi = 1 meaning that the i-th input terminal is selected. A routing vector is 

routable if all the selected terminals can be routed to output terminals simultaneously.  

Another problem in designing is how to build a partial N x M (N ≥ M) crossbar with a 

minimum number of switches so that every group of N inputs can be routed to M outputs. 

Nakamura and Masson [81] showed that an optimal design has (N - M + 1)⋅M switches. 

Based on the existing crossbar theory and algorithm, several optimal crossbars are designed 

according to the routing requirement. One of the optimal crossbars is shown in Figure IV-11 

as an example which has 8 input ports and 6 output ports. 

Figure IV-11 : A partial 8x6 crossbar 
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It can be viewed as a 2-sided switch block as shown in Figure IV-12; 

Figure IV-12 : A 2-sided switch block for partial crossbar 

IV.4.5. Memory for Reconfigure Bits 

For different field-programmable devices, different approaches to implementing 

programmable switches have been developed. For commercial CPLDs the main switch 

technologies are floating gate transistors like those used in erasable programmable read-only 

memory (EPROM) and electrically erasable programmable read-only memory (EEPROM), 

and for FPGAs they are SRAM. Each of these will be briefly discussed below. 

EEPROM and flash memories retain their contents because they use floating-gate transistors: 

application of extra high or low voltage differentials across a floating gate leads tunnelling to 

deposit or remove electrons from the floating gate, changing the threshold of the EEPROM 

or flash transistor. Regular operating voltages have negligent effects upon these floating 

gates, just as the absence of power does not affect them, so they are able to retain their 

programmed states even when powered off.   

An EEPROM/EPROM transistor is adopted as a programmable switch in PLD/CPLD. They 

are placed between two orthogonal wires acting as a controlling transistor to isolate or 

connect two lines, as shown in Figure IV-13.  
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In the figure, two wires are connected by a transistor, with the gate of the transistor being 

controlled by an EEPROM/EPROM cell. By setting the bit to 1, signals can be driven across 

the transistor. When setting the bit to 0, the horizontal and vertical wires are isolated.   

Figure IV-13: EEPROM/EPROM programmable switch 

One constraint on our designs is that we must implement our reconfigurable architecture in 

the same process technology that the rest of the SoC is going to use, since everything will be 

implemented on a single piece of silicon. While floating gates are useful in creating certain 

memories, they are not particularly useful in the design of processors, DSPs, or custom logic, 

and it is these other blocks that will dictate the process technology of the SoC. EEPROM and 

flash memories are therefore not reasonable memory choices for us, because the SoC 

fabrication process will not have the ability to create the necessary floating gates. 

For technical reason, EPROM or EEPROM could not be applied to FPGAs to obtain a high 

density. Currently, commercial FPGA products are mainly based on SRAM technologies. 

SRAM memory cells, on the other hand, are created without the need for floating gates. A 

simple 6-transistor SRAM cell is shown in Figure IV-14.  

Figure IV-14: A simple 6-transistor SRAM cell 
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The function diagram for SRAM looks similar to EEPROM/EPROM cell. SRAM cells 

between wires can be programmed to connect or disconnect the wires according to the 

required logic function. Wires and configurable switches like the one shown in Figure IV-14 

can be easily used to create a full crossbar. In the normal operation of a crossbar, each output 

wire is connected to exactly one input wire, with the numbers of output wires less than or 

equal to the number of input wires, as shown in Figure IV-15.  

Figure IV-15: SRAM switch based full crossbar   

We now have several horizontal wires each of which can be connected to any of several 

vertical wires. These orthogonal wires build up a switch matrix which can route any input 

signal to the desired output port. An example of usage of SRAM-controlled switches is 

illustrated in Figure IV-16.  

Figure IV-16: SRAM programmable switch application 
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In this figure, SRAM works as pass-transistor switch to control the connection between 

different gate nodes. As an example shown in the figure, the output signal from one logic 

block in the upper left corner is switched to another logic block in the down right corner 

through two pass-transistor switches in switch matrix. The SRAM cell between the 

appropriate wires is set to conduct the two orthogonal wires to realize the connection. 

The SRAM based switch can be fabricated using the same technology that most SoC devices 

will use, and is therefore an attractive memory solution for our reconfigurable architectures. 

Thus, SRAM will be used as the configuration memory in our work. 

All reconfigure bits are stored in the external SRAM block. For different applications, the 

corresponding reconfigure bits are loaded into SRAM. When the architecture is targeted at 

certain application, the pre-stored data in SRAM will be loaded to the architecture to 

configure the functional units first and then all registers and logical blocks are reset to 

original value. When all works above are done, the architecture has finished its initialization 

proceeding and ready for the targeted application.  

IV.4.6. Architecture Implementation:  

The architecture was implemented using the Verilog hardware description language. A 

standard-cell based synthesis and layout was performed with Design Compiler from 

Synopsys, Inc., targeting at the UMC 0.18 mµ CMOS technology library.  

All the design is provided as synthesizable soft-core without the specific custom library to 

allow the customization of all the aspects of the array at design-time. This also permits an 

easy integration of the arrays into the SoC architecture and software flow.  

To evaluate the performance of architecture, DCT and FFT algorithmic are implemented in 

sections VI.1 and VI.2 respectively. The power consumption of our reconfigurable 

architecture was obtained after post-layout simulation by the Synopsys PrimePower. The 

experimental results and analysis will be given in sections VI.1 and VI.2 as well. 
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IV.5 Algorithm Searching for Optimal Scheme 

As discussed in section IV.4.1, the sharing common terms could save the hardware area and 

reduce the redundant computing to save power consumption. One will find that the diverse 

common term schemes will result in different amount of resource savings. For the example 

shown in Figure IV-4, seven two-input adders are needed for accumulation without sharing 

common terms. There are three common term sharing schemes: X0+X1, X1+X2 and X0+X2 & 

X1+X3. In the first two schemes, six two-input adders are needed. In contrast, five two-input 

adders are needed for the third scheme. Therefore, common terms sharing will make the 

system area efficient and power-saving.  

It is noted that the characteristics of common terms sharing are available in some cases as 

discussed above. To make the architecture take full advantages of common terms sharing, 

parallel multi-output construction is adopted which processes and outputs data for several 

output ports simultaneously. This mechanism makes it possible to share common terms 

between different output ports, not just limited to an output port itself. It will greatly improve 

the utilization ratio of common terms. Currently, we adopt a structure with 8 parallel 

Wallace tree blocks providing 8 outputs at one time. 

Only the best scheme of common terms sharing will take full advantage of sharing 

characteristic and maximize hardware efficiency in the implementation. The way to find out 

optimal scheme will be discussed in detail in the following sections.  

First, we will discuss the availability of common term sharing which is fundamental and the 

most important issue of all. The whole architecture will become less meaningful if it is 

available only for some special cases, in which common terms sharing is one of the 

theoretical bases. To solve the problem of optimal scheme, the related definitions and 

analysis in the mathematics field are given and a visual tree is adopted to mathematically 

model our proposed architecture.  The definitions of the related concepts in dimidiate tree 

and crossing forest are introduced to describe the issues under consideration. Then, an 

algorithm for searching for the optimal scheme is developed and analyzed.  
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IV.5.1. Common Term Sharing Availability Analysis 

Common term sharing characteristic will make the architecture, with which the application is 

implemented, consume less power and reduce hardware occupation, although the 

functionality of the application’s implementation with the architecture will not be affected 

even without applying common term sharing.    

The Figure IV-4 is a special case. Then, is the common terms sharing property available in 

real applications? Let’s consider random constant vectors and take 4-input-4-bit coefficient 

case as an example. The coefficient of such case is a matrix which is four lines with 4 

elements on each line. Totally, there are 16 elements and 65536 (2
16

) cases. Take the number 

of ‘1’ element as the index to analyse the possibility of applying common term sharing 

characteristic. 

The table below is used to analyse the possibility of applying common term sharing 

characteristic. Numbers of ‘1’ are filled in the first column, making index 1 to 16. For index 

of 16, 15, …, 10, 9, 8, …, 2, 1, 0, there are totally 1 (= 16

16
C ), 16 (= 15

16
C ),…, 8008 (= 10

16
C ), 

11440 (= 9

16
C ), 12870 (= 8

16
C ), …, 120 (= 2

16
C ), 16 (= 1

16
C ), 1 (= 0

16
C )  cases respectively, 

which is listed after the index number in the second column. Among the total cases, some 

satisfy the requirement of common term sharing.  The number of these cased is demonstrated 

in the third column as “available cases” and the percentage of them in total cases is shown in 

the last column.  

Taking index 10 as an example, there are six zeros in the coefficient matrix. Among these 

cases, only the cases with four zeros located at diagonal have the possibility to disable the 

common term sharing characteristic. The number of such cases is 36. By exhaustive search, 

only 6 cases cannot be applied with common term sharing, so 8002 (=8008-6) cases satisfy 

the requirement of common term sharing.  So, for index 10, as shown in the table, there are 

totally 8008 cases. Among them, the ones satisfying the requirement of common term 

sharing amounts to 8002 and takes up 99.9% of all.  Similarly, index 9, 8, 7, 6, 5, 4 have 

11176, 12480, 7200, 2304, 432 and 36 cases respectively that are fully fit for the sharing 

characteristic. For cases in index 16, 15, 14, 13, 12, 11, common terms sharing can be 

applied without any exception.  
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Table IV-1: Availability analysis of common term sharing 

 

To sum up index 1 to 16, 48515 cases from totally 65535 cases are available for common 

terms sharing property. The effectiveness ratio for 4-input-4-bit coefficient cases is 74% and 

it will rise as the number of input and coefficient bit width increases.  

The ones and zeros in coefficient matrix contribute quite differently even their numbers are 

the same. Taking index 12 and 4 as examples , for all the cases of the coefficient matrix with 

only four ones, 36 cases are available for common terms sharing; while for all cases with 

only four zeros in coefficient matrix, all of them satisfy the sharing characteristic, without 

exceptions.  

Therefore, in theory, the cases with at least one common term are more popular compared 

with those with none. For real application such as DCT and DFT, the coefficients in the 

applicable applications are symmetric and regular and this makes the application take full 

advantages of common terms. An example for DCT will be introduced in the next chapter, 

which will demonstrate that the common terms sharing contributes greatly to the resource 

savings. 

IndexIndexIndexIndex TotalTotalTotalTotalCasesCasesCasesCases AvailableAvailableAvailableAvailableCasesCasesCasesCases rate (%)0 1 0 0.0%1 16 0 0.0%2 120 0 0.0%3 560 0 0.0%4 1820 36 2.0%5 4368 432 9.9%6 8008 2304 28.8%7 11440 7200 62.9%8 12870 12480 97.0%9 11440 11176 97.7%10 8008 8002 99.9%11 4368 4368 100.0%12 1820 1820 100.0%13 560 560 100.0%14 120 120 100.0%15 16 16 100.0%16 1 1 100.0%
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IV.5.2. Dimidiate Tree 

According to the characteristics of the adder array, two inputs from its previous level and 

one output for its next level, dimidiate tree and its properties are naturally utilized to visually 

define and describe the architecture. It should be noted that the tree defined here is similar to 

the binary tree in the computing related data structures. The reason for defining the new 

concept-dimidiate tree is that some properties of binary tree cannot be applied in our case. 

To avoid confusion and misunderstanding on the problem addressed and architecture 

proposed, dimidiate tree and its properties are introduced in this sub-section. Though being a 

newly defined concept, the dimidiate tree can be considered a special case of binary tree. 

 

Figure IV-17 : Examples of dimidiate tree 

Tree presentation arises naturally based on the hardware architecture. The relationships 

between inputs of architecture, outputs of the first level adder array and output of the second 

level adder array can be presented as a tree, shown in Figure IV-17 with symbol L, B and R 

respectively. A tree is a collection of elements called nodes, one of which is distinguished as 

a root, along with a relation that places a hierarchical structure on the nodes. Each node in 

the tree denotes the summation of certain inputs with number ranging from one to four in our 

case. Generally, a tree can be defined recursively in such a manner: suppose n is a node and 

T1, T2, … , Tk are trees with roots n1, n2, …, nk, respectively. A tree can be constructed by 

making n the parent of nodes n1, n2, …, nk.  

In Figure IV-17, R is the root of the tree and B1, B2, L1, L2, L3, L4 the subtrees of the root. 

Nodes B1, B2, L1, L2, L3, L4 are called the children of the node R. The parent-child 

relationship is depicted by a line as shown in Figure IV-17. This tree is defined as dimidiate 

R

L1 L2 L3 L4 L1 L2 L3

B1 B1B2

R
Root Level

Leaf Level

Medium Level
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tree each node of which has either no child or exactly two children without order. This 

characteristic of dimidiate tree accords with the two-input adder in the architecture. 

If n1, n2, …, nk is a sequence of nodes in a tree and ni is the parent of ni+1 given 1≦i﹤k, then 

ni is an ancestor of ni+1, and ni+1 is a descendant of ni. If a proper ancestor or proper 

descendant is defined as an ancestor or descendant of a node, rather than the node itself, as 

shown by the tree in Figure IV-17, the node R is the root which is the only node with no 

proper ancestors. In contrast, the nodes L1, L2, L3, L4 are called leaves for they have no 

proper descendants.  

In our case, the leaves in a tree are related to the inputs of architecture, and the roots of a tree 

then represent the outputs of two-level adder array. Three levels are defined to illustrate 

different node types, root level, medium level and leaf level as shown in Figure IV-17. All 

the nodes with the same property are located on the same level. At root level, nodes are the 

root of each tree and represent the summation of three or four inputs. All nodes for the 

summation of two inputs are located at medium level; while leaf level, the bottom level of 

the tree, contains all single inputs. It is noted that the nodes location arrangement is different 

from the one in binary tree. The most distinguished difference between dimidiate tree and 

binary tree is the definition of level and its characteristic. The nodes in binary tree are 

generally located in accordance with the parent-child relationship between two nodes. 

Correspondingly, nodes in our dimidiate tree are arranged in their corresponding level 

strictly based on their presentation. 

Figure IV-18 : Different format for the same dimidiate tree 

R

L1 L2 L3 L4

B1 B2

Root Level

Leaf Level

Medium Level

R

L1 L2 L3 L4

B1 B2



Low Power Reconfigurable Architecture for DA 

 

~  77 ~ 

Therefore, the most important characteristic of node is which level it belongs to. In dimidiate 

tree, the relationship between the nodes of two levels is fixed but the specific parent-child 

relationship between the two nodes can vary, which means that the format of a unique 

dimidiate tree is versatile. Taking the first tree in Figure IV-17 as an example, the other two 

formats of the tree are shown in Figure IV-18.  

From the Figure IV-18, the node B1 can be the parent of L1, L2 pair, L1, L3 pair and L1, L4 pair. 

The parent-child relationship is never changed no matter which specific relationship is 

selected. In the definition of dimidiate, a tree is exclusive when the levels of all nodes of the 

tree are determinate. The tree is disordered for the order of nodes in each level is inessential 

for distinguishing one tree from another. According to this property, we can obtain a useful 

inference for further discussion, called property of uncertainty, that is ＊In a dimidiate tree, the undetermined nodes in medium level are not unique even when 

their ancestor or descendant nodes are known. 

A dimidiate tree indicates the structure of two-level adder array for one output. This tree 

representation is established by merging two children nodes to a parent node. With the 

definition of tree, the targeted problem can be addressed and described clearly. 

IV.5.3. Crossing Forest and Targeted Problem 

The purpose of defining the dimidiate tree is to address the problem of common terms 

sharing scheme discussed at the beginning of section IV.5 in this chapter. Selecting different 

schemes will greatly affect the hardware efficiency and, thereby, power consumption.  

Features of certain applications makes it necessary to consider the case that multiple trees are 

put together. For the reason of the repeated nodes, one child node may be shared by different 

parent nodes, that is, one child node can have more than one parent. If n denotes the number 

of parent nodes, the child nodes of dimidiate tree will be less than 2n. The example in Figure 

IV-19 gives an illustration of this case. 
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R1

L1 L2 L3 L4

B1 B2

R2 Rm

Lq

BnB3

 
 

Figure IV-19 :  Example of crossing forest 

Two key characteristics can be drawn from the figure for the nodes at root level, namely R1, 

R2, …, Rm, each has strictly two children. Different ancestor nodes may share the same 

descendant nodes. The same is true with all nodes in medium level. Here, we define 

Crossing Forest as the combination of multiple dimidiate trees with the same nodes at each 

level merged. The difference between the forest of data structure and ours is the existence of 

shared descendant. Crossing forest reveals the relationship between nodes in different levels 

which respectively indicates the given inputs, the outputs of first level adder array and the 

outputs of the second level adder array which are required by applications. 

According to the uncertainty property of dimidiate tree, when the nodes in root and leaf 

levels of crossing tree are known, the nodes that satisfy the requirement of medium level in 

the forest are not unique. Now, the targeted problem can be described as how to find out the 

best nodes set in medium level with the minimum number when the nodes in the other two 

levels are given. From each child node side, they all have as many parents as possible. 

IV.5.4. Algorithm Searching for Best Set 

Because of the differences in the definition and properties between dimidiate tree and binary 

tree, existing binary tree theorem and algorithm do not apply to our case. The algorithm for 

optimal set for medium level is discussed in detail. Before the introduction of algorithm, 

some properties of nodes in root and leaf levels in crossing forest are defined to make the 

analysis logical.  
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The nodes in root and leaf levels are not the arbitrary ones. We have the following 

definitions based on the architecture introduced in section IV: each node in root level is the 

set with three or four elements; each node in medium level is the set with exactly two 

elements and each node in leaf level is the set with exactly one element. The number of 

elements in each node determines the level the node belongs to. The sets, R1, R2, …, Rm, of 

root level are dissimilar to each other and satisfy the equation,  

 (IV-1 ) 

where m is the nodes number. We define R as 
      

(IV-2 )
 

Then, the relationship between R and sets, L1, L2, …, Lq, of root level satisfies 

      (IV-3 )
 

where q is the nodes number. We use B1, B2, …, Bn, to denote the nodes fulfilling the 

requirement of crossing forest medium level. It is assumed that there is a set of sets, B, 

satisfying the requirement of optimal set, whose element number is the smallest among all 

possible sets. In set B, there must exist such subsets B1, B2, …, Bp and each subset has the 

most frequent employment times when it is used for constructing the nodes root level. 

According to the relationship among the nodes in root, medium and leaf levels, a node in 

each level can be considered a combination of its down level that is a node in root level 

could be the combination of two nodes in medium level or the combination of a node in 

medium level and a node in leaf level; the node in medium level is the combination of 

exactly two nodes in leaf level. Therefore, even the number of nodes in leaf level is known 

the numbers of nodes in root and medium levels cannot be determined. Take the number of 

nodes in medium level, p, as an example. The value of p varies from 1 to C
2
q   , where q is the 

number of nodes in leaf level. Once the sets B1, B2, …, Bp, are known, the rest sets in B will 

be obtained by subtracting the relevant set from R1, R2, …, Rm. 
 
 

1 2 ,......, mR R R = ∅∩ ∩ ∩

1 2 ,......, mR R R R=∪ ∪ ∪

1 2, ,......, qL L L R⊂
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Figure IV-20: Coefficient (Ph,k) matrix 

Now, we simplify the targeted problem as finding out the new set containing subsets 

Bbest_all={B1, B2, …, Bp}. A key property of the new set can be concluded as follows: each 

element in this set will appear as frequently as possible in the nodes of root level. On the 

other hand, Bbest_all has the least elements among all possible sets which satisfy the 

requirements of dimidiate tree. Based on this property, we construct new subsets of {R1, 

R2, …, Rm }, denoted with R’h, where h∈(0, 1, 2, ……, q-1). It is the set that contains all the 

sets in the root level with Lh element. Obviously, the number of new sets is equal to the 

number of nodes in leaf level. We can easily find out the element which appears most 

frequently in R’h: 

We define Ph,k as representing leaf Lh (h∈{0, 1, 2, ……, q-1 }) appearance time in set R’h. A 

matrix of Ph,k can be obtained from { R’1, R’2, …, R’h }, as shown in Figure IV-20. If Ph,max is 

the symbol for the largest one in { Ph,1, Ph,2, ……, Ph,k} , the pair {Lh, Lk∣Ph,k = Ph,max } will 

be the best pair which is employed the most in set R’h. This pair is also one element of set 

Bbest_all={B0, B1, …, Bp-1}. Following this method, all pairs for R’1, R’2, …, R’h, can be 

obtained. It is noted that the duplication pair must exist among them, which is caused by the 

uniqueness and randomness of pair {Lh, Lk}. All pairs are generated with the index of Lh and 

Lk, in which h and k vary from 0 to q-1. After elimination of duplications, the set 

Bbest_stage1={Bst1_0, Bst1_1, …, Bst1_p-1} is determined. But it is just a subset of set Bbest_all.  
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According to the property of dimidiate tree, each node in root level has strictly two children 

which may be shared with other root nodes. The rest child nodes of one root node must be 

one element of Bbest_all when the corresponding pair {Lh, Lk} is taken from its parent node. As 

a result, we have another set Bbest_stage2={Bst2_0, Bst2_1, …, Bst2_p-1} whose elements must be 

included in the set Bbest_all. 

The same method is adopted after the finished root sets are taken from Bbest_all until all nodes 

in root level have their children nodes. The application of the algorithm to DCT will be 

detailed in the next chapter. 

IV.5.5. Software Implementation 

In order to apply the algorithms for obtaining optimal common terms sharing scheme 

automatically, a program is implemented based on the algorithms introduced and discussed 

in previous sub-sections. This program is available for any DA applications, which can 

generate the coefficient matrix automatically for given application and output the best 

common terms sharing scheme according to our architecture. 

To make the introduction and discussion of program easy to understand, let’s begin with the 

definition of DA.  Equation (III-3) can be re-written in the form of matrix product as shown 

below 

 

 

 

(IV-4 )  

 

where Ci,n is the nth bit of the constant Ci , and Ci,n = 0 or 1, Ci,0 and Ci,M-1 are the LSB and 

MSB of Ci respectively. The real constant coefficients are represented with M precision in 

2’s complement bit representation. When the 2’s complement bit matrix of coefficients is 

obtained, the duplicated lines in the matrix are removed to make each line unique. Then, a 

reduced matrix is generated in which each line is different from others. In the following step, 

the reduced coefficient matrix with representation of 0 and 1 is converted to the set of part 
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product in format of Xi. Taking the line [0 0 1 1 0 0 1 1] as an example, it is converted to the 

set, (X2X3X6X7), in which the position of 1 is replaced by the corresponding input vectors.  

This set is one of the root nodes of the dimidiate tree and will build up set RS = { R1, R2, …, 

RM }, along with other sets.  For a single output Z, there is up to M lines in the coefficient 

matrix if there is no duplicate one among them. It means the maximum elements number of 

set R’h is M for a signal output mode. The set RS represents a single output, as indicated by 

the subscript ‘S’. 

For the multi-output architecture, just like the processor proposed in this dissertation, the set 

for total root nodes is denoted with R, which is defined as 

     (IV-5 ) 

where RS0 is the root nodes set for output Z0. For our architecture, the maximum output 

number is 8 then the root nodes set of the dimidiate tree of proposed architecture is 

(IV-6 ) 

It is noted that the elements in the set R are unique and the reduplicate elements among all 

subsets {RSQ}, Q∈{0,1,……7} have been removed. By now the set R has been specified. As 

described in the section IV.5.4, the rest step is to set up R’h, a subset of R which contains all 

the sets in the root level with Lh element, and matrix of Ph,k, a matrix containing leaf 

appearance time Lh, based on the known R. 

The algorithm and ideas for searching for optimal common terms sharing is implemented 

with Matlab 7.0 because of its powerful built-in mathematical functions and extensive 

application-specific function libraries. 

0 1 2 ,......, QR Rs Rs Rs Rs= ∪ ∪ ∪ ∪

0 1 2 7,......,R Rs Rs Rs Rs= ∪ ∪ ∪ ∪



Low Power Reconfigurable Architecture for DA 

 

~  83 ~ 

Figure IV-21 : Design flow chart 
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2log MAXL N=   

 This program is not only applicable to the proposed architecture in which two-level adder 

matrix are adopted. Since the developed algorithms are general, the program for 

implementing these algorithms can be directly applied to any application in which the 

dimidiate tree characteristics are satisfied. Therefore, the number of levels is generated for 

controlling the performing times of sub-function. This level number can be obtained with 

Equation ( IV-7 )  

( IV-7 ) 

where NMAX is the maximum number of “1”s in each line of coefficient matrixes. ┌ ┐is 

ceiling symbol, which truncates a number toward positive infinity and returns the smallest 

integer not smaller than input. Taking the line [0 0 1 1 0 0 1 1] in Ph,k coefficient matrixes as 

an example, it is converted to the set, (X2X3X6X7). This means that two-level dimidiate tree is 

required for implementation. For the case (X2X3X6 X7X8X10X11X12) which has eight elements, 

a three-level dimidiate tree is necessary. 

When the duplications in set R are removed in sub-function step_211, the coefficient Ph,k 

matrix for leaf Lh (h∈{1, 2, …, q }) appearance times in set R’h can be obtained in sub-

function step_22 when h ranges from 1 to q.  The set Bbest_stage1 can be specified in sub-

function step_23, in which the pair of {Lh, Lk} with maximum Ph,k in each line of matrix is 

selected. After that, the set Bbest_stage2 can be easily obtained in sub-function step_231.In this 

sub-function, the program will check whether the selected sets can match all the nodes in 

root level.  

If unmatched root nodes still exist when above steps are done, they will be sent back to sub-

function step_212 for further processing. By now, the rest root nodes construct a new set 

which is a subset of set R. To treat this new set, just follow the same processing steps on set 

R until no unmatched root nodes exist anymore. Then, we can get the best common terms 

sharing scheme in the format of the pair with two single elements. As we have discussed in 

previous sub-sections, the nodes in root and leaf levels are known. The purpose of the 

algorithm is to find out the best set for medium level. For the cases which require two-level 

dimidiate tree, the best sets we have are the final result, which build up the only medium 

level.  
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For the cases which require a dimidiate tree with more than two levels, there is more than 

one medium level. The obtained sets can only construct the medium level which is most 

close to leaf level. We still need to find out the other medium levels. For these cases, each set 

we got will be re-coded with a single symbol and build a new set in sub-function step_212. 

Just following the same processing steps for set R to process this new set, we will get some 

new sets. These sets will set up another medium level which is the one upper than the 

medium level we already have. Taking the case with the one root node (X2X3X6 

X7X8X10X11X12) as an example, suppose sets (X2X3), (X6X7), (X8X10) and (X11X12) are ones of 

the best pairs. We use a single symbol to indicate each pair. There are A1-> (X2X3), A2-> 

(X6X7), A3-> (X8X10) and A4-> (X11X12). The original root node (X2X3X6 X7X8X10X11X12) then 

will be re-coded as (A1A2A3A4). After all the original nodes are re-coded in the format of A, 

another round of processing for searching for best common terms sharing scheme will be 

performed as described previously until all are done  

IV.6 Comparison with Subexpression Sharing in CSD 

The idea behind common term sharing in two’s complement binary multiplier is not new, 

which can be found in [82-86], namely common subexpression sharing or common 

subexpression elimination. The purpose of common term sharing is the same as common 

subexpression elimination’s, which is to reduce the number of adders. However, the 

implementation strategies for two methods are greatly different. 

Common subexpression elimination is to find multiple common subexpressions in the 

coefficient set. The efficiency of common subexpression elimination is based on canonic-

signed-digit (CSD) code which is widely used as signed-powers-of-two code for its minimal 

number of nonzero digits.  

The CSD number system is a signed digit number system that minimizes the number of non-

zero digits and thus can reduce the number of partial product additions in a hardware 

multiplier. The encoding scheme uses a digit set that is ternary and each digit can be either -1, 

0, or +l. The signed-digit representation is named canonical if it contains no adjacent 

nonzero. For a 2’s complement number, there can be n non-zero digits for an n-bit number. It 
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Y c X= ⋅

can also be shown that the probability of a digit being zero is roughly 2/3 for CSD and 

exactly 1/2 for 2’s complement [87, 88]. For example, we compute the canonical recoding of 

x = 478 = (0111011110)2 by starting with c0 = 0, and then compute yi and ci+1 using xi+1, xi, 

and ci with i = 0, 1,……, 9. The resulting vector is y = 10001̄0001̄0. Encoding the 

coefficients of applications using the CSD representation reduces the number of partial 

products and thus saves silicon area and power consumption in hardware implementation. It 

is well known that the CSD representation can be used to reduce the complexity of 

applications implementation such as DCT [89], DFT [86, 90],FIR digital filter [91-93] and 

so on. But the high efficient code is obtained at the cost of extra circuit because of twice 

conversions between 2’s complement number and CSD. It will consume more silicon area 

and power in hardware implementation and then introduce extra delay time to system.  

The idea common term sharing and common subexpression sharing is similar, but the 

implementation for them are different regardless of the extra processing of coding for CSD. 

Taking an example to show how common subexpression sharing works, for Y which is 

( IV-8 ) 

where X is input. Assuming c = 0.6458 = 0.101001010101= 2
-1

+ 2
-3

+ 2
-6

+ 2
-8

+ 2
-10

+ 2
-12

, the 

output Y can be expressed as  

( IV-9 ) 

where the sign “» n ” indicates a n-step right shift operation. In this case, five intra-structure 

adders are required to obtain Y. By applying common subexpression sharing, Equation 

( IV-9 ) can be rewritten as  

( IV-10 ) 

where u is defined as 

 ( IV-11 ) 

Hence the multiplication structure optimized using the common subexpression sharing given 

by Equation ( IV-10 ) and Equation ( IV-11 ) requires two adders which is less than the 

original structure of Equation ( IV-9 ). Thus using common subexpression sharing, the 

number of adders required to implement the multiplication is minimized. According to the 

characteristics of common subexpression sharing, the operation is a serial one, from right to 

left. The common subexpression sharing occurs inside one coefficient. Compared with these 

1+ 3+ 6+ 8+ 10+ 12Y X X X X X X= � � � � � �

1+ 6+ 10Y u u u= � � �

+ 2u X X= �
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characteristics, common term sharing in proposed architecture is a parallel operation which 

will improve the system performance in terms of speed. On the other hand, the shared 

common terms are located at the global level, not limited to one coefficient. The common 

terms are based on the searching of the entire coefficients for the application. For example, 

the shared common terms for 8-point 1-D DCT with 12-bit precision in coefficient are based 

on the searching result for total 96 (=8x12) coefficients. This characteristic makes our 

architecture take full advantage of terms sharing and greatly improves the hardware 

efficiency. 

In addition, common term sharing does not make any changes in 2’s complement code and 

algorithm expression. The comparison between two methods targeting at the same 

application will be made in the next chapter. 

IV.7 Conclusion 

This chapter has presented low power reconfigurable DA architecture and its implementation. 

The research work carried out on DA techniques and their implementations in DCT and 

other applications, reconfigurable architectures and their implementations and a domain-

specific RA targeting DA was first introduced. The overview architecture was described and 

then the detailed descriptions were given for the algorithm logic unit. The control unit of 

proposed processor is separated and will be introduced and described in Chapter V because 

of its complexity and uniquely important function. In Chapter V, the performance on area, 

power and delay of control unit will be evaluated and analyzed as well.  

The algorithm logic unit has been described in detail in the introduction of each function 

module inside including two-level adder structure, Wallace tree multiplier matrix, 

interconnection network and memory unit for reconfigure bits. According to the two-level 

adder array adopted in our architecture, common terms sharing has been introduced in this 

chapter including its availability analysis, optimal scheme searching algorithm and matlab 

implementation and comparison with subexpression sharing in CSD. To obtain optimal 

scheme searching algorithm, the concepts of dimidiate tree and crossing forest have been 
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introduced and defined and accordingly the algorithm has been developed to get the 

architecture mapped with the best efficiency.                                                       .
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V.1. Overview 

In digital systems design the use of control units to implement complex system behaviour is 

ubiquitous and found in almost all engineering disciplines. Conventional controllers can be 

micro-coded or hardwired finite state machines (FSMs). They make the systems which they 

integrated have the abilities to allow devices to operate in an intelligent manner rather than 

simply reacting to the current operating conditions of the system. 

The controller design is the implementation of application-specific algorithms. In some cases, 

software implements the bulk of algorithms, because microprocessors are flexible and easily 

programmable for a wide range of functions with dedicated hardware to acquire and store 

data on behalf of the software. The use of microprocessors allows a device to freely 

determine its response to a sequence of events according to different algorithms rather than 

simply producing a response based on single event. Some systems may not be able to 

perform their intended tasks with software alone and the reasons for this vary by applications 

and often include throughput problem that systems with a microprocessor do not practically 

meet some requirements of real-time applications. 

State machines are often adopted to accomplish the load when control task is implemented in 

hardware. Hardwired FSMs implement the controller output functions and next state logic 

using fixed logic gates, and are the more common choice given their relatively small area 

and higher performance. A state machine can be made arbitrarily complex and can function 

similarly to software running on a microprocessor. Just as software moves through a 

sequence of tiny steps to solve a larger problem, a state machine can be designed to advance 

Chapter V 
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when certain conditions are satisfied. As the state machine progresses, it can activate other 

functions, just as software requests transactions from a microprocessor’s peripherals. 

Although it is often unnecessary to explicitly specify the control system for simple 

applications, it is inferred from the functional description of the application. For more 

complex applications a high-level model is required to allow designers to specify the control 

behaviour of the system. A commonly used high-level model is the FSM. FSMs are abstract 

models used to describe the behaviour of a control system in response to a sequence of 

inputs and are based on the theory of finite automata in computer science [94]. 

To implement FSMs, two steps are generally followed in the procedure: the extraction of the 

FSM from the high level specification of the system and the implementation of the FSM. 

The extraction of FSMs is independent of the method of implementation and is concerned 

with developing a high-level description of the control aspects of the specification. The 

implementation in dedicated hardware involves the production of an ASIC that implements 

the required behaviour. This approach produces devices with low area and power 

requirements but requires lengthy and expensive hardware design and manufacturing 

processes, making it impractical for low volume applications or for developers with limited 

resources. 

As FSMs are used in almost all control applications, the use of a reconfigurable hardware 

device specifically tailored for the implementation of these control systems has a wide 

market. Using reconfigurable devices such as FPGA devices is an important hardware 

implementation of FSMs. Reconfigurable hardware combines the speed and efficiency of 

hardware with the flexibility and programmability of software. This flexibility and 

programmability requires the introduction of programmable hardware devices which result 

in a lower efficiency when compared to full-custom ASIC design. 

Domain-specific reconfigurable technology has emerged to cover this gap, which has the 

ability to be programmed according to the requirements of target application. But, due to the 

unique flexibility of FSMs, it is difficult to implement it with a reconfigurable architecture 

with reasonable resource. Finite state machines are always too complex to map to a 
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reasonable number of very fine-grained logic blocks [14]. However, finite state machines are 

also too dependent upon single bit values to be efficiently implemented in a very coarse-

grained architecture. This type of circuit is more suited to an architecture that provides more 

connections and computational power per logic block, yet it still provides sufficient 

capability for bit-level manipulation. A typical very fine-grained architecture is composed of 

logic block which is the configurable functional unit embedded in a symmetry 

interconnection network sea and can implement any two-input function and some three-input 

functions by loading different reconfigure bits. However, although this type of architecture is 

useful for very fine-grained bit manipulation, it can be too fine-grained to efficiently 

implement many types of circuits, such as multipliers [14]. 

This chapter of the portfolio is intended to give details of the work carried out on the 

development of reconfigurable hardware for FSMs implementation. This method makes use 

of a novel architecture that allows the implementation of these machines to consume far less 

resources than commercial devices and traditional architecture. This chapter begins by 

presenting the formal definition of FSMs, categories, traditional representation and 

decomposition of FSMs in section V.2 which is followed by an overview of the traditional 

design flow of implementation for a range of FSMs in section V.3. Existing FSM 

implementation in commercial PLD and CPLD devices is first introduced briefly and then 

detailed by analysing Xilinx Coolrunner CPLD in terms of their benefits and limitations in 

section V.4. Existing reconfigurable customer-specific hardware for FSMs is discussed in 

this section as well for comparison with the novel method presented here.  

The novel reconfigurable architecture of FSMs suggested is then presented in section V.5 

including the overview of the architecture, functional sections of the architecture, logic & 

sequential block and the construction of PTB inside the block.  Section V.6 then presents the 

low power implementation in interconnection network, PTB construction and mapping of 

PTB. In order to prove the usefulness of the proposed architecture it is then compared to the 

traditional implementation of FSMs and the results of this comparison are presented in 

section V.7 before final conclusions are made in section V.8.  
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V.2. Background 

In order to make the novel method in the implementation of the proposed architecture easy to 

understand, it is necessary to first understand both the theory and implementation of FSM. 

This section begins by presenting a formal definition of FSM which is followed by a 

description of the process of FSM extraction before the implementation. Hardware FSMs 

implementation is discussed for both the ASIC and reconfigurable device design flows. 

V. 2. 1. Definition of FSM 

In digital systems, control logic can be expressed as a sequence of states and state transitions. 

A behavioural specification can be implemented with an FSM. FSMs are abstract models 

used to represent the sequential behaviour of systems. They are used in control applications 

to define the response of a system to a sequence of input events. This allows designers to 

implement systems with complex behaviour [94]. 

A Finite State Machine is a 6-tuple (I, O, S, R, T, S0): 

• I is a finite set of inputs of the FSM. 

• O is a finite set of outputs of the FSM. 

• S is a finite set of internal states of the FSM. It consists of two parts: Sc and Sn. Two 

symbols present current states and next states respectively. 

• R (i, s) is a relation from the (input, current states) pairs to next state (i.e., R 

I×Sc×Sn). 

• T (i, s) is a relation from the (input, current states) pairs to the outputs (i.e., T 

I×Sc×O).   

• S0 is an initial (or reset) state. 

An FSM is deterministic, if for each pair (i, p)∈I×S, there exists at most one next state ‘n’ 

and one output ‘o’ such that (i, p, n, o)∈R×T(It means they are defined for all elements of 

their domains), otherwise FSM is nondeterministic. If at least one transition is specified for 

each present state and each input, an FSM is said to be completed; otherwise, the FSM is 

partial. We will call an incompletely specified deterministic FSM simply an FSM. State 

transitions are assigned to each state and based on the current inputs and current state are 
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used to determine the next state of the FSM. The current state of the FSM is determined by 

the initial state of the FSM and the previous input sequence applied to the machine. This 

means if the previous input sequence and start state of the FSM is known, it is possible to 

predict the current state of the FSM.  

V. 2. 2. Three Categories of FSM 

From the output function point of view, there are three cases found in the practical 

implementations. If the outputs of an FSM are always associated with the inputs, the FSM is 

a Mealy machine, shown in Figure V-1. 

Figure V-1:  Mealy machine 

 If the outputs are influenced directly by the internal states of the FSM and inputs affect the 

outputs only through the states, the FSM is a Moore machine, see Figure V-2.  

Figure V-2: Moore machine 

For the third case, the internal states of the FSM are output straightway as the result of FSM, 

shown in Figure V-3. 

 

Figure V-3: FSM with internal states as outputs 
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V. 2. 3. State Transition Graph and State Transition Table Representation of FSM 

A directed graph can also describe an FSM, called the state transition graph. In a state 

transition graph, each vertices denotes an internal state, and each edge corresponding to the 

state transition is labelled with an input /output pair, and is directed from current state 

vertices to next state vertices. 

A counter is a simple example of an FSM, though its actions are very limited. Each state 

simply advances to the next state on each clock cycle. There is no conditional branching in a 

typical counter. FSMs are often represented graphically before being committed to Register 

Transfer Level (RTL). Figure V-4 shows a diagram representation of a two-bit counter. Each 

state is presented by its own bubble, and architectures show the conditions that cause one 

state to lead to any other state. An unlabeled architecture is taken to mean the default if no 

other condition is valid. Because this is a simple counter, each state has one unconditional 

arc that leads to the next state. 

Figure V-4: State transition graph for two-bit counter 

An alternative to the state transition graph (STG) is the State Transition Table (STT). A state 

transition table is a truth table that shows the output and next state for a synchronous 

sequential network, for a given input and current state. The table shows each of the required 

state transitions of the FSM and gives the current state and input conditions required to cause 

these transitions. The STT of the Mead-Conway traffic light controller is shown in Table V-1. 
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Table V-1: State transition Table of the case 

Current 

state 
Inputs Next state 

Idle ==0x01 Wait02 

Idle !=0x01 Wait01 

Wait01 ==0x01 Wait02 

Wait01 !=0x01 Wait01 

Wait02 ==0x01 Wait02 

Wait02 ==0x02 Wait03 

Wait02 
!=0x01 

&& !=0x02 
Wait01 

Wait03 ==0x01 Wait02 

Wait03 
!=0x01 

&& !=0x03 
Wait01 

Wait03 ==0x03 Wait04 

Wait04 ==0x01 Wait02 

Wait04 
!=0x01 

&& !=0x04 
Wait01 

Wait04 
==0x04 / 

Match=1 
Idle 

V. 2. 4. Decomposition of FSM 

It is often convenient to realize a sequential circuit as an interconnection of two or more sub-

circuits. The decomposition may be useful for both area and performance reasons. The 

decomposition of FSMs is adopted to improve the hardware efficiency in the complex cases.  

The proposed reconfigurable FSM architecture is a hierarchical system which can implement 

generic FSM for control system. The capability of the architecture is so large as to 

implement a generic FSM with a maximum of 256 (2
8
) states with up to 8 inputs and can be 

extended by increasing the number of sequential and logic blocks. FSM decomposition is 

employed to overcome the limit on the size for the case of large FSM. The decomposition of 

FSM has been proved power-saving [95-97]. In theory, any large FSM can be decomposed 

into a desired set of smaller sub-FSMs. Therefore, any size FSM can be implemented with 

our architecture with a maximum number of 256 states after decomposition. 
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The initial FSM decomposition work dated back to 1960 by Hartmanis [98] and has been 

further developed by several researchers [99, 100]. The structure of the resulting finite state 

machine is shown in Figure V-5. The inputs of each sub-machine are not only the primary 

inputs and its own last state, but also the state variables from the sub-machine after 

decomposition. 

Figure V-5: Generic FSM decomposition 

To illustrate the procedure of FSM’s decomposition, consider the state transition graph of a 

simple FSM shown in Figure V-6.  

Figure V-6: State transition graph of an example FSM 

It is assumed that a desired decomposition of the corresponding FSM is given that state A 

and state B belong to sub-machine T2 and all the other states belong to sub-machine T1. So 

the original FSM is divided into two smaller sub-FSMs which are depicted with two STGs as 

shown in Figure V-7. 

Figure V-7: State transition graph after decomposition 

M1

M2

input

output1

output2

ps1

ps2

E A

D B

C

E

S

D

C

A

B

S

T1 T2



Reconfigurable Control Unit 

 

~  97 ~ 

As a result of the decomposition, a RESET state is added to both sub-FSMs, labelled with S. 

The transitions between the states except the state S in T1 and T2 are the same as the original 

FSM without transformation. As shown in Figure V-7, the number of inputs to each sub-

FSM is also changed because of the additional RESET state. In each sub-FSM, the extra 

inputs are required for the purpose of communication between two sub-FSMs, so do for the 

extra outputs. 

Following this approach, a large original FSM can be decomposed into several smaller ones 

with limited states which fit our architecture well and can be implemented easily. 

V.3. Implementation of FSMs 

The implementation of FSMs can be generally split into two sections, the extraction of the 

FSM description from specification of the application and the implementation of the FSM 

with the appropriate hardware platform. The FSM design flow for both full-custom ASIC 

and reconfigurable hardware devices is shown in Figure V-8. It can be concluded from the 

figure that the extraction of the FSM is independent of the implementation technology and is 

hence applied in both design flows. 
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Figure V-8: FSM design flow 
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V.3.1. Extraction of FSM Implement FSM with Hardware Platforms 

In Figure V-8, the conventional method of FSM extraction is shown. A high level 

description of the control requirements of the proposed device are first extracted from the 

initial specification of the system. This behaviour can then be expressed as an FSM using a 

high level model such as a STG or STT. Based on this model it is then possible to produce a 

description of the FSM suitable for the implementation of the control requirements. 

After extraction of FSM, the Boolean description of FSM is generated. The main step for 

hardware implementation is commonly known as synthesis which involves taking a high 

level description and converting this to a description that can be used to produce hardware 

implementation including ASIC and reconfigurable device. The conventional method of 

implementing an FSM on both ASIC with standard cells and a reconfigurable hardware 

platform is shown in Figure V-9. 

Figure V-9: General reconfigurable hardware implementation of FSMs 

The implementation of a FSM in full-custom hardware involves producing a description of 

the required functionality in a hardware description language (HDL) such as Verilog HDL or 

VHDL. This description in a high level programming language is capable of producing a 

silicon implementation of the device.  

The process flow for implementation of FSMs with different reconfigurable devices is 

similar to the design flow used in full-custom ASIC design, but, in full-custom design flow 

synthesis results in a description that can be used to produce a silicon implementation of the 
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FSM, and synthesis for reconfigurable devices results in a bit-stream capable of configuring 

the device to implement the FSM. The synthesis process can be considered the same for full-

custom ASIC and different reconfigurable hardware platforms. The difference exists in the 

result of synthesis which can be obtained in format of netlist with standard cells in ASIC 

design and is generated in certain format in reconfigurable hardware implementation but 

invisible to designer. 

V.3.2. FSM Operation on Reconfigurable Device 

The conventional hardware FSM implementing model is shown in Figure V-9. For 

reconfigurable hardware platform, the reconfigurable function units will be programmed to 

realize the required function which is expressed in Boolean equation. Take Xilinx Virtex-E 

device as an example [10], it comprises two major configurable elements: configurable logic 

blocks (CLBs) and input/output blocks (IOBs). CLBs provide the functional elements for 

constructing logic while IOBs provide the interface between the package pins and the CLBs.  

A general routing matrix (GRM) makes the connection between CLBs, which comprises an 

array of routing switches located at the intersections of horizontal and vertical routing 

channels. The architecture of CLB of Virtex-E is shown in Figure V-10. 

Figure V-10: CLB of Xilinx Virtex-E FPGA [10] 

In FSM implementation with FPGA devices, CLB realize desired Boolean functions to 

generate next states and output.  Current state register used to store the current state of the 

FSM is implemented with the flip-flop within CLB. When it is powered on, the 
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configuration bit-file is loaded into the local memory within the reconfigurable device from 

non-volatile memory. This configures the reconfigurable device to implement the required 

transition expressions and the current state register. When configuration bit-file is loaded 

onto the device the output would be calculated using the current state and input. After the 

loading of reconfiguration bits, FSM would be initialized first, the process of which would 

involve a specified reset state and the current inputs. At the same time, the next state would 

be calculated using the current state as well. The system would then be clocked and the next 

state is stored as the current state in the registers. This new current state would then be used 

to calculate the next state again and output before the device is clocked. Because the 

calculation of output is a combinational logic and generally without clocked data buffer, the 

clock speed of the device is limited by the time required for the device to calculate the next 

state and store it as the current state. 

V.3.3. Reconfigurable Hardware Platform for FSMs Implementation 

The main stream commercial reconfigurable devices are FPGA and CPLD/PLD as described 

in previous section. Different devices provide a wild range of benefit, capability and 

performance in area, power and delay. The selection of a suitable reconfigurable device is 

the key point to the efficient implementation of the FSM. It is essential to ensure that the 

device has sufficient hardware resources to implement the FSM without introducing 

excessive redundant hardware. Being a pre-design part, the integrated reconfigurable part is 

fixed for its size, area and capability. It is impossible that the device has exactly the right 

amount of hardware required to implement a particular application. However, devices are 

available from device manufacturers in a wide range of sizes and costs, which makes the 

designer to select the device most close to the desired application. 

For the FSMs implementation, the high level description of the FSM makes designers to 

extract an estimation of the hardware requirements of the device. The end-user would then 

select the device with as close to these parameters as possible to ensure that excessive 

hardware is not introduced that would have impact on the cost, area and possibly power of 

the final implementation. 
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V.4. Existing FSM Hardware Implementation Architectures  

The existing FSM hardware implementation architectures can be separated into two main 

groups, the commercial FPGA/CPLD devices and customer-specific reconfigurable 

architecture. The FSMs implementation flow with commercial FPGA/CPLD devices is 

discussed in previous sub-section. The conventional architecture of FPGA is introduced in 

detail in section II.2.1. In this section, the architecture of PLD/CPLD will be given in detail. 

The analysis of its specification and limitation will be followed. In order to familiarize the 

reader with typical device specifications, we also provide a close examination of a popular 

commercial CPLD, the Xilinx CoolRunner XPLA3 (eXtended Programmable Logic Array). 

At the rest part of this section, the existing customer-specific reconfigurable architecture will 

be introduced and analysed. 

V.4.1. PLD Hardware Platform for FSMs Implementation 

PLDs devices have the capability to be dynamically reconfigured while implementing the 

target application by adjusting the memory contents which control routing and logic 

resources. Then, the routing structure and the functions are implemented with PLDs devices. 

Several kinds of memory are adopted in the creation of PLDs: EEPROM, flash memory and 

SRAM. Because EEPROM and flash have the characteristic of keeping their contents 

without power, they are employed in most PLDs devices.  

The basic method to perform logic in PLDs is to use PLA, a programmable logic array. 

PLAs is such an architecture that directly implements two level sum-of-products Boolean 

functions. It is implemented with a programmable AND-plane which is followed by a 

programmable OR-plane. The input signals arrive at the array in both true and negated forms 

simultaneously, not all but only the appropriate signals are fed to the AND gates as inputs 

which are selected by configurable switches. The outputs of the AND-plane are then fed to 

the gates in OR-plane. The outputs of these OR gates can be used as combinational signals, 

being determined by the output multiplexer. The actual hardware implementation of a PLA 

is constructed with NOR-NOR-plane rather than AND and OR-planes, with the former being 

more efficient than the latter. The idea behind this is that any equation in sum-of-products 
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form, which is implemented by AND-OR-plane, can be represented easily in NOR-NOR 

format by applying De Morgan’s law. 

Another type of array, called Programmable Array Logic (PAL), can also directly perform 

sum-of-products style Boolean function. A PAL construction is different from a PLA in only 

one way: a fixed OR-plane replacing the fully programmable OR-plane in PLA. This 

characteristic makes PALs slightly smaller than PLAs at the cost of less flexibility due to the 

fixed nature of their OR array. 

V.4.2. CPLD Hardware Platform and Xilinx CoolRunner XPLA3 CPLD 

The PLDs introduced in last sub-section can be combined to build a popular kind of PLD, 

the Complex Programmable Logic Device (CPLD). Either PLAs or PALs are employed in 

CPLDs as their functional units, and are connected together by crossbars in general. Because 

the size of crossbars will grow exponentially for larger application, CPLDs are historically 

limited to small and medium sized designs. 

The interconnection network in a CPLD is typically a full network in which each input and 

PLA/PAL output drives a wire separately through full crossbars with the capability to deliver 

the signals to any port desired. Xilinx CoolRunner XPLA3 CPLD is taken as an example to 

illustrate the CPLD architecture.  

Figure V-11: Xilinx XPLA3 CPLD architecture [101] 
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The architecture of Xilinx CoolRunner XPLA3 CPLD is shown in [101]. The CoolRunner 

XPLA3 architecture consists of function blocks, 16 Macrocells and a Zero-power 

Interconnect Array (ZIA). A function block and 16 Macrocells combine to form a PLA and 

ZIA acts as a virtual crosspoint switch providing full connectivity between the PLAs. All 

I/Os and PLA outputs are sent to ZIA and totally 40 PLA inputs are obtained from the ZIA 

as well. In a PLA, all inputs are fed to the Product-Term Array which can create 48 product 

terms. There are 16 different outputs generated in function block and each output goes to 

each corresponding Macrocell. Besides, Xilinx also provides extra functionality to this basic 

PLA. For example, wider logic equations can be obtained by using eight foldback NAND 

product terms in each function block. CoolRunner XPLA3 CPLD also provides eight other 

product terms for controlling the registers in the Macrocell, 16 product terms fed directly to 

the Macrocell for timing critical signals and Variable Function Multiplexers (VFM) for 

implementing some two input logic functions. [101] 

The Xilinx CoolRunner XPLA3 CPLD provides all of the basic CPLD functionalities and 

also introduces more hardware which can increase logic density and allows for high-speed 

signal paths.  

V.4.3. Limitation of CPLD 

It can be drawn easily from the analysis of CPLD architecture that the method of exhaustion 

is adopted to implement logic function. All the input and feed-back signals are ready for 

each product term of a large number of terms. The scale of the matrix used to rout the signals 

will be great and the area efficiency will be greatly reduced. The method of exhaustion is 

also incarnated in the construction of AND-OR array. Only one level AND-OR is adopted in 

the implementation. It means that all the Boolean equation should convert to one level sum 

of product-term style. It is easy to do, but it results in a low efficiency in implementation. 

Obviously, the congenital weakness existing in both FPGA and CPLD architecture leads to 

the high power consumption and low area efficiency. 
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V.4.4. Existing Customer-specific Reconfigurable Architecture  

In [102] and [103], LUT based and product-term-based reconfigurable architectures are 

introduced to implement combinational circuit based on a rectangular and triangular 

constructions respectively. Combinational circuit can be used to implement any Boolean 

functions if its size has not limitation. Therefore, both architectures can be used in FSMs 

application. 

The reconfigurable architectures in [102] is a directional construction in which no feedback 

loop exist. This construction rises naturally from the observation that many synthesis tools 

have problems with combinational loops when they are used to synthesize the programmable 

logic core along with the fixed part of the chip. The directional construction in [102] makes 

the signals flow between logic blocks flow from left to right only. To improve the hardware 

efficiency, a triangular construction is evaluated from the standard island-style architecture, 

also called rectangular construction. Results from [102] show that the triangular construction, 

called gradual architecture as well, performed better than the island-style architecture by 15% 

to 20%. 

The success of the idea of directional construction helps guide the work in [103] in which a 

directional architecture is developed using PLAs as logic elements instead of 3-LUTs which 

is adopted as logic elements in [102]. The exploration of PLA-size discussed in [103] shows 

that PLAs with 9-input, 3-output and 9 or 18 product-term achieves 35% area improvements 

and 72% speed improvements over their LUT-based architectures from [102]. The 

experimental data also shows that a triangular gradual architecture performs better than a 

rectangular one for PLAs. 

The routing architectures in both [102] and [103] are the novel one compared with traditional 

construction, in which all the logic elements are arranged in several levels. Take the routing 

architectures in [102] as an example, the outputs of one level PTBs can drive the inputs in all 

subsequent levels and final output ports. The great amount of multiplexer is employed in the 

routing network. In a 5-inputs application as shown in the architecture, there are eight 8:1 

multiplexers in the second interconnection and four 12:1 multiplexers in third 

interconnection. The area of 8:1 multiplexer is 191.07 
2mµ  based on the UMC 0.18 mµ  
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CMOS technology library whereas it is only 16.262
2mµ  for a AND or OR gate targeted at 

the same library. In our opinion, lots of redundancies exist in the architecture. 

V.5. Reconfigurable FSM Architectures  

V.5.1 Reconfigurable FSM Architecture Overview 

The proposed architecture is a hierarchical system which can be decomposed into different 

functional modules in 3 different levels. They are the sequential section and the logic section 

in the top level, sequential block and logic block in the medium level and PTBs in the base 

level. Each functional module is made up of sub-modules in following level. The capacity of 

architecture is the trade-off between application requirements and cost.  

FSMs are usually used to describe the behaviour of digital circuits that transform sequences 

over one input into sequences over another (output) alphabet. So our proposed 

reconfigurable FSM is divided into two functional sections: logic and sequential, as shown in 

Figure V-12. The sequential block (Sequential B.) and logic block (Logic B.) are the 

functional units in their respective sections. These blocks are made up of PTBs. 

 Figure V-12 : The architecture of a reconfigurable FSM 
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V.5.2 Functional Sections in the Architecture   

The function of sequential section is to implement the transition between current state and 

next state. Outputs of this section respond to the current state of the FSM. The current state 

associated with the external input signals is used to compute the next states through certain 

Boolean equations. The changes of internal states from current state to next state will take 

place only if input clock is changed. 

The function of the logic section is to implement any Boolean equation which can express 

the relationship among inputs, current state, next state and outputs. Outputs of this section 

are only dependent on the inputs and Boolean equation and do not change with time. The 

combination of logic block through interconnect switch matrix can realize any Boolean 

function. 

The input signals which are up to 8 can reach both sections through the routing resources. 

The outputs of the sequential blocks can be routed to logic blocks and also fed back to other 

sequential blocks. There is no limit on the number of logic blocks which only depends on the 

number of FSM outputs. An architecture with 8 sequential blocks can implement a generic 

FSM with a maximum of 256 (2
8
) states. The capability of the architecture can be extended 

by increasing the number of sequential and logic blocks with the extra cost in power, area 

and delay.  

The current design size was derived from a benchmark set (LGSynth93 [104]) which is 

adopted by many researchers and will be discussed later. This benchmark set consists of 53 

FSM test cases with the largest one containing 218 states. The current parameters of 

architecture make the architecture meet most of the applications’ requirements with high 

efficiency in area, power and speed. 

For a large FSM, decomposition is employed to overcome the limit on the size. The 

decomposition of FSM has been proved power saving [95-97]. In theory, any large FSM can 

be decomposed into a desired set of smaller sub-FSMs. Therefore, FSM of any size can be 

implemented with our architecture with a maximum number of 256 states after 

decomposition. 
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V.5.3 Architecture of Logic Block and Sequential Block   

The logic block which consists of PTBs is a functional module in the logic section. The 

function of the logic block is to realize some combinational Boolean functions. A PTB acts 

as the basic computing unit to realize some basic Boolean functions. The architecture of 

logic block is shown in Figure V-13. 

Figure V-13 : The architecture of a logic block 

The PTBs are placed in several levels where a triangular architecture is adopted in which the 

number of PTBs in the second level is half of the first level and the number of PTBs in the 

third level is one fourth of its previous level. The outputs of the PTBs in each level can only 

reach the inputs of the PTBs in the next level. 

Like the logic block, the sequential block is a functional module in the sequential section. 

Each sequential block is responsible for the changes in one state bit only. A sequential block 

can implement the combination of a Boolean function and transition between two different 

single bits which is synchronous with the input clock. A logic module followed by a D Flip-

Flop is employed in the sequential section to realize the transition from current state to next 

state. 

V.5.4 Construction of PTB 

Product-term based style is adopted as a way to construct basic logic module in the 

architecture. A PTB unit consists of two sub-modules: the AND sub-module and the OR sub-
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module. The AND sub-module can generate a product term. The output of AND sub-module 

is used for the OR sub-module. The OR sub-module is used to sum all the results from AND 

sub-modules and finally create the desired Boolean function result. It is easy to implement 

the AND sub-module and OR sub-module with the corresponding reconfigure bits and then 

construct different sizes of PTBs. 

FSMs are usually too complex to easily map to a reasonable number of very fine-grained 

logic blocks [14]. In addition, they are too dependent upon single bit values to be efficiently 

implemented in a very coarse-grained architecture. Based on the required level of flexibility 

for the FSM, usually a mixture of fine and coarse grained architecture is used, except for 

some domain-specific functions. The architecture is made up of PTBs of different sizes 

which are assigned in their corresponding levels. 

V.6. Low Power Implementation 

Low power consumption is another key advantage of our architecture along with its 

reconfigurability. An unbalanced unsymmetrical architecture is adopted to reduce the area 

which contributes the most to the power saving. Based on the analysis of FPGA architectures, 

new strategies are drawn for interconnection network arrangement, construction of 

computing unit and the way of mapping PTB. More details are given in the following sub-

sections. 

V.6.1 A typical Interconnection Network 

The most popular routing network is the balanced symmetrical construction. The functional 

modules are equally placed in relatively smooth sea of routing resources which is made up of 

switch boxes and connection blocks. This architecture is widely adopted in the commercial 

FPGA devices as shown in Figure V-14 
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Figure V-14: A typical FPGA interconnection network 

The overall reconfigurable architecture consists of functional modules (Logic Block) and 

routing elements (switch boxes and connection blocks). By employing programmable 

multiplexers, the connection blocks select the desired signal wire linked to the routing tracks. 

A connection block can attach the signals to the logic block and the switch box nearby. The 

connection in the switch boxes makes the input signal either pass through the switch box on 

its track or change its routing direction. Finally the signal reaches its destination logic block 

[14]. 

Obviously, the reconfigurability of FPGA devices is a result of the powerful interconnection 

network between the rows and columns of logic blocks. But there is also an area penalty to 

be paid for this flexibility. An example is given using 4-bit fully directional switch box in 

which all the ports in each side are bi-directional and the signal can enter the box through 

discretional port and reach any port for output. The area of such a switch box is 1433.025

2mµ  based on the UMC 0.18 mµ CMOS standard cell library whereas it is only 12.197

2mµ  for an NAND gate targeted at the same library. This shows that a 4-bit fully directional 

switch box is equivalent to 117 NAND gates, which is enough to implement a small size 

FSM. 

V.6.2 Interconnection Network 

An efficient construction of the interconnection network is the key for solving the power and 

area problems. In some architectures, like FPGAs, where the logic blocks are embedded in 
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the routing network, interconnection network is made up of connection boxes and switch 

boxes; the area allocated to routing resources is over 80% of the whole system [105-107].  

Therefore a high utilization ratio of interconnects will successfully reduce the area of the 

whole architecture. 

The fine-grained blocks are useful for bit-level manipulations, while the coarse-grained 

blocks are well optimized for standard data path applications. Some architectures employ 

different sizes or types of blocks within a single reconfigurable array in order to efficiently 

support different types of computation. For example, memory is frequently embedded within 

the reconfigurable hardware to provide temporary data storage. Our design is targeted at 

general purpose applications, so only 1-bit interconnect in the architecture is considered. 

Mixed interconnects can be adopted if a special application is implemented. 

The first reason why the architecture is called unbalanced is that the interconnects (switch 

box and fixed line) are arranged in an asymmetric manner. 

Based on the area analysis of the routing resource area, our unbalanced architecture uses 

certain amount of fixed connection to replace the flexible switch boxes in order to reduce the 

area. There are three internal connection levels, as shown in Figure V-13. In the first level, 

multiplexer based switch boxes are used to feed the inputs of the logic computing modules. 

In this level, the internal connects keep their flexibility to make sure that input signals can 

reach their destination. With the guarantee of the required functionalities being implemented, 

the redundant connection paths are reduced to save area. In the second and third 

interconnection levels, most of the interconnections are made up of fixed connections which 

can greatly reduce the area compared with using switch boxes. However, a few multiplexers 

are kept within these two levels in order to keep the block flexible enough. Because the 

routing network area is reduced at the cost of flexibility, some redundant computing units are 

employed to compensate for the inconvenience of internal data exchange. But the area of the 

whole system is always kept at low level when compared with FPGAs. 
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V.6.3 Function of PTB   

In our opinion, the Look-Up Tables (LUTs) used in FPGA architectures are redundant for 

FSM. A 4-input LUT is equally embedded in the sea of routing resource and is able to 

implement all possible 4-input logic functions with 16-bit configure bits. To implement a 

generic FSM, the sum of product terms is adopted as the basic way. Obviously, it is 

inefficient to implement a relatively fixed algorithm with the fully flexible components such 

as LUTs. So the keystone of our design is not only how to build an efficient and low area 

interconnects network but also to reduce the redundancy of logic computing modules 

compared with the ones in FPGA devices. 

A two-input LUT, which can realize basic Boolean equations, is adopted as the basic unit to 

implement an AND sub-module or an OR sub-module. Compared with the computing unit in 

[108] whose area is 166.68 
2mµ , the area of a two-input LUT is 73.17 

2mµ  based on the 

same technology. 

For large-sized PTBs, LUT is no longer a suitable way for implementation. As the number of 

inputs increases, the area of LUT will increase rapidly, leading to an exponentially increase 

in area usage. Take a four-input LUT as an example, the area of it  is 3801 
2mµ  based on 

the UMC 0.18 mµ technology library, more than fifty times  larger than a two-input LUT. 

Actually, it is unnecessary to implement PTBs with 4 or more inputs on fully flexible LUT. 

Since PTBs have limited functionality, the computing unit will not take full advantage of the 

flexibility of LUT, instead it will fully pay the cost of area and power consumption.  

The combination of such computing unit, two-input LUT, in cascade and parallel mixed 

mode can construct PTB of any size. 

V.6.4 Mapping of PTB 

The number of PTBs in a logic block determines the efficiency of the block. A single PTB 

can be fully used. But the mass of data exchange between the logic blocks will increase the 

size of interconnects network and the effort for mapping and routing. So in this case, the 

whole system will not reach the best utilization efficiency. A large number of PTBs will 
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reduce the burden of interconnect switch matrix, but it will also increase the size of the total 

area. A balance is needed to resolve this problem.  

The reason why the architecture is called unbalanced not only lies in arranging the 

interconnects (switch box and fixed line) in an asymmetric manner but also in selecting 

different type of PTBs for different levels. 

We refer to the size of a PTB using the tuple (i, p, o) where i is the number of inputs, o is the 

number of outputs, and p is the number of product terms. To increase the capability of the 

architecture, (16,4,1) is selected for PTB1, (2,1,1) for PTB2 and (4,1,1) for PTB3. The 

adoption of PTB of different parameters is one of the reasons for adopting unsymmetrical 

interconnection mapping described in sub-section V.6.2. If PTB1 is selected for all levels, 

less efficiency in the second and third levels will increase the area of the whole system. For 

the same reason, PTB2 will result in less switch box efficiency in the first level and lead to 

the same outcome as in the previous case.   

V.7. Experimental Results and Evaluation 

Because similar domain-specific architecture for FSMs cannot be found in the literature, 

CPLD and FPGA devices are used as a reference to compare performance in area, power and 

delay with our architecture. Both devices are widely adopted in many designs and CPLD 

devices are especially suitable for implementing product-term applications.  

The fair comparisons have been made, but some factors affect the comparison accuracy as 

described below: 

1. FPGAs are well optimized for layout in physical level. Our architecture is 

synthesized and mapped to a standard cell technology library using standard ASIC 

automation tools. Therefore, the layout is not as optimized as in FPGAs. 

2. In the process of mapping, ours is mapped manually which makes the best use of the 

special interconnection network and computing units. The mapping of FPGA and 

CPLD is performed with tools provided by Xilinx, Inc. Compared with manual 

mapping, the tools cannot achieve the best utilization of dedicated connection in 

FPGA which will reduce the delay time and power consumption. 
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V.7.1 Experimental Platform 

The synthesis tool for our reconfigurable architecture is Ambit BuildGates from Cadence 

Design Systems, Inc. The architecture is targeted at the UMC 0.18 mµ three-metal CMOS 

technology library. The area and delay time is obtained from the synthesis. The power 

consumption values for our reconfigurable architecture are obtained after post-layout 

simulation by Synopsys PrimePower. The synthesis and mapping tools for FPGA and CPLD 

devices are ISE V6.2i of Xilinx, Inc. Their power consumption data is obtained with XPower.  

According to the library and voltage in the synthesis platform used for our architecture, one 

typical device is adopted in FPGA and CPLD category respectively: xcv50e-6cs144 [10], the 

smallest device in the FPGA Virtex-E family; xc2c128-4vq100 [109], the device has the 

capability of 448 product terms in the CPLD CoolRunner-II family, whose scale is the most 

close to our architecture. These two devices are used in comparisons in area, power 

consumption and delay with our architecture. 

Table V-2:  Test cases and their characterizations 

Name I O P 

lion 2 1 11 

dk27 1 2 14 

dk512 1 3 30 

s27 4 1 34 

tav 4 4 49 

bbara 4 2 60 

dk16 2 3 108 

planet 7 19 115 

S1488 8 19 251 

tbk 6 3 1569 

Several commonly used test cases from LGSynth93 [104] have been implemented on CPLD, 

FPGA and our reconfigurable array. The benchmark set is adopted by many researchers [103, 

110, 111] who work on implementing FSMs. The FSMs in the benchmark are all Mealy 

machines except for Cnt32 and Cnt64 which are Moore type. The test cases in the 

benchmark cover the most typical applications. From this benchmark set, ten test cases 

including the biggest one (tbk) were selected, all with different degrees of complexity and a 
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number of inputs and outputs, as shown in Table 1. We describe the characteristic of FSM 

with the tuple (I, O,  P) where I is the number of inputs, O is the number of outputs, and P is 

the number of product. The maximum input, output and state number among the test cases is 

8, 19 and 48 respectively. The selected cases will be implemented on FPGA, CPLD and our 

architecture for the comparisons. 

V.7.2 Experimental Data Pre-process 

For different FPGA families, various hardware resources provide improved performance in 

delay and power consumption. In VirtexE family, the architecture has dedicated connections 

between adjacent LUTs allowing them to be connected without using the switchboxes in the 

general routing matrix [10]. Virtex-II and later families also have dedicated connections and 

OR gates for implementing large sum-of-products expressions [112]. 

Although the smallest device is chosen in the comparison, the utilization rate of the FPGA 

device is very low. In order to study how the size of devices affects the area and power 

consumption, different chips are selected to perform area and power comparisons when the 

same testcase is implemented on them.  

It is well known that different CMOS technologies will lead to different results in area, 

power and delay. It is very difficult to compare the power consumption and delay time 

between distinct family devices. Therefore, the delay time and power consumption 

comparisons are made between the devices using the same family with the same technology 

to avoid the effects of different technology. The number of occupied Slices is adopted for 

area comparison, which indicates the hardware utilization but does not give information 

about the CMOS technology used.  

Twenty eight FPGA devices from seven families are selected to study how the area 

occupation is affected by the utilization rate and the different dedicated hardware resources, 

as shown in Table V-3. The smallest and largest devices are selected from each family with 

the maximal area ratio among them being 200 (xc2v40 vs. xc2v8000). The same benchmark 

is implemented on all devices to obtain the hardware utilization rate which is derived from 

the number of LUTs and the number of occupied Slices in the implementation summary. 
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Table V-3: Selected FPGA devices 

Spartan-II Spartan-IIE Spartan-3/3L Virtex 

xc2s15 

xc2s100 

xc2s200 

xc2s50e 

xc2s200e 

xc2s600e 

xc3s50 

xc3s1000 

xc3s5000 

xcv50 

xcv400 

xcv1000 

Virtex-E Virtex-II Virtex-4 

xcv50e   xcv100e 

xcv200e  xcv400e 

xcv600e  xcv1600e 

xcv2600e  xcv3200e 

xc2v40 

xc2v500 

xc2v2000 

xc2v8000 

xc4vfx12 

xc4vfx40 

xc4vfx80 

xc4vfx200 

Two test cases are implemented on FPGA devices. One small testcase is chosen in order to 

give a low utilization rate on the smallest device (Virtex-E xcv50e), and another large 

testcase is chosen, so that it gives high (97%) utilization rate on the same device.  

For the small testcase, the number of used LUTs for all devices in one family is the same. 

Also it is the same for all families except for Virtex-4 family. For the large testcase, the same 

situation can be observed when the utilization rate is lower than 90% and the difference is 

less than 1% in the case of over 90% utilization rate.  

Clearly, the area occupation is slightly affected by the chip utilization rate, regardless of the 

size of the FPGA device, when it is scaled by occupied number of LUTs in FPGA devices. 

To quantify the degree that different FPGA devices affect the delay time, the large testcase is 

implemented on 8 devices in Virtex-E family. The delay time is the same when the same 

testcase is implemented on different devices. Clearly, device size has no impact on the delay 

time. 

Because the utilization rate of the selected FPGA device (Virtex-E xcv50e) and our 

architecture are 12% and 60% respectively for case tbk, it’s estimated that FPGA device is 5 

times larger than our architecture. Therefore, the FPGA device pair with the same proportion 

in size is taken as the reference to reveal how the size affects power consumption.  



Reconfigurable Control Unit 

 

~  117 ~ 

To find out the appropriate FPGA device pairs, all devices in VirtexE family are listed in 

Figure V-15. The size of smallest device, xcv50e, is scaled as the basic unit. All the device 

sizes are scaled as the multiples of the unit. The column of 5X times size of each device 

follows as the reference frame as shown in Figure V-15 until the 5X times size of the device 

xcv600e is larger than the biggest one in the family. 
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Figure V-15: The illustration of comparison in size between FPGA devices  

From Figure V-15, it is easy to find out 5 device pairs whose power consumptions are shown 

in Figure V-16. 

0.005.0010.0015.0020.0025.0030.0035.0040.0045.0050.00 xcv50excv
100excv20
0excv400e
xcv600excv
1000excv16
00excv2000
excv2600e
xcv3200e
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Figure V-16: The power consumption comparison of FPGA device pairs 

Generally, the power consumption increases when the device size increases. From Figure 

V-16, the difference in scale will lead to about 10% increase in power consumption. In the 

following sub-section, this rate is used to process the raw experimental data. 

10.5010.7010.9011.1011.3011.5011.7011.9012.1012.3012.50 xcv50e:xcv4
00excv1
00e:xcv600e
xcv200e:xcv
1000excv4
00e:xcv2600
excv600e:
xcv3200e

mW
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V.7.3 Power consumption Comparison 

Power consumption of an FPGA device falls into two parts: Vccint is consumed by the core 

inside the device, and consists of clock power consumption, inputs power consumption, logic 

power consumption and signals power consumption; while Vcco is consumed by the I/Os. 

Both parts can also be classified as quiescent and dynamic. Quiescent power is the power 

consumed with no switching. Charging and discharging of parasitic capacitances cause 

dynamic part.  

Because the target FPGA device is larger than our architecture, quiescent power consumed 

by unused computing units, RAM, clock manager and controller in FPGA device are very 

high. To remove all these impact factors, only the Vccint dynamic power consumption is 

taken as the reference, as shown in Table V-4, column four. 

Table V-4: Experimental results for power consumption 

Name 
ASIC 

Our 

Archi. 

FPGA   

Vccint 

FPGA 

(Scaled) 
CPLD 

(10
-2

mW) (mW) (mW) (mW) (mW) 

lion 0.326 0.181 0.87 0.78 0.6 

tav 0. 729 0.253 1.17 1.05 1.41 

s27 0. 494 0.239 1.23 1.11 0.94 

dk27 2.547 0.38 1.94 1.75 2.16 

dk512 2.352 0.242 0.95 0.86 1.13 

bbara 1.076 0.305 2.25 2.03 1.32 

tbk 2.555 0.434 2.01 1.81 1.49 

dk16 7.085 0.256 1.39 1.25 1.57 

planet 7.071 0.517 3.9 3.51 5.26 

S1488 14.521 0.542 5.78 5.2 5.68 

The scaled FPGA power consumption, listed in the fifth column in Table V-4, is obtained by 

scaling down the power in the second column by 10% in order to remove the impact of 

device size. Our architecture’s power consumption is listed in the third column.  
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The target CPLD device has a similar capability of mapping product terms to our 

architecture. The dynamic power consumption of the CPLD is listed in the sixth column in 

Table V-4.  

In order to simplify Table V-4 and make their comparative relations clearer, Table V-5 is 

listed below. In this table, the amount of FPGA scaled power consumption and CPLD power 

consumption are represented as “times” relative to the power consumption amount of our 

architecture. 

 

Table V-5: Normalized power consumption of FPGA and CPLD 

Name 

FPGA 

(Scaled) 
CPLD 

(times) (times) 

lion 4.3  3.3  

tav 4.2  5.6  

s27 4.6  3.9  

dk27 4.6  5.7  

dk512 3.6  4.7  

bbara 6.7  4.3  

tbk 4.2  3.4  

dk16 4.9  6.1  

planet 6.8  10.2  

S1488 9.6  10.5  

The comparisons made with FPGA scaled power consumption and CPLD power 

consumption are listed in Figure V-17 and Figure V-18 respectively. 

Clearly, our architecture achieves from 71.9% to 89.6% power savings compared with the 

FPGA Vccint dynamic scaled power consumption. Compared with CPLD dynamic power 

consumption, our architecture saves power consumption by 70.9% to 90.5%. Obviously, our 

architecture achieves a good performance in power consumption.  

It is noticed that FPGA device consumes more power in some cases, while CPLD device 

consumes more in other cases. It is difficult to say that one consumes more power than the 

other between FPGA and CPLD devices. Basically, a CPLD device consumes more power 

than a FPGA device when the number of outputs is higher than the number of inputs. 
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V.7.4 Area & Delay Comparison 

All test cases were implemented with our reconfigurable architecture, CPLD and FPGA 

device for comparison. CPLD is course-grained device based on product-term/macrocell 

technologies with lower density. For the same capability, the area of CPLD device is larger 

than FPGA device. FPGAs are usually having more gates in a given area and cost less than 

their CPLD cousins. Therefore, area comparison is made only between FPGA device and our 

architecture. 

The area results are listed in Table V-6. The area estimation of Virtex-E is based on two 

LUTs per slice where an estimated area of 3303
2mµ  is used per slice and its surrounding 

routing [73]. This value excludes the area of memory which is embedded in FPGA device. 

Table V-6: Experimental results for area and delay 

Name 

 

Area 

(
2mµ )  

Delay (ns) 

ASIC FPGA 
Our Re. 

Archi. 

Our Re. 

Archi. 
FPGA CPLD 

lion 317 13212 7185 4.87 9.27  5.70 

tav 358 16515 9649 4.87 13.02  5.70 

s27 407 33030 15005 4.87 11.07  5.70 

dk27 610 16515 10297 4.87 8.01  3.40 

dk512 1167 42939 21841 4.87 12.52  5.70 

bbara 1187 46242 28052 4.87 10.3  5.70 

tbk 4415 310482 180325 4.87 20.52  8.00 

dk16 3638 102393 52166 4.87 15.29  5.70 

planet 7891 330300 153214 4.87 22.62  11.00 

S1488 9526 640782 284704 4.87 25.08  10.00 

The delay time listed in Table V-6 is the period from the rising edge of the clock to the 

moment when signal reaches the output port, namely, clock path plus data path. The CPLD 

delay time is obtained through a timing simulation after the HDL design has been 

synthesized, placed and routed.   
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In order to make the relations of our architecture with FPGA and CPLD more recognizable, 

Table V-7, the simplified form of Table V-6, is listed below in which the area and delay of 

FPGA and CPLD are normalized and represented as “times” based on our architecture. 

 

Table V-7: Normalized area and delay of FPGA and CPLD 

 

It can be seen from Figure V-17 that our reconfigurable architecture achieves from 37.7% to 

55.6% improvements in area compared to Virtex-E. This result proves our strategy for 

reducing routing network which leads to significant saving in area, that is, a smaller area 

contributes to significant power saving. 

 

 

 

lion 1.8 1.9 1.2

tav 1.7 2.7 1.2

s27 2.2 2.3 1.2

dk27 1.6 1.6 0.7

dk512 2.0 2.6 1.2

bbara 1.6 2.1 1.2

tbk 1.7 4.2 1.6

dk16 2.0 3.1 1.2

planet 2.2 4.6 2.3

Name

Area

( times）））） Delay (times)

FPGA FPGA CPLD
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Figure V-17 : The improvements compared with the FPGA device 

Because some fixed lines are adopted to save area, the flexibility of the architecture is 

reduced. This makes the critical path from inputs to outputs almost the same for different 

cases. The same critical path results in a constant delay time for all the test cases as shown in  

Table V-6. It can be seen that the delay time of our architecture is smaller than the FPGA 
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and CPLD devices except in the case of dk27. For all the test cases, the delay time of the 

CPLD device is about 50% smaller than the FPGA device.  

The comparisons of delay made with FPGA and CPLD devices are listed in Figure V-17 and 

Figure V-18 respectively. Compared with FPGA device, our architecture achieves from 

39.95% to 80.82% reduction. The average delay time of our architecture for all test cases is 

20% shorter than CPLD device. It needs to be emphasized that this improvement is obtained 

together with significant reduction in area occupation and power consumption. 

From the comparison in area, power and delay between our architecture and PLD (FPGA 

and CPLD) devices, it is clear that we use a compact architecture to implement FSM with 

less occupied area, less power consumption and shorter delay time. The small hardware and 

short critical path directly leads to saving on power. 
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Figure V-18 : The improvements compared with the CPLD device 
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V.7.5 Power Consumption, Area and Delay after Decomposition 

Because our architecture has limit on capability, FSMs decomposition is adopted frequently 

for large cases and low power implementations. A test is performed in order to obtain the 

performance in power, area and delay. Even the biggest testcase in the benchmark set can be 

implemented with our architecture; therefore, test cases planet and S1488 are used as the two 

sub-modules to present a case when a large FSM is decomposed. These two sub-modules can 

also be decomposed into smaller modules as desired.  

In the power consumption test, the rate of power-saving depends on the number of sub-

modules employed, the size of each sub-module and the working time of sub-modules. The 

experimental data clearly shows that decomposition reduces power consumption at the cost 

of more area occupation.  Because of the special architecture, the delay time is fixed even 

when more sub-modules are decomposed.  

Obviously, decomposition will not increase power consumption and delay time for the cases 

of large FSMs. The cost for large FSMs is the large occupied area which depends on FSM 

size. In other words, the larger the FSM, the more the area. The results show that the area of 

our architecture will be significantly smaller than an FPGA device for the case of large 

FSMs. 

V.7.6 Relationship between Power, Area and Delay 

All the comparison of improvements on area, delay time and power are list in Figure V-17 

and Figure V-18 respectively. Basically, our architecture achieves good performance in 

power, area and delay in the case of large ones. For our architecture, each case is fully 

optimized in mapping and routing and achieves the best utilization rate. However, the FPGA 

mapping and routing performed by the tools are not the most optimized ones and can be 

improved in the case of large benchmarks. It is an important reason for better achievements 

of our architecture for large cases. 

In the case of s27, a small size benchmark, the area improvement is a bit lower than the best 

case whereas its power consumption just reaches the average level. This is because the case 

just fits our architecture well. Because of the amount replacement of fixed lines in the 
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interconnection network, some PTBs in three levels are cascaded to form a fixed path. In 

most cases, all PTBs in one fixed path can be fully utilized. But there is an exception for case 

s27, in which the hardware resource reaches the top utilization rate. For the power 

consumption experiments, the major cases consumed more power when they are 

implemented in CPLD than FPGA devices. The exceptional ones are the small cases in 

which the number of outputs is smaller than the number of inputs. 

V.8. Conclusion 

A novel reconfigurable low-power domain-specific FSM architecture for control purpose has 

been introduced in this chapter. Based on the analysis of traditional interconnection networks, 

a reduced one is adopted at the cost of less flexibility in order to improve area efficiency. 

The new product-term based computing units are employed to implement the basic Boolean 

function. The unsymmetrical design style is used in arranging interconnection, the selection 

of PTBs and the way of mapping basic computing units.  

The reduced flexibility of interconnection and basic computing units in the new architecture 

achieves a significant reduction in area which directly leads to lower power consumption. 

For this reason, unlike commercial FPGA devices, the proposed architecture targeted at 

generic FSMs is not flexible enough to be used in any application. Obviously, the 

architecture suitable for any application will be a large construction with more redundant 

parts which will lead to more area and power consumption. One of the purposes of our 

architecture is to find a fine balance between size and power consumption. 

Ten test cases from the widely adopted FSM benchmark set were implemented by using both 

our architecture and a FPGA device. It was demonstrated that our architecture could obtain 

an average reduction of 82% in power consumption, a decrease of 44% in area occupation 

and 20% reduction in delay when implementing the same circuit on a commercial FPGA 

device. These figures show that the proposed reconfigurable architecture for FSMs provides 

an efficient hardware platform for the implementation of generic FSMs in various power-

sensitive designs. The flexibility of the architecture makes it convenient not only for the 
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proposed processor in this dissertation but also for embedding them in any reconfigurable 

SoC in various applications such as mobile devices, portable players, etc.                            . 
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VI.1. DCT Implementation 

DCT is one of the most popular and effective compression coding scheme and can be found 

in almost all standardized video coding algorithms such as ITU H.261, H.263 and H.264 for 

video conferencing standard, and ISO MPEG (including MPEG-1, MPEG-2, and MPEG-4) 

for visual communication and multimedia applications. The broader use of DCT in 

communication and multimedia areas underlines the requirement for a more efficient and 

flexible system. 

MPEG4 is an ISO/IEC standard developed by MPEG (Moving Picture Experts Group), and 

became an International Standard in 1999. Compared to its predecessor MPEG2, MPEG4 

greatly improves the perceptual video quality by introducing some new tools in the encoding 

and decoding process. A wide range of applications are supported, from 5-64k bits/s for 

mobile video to 2M bits/s for TV/film applications. Nine profiles are defined in MPEG4, of 

which Simple Profile (SP) is suitable for mobile video applications. The prediction errors are 

DCT transformed and quantized. The control data, quantized prediction errors, and motion 

data are encoded in the Entropy Coding module, which is then packed into video streams for 

transmission or storage.[113] 

H.264 is a joint effort between ITU-T Video Coding Experts Group (VCEG) and ISO/IEC 

Motion Picture Experts Group (MPEG), and became an International Standard in 2003. 

The new key features of H.264 include: 

� Enhanced Motion Estimation 

� Small blocks for transform coding 

Chapter VI 
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� 4x4 Integer transform 

� In-loop de-blocking filter 

� Enhanced entropy coding CAVLC (Context Adaptive Variable Length Coding) 

The H.264 Codec design substantially increases the complexity (memory & computation), 

requiring approximately 3x computation power for the decode and 4x for the encode 

compared to MPEG-2 Codec design. Three profiles are provided in H.264: I) Baseline 

profile; ii) Main profile; iii) Extended profile. Of the three, Baseline profile may be adopted 

for mobile application. [114] 

VI.1.1. DCT Algorithm 

For a given 2-D spatial input vector {Xi,j;i,j=0, 1, …, N-1}, the 2-D DCT output vector 

{ Yk,l;k,l=0, 1, …, N-1} is defined as follows: 

 

( VI-1 ) 

where 

 

( VI-2 ) 

 

Employing row-column decomposition, 2-D DCT is separable and can be broken into two 

sequential 1-D DCT operations, one along the row vector and the other along the column 

vector of the preceding row vector results. Therefore, 1-D DCT implementation is targeted at 

the proposed architecture. 

For an input vector {X0, X1 …XN-1}, the 1-D DCT output vector {Y0, Y1 …YN-1} is given as 

follows: 

  

( VI-3 ) 
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 ( VI-4 ) 

 

For eight points 1-D DCT, we define coefficient matrix Fk as: 

 

     ( VI-5 ) 

where i = 0,1……7; The coefficient matrix includes the Ck and cosine factors. Then, 

Equation ( VI-3 ) can be rewritten as:  

    
  

( VI-6 ) 

 

Now, the equation of DCT has been transformed into the format as shown in Equation 

(III-10). The next step is to find the common terms sharing of DCT to maximize the 

hardware efficiency. 

VI.1.2. 2-D DCT and its Implementations 

To verify the functionality of the reconfigurable architecture, an 8 bits 2-D DCT is 

implemented. In the realization of the DCT, finite accuracy is achieved due to fixed DA 

precision. Obviously, more accurate data can be obtained through increasing the precision of 

the coefficients and the width. This, however, results in larger area and higher power 

consumption, and adversely affects the computing speed in the adder array. 

The requirements of DCT and Inverse Discrete Cosine Transform (IDCT) hardware 

implementations are imposed by various standards, such as ISO/IEC 14496-2:2004 and 

IEEE Std 1180–1990 [115]. A brief summary is given below: 

•  Image pixel representation: 8 bits for 8X8 DCT 

•  Input bits for the forward transform: 9 bits 

•  Coefficients representation: 12 bits 

•  1-D DCT outputs: 14 bits 
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There are many papers discussing the fast implementation of the 1-D and 2-D DCT/IDCT. 

Based on the straightforward implementations in [116-118] which are computationally 

expensive with 4096 multiplications, the fast algorithms reduce the computational cost. 

Theses algorithms can be broken down into two broad categories: one is the so-called 

indirect method based on the row-column decomposition [119-122] and the other is direct, 

fast 2-D approaches [123-126]. The row-column approach results in simple and regular 

implementations, but it is less computationally efficient than direct, fast 2-D 

implementations.  

The row-column algorithm is divided into three main stages. Stage one and stage three 

compute the row and column transforms, respectively. In stage one, the one–dimensional (1-

D) DCT/IDCT of each row of input data is taken, and these intermediate values are 

transposed. Then, in the stage three, the 1-D DCT/IDCT of each row of the transposed 

values is fed to the 2-D DCT/IDCT in column. Both the row and column transforms are 

implemented using the same 1-D DCT module shown in Figure VI-1. The second stage 

performs the transposition using N
2
 registers where N is 8 in our implementation. 

 

Figure VI-1 : A general row-column 2-D DCT implementation 

VI.1.3. Control Path Implementation 

The control unit in the proposed DA processor can be considered as a big multi-input-multi-

output FSM. This FSM can be divided into some separated sub-module which can perform 

specific function independently.  

A full row-column 2-D DCT requires two 1-D DCT modules along the data path. According 

to our architecture, only one algorithm logic unit is inside, and the whole 2-D DCT must be 

broken into two separated 1-D DCT stages. In these two stages, the algorithm logic unit runs 

twice and the registers matrix will be used for storing data temporarily. Registers matrix is 

1-D DCT

Module

Transpose

Memory
1-D DCT

Module
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adopted not only because a whole 2-D DCT data path is broken into two separated parts. 

Based on the definition of 2-D DCT in Equation ( VI-1), the 8 parallel data input to the 

second 1-D DCT module are not the ones obtained directly from the results of the first 1-D 

DCT module. These 8 data are vertical to the results from the first 1-D DCT module. 

Therefore, the inputs to the second 1-D DCT module will not be available until 8 results 

from 1-D DCT module are ready. If the results from 1-D DCT module are stored row-by-

row, as shown in Figure VI-2, from Row_0 to Row_7, the data fed to the second 1-D DCT 

module will be column-by-column from Col_0 to Col_7 and vice versa.  

 

 

Figure VI-2 : Registers matrix 

Therefore, input matrix will route 8 external signals and the 8 results from the first 1-D DCT 

module to algorithm logic unit in turn.  The reconfigurable FSM controlling input matrix is 

configured as a 4-bit counter and the highest bit of the counter which outputs 0 and 1 

alternatively is used to control the two-input multiplexer to switch the input port of algorithm 

logic unit between external signals and the results from the first 1-D DCT module.  

Similar to input matrix, output matrix will export 8 valid results serially every 8 clock cycles 

and the reconfigurable FSM in output matrix is configured as a 4-bit counter as well. The 

highest bit of the counter is used to control output buffer refreshing or not: in case of value 

of 0, output buffer keeps its original value; in case of value of 1, output buffer is refreshed in 
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each clock cycle by data that arrive. 

VI.1.4. Registers Matrix Implementation 

The registers matrix in proposed processor has two working modes: one dimension 64 

registers and 8X8 two-dimension array. In considering the 8 parallel outputs from algorithm 

logic unit, the registers matrix is configured as an 8X8 two-dimension array. It means that 

only two 3-bit reconfigurable FSMs in row and column control modules are used to address 

coding in implementation of 8X8 2-D DCT.  

To make the FSM in row control module work properly, a reconfigurable FSM is set as a 4-

bit counter whose initial value is set as binary ‘1000’. The highest bit of the counter is 

connected to the enable port of row control FSM. Along with the inverter which is available 

only in 8X8 two-dimension working mode and bridges the two enable ports of row and 

column control FSMs, the column address coding FSM will operate every 8 clock cycles 

when the address coding for rows is done. The two reconfigurable FSMs in row and column 

control unit are configured as a 3-bit counter, one of the simplest FSM of all 

implementations.   

Under the control of enable port, 3-bit counter in row or column control unit works 

independently generating address from 0 to 7 in 8 clock cycles; the counter in row control 

alternates with the one in column control. 

VI.1.5. Algorithm Logic Unit Implementation 

A. Coefficient Matrix and Terms of DCT 

The precision of DCT implementation lies in the coefficient representation when the input 

vector is given with the fixed precision. To fully support international standards such as 

ISO/IEC 14496-2:2004 and IEEE Std 1180–1990, the coefficient precision in our 

architecture is set as 12 bits. Following the steps of adder-based DA, Equation ( VI-5) can be 

represented in 2’s complement format as shown in Figure VI-3, where coefficient matrixes

0( )F i , 1( )F i ,…, 7( )F i are listed. 
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Figure VI-3 : ( )kF i  
in 2’s complement format 

6 7

1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0

1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0

1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0

0 1 0 1 1 0 1 0 0 0 0 0 1 1 1 1

0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1

0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1
( )                  ( )

0 1 0 1 1 0 1 0 1 1 1 0 1 0 0 0

1 0 1 0 0 1 0 1 1 1 0 0 1 1 0 0

1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1

0 0 1 1 1 1 0 0 0 0 1

0 1 0 1 1 0 1 0

0 1 0 1 1 0 1 0

F i F i= =

0 1 0 1 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1

1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0
( )                  ( )

0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0

1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

F i F i= =

2 3

0 1 0 0 0

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 1 0 1 1 0 1 0 1 0 1 1 0 0 1 0

1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0

0 1 0 1 1 0 1 0 0 0 0 1 0 1 1 1

0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1

1 0 1 0 0 1 0 1 1 1 1 0 1 0 0 0

1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 1
( )                  ( )

0 0 1 1 1 1 0 0 1 0 0 1 0 1

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

1 0 1 1 1 1 0 1

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

F i F i= =

4 5

1 0

0 0 0 1 0 1 1 1

1 1 0 1 0 1 0 0

1 1 0 0 1 1 0 0

0 1 1 1 0 0 0 1

0 1 1 1 0 0 0 1

0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1

0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1

1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1

0 1 1 0 0 1 1 0 1 0 0 0 1 1 1 0

1 0 0 1 1 0 0 1 1

0 1 1 0 0 1 1 0
( )                  ( )

1 0 0 1 1 0 0 1

1 0 0 1 1 0 0 1

0 1 1 0 0 1 1 0

1 0 0 1 1 0 0 1

0 1 1 0 0 1 1 0

0 1 1 0 0 1 1 0

F i F i= =

1 0 1 0 1 0 0

1 0 0 0 1 1 1 0

0 0 1 1 0 0 1 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

1 0 0 1 0 1 1 0

0 1 0 0 1 1 0 1

0 1 0 0 1 1 0 1
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The eight coefficient matrixes can be converted to the terms in the format of input vector {X0, 

X1 …XN-1}. In theory, 96 (=12X8) terms, which are the summation of eight inputs, are needed 

for 8-point 1D DCT with 12-bit coefficients based on the adder-based DA. This implies that 

672 two-input adders are required when implemented directly. However, because of the 

periodic conjugate symmetry inherent in the DCT, the real implementation consumes just a 

small part of the theoretic hardware cost. In total, there are 96 terms of eight coefficient 

matrices. In deducting the zero and duplicate terms which need no further calculation, there 

are one term of 8 inputs and 22 terms of 4 inputs. The eight coefficient matrixes in format of 

input vectors and set R which contains all non-repetitive terms are shown in Table VI-1 and 

Table VI-2 respectively. 

Table VI-1 : Eight coefficient matrixes in format of input vectors 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                           

 

2( )F i  

X1X3X4X6 

X0X1X6X7 

X1X3X4X6 

X2X3X4X5 

X0X2X5X7 

X0X2X5X7 

X2X3X4X5 

X0X1X6X7 

X0X1X6X7 

X0X2X5X7 

X2X3X4X5 

X2X3X4X5 

1( )F i  

X1X3X5X7 

X1X3X5X7 

X0X3X5X6 

X0X2X4X6 

X1X2X4X7 

X0X2X4X6 

X0X1X3X5 

X0X3X5X6 

X0X1X4X5 

X0X1X2X4 

X4X5X6X7 

X4X5X6X7 

0( )F i  

0 

0 

X0X1X2X3X4X5X6X7 

0 

X0X1X2X3X4X5X6X7 

X0X1X2X3X4X5X6X7 

0 

X0X1X2X3X4X5X6X7 

0 

X0X1X2X3X4X5X6X7 

0 

0 

3( )F i  

X0X2X3X6 

X0X2X3X6 

X3X5X6X7 

X1X4X6X7 

X0X1X2X4 

X1X4X6X7 

X0X3X5X6 

X3X5X6X7 

X0X1X3X5 

X0X1X4X5 

X1X2X3X7 

X1X2X3X7 

4( )F i  

X1X2X5X6 

X1X2X5X6 

X0X3X4X7 

X1X2X5X6 

X0X3X4X7 

X1X2X5X6 

X0X3X4X7 

X0X3X4X7 

X1X2X5X6 

X0X3X4X7 

X1X2X5X6 

X1X2X5X6 

5( )F i  

X1X2X3X7 

X1X2X3X7 

X2X4X6X7 

X0X4X5X6 

X0X1X3X5 

X0X4X5X6 

X2X3X6X7 

X2X4X6X7 

X3X5X6X7 

X0X3X5X6 

X1X4X5X7 

X1X4X5X7 
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Table VI-2 : Unique terms of DCT 

Input Terms 

8 X0X1X2X3X4X5X6X7 

4 

X0X1X2X3, X4X5X6X7, X0X1X2X4, X0X1X4X5, X0X3X5X6, X0X1X3X5, X0X2X4X6 

X1X2X4X7, X2X3X4X5, X1X3X5X7, X0X2X5X7, X0X1X6X7, X1X3X4X6, X1X2X3X7 

X3X5X6X7, X1X4X5X7, X0X2X3X6, X1X2X5X6, X0X3X4X7, X2X4X6X7, X2X3X6X7 

X0X4X5X6 

For the term with 8 inputs, three levels adder matrix is required. In the first level adder 

matrix, 4 two-input adders are used to generate 4. Eight input vectors are assigned to the 

adders stochastically. For the second level adder matrix, two part products with 4 input 

vectors will be obtained through 2 two-input adders with 4 outputs from the first level. 

Similar to the setting in the first level, 4 outputs are assigned randomly to the four input ports 

of the second level. In the last level, the third level, an adder will sum up the outputs from 

the second level and generate final result, the term with 8 inputs for DCT. Because of the 

final result containing all 8 inputs, the output of the third level can never be changed no 

matter how to change the configuration in the first and second levels. 

For the 22 terms with 4 inputs, a two levels adder matrix can work, in which 22 adders are in 

the second level. The 44 inputs for the 22 adders are obtained from the outputs of the first 

level adder matrix. In theory, there are totally 28 (= 2

8
C ) different 2 inputs terms which can 

be implemented in the first level adder matrix. At the most twenty eight terms will be fed to 

the 44 input ports of the second level adder matrix. It means that these 2 inputs terms will be 

shared by two or more adders in the second level adder matrix. For example, the three adders 

generating terms X0X1X2X4, X0X2X4X6 and X1X2X4X7 respectively can share the 2 inputs term 

6( )F i  

X0X1X6X7 

X0X2X5X7 

X1X2X5X6 

X1X3X4X6 

X2X3X4X5 

X2X3X4X5 

X1X3X4X6 

X0X2X5X7 

X0X2X5X7 

X2X3X4X5 

X1X3X4X6 

X1X3X4X6 

7( )F i  

X0X1X2X3 

X0X1X2X3 

X0X1X4X5 

X4X5X6X7 

X2X3X6X7 

X4X5X6X7 

X0X1X2X4 

X0X1X4X5 

X1X2X4X7 

X2X4X6X7 

X1X3X5X7 

X1X3X5X7 
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X2X4. When only 20 or less 2-input terms are necessary to be implemented in the first level, 

it indicates that some 2 inputs terms are shared by more than two adders in the second level. 

Obviously, the number of adders used in first level will directly determine the efficiency of 

the proposed processor. In the following paragraphs, the discussion will focus on the 

implementation of first level adder matrix with minimal adders .  

B. Optimal Terms Sharing Scheme 

The set R and input vectors will construct root and leaf level of a dimidiate tree respectively.  

Now, the 22 elements, as shown in Table VI-2, in set R and 8 inputs {X0, X1, …, X7} build up 

all the nodes in their levels. Our purpose is to obtain the set Bbest_all={B0, B1, …, Bp-1} which 

construct medium level of the dimidiate tree with the least elements.  

Based on the discussion in section IV.5.4, a group of new subsets, R’h, of R can be obtained 

as shown in Table VI-3, which contains all the sets in the root level with Lh element. 

Table VI-3 : R’h sets for DCT 

Lh R’h 

X0 
X0X1X2X3, X0X1X2X4, X0X1X4X5, X0X3X5X6, X0X1X3X5, X0X2X4X6, 

 X0X2X5X7, X0X1X6X7, X0X2X3X6, X0X3X4X7, X0X4X5X6 

X1 
X0X1X2X3, X0X1X2X4, X0X1X4X5, X0X1X3X5, X1X2X4X7, X1X3X5X7,  

X0X1X6X7, X1X3X4X6, X1X2X3X7, X1X4X5X7, X1X2X5X6 

X2 
X0X1X2X3, X0X1X2X4, X0X2X4X6, X1X2X4X7, X2X3X4X5, X0X2X5X7,  

X1X2X3X7, X0X2X3X6, X1X2X5X6, X2X4X6X7, X2X3X6X7 

X3 
X0X1X2X3, X0X3X5X6, X0X1X3X5, X2X3X4X5, X1X3X5X7, X1X3X4X6,  

X1X2X3X7, X3X5X6X7, X0X2X3X6, X0X3X4X7, X2X3X6X7 

X4 
X4X5X6X7, X0X1X2X4, X0X1X4X5, X0X2X4X6, X1X2X4X7, X2X3X4X5,  

X1X3X4X6, X1X4X5X7, X0X3X4X7, X2X4X6X7, X0X4X5X6 

X5 
X4X5X6X7, X0X1X4X5, X0X3X5X6, X0X1X3X5, X2X3X4X5, X1X3X5X7,  

X0X2X5X7, X3X5X6X7, X1X4X5X7, X1X2X5X6, X0X4X5X6 

X6 
X4X5X6X7, X0X3X5X6, X0X2X4X6, X0X1X6X7, X1X3X4X6, X3X5X6X7,  

X0X2X3X6, X1X2X5X6, X2X4X6X7, X2X3X6X7, X0X4X5X6 

X7 
X4X5X6X7, X1X2X4X7, X1X3X5X7, X0X2X5X7, X0X1X6X7, X1X2X3X7 

X3X5X6X7, X1X4X5X7, X0X3X4X7, X2X4X6X7, X2X3X6X7 
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Based on these subsets in Table VI-3, a matrix of Ph,k can be obtained as shown in Table 

VI-4, which contains leaf Lh (h∈{0, 1, …, q-1 }) appearance time in set R’h. 

Table VI-4 : First Ph,k coefficient matrix for DCT 

 

The figures in Table VI-4 show that DCT is the special case for its coefficients are the same 

for most cases. But it does not affect the applying of the algorithm on it. First, we take 8 best 

{Lh, Lk∣Ph,k = Ph,max } pairs with the index of Lh  (h∈{0, 1, …, 7 }), randomly selecting one 

if the appearance times are the same for each Lh. Eight pairs can be obtained, which are: 

X0X6, X1X7, X2X4, X3X5, X4X2, X5X3, X6X0, X7X1  

By eliminating duplicated pairs, we get the first 4 pairs as part of set Bbest_all based on Table 

VI-4: X0X6, X1X7, X2X4 and X3X5. Subtracting these four pairs from 22 elements in set R, 

another 4 pairs are obtained which are also the elements of set Bbest_all. They are X0X1, X2X3, 

X4X5 and X6X7. Apart from this second set of 4 pairs, there are still 8 elements in set R, which 

are left when first 4 pairs are subtracted from set R. They are :  

X0X1X2X3, X4X5X6X7, X0X1X4X5, X0X2X5X7,X1X3X4X6, X1X2X5X6, X0X3X4X7, X2X3X6X7 

When the second set of 4 pairs is subtracted from the rest 8 elements in set R, only 4 

elements are left. They are: 

                  X0X2X5X7,X1X3X4X6, X1X2X5X6, X0X3X4X77 

k

h
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After the first round processing, we have specified 8 elements in set Bbest_all and 4 nodes are 

left which have not children nodes. It means that all the root nodes except 4 ones listed 

above can be presented as the summations by its 8 descendant nodes in medium level 

without order. The rest nodes in set Bbest_all still need to be specified to complete the whole 

dimidiate tree. 

By repeating the same steps, another Ph,k coefficient matrix of the rest 4 nodes in set R is 

obtained, as shown in Table VI-5. 

Table VI-5 : Second Ph,k coefficient matrix for DCT 

 

In this table, the special situation found in Table VI-4 no longer happens. By selecting the 

maximal Ph,k for each Lh, we obtain eight best pairs, which are: 

X0X7, X1X6, X2X5, X3X4, X4X3, X5X2, X6X1, X7X0  

If neglecting repeated ones, we will get 4 pairs which are X0X7, X1X6, X2X5 and X3X4. These 

four pairs can represent all 4 remaining root nodes as the summations of pairs.  

By now, the work of searching for all nodes in set Bbest_all for medium level is done. These 

nodes are the best sharing common terms for the proposed architecture in DCT 

implementation, which are:  

       X0X6, X1X7, X2X4, X3X5, X0X1, X2X3, X4X5, X6X7, X0X7, X1X6, X2X5, X3X4 

k

h

0 0 1 1 1 1 0 20 0 1 1 1 1 2 01 1 0 0 0 2 1 11 1 0 0 2 0 1 11 1 0 2 0 0 1 11 1 2 0 0 0 1 10 2 1 1 1 1 0 02 0 1 1 1 1 0 0
5 6 74
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By applying the algorithm for searching for the best set, 12 elements in set Bbest_all are 

obtained. Compared with a universal set with 28 (= 2

8
C ) possible elements, the algorithm 

achieves 57% reduction in element number which will directly deduce the area and power 

consumption of hardware implementation.  

It is noted that 12 elements in set Bbest_all is a necessary condition for building the whole set R. 

But, for a single element, these 12 elements is a sufficient condition for implementation. 

Taking the element X0X1X6X7 in set R as an example, this element can be decomposed into 

X0X6+ X1X7, X0X1+ X6X7 or X0X7+ X1X6. Obviously, these six elements in set Bbest_all are 

sufficient for implementing X0X1X6X7. Therefore, the rule for specifying parent-child 

relationship between nodes in two levels is that the times for adopting each node in medium 

level are as close as possible to average number.  It can avoid occurrence of high output load 

capacitance on single nodes. 

Considering the overall common terms occurrence, X0X7+ X1X6 is used in our design since 

these two node’s fan out is less than the other nodes.  

By sharing common terms, a total of 35 (12+22+1) two-input adders are needed for the DCT 

implementation, which gives 94.8% reduction in the number of adders compared with the 

672 adders required by the theoretic implementation without optimization. 

VI.1.6. Performance & Evaluation 

With the common terms discussed in the previous sections, the 8 points 1-D and 2-D DCT 

was implemented with the proposed reconfigurable architecture. 

A standard-cell based synthesis and layout was performed with Design Compiler from 

Synopsys, Inc., targeting the UMC 0.18 mµ CMOS technology library. The power 

consumption was obtained by the Synopsys PrimePower. The area of the 2-D DCT is 

1448062 
2mµ  and the power consumption is 19.23mW at 20MHz system clock. The area of 

the 1-D DCT is 600929 
2mµ  and the power consumption is 15.2mW at 20MHz system 

clock. The design can run with up to 144MHz (6.93ns) and 112-bits (=14bits×8) outputs. 

This implies that our architecture can reach up to 16.128Gbps for the 1-D DCT. It can be 
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seen from power experimentation data that the power consumption of 2-D DCT is not twice 

the power consumption of 1-D DCT.  

The reason is that the power consumption we used here for comparison is not the total 

consumed power for a group of data but the average consumed power in a time unit. The 

proposed implementation of 2-D DCT can be treated as using a 1-D DCT hardware circuit 

twice in two clock cycles for generating one 2-D DCT output. Therefore, from this point, the 

difference in power consumption between 2-D DCT and 1-D DCT is the power consumption 

of registers matrix which is not available for 1-D DCT. In the performance evaluation of this 

section, the comparison is focused on area, power and delay for 1-D DCT because the 

performance of proposed architecture can be fully revealed based on the target application. 

A. Compared with the CSD Implementation 

To compare with the performance of common subexpression elimination with CSD code, 

two implementations from [85, 86] are taken. All the implementations including ours are 

targeted at 8X8 DCT with bit width of 8. The number of required adders is 65 and 130 

respectively in [85] and [86]. For our architecture, a total of 35 adders are needed in three 

levels to obtain all the products. This indicates our method achieves 46% and 73% reduction 

respectively compared with the implementations of existing CSD common subexpression 

elimination. The figures prove that adopted strategy is efficient and scheme selected is 

optimal. 

B. Comparison between FPGA Device and Proposed Architecture 

As similar domain-specific reconfigurable DA architecture cannot be found in the literature, 

an FPGA device is used as a reference to compare performance of our architecture in terms 

of area, power and delay. Based on the fact that the difference in voltage supply and CMOS 

technology will greatly affect chip power consumption and area, Xilinx Virtex-E [10] is 

taken as the reference FPGA device for implementing 1-D DCT, whose parameters are the 

same as the proposed architecture.   

The area estimation of Virtex-E is based on two LUTs per slice where an estimated area of 

3303
2mµ  is used per slice and its surrounding routing [73]. This value excludes the area of 
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memory which is embedded in FPGA device. The target FPGA device is larger than our 

architecture, so quiescent power consumed by unused computing units, RAM, clock 

manager and controller in FPGA device is very high. To remove all these impact factors, 

only the Vccint dynamic power consumption is taken as the reference. The delay time of 

FPGA device is the length from the rising edge of the clock to the time when signal reaches 

the output port, namely clock path plus data path. 

The power consumption of 1-D DCT implementation on Virtex-E FPGA is 706mW with 

1460 used slices which indicates 4822380 
2mµ  areas are occupied. The delay of the 

implementation is 36.56ns which means the maximum frequency for 1-D DCT 

implementation on FPGA is 27.35MHz.  

It is clear from the above experimentation data, our architecture achieves at least 97.8% 

reductions in power consumption compared with the FPGA Vccint dynamic power 

consumption with less than 87.5% area occupation. Our architecture can run more than 5 

times faster than the FPGA implementation besides its merits in area and power consumption. 

Therefore, it can be concluded that our architecture achieves a good performance in terms of 

area, power consumption and speed.  

It is noted that FPGA device is designed for general purpose and fits for any application if 

the target device scale is large enough. The architecture in this thesis is a domain-special one 

which is only available for DA applications. The comparison against FPGA device is used as 

a reference to evaluate the performance of our architecture. More comparison between ours 

and other ADIC designs will be made in the following sub-sections. 

C. Power Consumption Comparison 

To evaluate the power consumption of our architecture, an ASIC design in [127] is taken as 

an example, which adopts similar algorithm with ours. The power consumption in [127]  is 

12.45mW for 1D DCT with STMicroelectronics, hcmos9, 0.12µm technology at 1.5V, 

50MHz. Considering dissipated power is approximately proportional to the square of supply 

voltage, the power consumption of the design in [127] can be scaled to 7.97mW for 1.2V. 

Our architecture consumes 7.13mW with UMC 0.13 mµ CMOS technology library at 1.2V, 
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50MHz. It is noted that the power consumption of our architecture includes the power 

dissipation caused by interconnection network which brings the architecture powerful 

reconfigurability. The outstanding power characteristic of architecture makes it attractive to 

the power sensitive applications. 

D. Area & Delay Comparison 

To make the fair comparison, one of the key factors is to choose a proper reference design. 

To evaluate the area & delay performance of our architecture, we need to make comparisons 

with alternative solutions. However, currently there has been no existing architecture 

specifically designed for the distributed arithmetic applications. Therefore, only two 

implementations can be used for comparison: FPGA and ASIC implementation. 

The proper comparison is hard to be made between FPGA, domain-specific architecture and 

ASIC. The comparison between different implementations should not only target at the 

realized function, but also at the potential ability they have. Selecting an FPGA 

implementation with the same function, implementation will make our architecture 

successive in area, power and delay comparison. However, it is meaningless. 

It is clear that the reconfigurability is obtained at the cost of time, area, and power 

consumption. The more requirements are met, the higher the cost is. For a specific function, 

an ASIC implementation is the most efficient among all implementations, including FPGAs 

and domain-specific reconfigurable architectures. The general purpose FPGA devices, as 

well as digital signal processors, can be used for a wide range of applications. However, this 

powerful functionality leads to low efficiency for specific functions. 

In this dissertation, to make the comparison with ASIC designs, we remove the 

reconfigurability from our architecture. The internal routing network in our design is used 

for re-arranging inner signals when the architecture switches to other applications, while 

there is not such a part in ASIC design. Given the fact that the internal routing network of 

proposed architecture consumes over 80% area of the whole architecture, the normalized 

delay-area product of our design in Table VI-6 is reduced by 80%. This scale can be 

regarded as the routing network which is replaced by fixed lines whose area and time 
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consumption can be ignored. The comparison between proposed reconfigurable architecture 

and ASIC intends to give an idea of area &delay performance of the proposed architecture. 

As area can often be traded for delay and to eliminate the impact of different technologies, 

normalized delay-area product [128] is adopted to evaluate our architecture. It is defined as 

the product of the hardware cost (NAND gate count) and normalized average computation 

time which is the consumption time normalized by the delay of a NAND gate. This is used to 

evaluate the design performance in area and speed together. The lower the normalized delay-

area product of a design, the better the performance of that design. The normalized delay-

area products for different designs are listed in Table VI-6. 

Therefore, several ASIC solutions for 1D DCT with the same throughput will be taken as the 

reference for evaluating the performance. The performances of some existing designs with 

12-bit word length of data path are listed in Table VI-6.  

It can be concluded from the table that our architecture achieves better performance than the 

average of 6 selected reference designs. 

Table VI-6: Performances of some existing designs and ours  

 

Designs

normalized

delay-area

product Index

(X10
6
)

[65] 2.0

[128] 1.0

[129] 1.3

[130] 2.2

[131] 1.1

[132] 0.9

Average 1.4

Proposed

(Scaled)
1.2
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VI.1.7. Summary 

Eight points 1-D and 2-D DCT are mapped onto the architecture for the functionality 

verification and performance evaluation. Based on dimidiate tree, crossing forest, algorithm 

for searching for optimal scheme of common term sharing and its implementation which are 

introduced and defined to efficiently mapping and fully used hardware, the adder-based DA 

can achieve 94.8% reduction in area in the case of a DCT implementation. Compared with 

the common subexpression elimination with CSD code, up to 73% saving is obtained in 

hardware resources. The results of the proposed architecture prove its efficiency in terms of 

area, power and speed.  

In comparison with FPGA DCT implementation, our architecture achieves at least 97.8% 

reductions in Vccint dynamic power consumption with less than 87.5% area occupation. Our 

architecture can run more than 5 times faster than the FPGA implementation besides its 

merits in area and power consumption. 

In comparison with the existing ASIC designs, the experimental data show that the proposed 

architecture achieves better performance in area and speed than the average of six selected 

ASIC designs when the impact of interconnection resource in our architecture is removed. 

The right policy for trading off area and speed makes the architecture even consume less 

power than the ASIC designs using a similar algorithm.   

It can be concluded from our results that the proposed reconfigurable architecture could 

provide an efficient hardware platform for implementing in DCT application.  

VI.2. DFT Implementation 

In the field of digital signal processing, the discrete Fourier transform (DFT) plays an 

important role in the analysis, design, and implementation of discrete-time signal-processing 

algorithms and systems [129, 130]. DFT is one of the most important algorithms in 

mathematical, numerical, scientific, engineering, and technical applications. Some of the 

applications of the DFT algorithm include time series, wave analysis, and convolution, 

solving, linear differential equations, particle simulations, Poisson's equation solver and 
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digital signal processing [131, 132]. The Fourier transform, in general, is a central 

component in many signal analysis systems. 

The DFT, with a transform length equal to a power of 2, is usually implemented with the fast 

Fourier transform (FFT). The fast Fourier transform (FFT) is widely used in signal 

processing and communication such as digital filtering, spectral analysis, and polyphase 

filter multicarrier demultiplexing (MCD) [133]. The main reason for its widespread use is 

the existence of efficient techniques for its computation. Furthermore, in modern genetics 

and biology, the FFT is extensively applied in biological sequence analysis [134]. 

Due to the popularity of the orthogonal frequency division multiplex (OFDM) system, the 

demand for high-speed and low-power FFT emerges from various applications. The 

combination of the multiple-input multiple-output (MIMO) signal processing with OFDM 

communication system is considered as a promising solution to enhancing the data rates of 

the wireless communication systems of next generation operating in frequency-selective 

fading environments. The High Throughput Task Group which establishes IEEE 802.11n 

standard is going to draw up the next-generation wireless local area network (WLAN) 

proposal to deliver higher bandwidth based on the 802.11 a/g which is the current OFDM-

based WLAN standards [135]. The fourth-generation cellular phone and the forthcoming 

new WLAN systems may also incorporate OFDM system to deliver higher bandwidth [136]. 

The FFT is one of the most critical components in OFDM systems. It directly affects the 

accuracy of the channel estimation as well as the symbol demapper. As the data transmission 

rate of OFDM systems increases, generating OFDM symbols with high data rate requires 

very high speed FFT processor. According to the European digital video/audio broadcasting 

(DVB-T/DAB) standards, an OFDM system may require FFT length ranging from 256 to 

8192 points. Wireless local area network (WLAN) and HIPERLAN/2 systems require high-

speed and low-power FFT/IFFT design [137, 138].  

With the introduction of the radix-2 FFT by Cooley–Tukey in 1965 [139], considerable 

research has been carried out resulting in a number of algorithms. The FFT algorithms are 

based on the principle of decomposing the computation of DFT into sequences of smaller 
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DFTs. The first efficient FFT algorithm was discovered by Gauss in the 18th century and 

rediscovered by Cooley and Tukey [139] in 1960s. Later advances in the research of FFT 

algorithms include the higher radix FFT [140], the mixed-radix FFT [141], the prime-factor 

FFT [142], Winograd Fourier Transform Algorithm (WFTA) FFT [143], the split-radix FFT 

[144], the recursive FFT [145], and the combination of decimation-in-time (DIT) and 

decimation-in-frequency (DIF) FFT algorithms [146]. Two widely used approaches are the 

fixed radix of Cooley–Tukey and the split radix, since they provide algorithms with regular 

computational structures. Most of these algorithms illustrate FFT with similar FFT diagrams, 

which evolved from the recursive nature of the FFT algorithms and are constructed by basic 

butterfly structure. 

VI.2.1. DFT Algorithm 

The N-point DFT performs the transformation of N-point time domain data into N-point 

frequency domain data. Discrete means that the data is sampled at given time instead of 

being continuous. The DFT operates on an N-point sequence of numbers x(n), which is 

obtained through uniform sampling of a finite period of a continuous function. The DFT of 

x(n) is written as X(k), and is defined by equation ( VI-7 ) [147]. 

( VI-7 ) 

 

where WN is defined as 

( VI-8 ) 

The 
K

NW is called twiddle factor which is a periodic function in the period N. In this 

dissertation, twiddle factors are also named as coefficients. It is clear in equation ( VI-7 ) that, 

for each k, N complex multiplications and N-1 complex additions are needed to calculate 

X(k).  Hence, roughly 2N
2
 complex operations are required for the computation of a N-point 

DFT. Similar to DFT, inverse DFT can be given as follows  [147]. 
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VI.2.2. FFT Algorithm 

A. Basic FFT Algorithm 

Fast Fourier Transform is a collection of algorithms to speed up the DFT by reducing the 

number of operations required. It was popularized by Cooley and Tukey in the 1960s [139]. 

Actually, more than a century earlier, a German mathematician Karl Gauss had used this 

method [148]. For the sake of simplicity, N is assumed to be a power of 2, meaning N = 2
m
, 

where the power m is a positive integer. N-point input sequence x(n) can be separated into 

two subsequences of length N=2. One subsequence consists of even components of x(n), the 

other is composed of odd components. Therefore, equation ( VI-7 ) can be deduced as 

follows [149]. 

 

( VI-10 ) 

If n in the even and odd summations are replaced by 2m and 2m+1, respectively, equation 

( VI-10 ) can be written below. 

 

( VI-11 ) 

However, it is easy to prove that 
2

NW = WN/2, so, 

 

( VI-12 ) 

 

( VI-13 ) 

 

where subsequence xeven(m) consists of the even-indexed components of x(n), and 

subsequence xodd(m) consists of the odd-indexed components of x(n). Due to the periodicity 

of WN (W
k
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k+lN
), N/2-point DFTs of xeven(m) and xodd(m) can be computed for only N=2 

of the N values of k. Therefore, it leads to a reduction from N
2
 to N

2
/2+N/2 in the number of 

complex multiplications. For large N, about 50% multiplication operation savings can be 

achieved, compared to the direct calculation of the DFT by equation ( VI-7 ). 
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Since N is a power of 2, if N > 2, the number of components of xeven(m) and xodd(m) should 

also be even. Hence, they can also be separated further into subsequences consisting of their 

own even and odd components. However, xeven(m) and xodd(m) are calculated from N/4- 

point DFTs. Repeat this decimation procedure for log2(N)-1 times until sequences with only 

two components are gained in the last stage. A total of log2(N) stages can be produced by 

applying this decimation procedure. Each stage has N/2 complex multiplications by some 

power of WN. The final stage is reduced to 2-point DFTs where no multiplications are 

required, since the twiddle factors are trivial numbers there. In each stage, DFTs from 

previous stage are broken into two smaller DFTs, and the preceding FFT is called radix-2 

FFT. The input sequence (time sequence) is divided into two smaller sequences at each stage, 

hence the radix-2 FFT algorithm is called decimation-in-time (DIT) algorithm. Figure VI-4 

shows the dataflow graph of an 8-point radix-2 DIT FFT. As can be seen in this figure, N=2 

(here N/2 is 4) multiplications are required in each stage. Hence, a total number of only 

N/2*log2(N) complex multiplications are needed for computing an N-point FFT. 

Figure VI-4 : Data flow graph of an 8-point radix-2 decimation-in-time FFT 

C. Radix-4 and Mixed Radix FFT Algorithm 

Radix-4 algorithm is more efficient than radix-2 algorithm, owing to the reduced stages and 

reduced number of cascaded multiplications, presumably leading to a more accurate result at 

the expense of additional computation. The radix-4 implementation only requires 1 stage 

versus 2 stages for a radix-2 implementation. It is suitable for N-point DFTs, where N is a 
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power of 4. Workload for a 4096 point FFT using different radices can be found in Table 

VI-7 

Table VI-7 : Workload for a 4096 point FFT using different radices 

 

The development of radix-4 decimation-in-time FFT is similar to the development of radix-2 

decimation-in-time FFT. The difference is that N-point input sequence x(n) is split into four 

subsequences, x(4n), x(4n+1), x(4n+2) and x(4n+3) in a radix-4 decimation-in-time FFT. 

This decimation is recursive, until the final stage is implemented with 4-point DFTs. There 

isn’t much difference between the Radix-8 and Radix-4 algorithms, except that the series 

split is N/8 instead of N/4. This brings with it the implicit difference in number of inputs 

processed in a single butterfly, the addressing of twiddle factors, number of stages being 

log8(N).  

 The equation ( VI-7 ) can be re-written by breaking the N-point DFT formula into four 

smaller DFTs as shown in equation ( VI-14 ). 

 

 

 

( VI-14 ) 
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Due to the definition and periodicity of WN, we have 

( VI-15 ) 

Thus, equation ( VI-14 ) can be written as 

 

( VI-16 ) 

The equation ( VI-16 ) is not an radix-4 FFT because the twiddle factor is dependent on N 

but not N/4. To convert it into radix-4 FFT, we subdivide the equation into four N/4-point 

subsequences, X(4k), X(4k+1), X(4k+2), and X(4k+3), k = 0, 1, ..., N/4. Thus we obtain the 

radix-4 FFT as  

 

 

 

 

( VI-17 ) 

 

A 16-point, radix-4 decimation-in-frequency FFT algorithm is shown in Figure VI-5. Its 

input is in normal order and its output is in digit-reversed order. 

        Figure VI-5 : Data flow graph of 16-point, radix-4 decimation-in-frequency FFT 
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 For radix-r algorithms, such as radix-2 or radix-4, the butterfly elements used in each stage 

are the same. However, FFT algorithms, where the butterfly elements used in each stage are 

not all equal, are called mixed-radix algorithms [147]. For example, the butterflies in some 

stages are based on radix-2 algorithm; others are based on radix-4 algorithm or higher 

radices. Basically, radix-r algorithms excel mixed-radix algorithms, due to the consistency of 

butterflies in radix-r algorithms. However, through mixed-radix algorithms, the advantage of 

high radices can be applied to these conditions where N, the size of FFT, is not a power of 

the high radices. The examples, mixed-radix algorithms, are assigned for different FFT 

lengths as shown in Table VI-8, in which the higher radix is chosen first. 

Table VI-8 : Mixed-radix algorithms for different FFT sizes 

 

VI.2.3. Overview of FFT Implementation 

For various points FFT applications, radix-4 or mixed radix FFT algorithms can be adopted 

according to the delay, area and other performance requirements. The details for algorithms 

were discussed in section VI.2.2. For these FFT applications, the proposed processor can be 

used as a processing element (PE) and realize the function cooperating with other function 

units and control block. The FFT applications implementation is not the concern of this 

dissertation. In the following sub-sections, so we will focus on a 4-point FFT implementation 

on proposed processor.  

As shown in equation ( VI-8 ), the result of FFT algorithm contains two parts, real and 

imaginary part, which is different from DCT algorithm whose result has only one part.  This 

characteristic of FFT indicates that the algorithm logic unit with 8 output ports in proposed 

FFT size Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

16 4 4

32 4 4 2

64 4 4 4

128 4 4 4 2

256 4 4 4 4

512 4 4 4 4 2

1024 4 4 4 4 4

2048 4 4 4 4 4 2

4096 4 4 4 4 4 4
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processor can process 4 input signals in time domain and generate 4 output results in 

frequency domain which contain 8 practical values.  

 In 4-point FFT algorithm implementation, the path of data flow is quite simple compared 

with DCT implementation. The input signals are routed to algorithm logic unit input ports 

through input matrix. The results from algorithm logic unit are put forward to output matrix 

and then output for further processing. It can be seen from FFT implementation that the data 

flow is one-way without data routing back and the results can be exported directly without 

temporary buffering.  

The algorithm logic unit is divided into two function parts: real and imaginary part; The 

lower half part is used to generate the real part values of 4 final results and the rest half part, 

higher half part, is used to create 4 imaginary part values of results. Therefore, 4 input 

signals are replicated in input matrix for high 4 input ports of algorithm logic unit. 

Because all 8 values of 4 final results of 4-point FFT are obtained from output ports of 

algorithm logic unit, registers matrix and its control unit are bypassed in FFT 

implementation. Output matrix takes the results and then routes them to corresponding 

output ports. It is noted that this configuration of registers matrix does not contradict with the 

requirements when the matrix is used for storing temporary data in high points FFT 

applications. The purpose of current configuration is to verify the function of proposed 

processor and obtain the performance in FFT implementation for evaluation. 

VI.2.4. Algorithm logic Unit Implementation 

The precision of FFT implementation lies in the coefficient representation when the input 

vector is given with the fixed precision. The bit-width of the twiddle factors is set to be 12 

bits and the longer word-length is not cost efficient as the signal-to-quantization-noise ratio 

(SQNR) performance does not increase notably while the cost of multipliers and tables 

increases significantly [150]. The 12 bits word length in both real and imaginary parts for the 

proposed FFT implementation will also meet IEEE 802.11 standard requirements [135]. 

Following the steps of adder-based DA, equation ( VI-8 ) can be presented in 2’s 

complement format as shown in Figure VI-6, in which, the 4 values in real part of twiddle 
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factors are expressed with symbols ReW
0·k

4 , ReW
1·k

 4 , ReW
2·k

 4 and ReW
3·k

 4  and 4 values in 

imaginary part of twiddle factors are expressed with symbols ImW
0·k

 4 , ImW
1·k

 4 , ImW
2·k

 4 

and ImW
3·k

 4.  

Due to lots of zeros in twiddle factors as shown in Figure VI-6, there are a few terms left 

after deducting the zero and duplicate terms which need no further calculation. Take twiddle 

factors ImW
0·k

4 and ImW
2·k

 4 as an example, all factors are zero. It means that no operation is 

required when input data are multiplied by the coefficient. Finally, only one term of 4 inputs, 

2 terms of 2 inputs and 4 input data are required for Wallace tree multiplier matrix. They are 

X0X1X2X3,  X0X2,  X1X3,  X0,  X1,  X2 and X3. 

Compared with the complex case, 22 terms of 4 inputs in DCT application, common terms 

sharing scheme is really a simple one. In theory, there are 66 (= 3 × 22) possible common 

terms for 22 terms with 4 inputs if duplications are not taken into account. For the term 

X0X1X2X3 in 4-point FFT implementation, there are only three possible schemes which are 

X0X1 + X2X3, X0X2 + X1X3 and X0X3 + X1X2. Considering that the two 2-input terms, X0X2 and 

X1X3, are obligatory, it is natural to determine the best scheme which is X0X2 + X1X3.  

According to the selected scheme and the terms to be output to Wallace tree multiplier 

matrix, totally 7 terms are easily implemented with two levels adder arrays. (We consider 4 

input data as terms because they are also the results output from adder arrays.) Four input 

data are output through the bypass paths in two levels adder array. Two adders in the first 

level adder array are used to implement the terms X0X2 and X1X3. The two outputs of these 

adders go straight to Wallace tree multiplier matrix through the bypass path in the second 

level adder array. Meanwhile, the outputs are also routed to an adder in the second level to 

generate term X0X1X2X3. 

By now, 7 terms are implemented with two levels adder arrays for 4-point FFT. Only 3 

adders are used, which indicates that only a little power will be consumed by adder arrays. In 

the following sub-section, the performance of 4-point FFT implementation will be scaled and 

evaluated. 
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Figure VI-6 : Twiddle factors of 4-point FFT 
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VI.2.5. Performance & Evaluation 

Following the details of implementation discussed in the previous sections, the 4 points FFT 

was implemented with the proposed reconfigurable architecture. 

 A standard-cell based synthesis and layout was performed with Design Compiler from 

Synopsys, Inc., employing the UMC 0.18 mµ CMOS technology library. The power 

consumption was obtained with the Synopsys PrimePower. The area of the 4-point FFT is 

527529 
2mµ  and the power consumption is 10.1mW at 20MHz system clock. The design 

can run with up to 144MHz (6.93ns) and 112-bits (=14bits×8) outputs. This implies that our 

architecture can reach up to 16.128Gbps for the 4 points FFT which is the same as 1-D DCT.  

Because there is not such an application adopting FFT with only 4 points, the number of 

points of most FFT applications ranks from 64 to 4k or even 8k, and the performance data of  

4 points FFT is hard to find in ASIC implementation, domain-specific FPGAs, DSP 

embedded system, programmable processors or even reconfigurable FFT architecture. On 

the other hand, the implementation of high points FFT application is not the concern of this 

dissertation. The implementation of 4 points FFT, one kind of DA applications, with 

proposed processor is used to verify the functionality of the architecture.  

As similar domain-specific reconfigurable DA architecture cannot be found in the literature, 

an FPGA device is used as a reference to compare performance in area, power and delay 

with our architecture. Xilinx Virtex-E [10] is taken as the reference FPGA device for 

implementing 4 points FFT, which is exactly the same as the one used in 1-D DCT 

evaluation and comparison. The details of this device can be found in section VI.1.6, in 

terms of voltage supply, CMOS technology, area estimation, running platform, power 

consumption data selection and so on. 

The power consumption of 4 points FFT implementation on Virtex-E FPGA is 274mW with 

902 used slices which indicates that 2979306 
2mµ  area is occupied. The delay of the 

implementation is 36.56ns which means the maximum frequency for 4 points FFT 

implementation on FPGA is 27.35MHz.  
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It is clear from the above experimental data that our architecture achieves at least 96.3% 

reductions in power consumption compared with the FPGA Vccint dynamic power 

consumption with less than 82.3% area occupation. Our architecture can run more than 5 

times faster than the FPGA implementation except its merits in area and power consumption. 

Therefore, it can be concluded that the proposed processor achieves a good performance in 

terms of area, power consumption and speed compared with FPGA device in 4 points FFT 

implementation.  

As we have discussed in previous sections, FPGA contains a large amount of routing 

resource which is redundant for FFT implementation but necessary for implementing other 

applications. The proposed processor achieves a good performance in FFT implementation 

when compared with FPGA device. But it is not the most efficient one in various 

reconfigurable architectures which are designed specially for FFT applications [151-153]. 

Actually, our processor is superior to FPGA device in the same way that these architectures 

achieve better performance than our processor in FFT domain, that is, the routing resource in 

proposed processor is redundant for FFT implementation but necessary for implementing 

other DA applications such as DCT. 

VI.3. Conclusion 

In this chapter, two widely-adopted DA applications, DCT and DFT, are implemented with 

our architecture for the functionality verification and performance evaluation.  

The definition and methods for implementations of two algorithms were introduced briefly at 

the beginning of each section. In DCT implementation, the configurations for control path, 

registers matrix and algorithm logic unit were discussed and specified according to the 

requirements of the application. Based on dimidiate tree, crossing forest, algorithm for 

searching for optimal scheme of common term sharing and its implementation which were 

introduced and defined for efficient mapping and full use of hardware, the common term 

sharing scheme was obtained by applying dimidiate tree and the algorithm for searching for 

optimal scheme.  
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The experiential data of DCT and FFT implementation show the validity of algorithm and 

efficiency and functionality of proposed processor.  

Compared with FPGA implementation, our architecture achieves at least 97.8% reductions in 

power consumption, less than 87.5% area occupation and more than 5 times faster for DCT 

implementation and 96.3% reductions in power consumption and more than 82.3% area 

saving for FFT implementation. Additionally, in comparison with existing ASIC DCT 

designs, the proposed architecture achieves better performance in area and speed than the 

average of six selected ASIC designs when the impact of interconnection resource in our 

architecture is removed. 

It can be concluded from our results that the proposed reconfigurable architecture can 

provide an efficient hardware platform for implementing DA application. The right policy 

for trading off area and speed, common terms sharing architecture and algorithm for optimal 

scheme make this platform implement DA applications flexibly at the low cost in terms of 

area, power and delay.                                                        . 
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VII.1. Conclusion 

In this dissertation, we have presented a novel reconfigurable low-power processor for DA, a 

specific domain. This domain specific reconfigurable processor features high efficiency in 

terms of area, power and delay. It is a hybrid between traditional ASICs and general 

reconfigurable architectures such as FPGA devices. The goal of the novel architecture is to 

get close to the performance of ASICs, while maintaining the flexibility of programmable 

platforms.  

DA algorithms can be frequently found in a wide variety of real world algorithms, e.g. DCT, 

DFT and DWT, used in digital image/signal processing including compression and beam 

forming applications. Because of the complexity of these algorithms, which are 

computationally intensive for large size applications, the computing power they consumed is 

enormous. The processor presented in this dissertation can be used to implement complex, 

high performance DA algorithms for communication and image processing applications with 

low cost in area and power compared with the traditional methods.  

The performance and efficiency of the proposed architecture have been demonstrated and 

validated in the preceding chapters through the implementation of DCT and DFT which are 

widely used in most still picture compression standards, video conferencing standards and 

communication standards such as IEEE 802.11n, 802.11 a/g and WiMax.  

A simple reconfigurable low power control unit in the processor is implemented with good 

performance in area, power and timing. The generic characteristic of the architecture makes 

it applicable for any small and medium size finite state machines which can be used as 

Chapter VII 

Conclusion and Future Work
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control units to implement complex system behaviour and can be found in almost all 

engineering disciplines. 

Furthermore, to map target application efficiently with the proposed architecture, a new 

algorithm is introduced for searching for the best common sharing terms set, which keeps the 

area and power consumption of implementation at low level. Some new concepts such as 

dimidiate tree and crossing forest are introduced and defined initially. They are used to 

describe the algorithm for common sharing terms set searching. A software implementation 

of this algorithm is presented, which can be used not only for the proposed architecture in 

this dissertation but also for all the implementations with adder-based distributed arithmetic 

algorithm. 

In addition, some low power design techniques are applied in the architecture, such as 

unsymmetrical design style including unsymmetrical interconnection arranging, 

unsymmetrical PTBs selection and unsymmetrical mapping of basic computing units. All 

these design techniques achieve extraordinary power consumption saving. It is believed that 

they can be extended to more low power designs and architectures. 

VII.2. Evaluation of Results and Contributions 

VII.2.1. Novel and Efficient Points of the Work 

Eight points 1-D and 2-D DCT are mapped onto the architecture for the functionality 

verification and performance evaluation. Compared with the common subexpression 

elimination with CSD code, up to 73% saving is obtained in hardware resources. In 

comparison with FPGA DCT implementation, our architecture achieves at least 97.8% 

reductions in Vccint dynamic power consumption with less than 87.5% area occupation. Our 

architecture can run more than 5 times faster than the FPGA implementation except its 

merits in area and power consumption. In comparison with existing ASIC designs, the 

experimental data show that the proposed architecture achieves better performance in area 

and speed than the average of six selected ASIC designs when the impact of interconnection 

resource in our architecture is removed. 
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In the FFT implementation of 4 points, the proposed architecture achieves at least 96.3% 

reductions compared with the FPGA Vccint dynamic power consumption and less than 82.3% 

area occupation. Our architecture can run more than 5 times faster than the FPGA 

implementation except its merits in area and power consumption.  

Regarding the reconfigurable control unit architecture, ten test cases from the widely adopted 

FSM benchmark set are implemented using both ours and a FPGA device. It is demonstrated 

that our architecture can achieve an average reduction of 82% in power consumption, a 

decrease of 44% in area occupation and 20% reduction in delay when implementing the 

same circuit on a commercial FPGA device. 

VII.2.2. Limitations 

This subsection specifies exactly the extent of the restriction with the proposed low power 

reconfigurable DA processor: 

• The presented architecture is targeted at DA applications. This departure point limits the 

applications of the processor to DA field only.  Compared with FPGA devices which 

are for general purpose and can be applied in any application or field regardless of the 

limitation on scale or size, the scope of application fields of our processor is greatly less 

than that of FPGA. 

 

• In this dissertation, only three DA applications, 1D-DCT, 2D-DCT and FFT, are 

implemented with the proposed architecture. There are still other DA applications such 

as DWT, DHT and so on which are widely adopted in digital signal processing. The 

functionality of processor needs further verification and more performance data with 

more DA applications. 

 

• The last, probably the most noticeable limitation of the presented processor is the 

manual routing and mapping when a target application is implemented. Currently, all 

sub-modules including control unit, two-level adder structure, Wallace tree multiplier 

matrix, interconnection network and so on are configured based on the manual placing 

and routing which can take full advantage of the novel design and achieve the best 

efficiency in terms of area, power and speed. But manual routing and mapping will 

become an impossible mission when the target application is large.  
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VII.3. Future Work 

The work undertaken during this Ph.D. project has concentrated on the development of novel 

low power DA processor for multimedia and telecommunication applications. A set of 

objectives for further research include: 

• Implement more DA applications such as DWT, DHT and so on to further verify the 

functionality of processor and obtain more performance data. 

 

• A serial DA algorithm can be implemented on the architecture, which consumes less 

power than parallel one but takes longer time for processing. Serial algorithm can be 

used for extreme power sensitive application without speed requirement. 

 

• To expand the reconfigurable control unit to meet the requirements of complex 

applications and to make it an independent architecture to extend its applied 

applications. 

 

• Some modification might be made on the architecture to extend its applicability in more 

applications or fields. 

 

• To apply dynamic reconfigurable technology to the processor. This can make the 

processor change its function when it is running. Dynamic reconfigurable technology 

will improve the hardware efficiency and in the mean time, it will make the architecture 

larger and more complex because of extra hardware components. 

 

• To develop automatic routing and mapping algorithm and tools. The Electronic Design 

Automation (EDA) tools are necessary and critical part in semiconductor design flow, 

in which the complexity of chip designing makes the manual routing and mapping 

impossible. Therefore, the algorithm and software for application placing, routing and 

mapping is the key step to make the processor extend to other designs or architectures.  

 

• To explore a more generic architecture with low power consumption which can be 

applied in more fields, not just limited to certain application domain
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Publications from this work 
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California, February 18-20, 2007 
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Japan, January 23-26, 2007 

•••• Z. Liu, T. Arslan, A.T. Erdogan, “An Embedded Low Power Reconfigurable Fabric 

for Finite State Machine Operations”, 2006 IEEE International Symposium on 
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September 25-28, 2005 
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