79 research outputs found

    MHD code using multi graphical processing units: SMAUG+

    Get PDF
    This paper introduces the Sheffield Magnetohydrodynamics Algorithm Using GPUs (SMAUG+), an advanced numerical code for solving magnetohydrodynamic (MHD) problems, using multi-GPU systems. Multi-GPU systems facilitate the development of accelerated codes and enable us to investigate larger model sizes and/or more detailed computational domain resolutions. This is a significant advancement over the parent single-GPU MHD code, SMAUG (Griffiths, M., Fedun, V., and Erd\'elyi, R. (2015). A fast MHD code for gravitationally stratified media using graphical processing units: SMAUG. Journal of Astrophysics and Astronomy,36(1):197-223). Here, we demonstrate the validity of the SMAUG+ code, describe the parallelisation techniques and investigate performance benchmarks. The initial configuration of the Orszag-Tang vortex simulations are distributed among 4, 16, 64 and 100 GPUs. Furthermore, different simulation box resolutions are applied: 1000×10001000 \times 1000, 2044×20442044 \times 2044, 4000×40004000 \times 4000 and 8000×80008000 \times 8000. We also tested the code with the Brio-Wu shock tube simulations with model size of 800 employing up to 10 GPUs. Based on the test results, we observed speed ups and slow downs, depending on the granularity and the communication overhead of certain parallel tasks. The main aim of the code development is to provide massively parallel code without the memory limitation of a single GPU. By using our code, the applied model size could be significantly increased. We demonstrate that we are able to successfully compute numerically valid and large 2D MHD problems

    Multidimensional approximate Riemann solvers for hyperbolic systems

    Get PDF
    Esta tesis doctoral se centra en el desarrollo de resolvedores de Riemann multidimensionales incompletos eficientes para sistemas hiperbólicos generales, aplicables tanto en el caso conservativo como en el no conservativo. Dichos resolvedores se construyen a partir de un modelo de cuatro ondas, dadas por las velocidades de propagación maximales en cada vértice de una malla estructurada. En particular, se construye una versión simple de un esquema HLL 2D bien equilibrado, la cual se toma como base para diseñar una clase más general de resolvedores de Riemann incompletos 2D, los denominados esquemas AVM (Approximate Viscosity Matrix). La gran ventaja de los esquemas AVM es la posibilidad de controlar la cantidad de difusión numérica considerada para cada sistema hiperbólico, con un coste computacional razonable. Se demuestra que los esquemas numéricos de primer orden resultantes son consistentes con el sistema hiperbólico considerado, y linealmente estables bajo una condición CFL de hasta la unidad. Tales esquemas pueden ser usados como base para construir esquemas de alto orden. En esta tesis, se construye un esquema de segundo orden mediante el método predictor-corrector MUSCL-Hancock. Para analizar las propiedades de los esquemas propuestos, se han considerado experimentos numéricos en magnetohidrodinámica (MHD) y sistemas de aguas someras (SWE) de una y dos capas. En el caso de MHD, la condición de divergencia nula se ha impuesto mediante una nueva técnica basada en la escritura no conservativa de las ecuaciones. Por otro lado, para SWE, la presencia de la topografía del fondo y de los términos de acoplamiento entre capas representan una dificultad adicional, que se resuelve dentro del marco de los esquemas camino-conservativos. Por último, se ha desarrollado un algoritmo simple y eficiente para la implementación de los esquemas en tarjetas gráficas (GPU), con el objetivo de aumentar la eficiencia computacional
    corecore