
Programa de Doctorado en Matemáticas

Facultad de Ciencias

Departamento de Análisis Matemático, Estad́ıstica
e Investigación Operativa y Matemática Aplicada

Multidimensional approximate Riemann
solvers for hyperbolic systems

(Resolvedores de Riemann multidimensionales aproximados para sistemas hiperbólicos)

Kleiton André Schneider

Tesis Doctoral

Director:

José Maŕıa Gallardo Molina

Universidad de Málaga 2020

!

AUTOR: Kleiton André Schneider

 http://orcid.org/0000-0002-6892-8644 

EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga

�
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-
SinObraDerivada 4.0 Internacional: 
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode 
Cualquier parte de esta obra se puede reproducir sin autorización  
pero con el reconocimiento y atribución de los autores. 
No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer obras derivadas. 

Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de Málaga
(RIUMA): riuma.uma.es

http://orcid.org/0000-0002-6892-8644
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Escuela de Doctorado

Edificio Pabellón de Gobierno. Campus El Ejido.
29071

Tel.: 952 13 10 28 / 952 13 14 61 / 952 13 71 10
E-mail: doctorado@uma.es

-

DECLARACIÓN DE AUTORÍA Y ORIGINALIDAD DE LA TESIS PRESENTADA PARA

OBTENER EL TÍTULO DE DOCTOR

D. KLEITON ANDRÉ SCHNEIDER

Estudiante del programa de doctorado Matemáticas de la Universidad de Málaga, autor de la

tesis, presentada para la obtención del título de doctor por la Universidad de Málaga, titulada:

Multidimensional approximate Riemann solvers for hyperbolic systems

Realizada bajo la tutorización de Carlos Parés Madroñal y la dirección de José María Gallardo

Molina

DECLARO QUE:

La tesis presentada es una obra original que no infringe los derechos de propiedad intelectual

ni los derechos de propiedad industrial u otros, conforme al ordenamiento jurídico vigente

(Real Decreto Legislativo 1/1996, de 12 de abril, por el que se aprueba el texto refundido de la

Ley de Propiedad Intelectual, regularizando, aclarando y armonizando las disposiciones legales

vigentes sobre la materia), modificado por la Ley 2/2019, de 1 de marzo.

Igualmente asumo, ante a la Universidad de Málaga y ante cualquier otra instancia, la

responsabilidad que pudiera derivarse en caso de plagio de contenidos en la tesis presentada,

conforme al ordenamiento jurídico vigente.

En Málaga, a 29 de abril de 2020

Fdo.: Kleiton André Schneider

D. José Maŕıa Gallardo Molina, Profesor Titular del Departamento de Análisis Matemático,
Estad́ıstica e Investigación Operativa, y Matemática Aplicada de la Universidad de Málaga

Certifica:

Que D. Kleiton André Schneider ha realizado en el Departamento de Análisis Matemático,
Estad́ıstica e Investigación Operativa, y Matemática Aplicada de la Universidad de Málaga,
bajo mi dirección, el trabajo de investigación correspondiente a su Tesis Doctoral, titulado:

Multidimensional approximate Riemann solvers
for hyperbolic systems

Revisado el presente trabajo, estimo que puede ser presentado al Tribunal que ha de juzgarlo.
Y para que conste a efectos de lo establecido en el art́ıculo octavo del Real Decreto 99/2011,
autorizo la presentación de este trabajo en la Universidad de Málaga.

En Málaga, a 29 de abril de 2020

Dr. José Maŕıa Gallardo Molina

Agradecimientos

Es mi deseo expresar mi más sincera gratitud a todas las personas que de una u otra forma
han contribuido, personal y profesionalmente, a la realización de esta memoria.

Mis más sinceros agradecimientos y profundo respeto a mi supervisor, Prof. José Maria
Gallardo Molina, por el soporte ilimitado y continuo, por la paciencia y apoyo durante todo
el doctorado. Muchas gracias por los consejos, el buen ambiente, la humildad y todo el
conocimiento compartido.

Me gustaŕıa también agradecer a Carlos Parés y Manuel J. Castro por el tiempo, paciencia y
apoyo en todo el doctorado, los cuales también contribuyeron a los resultados obtenidos en esta
tesis doctoral y a mi formación. Igualmente agradecer a todos los miembros del grupo EDANYA
con los que he trabajado y compartido buenos momentos: Jorge Maćıas, José Manuel González
Vida, Mari Luz Muñoz, Sergio Ortega, Tomás Morales de Luna, Carlos Sánchez Linares y Marc
de la Asunción. Todos han contribuido a generar el mejor ambiente de trabajo. De igual manera,
agradezco también a todos mis colegas, con los cuales he tenido el placer de convivir, aprender y
pasar momentos especiales: Hugo Carrillo, Juan Carlos González, Cipriano Escalante, Ernesto
Guerrero, Ernesto Pimentel, Irene Gómez Bueno, Federico Rodas y Emanuelle Macca.

Mis agradecimientos a Dinshaw Balsara, profesor de la Universidad de Notre Dame, Estados
Unidos, con el cual realicé una estancia de investigación, y a Boniface Nkonga, profesor de la
Universidad de Nice, Francia, los cuales contribuyeron a los resultados obtenidos en esta tesis
doctoral y a mi formación.

Un agradecimiento especial a mis colegas de la Universidad Federal de Mato Grosso do Sul
(UFMS), Brasil, por el apoyo, soporte y por la amistad. Agradezco también a dicha Universidad
por el soporte financiero durante todo el periodo del doctorado.

Todo mi agradecimiento a mi familia, tanto para aquellos que estuvieron de lejos enviándome
las mejores enerǵıas y vibraciones, en especial a mi mamá Gerta, como a aquellos que estuvieron
cerca dandome soporte y motivación, vivenciando todos los altibajos de mi investigación, Patricia
y mi amado hijo Arthur.

Gracias a todos.

Agradecimentos

Desejo expressar minha mais sincera gratidão a todas aquelas pessoas que de uma forma ou
outra contribuiram, pessoal e profissionalmente, na realização desta tese de doutorado.

Meus mais sinceros agradecimentos e profundo respeito ao meu supervisor, Prof. José Maria
Gallardo Molina, pelo suporte ilimitado e cont́ınuo, pela paciência e apoio durante todo o
doutorado. Muito obrigado pelos conselhos, o bom ambiente, a humildade e todo o conhecimento
compartilhado.

Gostaria também de agradecer aos professores Carlos Parés e Manuel J. Castro, pelo tempo,
paciência e apoio em todo o doutorado, os quais também contribuiram nos resultados obtidos
nesta tese de doutorado e em minha formação. Igualmente agradecer a todos os membros do
grupo EDANYA com os quais trabalhei e passei bons momentos: Jorge Maćıas, José Manuel
González Vida, Mari Luz Muñoz, Sergio Ortega, Tomás Morales de Luna, Carlos Sánchez Linares
e Marc de la Asunción. Todos contribuiram de forma a gerar o melhor ambiente de trabalho. Da
mesma maneira, agradeço também a todos os meus colegas com os quais tive o prazer de conviver,
aprender e passar momentos especiais: Hugo Carrillo, Juan Carlos González, Cipriano Escalante,
Ernesto Guerrero, Ernesto Pimentel, Irene Gómez Bueno, Federico Rodas e Emanuelle Macca.

Meus agradecimentos a Dinshaw Balsara, professor da Universidade de Notre Dame, Estados
Unidos, com o qual realizei uma estância de investigação, e Boniface Nkonga, professor da
Universidade de Nice, França, os quais contribuiram nos resultados obtidos nesta tese de
doutorado e em minha formação.

Um agradecimento especial aos meus colegas da Universidade Federal de Mato Grosso do Sul
(UFMS), Brasil, pelo apoio, suporte e pela amizade. Agradeço também à UFMS pelo suporte
financeiro durante todo o peŕıodo do doutorado.

Todo o meu agradecimento à minha famı́lia, tanto para aqueles que estiveram de longe me
enviando as melhores energias e vibrações, em especial à minha mãe Gerta, quanto aqueles que
estiveram perto me dando suporte e motivação, vivenciando todos os altos e baixos da minha
pesquisa, Patricia e meu filho amado Arthur.

Obrigado à todos.

CONTENTS iii

Contents

List of figures v

Introduction 1

Introduction (in Spanish) 8

1 Hyperbolic systems and finite volume schemes 14
1.1 Conservation laws . 15
1.2 Finite volume approximation . 18
1.3 Nonconservative systems . 22
1.4 Path-conservative schemes . 26
1.5 AVM-type solvers . 30
1.6 High-order methods: general framework . 36
1.7 MUSCL-Hancock procedure . 40

2 Governing equations 41
2.1 Magnetohydrodynamic equations . 42
2.2 Shallow water equations: one-layer approximation 47
2.3 Shallow water equations: two-layer approximation 48
2.4 Well-balancing . 49

3 Multidimensional AVM-type solvers: the conservative case 52
3.1 Preliminaries and four-waves model . 54
3.2 2D AVM-type solvers for conservation laws . 60
3.3 Numerical results . 65

3.3.1 First-order accuracy . 66
3.3.2 Orszag-Tang vortex . 70
3.3.3 The rotor problem . 74
3.3.4 Two-dimensional Riemann problem . 75
3.3.5 Spherical explosion . 77

4 Multidimensional AVM-type solvers: the nonconservative case 80
4.1 General framework . 81
4.2 Well-Balanced 2D HLL Riemann solver . 87

4.2.1 Supersonic cases . 92
4.3 Well-Balanced 2D AVM-type Riemann solvers . 94

4.3.1 HLL 2D solver in AVM form . 94
4.3.2 Multidimensional AVM solvers . 97
4.3.3 Modified equation and linear stability . 98
4.3.4 Second-order schemes . 100

4.4 Numerical results . 102
4.4.1 Second-order accuracy . 102

CONTENTS iv

4.4.2 C-property . 103
4.4.3 Applications to the one-layer shallow water system 105

4.4.3.1 Circular dam-break . 105
4.4.3.2 Non-linear breaking waves . 108

4.4.4 Applications to the two-layer shallow water system 110
4.4.4.1 Internal circular dam-break . 110
4.4.4.2 Evolution to a complex state . 112

5 Efficient GPU implementation 116
5.1 Rewriting of the numerical schemes . 117

5.1.1 Improving efficiency of AVM schemes . 120
5.2 Parallelism sources . 122

5.2.1 Vertex-based calculations . 123
5.2.2 Edge-based calculations . 126
5.2.3 Volume-based calculations . 127

5.3 CUDA implementation . 129
5.4 Experimental results . 131

6 Conclusions and future work 135
6.1 Conclusions . 135
6.2 Future work . 137

A PVM-Chebyshev and RVM-Newman coefficients 138

B Full algorithm for the 2D HLL Riemann solver 140

C Full algorithm for 2D AVM-type formulation 151

D An efficient implementation of well-balanced PVM schemes 156

Bibliography 158

List of Figures

A Left: Sketch of the 2D Riemann solver based on projected 1D Riemann problems
through the edges. Right: Sketch of the truly 2D approach considering also the
vertex contributions from the 2D Riemann problems 4

1.1 Illustration of initial data for the Riemann problems (a) 1D Riemann problem:
two constant states separated by a discontinuity at x = 0. (b) 2D Riemann
problem: four constant states, with discontinuities along the edges of any two
states and in the vertex (x, y) = (0, 0). 16

1.2 (a) Sketch of a SRS with s waves. (b) Skecth of HLL Riemann solver. 21
1.3 Top: Comparison of Chebyshev polynomials τ8(x) and τ ε8 (x); Chebyshev

polynomials τ ε2p(x) for p = 2, 3, 4. Bottom: Comparison of Newman rational
functions R4(x) and Rε4(x); zoom near the origin of the Newman rational functions
Rεr(x) for r = 4, 8, 12. 33

1.4 Top: Internal polynomials pn(x) for n = 1, 2, 3, 4, and Padé rational approximants

r
[m/k]
1 (x) for m = k = 1, 2, 3, 4. Bottom: Padé approximants r

[1/1]
n (x) for n =

1, 2, 3, 4, and zoom near the origin. 34

3.1 Stencil used to build the numerical flux Fi+1/2,j 55
3.2 Left: Local stencil. Right: Structure of the solution of the Riemann problem. . . 55
3.3 Local view (left) and global view (right) of the four-waves model. 56
3.4 Structure of the solution of the 2D Riemann problem at a vertex. 57
3.5 Assembling of one- and two-dimensional fluxes at an edge. 59
3.6 Test 3.3.1. Comparison of several 1D×1D-2D AVM methods on a 100×100 mesh.

Diagonal cut along the main diagonal for the density variable. 66
3.7 Test 3.3.1. Solutions obtained with the Int-n 2D schemes, for n = 1, 2, 3, 4, 5.

Diagonal cut along the main diagonal for the density variable. 67
3.8 Test 3.3.1. Diagonal cut along the main diagonal for the density variable on

several meshes. Left: Int-3 2D. Right: Padé-[4/4] 2D. 67
3.9 Test 3.3.1. Error curves for several 1D×1D and 2D AVM methods. 68
3.10 Test 3.3.1 for MHD. Diagonal cut along the main diagonal for the B⊥ variable on

several meshes. Left: Int-3 2D. Right: Padé-[4/4] 2D. 69
3.11 Test 3.3.2. Density (left) and pressure (right) computed at time T = π on a

200× 200 mesh. From top to bottom: HLL 2D, Int-3 2D and Padé-[4/4] 2D. . . 71

LIST OF FIGURES vi

3.12 Test 3.3.2. Cuts along the main diagonal of the density at times t = 1, t = 1.5,
t = 2 and t = π. 72

3.13 Test 3.3.2. Comparison of the divergence cleaning technique of Section 2.1 with
the projection method using the Int-3 2D scheme. Cut along the main diagonal:
density (left) and pressure (right) computed at time T = π on a 100× 100 mesh. 73

3.14 Test 3.3.3. Density ρ (top left), pressure P (top right), Mach number |v|/a
(bottom left) and magnetic pressure |B|2/2 (bottom right) computed at time
T = 0.295. Results obtained with the Padé-[4/4] 2D scheme with 200× 200 cells. 75

3.15 Test 3.3.4. Contours at time T = 0.2 obtained with the Padé-[4/4] 2D scheme on
a 200× 200 mesh. Left: Bx. Right: By. 76

3.16 Test 3.3.4. Cuts at x = 0.93 and T = 0.2. Solid line: reference solution. Dots:
Padé-[4/4] 2D. Left: Bx. Right: vx. 76

3.17 Test 3.3.5. Solution obtained with initial magnetic field (Bx, By, Bz) = (0, 0, 0).
Density ρ (top left), pressure P (top right), kinetic energy (bottom left) and
density along y = 0.5 (bottom right) computed at time T = 3. 77

3.18 Test 3.3.5. Solution obtained with initial magnetic field (Bx, By, Bz) = (0, 5/
√
π, 0).

Density ρ (top left), pressure P (top right), magnetic pressure (bottom left) and
kinetic energy (bottom right) computed at time T = 3. 78

3.19 Test 3.3.5. Solution obtained with initial magnetic field (Bx, By, Bz) = (0, 50/
√
π, 0).

Density ρ (top left), pressure P (top right), magnetic pressure (bottom left) and
kinetic energy (bottom right) computed at time T = 1.05. 79

4.1 Structure of the solution of the 2D Riemann problem for the nonconservative
system (5.1.1). Subsonic case. 82

4.2 Contributions in the numerical scheme (4.1.9). 85
4.3 Structure of the solution of the 2D Riemann problem for system (4.2.1). Subsonic

case. 88
4.4 Structure of the solution of the 2D Riemann problem for system (4.2.1).

Supersonic case in the y-direction. 92
4.5 Diagonal advection. Left: 1D×1D scheme. Center: 2D scheme. Right: exact

solution. 99
4.6 Test 4.4.2. Cut along the main diagonal of the steady state solution. 105
4.7 Test 4.4.3.1. Diagonal cuts of the free surface at different times, computed with

the 2D HLL Riemann solver on a 200× 200 mesh. 106
4.8 Test 4.4.3.1. Contour plots of the free surface at different times, obtained with

the 2D HLL Riemann solver on a 200× 200 mesh. 107
4.9 Test 4.4.3.1. Cuts of the free surface along the x-axis and in the main diagonal

direction, using an 80 × 80 coarse mesh (left top: HLL 1D×1D; right top: HLL
2D), and a 400× 400 refined mesh (left down: HLL 1D×1D; right down: HLL 2D).108

4.10 Test 4.4.3.2. Cuts of the free surface along the main diagonal at different times.
Comparison between the 1D×1D and the 2D HLL Riemann solvers. 109

4.11 Test 4.4.3.2 Left: Potential vorticity contour plot at time T = 2. Right: L1 and
L∞ norms until time T = 25. 110

LIST OF FIGURES vii

4.12 Test 4.4.4.1. Cuts along the main diagonal at different times, computed on a
200× 200 mesh grid. 111

4.13 Test 4.4.4.2. Cuts of the interface along the main diagonal at different times. . . 112
4.14 Test 4.4.4.2. Cuts of the interface along the x-axis at different times. 113
4.15 Test 4.4.4.2. Contour plots of the interface at times t = 4, 5, 6, 7, from top to

bottom. Left: 2D HLL; center: 2D PVM Chebyshev; right: 2D RVM Newman. . 115

5.1 (a) Global notation for the scheme (5.1.2)-(5.1.3). The twelve contributions to
the cell Cij are represented. (b) Local notation for a vertex. 118

5.2 Sketch of an arrangement of a 2D Grid of 7×7 blocks of 8×8 threads to a 50×50
meshgrid. The starting thread should be a multiple of the warp size. Figure
adapted from [143] . 122

5.3 (a) First-order CUDA solver. (b) Second-order CUDA solver. 124
5.4 Different vertex processing steps. 125
5.5 Storing in the vertex kernel and adding up in the volume kernel the vertex

contributions to the accumulator in the control volume Cij 126
5.6 Efficiency curves GPU time vs. L1-error. Comparison of the 2D AVM schemes

with respect to their 1D×1D counterparts. Case k = 1. 132
5.7 Efficiency curves GPU time vs. L1-error. Comparison of the 2D AVM schemes

with respect to their 1D×1D counterparts. Case k = 2. 133

B.1 Sketch of the jumps through the zero wave for the case SU < 0, SL < 0 < SR. . . 143
B.2 Sketch of the jumps through the zero wave for the case SL > 0, SD < 0 < SU . . . 143
B.3 Sketch of the jumps through the zero wave for the case SL > 0, SD > 0. 144
B.4 Sketch of the jumps through the zero wave for the case SL > 0, SU < 0. 145
B.5 Sketch of the jumps through the zero wave for the case SR < 0, SD < 0 < SU . . . 146
B.6 Sketch of the jumps through the zero wave for the case SR < 0, SD > 0. 147
B.7 Sketch of the jumps through the zero wave for the case SR < 0, SU < 0. 148

Introduction

Nowadays there is an increasing need of powerful methods to simulate Physics and
Engineering processes in practical situations. In particular, an important requirement is that
the numerical methods have to be robust and computationally efficient. Usually, mathematical
models focus on physical principles such as conservation laws in order to provide realistic
approximations of the processes observed in nature. The Finite Volume (FV) approach has
been extensively used in the framework of conservation laws, as it ensures the conservation of
physically relevant quantities appearing in the equations (see, e.g., [126, 127, 131, 136, 190,
198, 202]). Among the advantages of this approach are: the flexibility to handle complex
geometries (see, for instance, [34, 71, 81, 82, 133]), that often appear in practical applications;
the possibility to perform local refinements without affecting the rest of the computational mesh;
and the treatment of an increasing level of physical complexity, for instance when simulating
turbulent flows.

However, many models cannot be written in conservation form, and the appearance of
nonconservative terms increases the difficulty of designing accurate numerical schemes. A way
to solve this difficulty in the framework of finite volume schemes was proposed by Parés ([160]),
who introduced the so-called path-conservative schemes. Since then, this point of view has been
followed by several practitioners: see, e.g., [52, 38, 56, 48, 43, 59, 41, 47, 45, 49, 50, 51, 40, 55,
57, 62, 77, 79, 78, 80, 85, 84, 86, 75, 83, 102, 101, 117, 149, 152, 178]. Besides the development
of new schemes, the use of path-conservative schemes allowed to extend a number of well-known
methods in the literature to the nonconservative case: Lax-Friedrichs ([125]), Rusanov ([171]),
Lax-Wendroff ([129]), HLL ([115]), FORCE ([191]), MUSTA ([189, 193]), etc. Among them,
one of the most important is Roe’s method, whose definition is based on the concept of Roe
linearization introduced in [197]. Nowadays, nonconservative systems and path-conservative
schemes constitute a very active front of research with a wide range of applications: see, for
instance, [11, 46, 55, 92, 91, 90, 96, 142, 174, 175].

In his groundbreaking work [108], Godunov proposed the use of the exact solution of Riemann
problems in the numerical fluxes. However, the exact solution of a nonlinear Riemann problem
may be difficult to compute, which in general makes a hard task to design numerical methods
following Godunov’s idea. In this sense, Roe ([168]) proposed a Godunov-type scheme based on
locally approximate solutions of the Riemann problem at each interface, changing the original
Riemann problem by a linearized one. The drawback in this case is that the construction of a
Roe linealization needs the knowledge of the complete eigenstructure of the system. For many
hyperbolic systems of practical interest, such as the multilayer shallow water equations, the
spectral decomposition is unknown. Therefore, it is interesting to consider incomplete Riemann

Introduction 3

solvers, in which only part of the spectral information of the system under study is used. In
this direction, the Harten-Lax-van Leer (HLL) scheme ([115]) approximated the Riemann wave
fan using only the maximal wave speeds of propagation, at the cost of increasing the numerical
dissipation. Some variants as HLLC ([192, 24]) and HLLEM ([88, 89]) have less dissipation than
the original HLL scheme, but they need to add some extra spectral information.

In [41], the authors introduced a new class of path-conservative incomplete Riemann solvers,
the so-called PVM (Polynomial Viscosity Matrix) methods, in which the numerical viscosity
matrix is computed as a polynomial evaluation of a Roe matrix, if available, or the Jacobian
matrix of the flux at some average state, and only needs a bound of the maximal speed of
propagation. Many classical schemes as Rusanov, HLL, FORCE, Roe, etc. can be seen as PVM
methods: see [41] and the references therein. A natural extension using rational functions gave
rise to the class of RVM (Rational Viscosity Matrix) methods in [49]; in what follows, we will
use the term AVM (Approximate Viscosity Matrix) to refer to both PVM and RVM solvers.
As it was pointed out in [104], an appropriate choice of the underlying functions for an AVM
solver allows to control the amount of numerical diffusion of the resulting scheme, what makes
these methods particularly efficient when confronted with complex problems. Other extensions
of AVM solvers were proposed in [51], where Jacobian-free versions of some PVM solvers were
considered, and [50], where AVM approximations to the classical Osher-Solomon method were
proposed (see also [85]).

When solving multidimensional problems, it is a common practice to consider one-
dimensional projected Riemann solvers on the edges of the cells of the computational domain.
On the other hand, two-dimensional meshes consist of a collection of edges and vertices,
so naturally the Riemann solver applied in this mesh should involve locally one-dimensional
Riemann problems at the edges and two-dimensional Riemann problems at the vertices (see
Figure A). Accordingly, many researchers consider that within the projected approach, one-
dimensional solvers lose much of their efficiency, mainly due to the fact that they do not
take into account features of the solution propagating transversally to the cells boundaries.
Moreover, the directional biasing introduced by one-dimensional solvers produces a reduction
of the permissible Courant number when simulating multidimensional flows. For these reasons,
there has been many attempts in the literature to build genuinely multidimensional Riemann
solvers (see [1, 2, 3, 32, 97, 98, 105, 134, 140, 199, 206] and the references therein; see also
[169] for a more detailed account on multidimensional upwinding), although most of them are
specifically designed for the Euler or magnetohydrodynamics (MHD) equations. More general
multidimensional Riemann solvers have been proposed more recently, for instance, in [14, 15,
19, 16, 18, 21, 74, 104, 103, 178, 203].

In [206] Wendroff proposed a two-dimensional Riemann solver for the Euler equations
which extended the one-dimensional HLL method, in which the two-dimensional interactions
at cell corners were taken into account through the approximate solutions of two-dimensional
Riemann problems. However, a drawback of Wendroff’s solver is that it does not possess explicit
expressions allowing its direct implementation; also, high-order extensions of the solver do not
seem straighforward to build. Some years later, Balsara ([14]) modified Wendroff’s formulation
and proposed a two-dimensional HLL solver for the Euler and MHD equations on structured
meshes, which included closed forms of the fluxes and allowed for an easier high-order extension.
A more robust version of Balsara’s solver was later proposed in [15], and an extension to

Introduction 4

unstructured meshes was presented in [19]. Another interesting reformulation of Wendroff’s
approach has been recently proposed in [203]. In recent years, a new class of multidimensional
Riemann solvers with self-similar internal structure has been recently introduced in [16, 18, 21].

Cij Cij

Figure A: Left: Sketch of the 2D Riemann solver based on projected 1D Riemann problems through
the edges. Right: Sketch of the truly 2D approach considering also the vertex contributions from the 2D
Riemann problems

Following the spirit of the previous works, the first part of this thesis focuses on a new class
of genuinely two-dimensional incomplete Riemann solvers based on AVM-type solvers for general
conservation laws introduced in [104]. These solvers can be viewed as a natural extension of
Balsara’s HLL method in [14], where the flux at edges is written as a suitable linear convex
combination of one- and two-dimensional AVM fluxes. The two-dimensional contributions stem
from the approximate solution of a two-dimensional Riemann problem at each vertex. The main
idea is to reinterpret Balsara’s two-dimensional HLL scheme as a two-dimensional PVM scheme
in a suitable splitting way, making explicit the viscosity matrices in the coordinate directions.
In other words, the two-dimensional HLL numerical fluxes are rewritten as a combination of
one-dimensional PVM-HLL numerical fluxes. Once the one-dimensional HLL viscosity matrices
have been identified, it is possible to build more precise two-dimensional AVM schemes.

The proposed solvers are applicable to general conservation laws, although in this thesis
applications to MHD have been considered for the conservative case. There are several reasons
for this choice. The first one is that the original work of Balsara ([14]) dealt with the MHD
equations; thus, it seemed natural to analize if our schemes also worked well within this
setting. The second reason is related to the AVM philosophy: we would like to show that
this kind of approach works well with very complex systems (as it was previously done with
the one-dimensional PVM and RVM schemes in [41, 49, 50]). Finally, another reason was to
introduce a novel divergence cleaning technique, based on the nonconservative writing of the
MHD equations. As it is well-known, a difficulty that appears in the numerical resolution of
MHD is the divergence-free constraint on the magnetic field, that has to be imposed in order
to ensure the accuracy and stability of the numerical schemes. Several divergence cleaning

Introduction 5

techniques have been proposed in the literature: see, for instance, [6, 22, 20, 30, 68, 69, 76,
93, 100, 99, 146, 147, 148, 163, 164, 194, 196, 211, 215]. The technique proposed in this work
consists in using the MHD system augmented by the Godunov-Powell source terms within the
path-conservative framework, with a subtle modification of the numerical fluxes accordingly to
[149]. Numerical experiments show that our technique gives comparable results as the standard
projection method ([30]) with regard to precision, but with a smaller computational cost.

The second part of this thesis focuses on the construction of a second-order extension of the
genuinely two-dimensional AVM-type Riemann solvers to the case of general nonconservative
hyperbolic systems. The proposed schemes are applied to the one-layer and two-layer shallow
water systems including depth variations, in which the source term due to the bottom topography
introduces an additional difficulty. An elegant way to overcome this difficulty consists in
reformulating the problem in nonconservative form, within the framework of path-conservative
schemes. A general strategy for constructing genuinely multidimensional Riemann solvers within
this framework is presented. First of all, a simple two-dimensional nonconservative HLL scheme
is considered, which takes into account the rectangular four-waves model proposed in [14], where
only the maximal wave speeds in each direction are considered. The two-dimensional features
at the vertices of the computational mesh are taking into account through the approximate
solution of two-dimensional problems having as initial states the states at the four neighboring
cells. These solutions roughly consist of a strong interaction region surrounded by intermediate
states arising at the one-dimensional problems at edges. In the considered model, it is assumed
that the strong interaction region do not interact directly with the four initial states, but only
with the intermediate states. This simplification allows us to rewrite the two-dimensional HLL
scheme in the PVM formulation, and thus it can be readily extended to a general two-dimensional
AVM-type scheme. The differences of fluxes in the conservative formulation now are changed
by fluctuations along the paths considered in the definition of the nonconservative products.

Many real-world problems demand a quick response to help in the decision making process,
as it is the case of natural hazards (see, for instance, oceanographic applications in [87]).
Modern Graphics Processor Units (GPUs) deliver hundreds of processors performing arithmetic
operations in parallell at an affordable cost. The GPU designing company NVIDIA has made
available the CUDA programming toolkit ([156]), along with a support to the C programming
language, in order that the programmer does not need to deal with low level language
complexities. Many CUDA solvers have been presented in the literature: see, for example,
[7, 9, 10, 11, 8, 23, 33, 54, 92, 101, 124, 142, 143, 159, 174, 173, 208, 209]. Our two-dimensional
numerical schemes present a high potential for data parallelization, which makes them well-suited
to be implemented in a parallel code. We present here an efficient GPU implementation of the
proposed two-dimensional schemes, which can be applied to general nonconservative hyperbolic
systems.

Outline of the thesis

The outline of this dissertation is the following:

• In Chapter 1, the theoretical background required for the designing of the proposed two-
dimensional solvers, for both the conservative and the nonconservative cases, is stated.

Introduction 6

Concerning conservation laws and finite volume approximations, the main theoretical
results are given. Nonconservative systems and path-conservative schemes are presented in
a self-contained way. In particular, for the sake the completeness, a brief survey of AVM-
type solvers is provided, with special attention to both PVM-solvers based on Chebyshev
and internal polynomial approximations, and RVM-solvers based on Newman and Padé
rational functions. These are the AVM-solvers that have been used in the numerical
simulations presented in this thesis. Finally, a general framework to build high-order
extensions for path-conservative schemes is also provided.

• In Chapter 2, first an overview about MHD equations is given. Furthermore, a novel
technique to impose the divergence-free constraint is presented. Our method is based
on the nonconservative formulation of the MHD equations, where the divergence of the
magnetic field appears as a source term. This technique has been included into the two-
dimensional AVM solvers by means of the path-conservative framework with a slightly
modification on the numerical fluxes.

A brief review about the eigenstructure of the shallow water systems with bottom
topography is also presented. The presence of source terms introduces a numerical
difficulty related to the computation of steady or near steady solutions. The main results
over well-balanced schemes are explained, including the modified identity technique.

• In Chapter 3, the four-waves model considered by Balsara in [14] is reviewed, including
the detailed building of the two-dimensional HLL scheme for conservation laws. At each
edge of the control volume, the numerical fluxes are assembled as a suitable linear convex
combination of a one-dimensional contribution at the edge and two 2D contributions at
the vertices. Next, we present the reinterpretation of the 2D HLL scheme as a 2D PVM
scheme and the natural extension to a class of two-dimensional incomplete Riemann solvers
relying on the AVM framework. The performances of the proposed numerical schemes are
put to the test with several numerical experiments. An additional and important feature
of our solvers is that they are theoretically stable up to a CFL number of unity.

• The form in which the two-dimensional AVM solvers have been defined in the previous
chapter opens the door to extend them to the case of hyperbolic systems in non-
conservative form, within the path-conservative ansatz. In particular, this allows to extend
the two-dimensional AVM solvers to the case of hyperbolic systems with coupling and
source terms. A possible way to do this is presented in Chapter 4, where the simplified four-
waves model of the previous chapter is considered, together with a strategy to build general
multidimensional Riemann solvers. The corresponding numerical schemes are shown to be
consistent with the nonconservative system for smooth solutions. The extension to general
AVM-type schemes is not straightforward, some algebra is needed to adjust the terms in a
suitable way to make visible the viscosity matrices. Then, the 2D HLL scheme is rewritten
in PVM form, splitting the vertex contributions in four contributions for each coordinate
direction. The following step consists in substituting the underlying HLL polynomial by
other suitable function which serves as basis of the corresponding AVM fluctuations. We
prove the consistency and linear L∞-stability of the resultant first-order schemes. Second-
order accuracy in space and time is obtained by means of a predictor-corrector MUSCL-

Introduction 7

Hancock procedure. Applications to one-layer and two-layer shallow water equations have
been considered. The schemes have been proven to be well-balanced for multilayer shallow
water systems. An additional advantage of the proposed two-dimensional solvers is that
they are stable up to a CFL number of unity, whereas the maximal CFL for schemes based
on dimensional splitting is usually 0.5.

• In Chapter 5, a simple and efficient GPU algorithm is presented. The two-dimensional
AVM schemes are rewritten in a suitable way in order to unify the implementations
of the conservative numerical scheme presented in Chapter 3 and the nonconservative
scheme presented in Chapter 4. Improvements on the implementations are proposed, in
order to avoid matrix multiplications when calculating the viscosity matrices associated
to polynomial/rational-based schemes. The main steps of the general CUDA algorithm
are listed. Strategies to avoid memory conflicts in vertex calculations are proposed.
Comparison of the genuinely 2D schemes and their 1D×1D counterparts in terms of
efficiency have been performed through numerical experiments.

• The thesis ends with some concluding remarks and future research lines in Chapter 6.

Publications

This thesis is based on the following publications:

• J.M. Gallardo, K.A. Schneider and M.J. Castro. On a class of two-dimensional incomplete
Riemann solvers. Journal of Computational Physics, 386 (2019), pp. 541-547. DOI:
https://doi.org/10.1016/j.jcp.2019.02.034.

• J.M. Gallardo, K.A. Schneider and M.J. Castro. On a class of genuinely 2D incomplete
Riemann solvers for hyperbolic systems. Computational and Mathematical Methods,
(2019). DOI: https://doi.org/10.1002/cmm4.1074.

• K.A. Schneider, J.M. Gallardo, D.S. Balsara, B. Nkonga and C. Parés. Multidimensional
approximate Riemann solvers for hyperbolic nonconservative systems. Applications to
shallow water systems. Journal of Computational Physics. In preparation (2020).

• K.A. Schneider and J.M. Gallardo. Efficient GPU implementation for high-order
multidimensional incomplete Riemann solvers for hyperbolic nonconservative systems.
Applications to shallow water systems with topography and dry areas. In preparation
(2020).

https://doi.org/10.1016/j.jcp.2019.02.034
https://doi.org/10.1002/cmm4.1074

Introduction (in Spanish)

En la actualidad existe una creciente necesidad de desarrollar métodos numéricos potentes
para la simulación de procesos de la F́ısica y la Ingenieŕıa en situaciones prácticas. En particular,
un requerimiento importante es que los métodos numéricos sean robustos y computacionalmente
eficientes. Normalmente, los modelos matemáticos se basan en principios f́ısicos, tales como
leyes de conservación, para proporcionar aproximaciones realistas a los procesos observados en
la naturaleza. El método de volúmenes finitos (FV) ha sido ampliamente usado en el contexto
de leyes de conservación, ya que asegura la conservación de cantidades f́ısicamente relevantes que
aparecen en las ecuaciones (véanse, e. g., [126, 127, 131, 136, 190, 198, 202]). Entre las ventajas
de este método podemos destacar: la flexibilidad para tratar geometŕıas complejas (véanse, por
ejemplo, [34, 71, 81, 82, 133]), que aparecen a menudo en las aplicaciones prácticas; la posibilidad
de realizar refinamientos de malla locales sin afectar al resto del mallado computacional; y el
tratamiento de un nivel elevado de complejidad f́ısica, por ejemplo, al simular flujos turbulentos.

Sin embargo, muchos modelos no pueden escribirse en forma conservativa, y la aparición de
términos no conservativos incrementa la dificultad para diseñar esquemas numéricos precisos.
Una manera de solventar esta dificultad en el contexto de los esquemas de volúmenes finitos
fue propuesta por Parés ([160]), quien introdujo la noción de esquemas camino-conservativos.
Desde entonces, numerosos investigadores han adoptado este punto de vista: véanse, e. g., [52,
38, 56, 48, 43, 59, 41, 47, 45, 49, 50, 51, 40, 55, 57, 62, 77, 79, 78, 80, 85, 84, 86, 75, 83,
102, 101, 117, 149, 152, 178]. Además del desarrollo de nuevos esquemas, el uso de esquemas
camino-conservativos permite extender varios de los esquemas presentes en la literatura al caso
no conservativo: Lax-Friedrichs ([125]), Rusanov ([171]), Lax-Wendroff ([129]), HLL ([115]),
FORCE ([191]), MUSTA ([189, 193]) etc. Entre todos ellos, uno de los más importantes es el
método de Roe, cuya definición se basa en el concepto de linealización de Roe introducido en
[197]. Hoy en d́ıa, los sistemas no conservativos y los esquemas camino-conservativos constituyen
un frente de investigación muy activo, con un amplio rango de aplicaciones: véanse, por ejemplo,
[11, 46, 55, 92, 91, 90, 96, 142, 174, 175].

En su trabajo pionero [108], Godunov propuso el uso de la solución exacta de problemas de
Riemann en los flujos numéricos. Sin embargo, la solución exacta de un problema de Riemann no
lineal puede se dif́ıcil de determinar, lo que en general hace que el diseño de métodos numéricos
siguiendo las ideas de Godunov sea una dura tarea. En este sentido, Roe ([168]) propuso un
esquema de tipo Godunov basado en soluciones locales aproximadas del problema de Riemann en
cada interfaz, sustituyendo el problema de Riemann original por uno linealizado. La desventaja
en este caso es que para la construcción de una linealización de Roe es necesario conocer la
estructura espectral completa del sistema. Para muchos sistemas hiperbólicos de interés práctico,

Introduction 9

tales como las ecuaciones de aguas someras multicapa, no se conoce la descomposición espectral.
Por tanto, es interesante considerar resolvedores de Riemann incompletos, en los cuales solo
se utiliza parte de la información espectral del sistema bajo estudio. En esta dirección, el
esquema de Harten-Lax-van Leer (HLL) ([115]) aproxima la solución del problema de Riemann
usando tan solo las velocidades de propagación maximales, con la contrapartida de incrementar
la disipación numérica. Algunas variantes como HLLC ([192, 24]) and HLLEM ([88, 89]) tienen
menos disipación que el esquema HLL original, pero necesitan de alguna información espectral
adicional.

En [41] se introdujo una nueva clase de resolvedores de Riemann camino-conservativos
incompletos, los denominados métodos PVM (Polynomial Viscosity Matrix), en los cuales la
matriz de viscosidad numérica se calcula como una evaluación polinomial de la matriz de Roe,
si es conocida, o del jacobiano del flujo en un estado intermedio, y solo necesita una cota de
la máxima velocidad de propagación. Muchos esquemas clásicos como Rusanov, HLL, FORCE,
Roe, etc., pueden interpretarse como métodos PVM: see [41]. Una extensión natural utilizando
funciones racionales dio lugar a la clase de métodos RVM (Rational Viscosity Matrix) en [49];
a partir de ahora, usaremos el término AVM (Approximate Viscosity Matrix) para referirnos
a ambos tipos de resolvedores, PVM y RVM. Como se indicó en [104], una elección apropiada
de las funciones de base para un resolvedor AVM permite controlar la cantidad de difusión
numérica del esquema asociado, lo que hace que estos métodos sean particularmente eficientes a
la hora de resolver problemas complejos. Otras extensiones de los métodos AVM se propusieron
en [51], donde se propusieron esquemas PVM libres de jacobiano, y [50], donde se construyeron
aproximaciones del método clásico de Osher-Solomon (véase también [85]).

Cuando se resuelve un problema multidimensional, es usual considerar problemas de Riemann
unidimensionales proyectados sobre las aristas de las celdas del dominio computacional. Por
otro lado, los mallados bidimensionales consisten en una colección de aristas y vértices, por
lo que de forma natural una resolvedor de Riemann debeŕıa involucrar problemas de Riemann
unidimensionales en las aristas y problemas de Riemann bidimensionales en los vértices (véase la
figura A). De esta forma, diversos investigadores consideran que en los métodos proyectados los
resolvedores unidimensionales pierden mucha de su eficiencia, principalmente debido al hecho de
que no toman en cuenta las caracteŕısticas de la solución que se propagan transversalmente
a las fronteras de las celdas. Además, el sesgo direccional que introducen los resolvedores
unidimensionales produce una reducción del número de Courant permitido en la simulación
de flujos multidimensionales. Por estos motivos, ha habido diversos intentos en la literatura
para construir resolvedores de Riemann puramente multidimensionales (véanse [1, 2, 3, 32,
97, 98, 105, 134, 140, 199, 206]; véase también [169] para una discusión más detallada sobre
descentrado multidimensional), aunque la mayoŕıa de ellos están diseñados espećıficamente para
las ecuaciones de Euler o de la magnetohidrodinámica (MHD). Recientemente, se han propuesto
resolvedores de Riemann multidimensionales más generales, por ejemplo, en [14, 15, 19, 16, 18,
21, 74, 104, 103, 178, 203].

En [206], Wendroff propuso un resolvedor de Riemann bidimensional para las ecuaciones de
Euler, que extend́ıa el método HLL unidimensional y en el cual las interacciones bidimensionales
en los vértices de las celdas se teńıan en cuenta mediante las soluciones aproximadas de problemas
de Riemann bidimensionales. Sin embargo, un inconveniente del resolvedor de Wendroff es que
no dispone de expresiones expĺıcitas que permitan su implementación directa; además, no parece

Introduction 10

sencillo construir extensiones de alto orden. Algunos años después, Balsara ([14]) modificó la
formulación de Wendroff y propuso un resolvedor HLL bidimensional sobre mallas estructuradas
para las ecuaciones de Euler y de MHD, que inclúıa expresiones expĺıcitas para los flujos y
permit́ıa una extensión sencilla a alto orden. Una versión más robusta del resolvedor de Balsara
se propuso más adelante en [15], y una extensión a mallas no estructuradas se presentó en
[19]. Recientemente, se ha propuesto otra interesante reformulación del método de Wendroff en
[203]. Asimismo, una nueva clase de resolvedores de Riemann multidimensionales con estructura
interna autosimilar se ha introducido recientemente en [16, 18, 21].

Siguiendo la senda de los trabajos previamente comentados, la primera parte de esta tesis se
centra en una nueva clase de resolvedores de Riemann genuinamente bidimensionales, basados
en métodos de tipo AVM, que pueden aplicarse a leyes de conservación generales: véase [104].
Estos métodos pueden verse como extensiones naturales del método HLL de Balsara en [14],
donde el flujo en las aristas se escribe como una combinación lineal convexa adecuada de flujos
AVM unidimensionales y bidimensionales. Las contribuciones bidimensionales se generan a
partir de la solución aproximada de un problema de Riemann bidimensional en cada vértice.
La idea principal se basa en reinterpretar el esquema HLL bidimensional de Balsara como un
esquema PVM bidimensional, expresando de forma expĺıcita la matrices de viscosidad en las
direcciones principales. En otras palabras, los flujos HLL bidimensionales se reescriben como
una combinación de flujos unidimensionales PVM-HLL. Una vez que las matrices de viscosidad
HLL unidimensionales se han identificado, es posible definir esquema bidimensionales AVM más
precisos.

Los esquemas propuestos pueden aplicarse a leyes de conservación generales, aunque en
esta tesis hemos considerado, en el caso conservativo, aplicaciones a las ecuaciones de MHD.
Existen varias razones para esta elección. La primera es que el trabajo original de Balsara ([14])
trataba con las ecuaciones de MHD; de esta forma, parece natural analizar si nuestros esquemas
también funcionan bien en este contexto. El segundo motivo está relacionado con la filosof́ıa
AVM: queremos mostrar que este tipo de aproximaciones funciona bien para sistemas muy
complicados (como ya se hizo anteriormente para los esquemas PVM y RVM unidimensionales
en [41, 49, 50]). Finalmente, otra razón consiste en introducir una técnica novedosa para la
imposición de la condición de divergencia nula, basada en la escritura no conservativa de las
ecuaciones de MHD. Como es bien sabido, una dificultad que aparece en la resolución numérica
de las ecuaciones de MHD es la condición de divergencia nula del campo magnético, que tiene que
imponerse para asegurar la estabilidad y precisión de los esquemas numéricos. Se han propuesto
en la literatura diversas técnicas para la imposición de la divergencia: véanse, por ejemplo, [6, 22,
20, 30, 68, 69, 76, 93, 100, 99, 146, 147, 148, 163, 164, 194, 196, 211, 215]. La técnica propuesta
en nuestro trabajo consiste en utilizar el sistema MHD aumentado con los términos fuente de
Godunov-Powell, dentro del marco de los esquemas camino-conservativos, con la modificación
de los flujos numéricos propuesta en [149]. Los experimentos numéricos muestran que nuestra
técnica proporciona resultados comparables a los del método de proyección ([30]) en lo que
respecta a la precisión, pero con un menor coste computacional.

La segunda parte de esta tesis trata sobre la construcción de una extensión a segundo
orden de los resolvedores de Riemann puramente bidimensionales de tipo AVM, al caso de
sistemas hiperbólicos no conservativos generales. Los esquemas propuestos se han aplicado a las
ecuaciones de aguas someras de una y dos capas incluyendo variaciones en el fondo, en las cuales

Introduction 11

el término fuente debido a la topograf́ıa del fondo introduce una dificultad adicional. Una manera
elegante de superar esta dificultad consite en reformular el problema en forma no conservativa,
dentro del marco de los esquemas camino-conservativos. Se ha presentado una estrategia general
para la construcción de resolvedores de Riemann genuinamente bidimensionales en dicho marco.
En primer lugar, se ha considerado un esquema bidimensional simple de tipo HLL para el
caso no conservativo, que se basa en el modelo rectangular de cuatro ondas propuesto en [14],
donde únicamente se consideran las velocidades maximales en cada dirección. Las caracteŕısticas
bidimensionales en los vértices de la malla computacional se tienen en cuenta mediante la
solución aproximada de problemas de Riemann bidimensionales que tiene como estados iniciales
los estados de las cuatro celdas vecinas. Estas soluciones consisten básicamente de una región
de interacción fuerte, que se encuentra rodeada por los estados intermedios que surgen en los
problemas unidimensionales considerados en las aristas. En el modelo considerado, se supone que
la región de interacción fuerte no interactúa directamente con los cuatro estados iniciales, sino
tan solo con los estados intermedios. Esta simplificación nos permite reescribir el esquema HLL
bidimensional en formulación PVM, para de esta forma extenderlo naturalmente a un esquema
bidimensional de tipo AVM general. Las diferencias de flujos que aparećıan en la formulación
conservativa se han cambiado ahora por fluctuaciones a los largo de los caminos considerados
en la definición de los productos no conservativos.

Muchos problemas del mundo real demandan una respuesta rápida para ayudar en el proceso
de toma de decisiones, como es el caso de los desastres naturales (véase, por ejemplo, aplicaciones
de tipo oceanográfico en [87]). Los modernos procesadores gráficos (GPU) contienen cientos de
procesadores que realizan operaciones aritméticas en paralelo, a un coste asequible. La compañ́ıa
de diseño de GPU NVIDIA proporciona la herramienta de programación CUDA ([156]), junto
con soporte para el lenguaje de programación C, para que de esta forma el programador no tenga
necesidad de tratar con complejidades de lenguaje de bajo nivel. Se han propuesto en la literatura
numerosos códigos basados en CUDA: véanse, por ejemplo, [7, 9, 10, 11, 8, 23, 33, 54, 92, 101,
124, 142, 143, 159, 174, 173, 208, 209]. Los esquemas numéricos bidimensionales propuestos en
esta tesis presentan un alto potencial de paralelización, el cual los hace muy adecuados para
ser implementados en un código CUDA. Presentamos una implementación eficiente para GPU
de los esquemas propuestos, que puede aplicarse a la resolución de sistemas hiperbólicos no
conservativos generales.

Esquema de la memoria

El esquema de esta memoria es el siguiente:

• En el caṕıtulo 1 se establecen los antecedentes necesarios para el diseño de los resolvedores
bidimensionales propuestos, tanto para el caso conservativo como para el no conservativo.
Se recopilan los resultados teóricos fundamentales sobre leyes de conservación y aproxima-
ciones de volúmenes finitos. Asimismo, se presentan de forma autocontenida los resultados
necesarios sobre sistemas no conservativos y esquemas camino-conservativos. También se
hace un breve repaso sobre los esquemas de tipo AVM, prestando especial atención a los
resolvedores PVM basados en aproximaciones internas y de Chebyshev, y a los resolvedores
RVM basados en funciones racionales de tipo Newman y Padé. Estos son precisamente

Introduction 12

los resolvedores AVM que se han usado en las simulaciones numéricas presentadas en esta
tesis. Por último, se proporciona un marco general para la construcción de extensiones de
alto orden de los esquemas camino-conservativos bidimensionales.

• En el caṕıtulo 2, se hace en primer lugar un repaso sobre las ecuaciones de MHD. Además,
se presenta una técnica novedosa para la imposición de la condición de divergencia nula.
Nuestro método se basa en la formulación no conservativa de las ecuaciones de MHD,
donde la divergencia del campo magnético aparece como un término fuente. Esta técnica
se ha incluido en los resolvedores AVM bidimensionales mediante la teoŕıa de los esquemas
camino-conservativos, con una modificación adecuada de los flujos numéricos.

Se realiza asimismo un breve resumen sobre la estructura espectral de las ecuaciones de
aguas someras con topograf́ıa del fondo. La presencia de términos fuente introduce una
dificultad numérica adicional relacionada con el cálculo de las soluciones estacionarias o casi
estacionarias. Los resultados principales sobre bien equilibrado también se han explicado,
incluyendo la técnica de modificación de la identidad.

• El caṕıtulo 3 comienza con un resumen del modelo de cuatro ondas considerado por Balsara
in [14], incluyendo la construcción detallada del esquema HLL bidimensional para leyes de
conservación. En cada arista del volumen de control, los flujos numéricos se construyen
como una combinación lineal convexa adecuada de una contribución unidimensional en la
arista, y dos contribuciones bidimensionales en los vértices. A continuación, realizamos la
reinterpretación del esquema HLL 2D como un esquema PVM 2D, y la extensión natural
a una clase de resolvedores de Riemann bidimensionales incompletos basados en la técnica
AVM. El rendimiento de los esquemas numéricos propuestos se ha analizado mediante la
realización de diversos experimentos numéricos. Una caracteŕıstica adicional importante
de nuestros esquemas es que son estables, al menos teóricamente, hasta un número CFL
de uno.

• La forma en que se han definido los esquemas AVM bidimensionales en el caṕıtulo
precedente abre la posibilidad de extenderlos al caso de sistemas hiperbólicos en forma no
conservativa, usando para ello la teoŕıa de esquemas camino-conservativos. En particular,
esto permite extender los esquemas al caso de sistemas hiperbólicos con términos fuente
y de acoplamiento. Una posible forma de hacer esto se presenta en el caṕıtulo 4, basado
en el modelo simplificado de cuatro ondas introducido en el caṕıtulo anterior, junto con
una estrategia para construir resolvedores de Riemann multidimensionales generales. Se
muestra que los correspondientes esquemas numéricos son consistentes con el sistema no
conservativo en el caso de soluciones regulares. La extensión a esquemas generales de
tipo AVM no es inmediata, ya que es necesario realizar ajustar los términos de forma
adecuada para hacer visibles las matrices de viscosidad. Una vez hecho esto, el esquema
HLL 2D se reescribe en forma PVM, separando las contribuciones en los vértices en cuatro
contribuciones para cada dirección coordenada. El siguiente paso consiste en sustituir el
polinomio HLL subyacente por otra función adecuada, que sirva de base para construir las
correspondientes fluctuaciones AVM. Demostramos la consistencia y la estabilidad lineal
L∞ del esquema de primer orden resultante. Asimismo, mediante un método predictor-
corrector de tipo MUSCL-Hancock, se construye un esquema de segundo orden en tiempo

Introduction 13

y en espacio. Para probar la eficiencia de los esquemas, se han considerado aplicaciones
a las ecuaciones de aguas someras con una y dos capas. Los esquemas han demostrado
ser bien equilibrados para soluciones de agua en reposo. Una ventaja adicional de los
esquemas bidimensionales propuestos es que son estables para un número CFL de hasta la
unidad, mientras que el CFL maximal para esquemas definidos dimensión por dimensión
es usualmente 0.5.

• En el caṕıtulo 5 se introduce un algoritmo simple y eficiente para GPU. Los esquemas
AVM bidimensionales se reformulan de forma adecuada para unificar las implementaciones
del método numérico para el caso conservativo considerado en el caṕıtulo 3, y las del
esquema para el caso no conservativo definido en el caṕıtulo 4. Se proponen mejoras en
las implementaciones, con el fin de evitar productos de matrices a la hora de calcular las
matrices de viscosidad asociadas a los esquemas polinomiales y racionales. Se detallan
asimismo los principales pasos en la definición del algoritmo CUDA general, y se proponen
estrategias para evitar conflictos de memoria. Se comparan, por último, la eficiencia de
los esquemas genuinamente 2D con la de sus contrapartidas 1D×1D a través de una serie
de experimentos numéricos.

• La memoria concluye con algunos comentarios y una descripción de posibles ĺıneas de
trabajo futuras en el caṕıtulo 6.

Publicaciones

Esta tesis se basa en las siguientes publicaciones:

• J.M. Gallardo, K.A. Schneider and M.J. Castro. On a class of two-dimensional incomplete
Riemann solvers. Journal of Computational Physics 386, pp. 541-547 (2019). DOI:
https://doi.org/10.1016/j.jcp.2019.02.034.

• J.M. Gallardo, K.A. Schneider and M.J. Castro. On a class of genuinely 2D incomplete
Riemann solvers for hyperbolic systems. Computational and Mathematical Methods (2019).
DOI: https://doi.org/10.1002/cmm4.1074.

• K.A. Schneider, J.M. Gallardo, D.S. Balsara, B. Nkonga and C. Parés. Multidimensional
approximate Riemann solvers for hyperbolic nonconservative systems. Applications to
shallow water systems. Journal of Computational Physics. In preparation (2020).

• K.A. Schneider and J.M. Gallardo. Efficient GPU implementation for high-order
multidimensional incomplete Riemann solvers for hyperbolic nonconservative systems.
Applications to shallow water systems with topography and dry areas. In preparation
(2020).

https://doi.org/10.1016/j.jcp.2019.02.034
https://doi.org/10.1002/cmm4.1074

Chapter 1

Hyperbolic systems and finite
volume schemes

The purpose of this chapter is to provide a background about the theory of hyperbolic
systems, in both the conservative and nonconservative cases, in order to state the notations
and terminology that will be used in this memory. We describe a general methodology for
developing high order schemes for hyperbolic systems of conservation laws, or, more generally,
for hyperbolic systems with nonconservative products and/or source terms.

The aim of Sections 1.1 and 1.2 is to recall some of the main theoretical results about
conservation laws and finite volume (FV) methods, respectively. These sections are primarily
an overview; for further information about this topics, we refer to the classical books [107, 136,
190, 202, 214] and the references therein. In Section 1.3 we focus on nonconservative systems, in
which the main difficulty, from both the numerical and the theorical points of view, comes from
the presence of nonconservative products, that do not make sense as distributions when the data
present discontinuities. To formalize the notion of weak solutions for a nonconservative system
there are several mathematical theories: Volpert [204], Colombeau [61], Dal Maso-LeFloch-
Murat (DLM) [145]. We succinctly speak about the DLM theory, which conforms the basis of
the so-called path-conservative schemes, introduced by Parés in [160]; this will be discussed in
Section 1.4. We show that many well-known finite volume schemes for conservation laws can
be extended for nonconservative systems under the framework of path-conservative schemes. In
recent years, great progress have been made on path-conservative methods: see, for example,
Parés ([160]), Castro et al. ([52, 54, 56, 42, 48, 43, 59, 41, 60, 50, 55]), Gallardo et al. ([102,
101, 103]), Dumbser et al. ([81, 82, 77, 79, 78, 80, 85, 84, 86, 75, 83]), Morales de Luna et
al. ([149]), Muñoz et al. ([152]), among others. A review can bee seen in [57]. Chapter 4 of
this thesis, which is based on the paper [178], deals with nonconservative systems and path-
conservative schemes for genuinely 2D Riemann solvers. In Section 1.5 we present a review on
Approximate Viscosity Matrix (AVM) methods, which are a class of computationally efficient
first-order path-conservative schemes, which will play a key role in this dissertation. This class of
methods constitutes a family of incomplete Riemann solvers, in the sense that it is not necessary
to compute the full eigenstructure of the system, but only a bound of the maximal speed
of propagation. The numerical viscosity matrix is computed through polynomial or rational

1.1 Conservation laws 15

evaluations of a Roe matrix, if available, or the Jacobian matrix of the flux evaluated at some
average state. Among several AVM-type solvers, the results in this thesis are based on: a
family of iterative internal polynomial approximations given in [51], and a class of rational Padé
approximations introduced in [104] for MHD simulations (Chapter 3); a family of AVM methods
based on Chebyshev polynomials as well as on Newman rational functions, both given in [49],
for simulations in shallow water flows (Chapter 4). The high-order extension of the schemes is
introduced in Sections 1.6 and 1.7.

1.1 Conservation laws

Formally, a general multidimensional system of conservation laws takes the form

d

dt

∫

Ω
U(x, t) dx +

N∑

j=1

∫

∂Ω
Fj(U(x, t)) · ηxj dγ = 0, (1.1.1)

where the mapping

U : Ω× [0,∞) −→ O
(x1, . . . , xN , t) 7−→ (U1, . . . , Um)

is the set of conserved variables, considering that U = (U1, . . . , Um) is a m-component vector
and Ω ⊂ RN is a N -dimensional open set. O ⊂ Rm is called the phase space. We have
that x = (x1, . . . , xN) and η = (ηx, ηt)

T is an unitary vector pointing towards the boundary
∂Ω. The flux functions for each j-component are defined as Fj : O → Rm, in such a way that
F = (F1, . . . ,FN) ⊂ RN×m is the array of fluxes of the conserved quantities. In smooth regions,
(1.1.1) can be rewritten in differential form as

∂tU +∇ ·F(U) = 0. (1.1.2)

The integral form admit discontinuous solutions and a smoothness assumption is required
in order to ensure that the differential form holds true. As it was pointed out in [190], this is
a good reason, from the computational point of view, to consider finite volume approximations.
We can interpret (1.1.1) as: the time variation on the average of U on Ω is equal to the balance
of mass inflow and outflow throughout the boundary ∂Ω.

The Cauchy problem for (1.1.2) consists in finding a solution U such that

U(x, 0) = U0(x), x ∈ Ω, (1.1.3)

where U0 : Ω → O is a known function. To simplify the notation, let us rename the (x1, x2)
coordinates as (x, y). In particular, for N = 1 we can define the classical (one-dimensional) local
Riemann problem taking

U0(x) =

{
UL if x < 0,

UR if x > 0,

1.1 Conservation laws 16

0 x

U0(x)

UL

UR

(a) 1D Riemann problem

y

U 0(x)

x

0

0
ULD

URD

ULU

URU

(b) 2D Riemann problem

Figure 1.1: Illustration of initial data for the Riemann problems (a) 1D Riemann problem: two constant
states separated by a discontinuity at x = 0. (b) 2D Riemann problem: four constant states, with
discontinuities along the edges of any two states and in the vertex (x, y) = (0, 0).

with the discontinuity situated in x = 0, where UL (left) and UR (right) are two constant values
(see Figure 1.1(a)). For N = 2 we can define the two-dimensional local Riemann problem taking

U0(x) =





ULD if x < 0, y < 0,

URD if x > 0, y < 0,

ULU if x < 0, y > 0,

URU if x > 0, y > 0,

where we have discontinuities along the edges between any two neighboring states and in the
vertex point (x, y) = (0, 0). We assume here that ULD (left down), URD (right down), ULU (left
up) and URU (right up) are constant values (see Figure 1.1(b)).

Let us consider the Jacobian matrix of system (1.1.2), given by

A(U ,η) =
N∑

j=1

Aj(U)ηxj . (1.1.4)

The system (1.1.2) is called hyperbolic at the point (x, t) if the matrix (1.1.4) has m real

1.1 Conservation laws 17

eigenvalues
λ1(U ,η) ≤ . . . ≤ λm(U ,η),

and a corresponding set of m linearly independent right eigenvectors {R1(U ,η), . . . , Rm(U ,η)}.
The system is called strictly hyperbolic if the eigenvalues are all distinct. The matrix (1.1.4) is
said diagonalizable if it can be expressed as

A(U ,η) = R(U ,η)Λ(U ,η)R−1(U ,η),

where Λ is the diagonal matrix formed by the eigenvalues λj and R = (R1| . . . |Rm). The system
(1.1.2) is said diagonalizable if the matrix (1.1.4) is diagonalizable. A λj-characteristic field is
said to be linearly degenerate if

∇λj(U ,η) ·Rj(U ,η) = 0, ∀U ∈ O,

while it is genuinely nonlinear if

∇λj(U ,η) ·Rj(U ,η) 6= 0, ∀U ∈ O.

The admissibility of discontinuous solutions for (1.1.2) makes it necessary to define the concept
of weak solutions for the Cauchy problem (1.1.2)-(1.1.3).

Definition 1. [202] Let us assume that U ∈ L∞loc(Ω)m. A function U ∈ L∞loc(Ω × [0,∞))m is
called a weak solution of the Cauchy problem (1.1.2)-(1.1.3) if it verifies

∫ ∞

0

∫

Ω

{
U
∂φ

∂t
+

N∑

j=1

Fj(U)
∂φ

∂xj

}
dx dt+

∫

Ω
U0(x) · φ(x, 0) dx = 0, ∀φ ∈ C1

c (Ω× [0,∞))m.

(1.1.5)

In this way, any classical solution of (1.1.2)-(1.1.3) also satisfy (1.1.5). Conversely, any weak
solution satisfies (1.1.5) in the distributional sense.

Theorem 1. [202] Let U : Ω× [0,∞) → O be a piecewise C1 function. Then, U is a solution
of (1.1.2) in the sense of distributions on Ω× (0,∞) if and only if the following two conditions
hold:

(i) U is a classical solution of (1.1.2) in the domain where it is C1.

(ii) U verifies the jump condition

(U+ −U−)ηt +

N∑

j=1

(Fj(U
+)− Fj(U−))ηxj = 0 (1.1.6)

along any surface of discontinuity, where η = (ηx1 , . . . , ηxN , ηt) is the unit normal vector
to the surface, pointing from Ω+ to Ω−, which are the two open subsets of Ω which are
separated by the surface.

1.2 Finite volume approximation 18

The expression (1.1.6) is known as the Rankine-Hugoniot (RH) condition. If (ηx1 , . . . , ηxN) 6=
0, we can take η = (µ,−s), where s ∈ R and µ = (µ1, . . . , µN) is a unit vector in RN . So, (1.1.6)
is equivalent to

s[U] =

N∑

j=1

µj [Fj(U)]

where s is known as the shock velocity or velocity of propagation of the discontinuity. Here
[U] = U+ −U− and, analogously, [Fj(U)] = Fj(U

+)− Fj(U−).
In general, a weak solution of (1.1.2)-(1.1.3) is not necessarily unique, so we need to add

some extra requirements (ideally from physical principles) to have uniqueness. Notice that some
weak solutions can indeed be unphysical solutions, so physically admissible weak solutions, or
entropy solutions, are identified as solutions that satisfy certain additional entropy conditions,
related to certain entropy functions of the system. Let us consider a entropy pair (H,Q), i.e.,
a pair of regular functions H : Ω→ R, H convex, and Q = (Q1, . . . ,QN) : Ω→ RN such that

∇Qj(U) = ∇H(U) ·Aj(U), ∀U ∈ Ω, 1 ≤ j ≤ N
Definition 2. A weak solution of (1.1.2)-(1.1.3) is said to be an entropy solution if it verifies
the entropy condition

∂tH(U) +∇ ·Q(U) ≤ 0

in the sense of distributions, for all entropy pair (H,Q).

1.2 Finite volume approximation

In what follows, let us consider a two-dimensional system of conservation laws (N = 2 in
(1.1.2)) of the form

∂tU + ∂xF (U) + ∂yG(U) = 0, (1.2.1)

where U is defined on Ω× [0, T], being Ω ⊂ R2 a domain, and takes values on an open convex
set O ⊂ Rm; F = (F ,G) is a regular function from O to Rm × Rm. We are interested in the
numerical solution of (1.2.1) by means of finite volume methods on structured meshes.

The spatial domain is divided into rectangular cells Cij = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2] of
size ∆x×∆y and center (xi, yj), and the time step is denoted as tn = n∆t. Integrating (1.2.1)
on the control volume Cij × [tn, tn+1] yields

Un+1
ij = Un

ij −
∆t

∆x
(F n

i+1/2,j − F n
i−1/2,j)−

∆t

∆y
(Gn

i,j+1/2 −Gn
i,j−1/2), (1.2.2)

where the value Un
ij is an approximation of the average value of U over each cell Cij at time tn,

Un
ij ≈

1

|Cij |

∫

Cij

U(x, y, tn)dxdy, (1.2.3)

and the numerical fluxes F n
i+1/2,j andGn

i,j+1/2 are approximations of the mean value of the fluxes

along the straight lines x = xi+1/2 and y = yj+1/2, respectively, in the time interval [tn, tn+1]:

F n
i+1/2,j ≈

1

∆y∆t

∫ tn+1

tn

∫ yj+1/2

yj−1/2

F
(
U(xi+1/2, y, t)

)
dydt, (1.2.4)

1.2 Finite volume approximation 19

and

Gn
i,j+1/2 ≈

1

∆x∆t

∫ tn+1

tn

∫ xj+1/2

xj−1/2

G
(
U(x, yj+1/2, t)

)
dxdt. (1.2.5)

The next step is to define how to compute the numerical fluxes on the boundaries of the
cell, which may depend on the neighboring cell averages around Un

ij . Usual definitions of the
numerical fluxes are based on one-dimensional Riemann solvers in the coordinate directions,
which lead to expressions of the form Fi+1/2,j = F(Un

ij ,U
n
i+1,j) and Gn

i,j+1/2 = G(Uij ,Ui,j+1)

for certain flux functions F(U ,V) and G(U ,V), for arbitrary states U ,V . An essencial
requirement for a numerical flux is the consistency with the physical flux. In other words, if
U(x, t) ≡ U is constant in space, then U will not change as time evolves, and the integrals (1.2.4)
and (1.2.5) are reduced to F (U) and G(U), respectively, and U in (1.2.2) remains constant.
Therefore, the numerical fluxes are consistent if

F(U,U) = F (U), G(U,U) = G(U), ∀U ∈ O.

Usually, some additional requirement like Lipschitz continuity must be satisfied by the numerical
fluxes. An important convergence result is due a Lax and Wendroff [129], which states that if
the approximate solution converges to some function U(x, t) as the grid is refined, then this
function will in fact be a weak solution of the conservation law. As it was commented in the
previous section, the solution will not be necessarily unique and an additional entropy condition
is needed in order to obtain a physically correct solution.

A necessary condition that must be satisfied by any finite volume method is the CFL
condition [65], in order that the scheme be stable and convergent to the solution of the differential
equation when the meshgrid is refined. However, the CFL condition is not always sufficient
to guarantee stability. For instance, a simple one-directional unstable numerical flux can be
constructed taking into account a simple average of states

Fi+1/2,j = F(Un
ij ,U

n
i+1,j) =

1

2
[F (Unij) + F (Uni+1,j)]. (1.2.6)

Taking the remaining fluxes in this way and substituting them in (1.2.2), the resulting method
is generally unstable, no matter how small the timestep is taken for accomplishing the CFL
condition. A truncation of order s, the order of our numerical method, in Taylor’s expansions
gives us the exact PDE satisfied by the numerical scheme: this so-called modified equation
give us an indicator about the numerical diffusion of the scheme. For a first-order method, the
resultant modified equation is a advection-diffusion PDE, and this analysis give us the amount of
numerical diffusion of the method. Centered fluxes of the form (1.2.6) have a modified equation
with negative numerical diffusion and the resultant scheme is unconditionally unstable. An
additional upwinding or non-centered numerical diffusion, containing information about the
directions of propagation, is needed in order to control the spurious oscillations arising in the
finite volume scheme.

Assuming that the solution of (1.2.1) is a piecewise constant solution (1.2.3), we would have
a Riemann problem at each of the cell boundaries. The solutions of Riemann problems are self-
similar, which means that U is a function of ξ = x

t and ψ = y
t , referred to as similarity variables.

We denote as Rx(ξ;U ,V) the self-similar solution of the one-dimensional Riemann problem in

1.2 Finite volume approximation 20

the x-direction with initial data given by arbitrary states U and V ; similarly, Ry(ψ;U ,V)
denotes the solution of the one-dimensional Riemann problem in the vertical direction.

Godunov scheme

Since the pioneering work of Godunov [108], a number of robust and accurate numerical
schemes for hyperbolic conservation laws have been developed following his ideas. Godunov’s
approach consists in computing the numerical flux using the exact solution of the associated
local Riemann problems. For instance,

F n
i±1/2,j ≈

1

∆y∆t

∫ tn+1

tn

∫ yj+1/2

yj−1/2

F
(
Ũ(xi±1/2, y, t)

)
dydt

=
1

∆y∆t

∫ tn+1

tn

∫ yj+1/2

yj−1/2

F
(
Rx(0;Un

ij ,U
n
i±1,j)

)
dydt = F

(
Rx(0;Un

ij ,U
n
i±1,j)

)

being Ũ the exact solution of the associated Riemann problem, i.e.,

Ũ(x, t) =




Rx
(x−xi−1/2

t ;Un
ij ,U

n
i−1,j

)
if x ∈ [xi−1/2, xi),

Rx
(x−xi+1/2

t ;Un
ij ,U

n
i+1,j

)
if x ∈ (xi, xi+1/2].

The fluxes in the y-direction are constructed similarly. The method of Godunov provides an exact
Riemann solver. A necessary CFL condition, in order to prevent the interaction of solutions
from local Riemann problems, is given by

∆tmax
i

(
λ1
α(Un

ij ,U
n
i+1,j), λ

N
α (Un

ij ,U
n
i+1,j)

)
≤ 1

2
∆α,

where α = x, y represents the coordinate direction, while λ1
α and λNα denote the maximal left-

and right-going wave speeds associated to two neighbor states. The upwinding in Godunov’s
scheme is introduced through the solutions of the local Riemann problems.

Approximate Riemann solvers

When the exact solution of the local Riemann problem has not a simple form or it is
computationally expensive, approximated solutions could be considered instead. This approach
consists in changing the exact solution Ũ by an approximation Û , which is simpler to compute.
The resulting flux reads as

F n
i±1/2,j =

1

∆y∆t

∫ tn+1

tn

∫ yj+1/2

yj−1/2

F
(
Û(xi±1/2, y, t)

)
dydt,

and the resulting method is called an approximate Riemann solver. To fix ideas, suppose first
that the y-direction is frozen. Let us assume that, for every pair of states U0 and U1 in O, a
finite number s ≥ 1 of speeds

σ0 = −∞ < σ1 < . . . < σs < σs+1 = +∞ (1.2.7)

1.2 Finite volume approximation 21

x

t

σs

σs−1σ2

σ1

U0 ≡ U0

U1
. . .

Us−1

Us ≡ U1

(a)

x

t

σ2σ1

U0

U∗

U1

(b)

Figure 1.2: (a) Sketch of a SRS with s waves. (b) Skecth of HLL Riemann solver.

and s− 1 intermediate states

U0 = U0, U1, . . . ,Us−1, Us = U1, (1.2.8)

are chosen: see Figure 1.2(a). The function Rx(ξ;U0,U1) = Uk, for σk < ξ < σk+1, is said to be
an approximate Riemann solver for the one-dimensional conservation law ∂tU + ∂xF (U) = 0 it
is satifies

s−1∑

k=0

σk+1(Uk+1 − Uk) = F (U1)− F (U0). (1.2.9)

Formally, any approximate Riemann solver leads a numerical method of the form (1.2.2) where

F(U0,U1) = F (U1) +

∫ ∞

0

(
Rx(ξ;U0,U1)−U1

)
dξ = F (U0)−

∫ 0

−∞

(
Rx(ξ;U0,U1)− U0

)
dξ.

Similar definitions hold for the y-direction.
The easiest example comes for s = 2; in this case the approximate Riemann solver consists

of two waves of speeds σ1 and σ2 linking three constant states, U0, U1 and an intermediate one
U∗ (see Figure 1.2(b)). Therefore, the integrals in the numerical fluxes can be easily computed,
leading to the classical one-dimensional HLL scheme ([115]), where

Û := UHLL =





U0 if ξ ≤ σ1,

U∗ if σ1 ≤ ξ ≤ σ2,

U1 if ξ ≥ σ2,

(1.2.10)

U∗ =
σ2U1 − σ1U0 + F (U0)− F (U1)

σ2 − σ1
(1.2.11)

and

F̂ := FHLL(U0,U1) =
σ+

2 F (U0)− σ−1 F (U1) + σ−1 σ
+
2 (U1 −U0)

σ+
2 − σ−1

.

1.3 Nonconservative systems 22

where a+ = max(0, a) and a− = min(0, a). In [168], Roe proposed a Godunov-type scheme in
which the original local Riemann problem at each interface was changed by a linearized one.
More precisally, a Roe linearization is obtained when a local linear problem is considered in
(1.2.1), of the form

Ût + ÂxÛx + ÂyÛy = 0, (1.2.12)

where Âζ ≡ Âζ(U ,V), ζ = x, y, are appropriate matrices depending on neighboring states U

and V . It is assumed that each Âζ is diagonalizable, so it can be decomposed as Âζ = R̂ζΛ̂ζR̂
−1
ζ ,

where Λ̂ζ is the diagonal matrix containing the eigenvalues of Âζ , and the columns of R̂ζ contains

the associated eigenvectors. Since Û is the exact solution of the locally linearized Riemann
problem, the numerical fluxes are given by F̂ (U) = Âx(U) and Ĝ(U) = Ây(U). In the x-
direction we find that

Û := URoe = U0 +
∑

λ̂k≤0

α̂kêk = U1 −
∑

λ̂k≥0

α̂kêk

and
F̂ := FRoe(U0,U1) = F (U0) +

∑

λ̂k≤0

α̂kλ̂kêk = F (U1)−
∑

λ̂k≥0

α̂kλ̂kêk,

where λ̂k and êk are the eigenvalues and eigenvectors of Âx, and α̂k are the coordinates of
U1 −U0, i.e., the projections of the jumps that take place at the intermediate states expressed
in the basis of eigenvectors. The numerical flux of Roe can be written as

F̂ =
1

2
(F (U0) + F (U1))− 1

2

m∑

k=1

α̂k|λ̂k|êk =
1

2
(F (U0) + F (U1))− 1

2
|Âx(U0,U1)|(U1 −U0),

and similarly for the y-direction. The method of Roe can be seen as a particular case of
approximate Riemann solver with s = m (see Figure 1.2(a)). A known drawback of Roe’s method
is that it can produce non-entropy weak solutions in the presence of sonic points. Therefore,
some entropy-fix regularization is needed (for example, see [114]).

1.3 Nonconservative systems

Let us consider first-order quasi-linear PDE systems of the form

∂tU +∇ ·F(U) + B(U) · ∇U = S(U) · ∇σ, (1.3.1)

where the state U(x, t) is defined on Ω × [0, T], Ω being a domain of R2, and takes values on
an open convex subset O ⊂ Rm; F = (F ,G) and S = (Sx,Sy) are regular functions from O
to Rm × Rm; B = (Bx,By) is a regular matrix-valued function from O to Mm(R) ×Mm(R);
finally, σ(x) is a known function from Ω to R. Observe that system (1.3.1) includes as particular
cases systems of conservation laws (B = 0 and S = 0) and balance laws (B = 0).

Notice that system (1.3.1) can be rewritten as a nonconservative system of the form

∂tW + Ax(W)∂xW + Ay(W)∂yW = 0 (1.3.2)

1.3 Nonconservative systems 23

by adding the trivial equation ∂tσ = 0 to (1.3.1) and defining

W =

(
U
σ

)

and

Aζ(W) =

(
Aζ(U) −Sζ(U)

0 0

)
, (1.3.3)

where Aζ(U) = Jζ(U) + Bζ(U), being Jζ(U) the Jacobian matrix of the flux function F in
the ζ-direction, ζ = x, y. In what follows, it will be assumed that W (x, t) takes values on a
convex domain D ⊂ RM , with M = m + 1, and the components Aζ are smooth and locally
bounded matrix-valued functions from Ω toMM (R). It will be also supposed that system (1.3.2)
is strictly hyperbolic in the sense that, for each state W ∈ Ω, the matrix Aζ(W) has M real
distinct eigenvalues. Observe that 0 is always an eigenvalue of Aζ(W).

As it was done for systems of conservation laws, after integration of (1.3.2) on the control
volume Cij × [tn, tn+1] we find

∫

Cij

W (x, tn+1)dx =

∫

Cij

W (x, tn)dx

−
∫ tn+1

tn

∫

Cij

(Ax(W (x, t))∂xW (x, t) + Ay(W (x, t))∂yW (x, t)
)
dxdt. (1.3.4)

The difficulty here comes from the fact that it is necessary to give a sense to the last integral,
as it may be not well defined as a distribution when the solution contains discontinuities.

It is a known issue that system (1.3.2) is not properly defined within the framework of the
theory of distributions as long as W contains discontinuities. For that reason, as it is usual in
this context, we will follow the theory of dal Maso, LeFloch and Murat [145] to give a sense
to the nonconservative products as Borel measures. In particular, this definition relies on the
choice of a family of Lipschitz-continuous functions Φ: [0, 1]×Ω×Ω× S1 → Ω linking states in
the phase space, where S1 ⊂ R2 denotes the unit sphere. For a complete account on this topic,
we refer the reader to [43, 160] and the references therein. In particular, we will require that
the family of paths Φ verifies the following natural property:

∫ 1

0
Aζ

(
Φ0,2

)dΦ0,2

ds
ds =

∫ 1

0
Aζ

(
Φ0,1

)dΦ0,1

ds
ds+

∫ 1

0
Aζ

(
Φ1,2

)dΦ1,2

ds
ds, (1.3.5)

where
Φa,b ≡ Φa,b(s) = Φ(s;Wa,Wb;η) (1.3.6)

denotes the path joining Wa and Wb, for arbitrary states Wa,Wb ∈ Ω and η = (ηx, ηy) ∈ S1,
that is, Φa,b(0) = Wa and Φa,b(1) = Wb. In addition, Φ(s;Wa,Wb;η) = Φ(1− s;Wa,Wb;−η).
When no confuses arises, we can adopt the short notation for Φ in (1.3.6) and drop the
dependence on η. The most simple choice for Φ is given by the family of segments

Φ(s) = Wa + s(Wb −Wa), (1.3.7)

1.3 Nonconservative systems 24

which corresponds to the definition of nonconservative products proposed by Volpert in [204].
In fact, the family of paths allows us to give a sense to the last integral appearing in (1.3.4) for

piecewise smooth functions W . More precisely, given a bounded variation function W : Cij →
RM , the Borel measure associated with the nonconservative product, for a fixed time t, is defined
as

〈[Ax

(
W (·, t)

)
∂xW (·, t) + Ay

(
W (·, t)

)
∂yW (·, t)

]
Φ
, ϕ
〉

=∫

Cij

(Ax

(
W (x, t)

)
∂xW (x, t) + Ay

(
W (x, t)

)
∂yW (x, t)

)
ϕ(x)dx+

∑

`

(∫ 1

0
Ax

(
Φ(s;W−

` ,W
+
`)
)dΦ

ds
(s;W−

` ,W
+
`)ds

)
ϕ(x`(t))

+
∑

m

(∫ 1

0
Ay

(
Φ(s;W−

m ,W
+
m)
)dΦ

ds
(s;W−

m ,W
+
m)ds

)
ϕ(ym(t)),

(1.3.8)

where the first integral is the regular part, i.e., the derivatives that appears are the derivatives
in the classical sense; W±

` and W±
m represent, respectively, the limits of W at the boundaries

of the `-th and m-th discontinuities (remember that the set of discontinuities of a bounded
variation function is countable); and ϕ is a test function with compact support in Cij ([152]).
Observe that, in (1.3.8), the family of paths has been used to determine the weights of the Dirac
measures placed at the discontinuity of W . According to this definition, a weak solution can be
defined as a function satisying

∫

Cij

W (x, tn+1)dx =

∫

Cij

W (x, tn)dx

−
∫ tn+1

tn

〈[Ax

(
W (·, t)

)
∂xW (·, t) + Ay

(
W (·, t)

)
∂yW (·, t)

]
Φ
, 1Cij

〉
dt.

An important concept is that of Roe linearization ([197]) associated to a family of paths Φ,
which are functions Aζ,Φ : Ω× Ω→MM (R), ζ = x, y, verifying the following properties:

1. For each W0,W1 ∈ Ω, Aζ,Φ(W0,W1) has M distinct real eigenvalues.

2. Aζ,Φ(W ,W) = Aζ(W), for every W ∈ Ω.

3. For any W0,W1 ∈ Ω,

Aζ,Φ(W0,W1)(W1 −W0) =

∫ 1

0
Aζ

(
Φ0,1

)dΦ0,1

ds
ds.

For a given family of paths, we use the notation Φ = (ΦU ,Φσ)t to distinguish its components,
although when no confusion arises we will usually write Φ instead of ΦU for the sake of clarity.
Let us suppose that, given arbitrary states W0 = (U0, σ0)t and W1 = (U1, σ1)t, it is possible to
construct:

1.3 Nonconservative systems 25

i. Matrices Jζ(U0,U1) such that

Jx(U0,U1)(U1 −U0) = F (U1)− F (U0),

and
Jy(U0,U1)(U1 −U0) = G(U1)−G(U0).

ii. Matrices Bζ,Φ(U0,U1) satisfying

Bζ,Φ(U0,U1)(U1 −U0) =

∫ 1

0
Bζ

(
Φ0,1

)dΦ0,1

ds
ds (1.3.9)

for ζ = x, y.

iii. Vectors Sζ,Φ(U0,U1) verifying

Sζ,Φ(U0,U1)(σ1 − σ0) =

∫ 1

0
Sζ
(
Φ0,1

)dΦ0,1

ds
ds (1.3.10)

for ζ = x, y.

Then, the matrices

Aζ,Φ(W0,W1) =

(
Aζ,Φ(U0,U1) −Sζ,Φ(U0,U1)

0 0

)
, ζ = x, y, (1.3.11)

where Aζ,Φ(U0,U1) = Jζ(U0,U1) + Bζ,Φ(U0,U1), constitute a Roe linearization for system
(1.3.1) (see [43]). In the following we will drop the dependence on Φ and, when no confusion
arises, also the dependence on the arguments.

Another fundamental property is the generalized Rankine-Hugoniot condition: across a
discontinuity with speed υ, we have that

∫ 1

0

(Aζ

(
Φ(s;W−,W+)

)dΦ

ds
(s;W−,W+)ds =

∫ 1

0
υ
dΦ

ds
(s;W−,W+)ds, (1.3.12)

where W− and W+ are the left and right limits of the solution. In the particular case of a
stationary discontinuity (υ = 0), using (1.3.3) the Rankine-Hugoniot condition would read as

∫ 1

0

(
Aζ

(
Φ(s;U−,U+)

)dΦU

ds
(s;U−,U+)− Sζ

(
Φ(s;U−,U+)

)dΦσ

ds

)
ds = 0.

Considering now a Roe linearization, we deduce that

Aζ(U
−,U+)(U+ −U−) = Sζ(U

−,U+)(σ+ − σ−).

Finally, asssuming that the matrix Aζ(U
−,U+) is invertible, we get the following form of the

Rankine-Hugoniot condition:

U+ −U− = Aζ(U
−,U+)−1Sζ(U

−,U+)(σ+ − σ−), (1.3.13)

that will be thoroughly applied in Chapter 4. Similarly to theorem 1, a piecewise regular function
W is a weak solution of (1.3.2) if and only if the two following conditions are satisfied:

1.4 Path-conservative schemes 26

(i) W is a classical solution where it is smooth.

(ii) At every point of discontinuity W satisfies the jump condition (1.3.12).

Finally, as it happens for systems of conservation laws, in order to have uniqueness of solution
an entropy condition has to be considered.

1.4 Path-conservative schemes

We are interested in the numerical solution of system (1.3.2) by means of finite volume
methods on Cartesian meshes. Therefore, the spatial domain is divided into rectangular cells
Cij = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2] of size ∆x×∆y and center (xi, yj), and the time step is
denoted as tn = n∆t. As it is usual, W n

ij will denote the average of the solution at a given cell
Cij , at time tn. In particular, we are interested in path-conservative schemes ([160]) of the form

W n+1
ij = W n

ij −
∆t

∆x

(
D+
i−1/2,j +D−i+1/2,j

)
− ∆t

∆y

(
D+
i,j−1/2 +D−i,j+1/2

)
, (1.4.1)

where D±i+1/2,j = D±(W n
ij ,W

n
i+1,j), being D± continuous functions satisfying

D±(W ,W) = 0, ∀W ∈ Ω, (1.4.2)

D−(W n
ij ,W

n
i+1,j) +D+(W n

ij ,W
n
i+1,j) =

∫ 1

0
Aζ

(
Φij,(i+1)j

) d
ds

Φij,(i+1)jds, (1.4.3)

and

D−(W n
ij ,W

n
i,j+1) +D+(W n

ij ,W
n
i,j+1) =

∫ 1

0
Aζ

(
Φij,i(j+1)

) d
ds

Φij,i(j+1)ds. (1.4.4)

A remark about notation is in order. Eventually, we will only interested in the component U
of the solution; for the sake of simplicity, this component will be also denoted as D. Therefore,
the corresponding numerical scheme would read as

Un+1
ij = Un

ij −
∆t

∆x

(
D+
i−1/2,j +D−i+1/2,j

)
− ∆t

∆y

(
D+
i,j−1/2 +D−i,j+1/2

)
.

Remark 1. The definition of path-conservative scheme generalizes the notion of conservative
method for a system of conservation laws, in the following sense: if Ax(W) is the Jacobian of
the flux function F , then (1.4.3) reduces to

D−(W0,W1) +D+(W0,W1) = F (W1)− F (W0)

for every W0,W1 ∈ O. Therefore, we can define

F (W0,W1) = D−(W0,W1) + F (W0) (1.4.5)

or, equivalently,
F (W0,W1) = F (W1)−D+(W0,W1). (1.4.6)

1.4 Path-conservative schemes 27

It follows from (1.4.2) that F (W ,W) = F (W) and the numerical flux is consistent with the
physical flux. Furthermore, using (1.4.5)-(1.4.6) in (1.4.1), and following the same guidelines
for the y-direction, it can be easily checked that the numerical method can be rewritten as the
conservative method (1.2.2), with Fi+1/2,j = F (W n

ij ,W
n
i+1,j) and Gi,j+1/2 = G(W n

ij ,W
n
i,j+1).

Due to this, if a subsystem of (1.3.2) is a conservation law (as it happens with the mass equation
in the one- and two-layer shallow water system), a path-conservative method will be conservative
for this subsystem.

Choice of paths

As it was first pointed out in [56], path-conservative schemes may not converge to the
physically relevant weak solution when the meshgrid is refined, as is the case of the Euler
equations in primitive variables [5]. However, for several interesting applications as multi-layer
shallow water systems with bottom topography ([52, 43, 124, 55]), Baer-Nunziato model ([13, 80,
84, 154]), non-hydrostatic model for dispersive waves ([92, 91, 90]), Saint Venant-Exner system
([42]), turbidity currents ([150, 45]), Ripa model ([175]), two-modes shallow-water system ([39]),
Savage-Hutter models ([94]), Bingham shallow-water system ([95]), blood flow ([151]), shear
shallow water flows ([64]), amongs others, path-conservative schemes have been successfully
applied and their use seems to be justified. The goal of this paragraph is to shed some light on
this particular.

The difficulty relies in that the generalized jump relations (1.3.12) for the nonconservative
case depend not only on the states that are linked in phase space, but also on the path that
connects them. We consider a system of the form (1.3.2), which is the vanishing diffusion limit
of a parabolic regularization of the form

∂tW + Ax(W)∂xW + Ay(W)∂yW = ε
(
Θx∂xxW + Θy∂yyW

)
,

with an elliptic second-order viscous term, where Θζ are positive definite matrices. In this case,
the correct jump conditions should be consistent with the viscous profile, that are the traveling
waves of the regularized system (see [130]). The jump conditions obtained for this system depend
on the viscous profile (and consequently of the Θζ matrices) and, after a reparametrization,
the good choice for the path connecting neighboring states would be a viscous profile. The
consequence of this observation is that the limits of the numerical solutions satisfy a jump
condition which is related to the numerical viscosity of the method and not to the physically
relevant one.

The path conservative framework ([160]) allows to extend to nonconservative systems many
well-known conservative numerical methods in a consistent way. Moreover, they can be easily
extended to: high-order accuracy using reconstruction operators ([52]); central-upwind schemes
([60]); discontinuous Galerkin methods ([86, 83]); and ADER methods ([78]). The experience
shows that path-conservative schemes converge with the expected order of accuracy and are
stable with the same CFL condition as their conservative counterpart. Next, these schemes
have a importante advantage: they are automatically exactly well-balanced for water at rest
solutions, which is a very important condition for shallow water flows. Also it is worth noting
that the above mentioned failures happen for any numerical scheme in which the small scale
effects are not controlled ([132]), regardless if it is path-conservative or not. Only viscosity-free

1.4 Path-conservative schemes 28

schemes as the random-choice method of Glimm ([106, 190]) or front-tracking methods are able
to overcome this difficulty.

A promising direction to cover this drawback in the path-conservative framework are the
so-called entropy-stable path-conservative schemes, developed in [47, 116], in which the schemes
satisfy a discrete entropy inequality. A modified Roe-type path-conservative scheme has been
proposed in [63], which has been be able to control the problem for gas dynamic equations; see
also [62]. For shallow water-type models and the nonconservative version of MHD equations,
as well as many other systems found in practical situations, path-conservative schemes provide
excellent results. Further investigations on this topic are the subject of future research.

The computation of viscous profiles may be a very difficult task and there are no guarantee
of right convergence to the weak solution. Conversely, as it was demonstrated in [45], the
corresponding jump conditions of the simple choice of segments paths (1.3.7) give a third-order
approximation of the physically correct ones, which makes this methods computationally efficient
([7, 9, 11, 8, 54, 159]). In addition, these difficulties regarding convergence to the right weak
solutions are not always present. For instance, in systems of balance laws with continuous σ
there is no ambiguity in the definition of weak solutions, and all the numerical methods discussed
in the next sections converge to them.

Godunov scheme

In the same manner that conservation laws (see Section 1.2), Godunov’s method is based on
the exact solution of the associated local Riemann problem (1.3.2). Once a family of paths has
been chosen, it can be shown that the method can be written in the form (1.4.1) with

D(W n
ij ,W

n
i+1,j)

− =

∫ 1

0
Ax

(
Φ(s;W n

ij ,W
−
0)
)dΦ

ds
(s;W n

ij ,W
−
0)ds,

D(W n
ij ,W

n
i+1,j)

+ =

∫ 1

0
Ax

(
Φ(s;W+

0 ,W
n
i+1,j)

)dΦ

ds
(s;W+

0 ,W
n
i+1,j)ds,

(1.4.7)

where
W±

0 = lim
ξ→0±

Rx
(
ξ;W n

ij ,W
n
i+1,j

)
≡W n,±

i+1/2,j ,

with similar definitions for the y-direction.

Approximate Riemann solvers

Let us consider the following definition:

Definition 3. [57] Let Φ be a family of paths in O. Let us suppose that, for every pair of states
U0 and U1 in O, a finite number s ≥ 1 of speeds

σ0 = −∞ < σ1 < . . . < σs < σs+1 = +∞ (1.4.8)

and s− 1 intermediate states

W0 = W0, W1, . . . ,Ws−1, Ws = W1, (1.4.9)

1.4 Path-conservative schemes 29

are chosen. The function R : R×O ×O → O given by

R(ξ;W0,W1) =Wk if σk < ξ < σk+1, (1.4.10)

is said to be a Φ-approximate Riemann solver for the one-dimensional nonconservative system
∂tW + Ax(W)∂xW = 0 it is satifies

s−1∑

k=0

σk+1(Wk+1 −Wk) =

∫ 1

0
Ax

(
Φ0,1

)dΦ0,1

ds
ds. (1.4.11)

A two-dimensional extension to 2D Riemann solvers based on projected one-dimensional
Riemann solvers in the coordinate directions is straightforward. Any Φ-approximate Riemann
solver for (1.3.2) leads to a numerical method which is path-conservative, where

D−(W0,W1) = −
∫ 0

−∞

(
Rx(ξ;W0,W1)−W0

)
dξ,

D+(W0,W1) = −
∫ ∞

0

(
Rx(ξ;W0,W1)−W1

)
dξ,

(1.4.12)

with similar definitions for the y-direction. Analogously to the conservative case, the easiest
case of Φ-approximate Riemann solver comes when s = 2, where we have the HLL Riemann
solver. The solution is very similar to the conservative case (see (1.2.10)-(1.2.11) and Figure
1.2(b)), where now in the star region it appears

W ∗ =
1

σ2 − σ1

(
σ2W1 − σ1W0 −

∫ 1

0
Ax

(
Φ0,1

)
∂sΦ0,1

)
.

The method of Roe is based on the Roe linearization discussed in Section 1.3. Once the
linearization is chosen, the corresponding Roe scheme can be written in the form (1.4.1) with

D−(W0,W1) = A−ζ (W0,W1)(W1 −W0),

D+(W0,W1) = A+
ζ (W0,W1)(W1 −W0),

where
A±ζ (W0,W1) = Rζ(W0,W1)Λ±ζ (W0,W1)R−1

ζ (W0,W1), ζ = x, y,

being Λ±ζ (W0,W1) the diagonal matrix in the ζ-direction whose coefficients are the positive/neg-
ative part of the eigenvalues of Aζ(W0,W1), λζ(W0,W1), and Rζ(W0,W1) is a N ×N matrix
whose columns are associated eigenvectors. The following identity holds:

A±ζ (W0,W1) =
1

2

(Aζ(W0,W1)± |Aζ(W0,W1)|
)
, (1.4.13)

where
|Aζ(W0,W1)| = Rζ(W0,W1)|Λζ(W0,W1)|R−1

ζ (W0,W1).

Here |Λζ(W0,W1)| is the diagonal matrix in the ζ-direction whose coefficients are the absolute
value of the eigenvalues of Aζ(W0,W1). As it happens for conservation laws, an entropy-fix
technique is needed in order to avoid non-entropy solutions in the vicinity of sonic points.

1.5 AVM-type solvers 30

1.5 AVM-type solvers

For the sake of completeness, we give in this section a brief survey on AVM solvers, for which
it will be enough to focus on one-dimensional systems. For clarity, we consider initially a system
of conservation laws

∂tU + ∂xF (U) = 0,

whose numerical solution by means of a finite volume method is of the form

Un+1
i = Un

i −
∆t

∆x
(Fi+1/2 − Fi−1/2),

with numerical flux given by

Fi+1/2 =
F (Ui) + F (Ui+1)

2
− 1

2
Qi+1/2(Ui+1 −Ui). (1.5.1)

Here Qi+1/2 denotes the numerical viscosity matrix, which determines the numerical diffusion of
the scheme. It is worth noticing that Roe’s method ([168]) can be written in the form (1.5.1) by
considering the viscosity matrix Qi+1/2 = |Ai+1/2|, being Ai+1/2 a Roe matrix for the system.
For nonconservative systems of the form (1.3.2), the idea is to replace (1.4.13) by

Â±ζ (W0,W1) =
1

2

(
Aζ(W0,W1)±Qζ(W0,W1)

)
,

where

Qζ(W0,W1) =

[
Qζ(W0,W1) Qζ(W0,W1)Aζ(W0,W1)−1Sζ(W0,W1)

0 0

]
. (1.5.2)

For one-dimensional nonconservative systems of the form

∂tU + A(U)∂xU = 0,

whose numerical solution by means of a finite volume method is of the form

Un+1
i = Un

i −
∆t

∆x
(D−i+1/2 +D+

i−1/2),

the numerical fluctuations are given by

D±i+1/2(Wi,Wi+1) ≡D±i+1/2(Ui, σi,Ui+1, σi+1) =

1

2

(
F (Ui+1)− F (Ui) + Bi+1/2(Ui+1 −Ui)− Si+1/2(σi+1 − σi)

)

± 1

2
Qi+1/2

(
Ui+1 −Ui −A−1

i+1/2Si+1/2(σi+1 − σi)
)
.

(1.5.3)

The idea of PVM (Polynomial Viscosity Matrix) solvers introduced in [41] (see also the
previous work by Degond et al. [70]) consists in approximating |Ai+1/2| by means of a suitable
polynomial evaluation of Ai+1/2. More precisely, let p(x) be a polynomial approximation of |x|

1.5 AVM-type solvers 31

in the interval [−1, 1], and let λi+1/2,max be the eigenvalue of Ai+1/2 with maximum modulus
(or an upper bound of it). Then the viscosity matrix of the PVM method associated to p(x) is
given by

Qi+1/2 = |λi+1/2,max|p(|λi+1/2,max|−1Ai+1/2). (1.5.4)

Notice that the best p(x) approaches |x|, the closer the behaviour of the associated PVM scheme
will be to that of Roe’s method, whose viscosity matrix is precisely |Ai+1/2|. A fundamental
issue is that the spectral decomposition of Ai+1/2 is not needed in the construction of a PVM
method, but only a bound on its spectral radius. This feature makes PVM methods greatly
efficient and applicable to systems in which the eigenstructure is not known or it is difficult to
obtain. In the cases in which a Roe matrix is not available or it is costly to compute, Ai+1/2 can
be taken as the Jacobian matrix of the system evaluated at some average state. Several well-
known schemes in the literature belong to the family of PVM methods: Lax-Friedrichs, Rusanov,
Lax-Wendroff, HLL, FORCE, GFORCE, MUSTA, Roe, etc. (see [41] and the references therein).
The numerical scheme introduced in [70] and the Krylov-Riemann solver introduced in [195] can
be viewed as particular cases of PVM schemes as well. We show some of these schemes written
in PVM form in Table (1.1).

Table 1.1: Coefficients of some solvers written in PVM form.

Scheme Polynomial Coefficients

Lax-Friedrichs, Rusanov
P0(x) = α0

α0 ∈ {SLF , SRus, SmodLF } where

and Local Lax-Friedrichs SLF = ∆x
∆t , SRus = maxj |λi+1/2

j |, SmodLF = δ∆x
∆t

Lax-Wendroff P2(x) = α2x
2 α2 =

∆t

∆x

HLL P1(x) = α0 + α1x
α0 =

λ
i+1/2
N |λi+1/2

1 | − λi+1/2
1 |λi+1/2

N |
λ
i+1/2
N − λi+1/2

1

α1 =
|λi+1/2
N | − |λi+1/2

1 |
λ
i+1/2
N − λi+1/2

1

FORCE P2(x) = α0 + α2x
2 α0 =

∆x

2∆t
, α2 =

∆t

2∆x

It is known that rational functions may provide much more precise approximations to |x| than
polynomials. The RVM methods introduced in [49] take advantage of this fact, following the
PVM idea but using rational functions as basis instead of polynomials. In what follows we will
encompass both kind of solvers, PVM and RVM, under the common term AVM (Approximate
Viscosity Matrix) solvers. AVM solvers have also been used in [50] to construct efficient versions
of the Osher-Solomon method, following the ideas in [85]. Recently, in [51] some types of AVM
solvers have been implemented in Jacobian-free form; this is particularly interesting when solving
complex systems as, for example, relativistic MHD.

Finally, we must remark that the stability of an AVM scheme strongly depends on the
properties of the underlying function f(x). In particular, it must verify the stability condition

|x| ≤ f(x) ≤ 1, ∀x ∈ [−1, 1]. (1.5.5)

1.5 AVM-type solvers 32

With respect to the choice of solvers, in [49] the authors proposed a family of PVM methods
based on Chebyshev polynomials, which provide optimal approximations to the absolute value
function, and could also be implemented in Jacobian-free form. In the same paper, RVM solvers
based on Newman rational functions [153] where found to be the more efficient choice: they
provided similar results as Roe’s method for complex problems in MHD and multilayer shallow
water systems, but with a much smaller computational cost. Despite their efficiency, a drawback
of Chebyshev and Newman AVM solvers is that they do not satisfy the stability condition
(1.5.5) strictly, so a slight modification has to be performed which may perturb the computation
of the external speeds of propagation. On the other hand, in [51] a new family of internal
polynomial approximations to |x| verifying (1.5.5) was proposed. Most recently, in [104] a class
of rational Padé approximations was considered, based on approximations of the sign matrix
function ([119]), which also satisfy (1.5.5). For the sake of completeness, we briefly describe
them in what follows.

The following optimal uniform approximation to |x| in [−1, 1] holds:

|x| = 2

π
+

∞∑

k=1

4

π

(−1)k+1

(2k − 1)(2k + 1)
T2k(x), x ∈ [−1, 1], (1.5.6)

where the Chebyshev polynomials of even degree T2k(x) are recursively defined as

T0(x) = 1, T2(x) = 2x2 − 1, T2k(x) = 2T2(x)T2k−2(x)− T2k−4(x).

Then, we can consider the following approximations to |x|, obtained by truncation of (1.5.6):

τ2p(x) =
2

π
+

p∑

k=1

4

π

(−1)k+1

(2k − 1)(2k + 1)
T2k(x), x ∈ [−1, 1].

Then, the viscosity matrix of a PVM method based on a Chebyshev approximation is defined
as

Qi+1/2 = |λi+1/2,max|τ2p

(
|λi+1/2,max|−1Ai+1/2

)
≈ |Ai+1/2|.

Notice that τ2p(x) do not satisfy the stability condition (1.5.5) strictly. This drawback can be
avoided by using τ ε2p(x) = τ2p(x) + ε with

ε = max{ |τ2p(x
∗)− |x∗|| : τ ′2p(x∗) = 1, x∗ ∈ [0, 1]}. (1.5.7)

Figure 1.3 (top left) shows a comparison between the polynomials τ8(x) and τ ε8 (x). Also, Figure
1.3 (top right) shows the polynomials τ ε2p(x) for p = 2, 3, 4.

The Newman rational function ([153]) associated to a set of nodes X = {0 < x1 < . . . <
xr ≤ 1} defined in (0, 1], is given by

Rr(x) = x
p(x)− p(−x)

p(x) + p(−x)
, (1.5.8)

where

p(x) =

r∏

k=1

(x+ xk), r ≥ 4.

1.5 AVM-type solvers 33

The function (1.5.8) interpolates |x| at the points {−xr, . . . ,−x1, 0, x1, . . . , xr} (see [49] for
more details). Similarly to the Chebyshev polynomials, the stability condition (1.5.5) is not
fully satisfied, so a modification Rεr = Rr(x) + ε is required, with ε computed as in (1.5.7).
Figure 1.3 (bottom left) shows a comparison between R4(x) and Rε4(x). Also, Figure 1.3 (down
right) shows a zoom in [−0.1, 0.1] (outside of this interval the difference is not noticiable) of the
Newman rational approximation for r = 4, 8, 12.

Figure 1.3: Top: Comparison of Chebyshev polynomials τ8(x) and τε8 (x); Chebyshev polynomials τε2p(x)
for p = 2, 3, 4. Bottom: Comparison of Newman rational functions R4(x) and Rε4(x); zoom near the origin
of the Newman rational functions Rεr(x) for r = 4, 8, 12.

In order to ease the implementation of the corresponding schemes, in Appendix A are shown
the coefficients for some approximations based on Chebyshev polynomials and Newman rational
functions.

The internal polynomial approximations are recursively defined as

p0(x) ≡ 1,

pn+1(x) =
1

2

(
2pn(x)− pn(x)2 + x2

)
, n = 0, 1, 2, . . .

The following straightforward properties hold:

1. pn(x) is even and of degree 2n.

1.5 AVM-type solvers 34

2. |x| < pn(x) < 1 for x ∈ (−1, 1), and pn(±1) = 1.

3. p′n(1) = 1 and p′n(−1) = −1.

4. min−1≤x≤1 pn(x) = pn(0) > 0.

5. The sequence {pn(x)}n∈N converges uniformly to |x|.

Regarding efficiency issues, we have found that a direct implementation of pn(x) is a better
option than using its recursive form. In Table 1.2 are given the coefficients of the polynomials

pn(x) = α0x
2n + α1x

2n−1
+ · · ·αn−1x

2 + αn,

for n = 1, 2, 3, 4. Figure 1.4 (top left) shows the polynomials pn(x), for n = 1, 2, 3, 4.

Figure 1.4: Top: Internal polynomials pn(x) for n = 1, 2, 3, 4, and Padé rational approximants r
[m/k]
1 (x)

for m = k = 1, 2, 3, 4. Bottom: Padé approximants r
[1/1]
n (x) for n = 1, 2, 3, 4, and zoom near the origin.

1.5 AVM-type solvers 35

Table 1.2: Coefficients of the internal approximations pn(x), for n = 1, 2, 3, 4.

n α0 α1 α2 α3 α4 α5 α6 α7 α8

1 1
2

1
2

2 −1
8

3
4

3
8

3 − 1
128

3
32 −23

64
31
32

39
128

4 − 1
32768

3
4096 − 59

8192
169
4096 − 2635

16384
1693
4096 −5891

8192
4807
4096

8463
32768

On the other hand, for given integers k,m ≥ 0, we consider the polynomials

Pkm(ξ) =

k∑

n=0

(1
2)n(1

2 −m)m(n− k −m)m

n!(−k −m)m(n+ 1
2 −m)m

ξn

and

Qkm(ξ) =

m∑

n=0

(−m)n(−1
2 − k)n

n!(−k −m)n
ξn,

where we have used the notation (a)n = a(a+ 1) . . . (a+ n− 1) and (a)0 = 1. Then, we follow
[119] to build a sequence of Padé approximations of the form

x0 = 1,

xn+1 = xn
Qkm(1− x2/x2

n)

Pkm(1− x2/x2
n)
, n = 0, 1, 2, . . .

which converges to |x|, for any given x ∈ [−1, 1]. Thus, the Padé approximants of order [m/k]
are defined recursively as

r
[m/k]
0 (x) ≡ 1,

r
[m/k]
n+1 (x) = rn(x)

Qkm(1− x2/rn(x)2)

Pkm(1− x2/rn(x)2))
, n = 0, 1, 2, . . .

(the superscript [m/k] will be dropped unless necessary). It is not difficult to prove that each
rn(x) is even and verifies the properties 2-5 listed before for pn(x). Figure 1.4 (top right) shows

the functions r
[m/k]
1 (x) for m = k = 1, 2, 3, 4.

For the ease of coding, we give in Table 1.3 the coefficients of the rational function rn+1(x)
written in the form

rn+1(x) = rn(x)
α0rn(x)2m + α1rn(x)2(m−1)x2 + · · ·+ αm−1rn(x)2x2(m−1) + αmx

2m

β0rn(x)2k + β1rn(x)2(k−1)x2 + · · ·+ βk−1rn(x)2x2(k−1) + βkx2k
,

for 0 ≤ k,m ≤ 4. For example, the family of Padé approximants of order [1/1] would be given
by

rn+1(x) = rn(x)
rn(x)2 + 3x2

3rn(x)2 + x2
, n = 0, 1, 2, . . .

1.6 High-order methods: general framework 36

while those of order [2/2] would be

rn+1(x) = rn(x)
rn(x)4 + 10rn(x)2x2 + 5x4

5rn(x)4 + 10rn(x)2x2 + x4
, n = 0, 1, 2, . . .

Figure 1.4 (bottom) depicts the approximants of order [1/1] for n = 1, 2, 3, 4, together with a
zoom near the origin to check the precision of the approximations.

Table 1.3: Coefficients of the rational function r1(x), for 0 ≤ k,m ≤ 4.

k = 0 k = 1 k = 2 k = 3 k = 4

m = 0 [1]
[1]

[−2]
[−3,1]

[8]
[15,−10,3]

[−16]
[−35,35,−21,−5]

[128]
[315,−420,378,−180,35]

m = 1 [1,1]
[2]

[1,3]
[3,1]

[4,20]
[15,10,−1]

[8,56]
[35,35,−7,1]

[64,576]
[315,420,−126,36,−5]

m = 2 [3,6,−1]
[8]

[1,6,1]
[4,4]

[1,10,5]
[5,10,1]

[6,84,70]
[35,105,21,−1]

[16,288,336]
[105,420,126,−12,1]

m = 3 [5,15,−5,1]
[16]

[5,45,15,−1]
[24,40]

[1,15,15,1]
[6,20,6]

[1,21,35,7]
[7,35,21,1]

[8,216,504,168]
[63,420,378,36,−1]

m = 4 [35,140,−70,28,−5]
[128]

[35,420,210,−28,3]
[192,448]

[7,140,210,28,−1]
[48,224,112]

[1,28,70,28,1]
[8,56,56,8]

[1,36,126,84,9]
[9,84,126,36,1]

Finally, we would like to remark that an additional advantage of the considered approxi-
mations τ ε2p(x), Rεr(x), pn(x) and rn(x) is that they provide an automatic entropy fix to handle
sonic flow, as none of them cross the origin: see [51, Sect. 4].

Remark 2. After extensive numerical investigation, our conclusion is that for relatively simple
problems it is sufficient to consider a simple AVM solver, as for example HLL or the one based
in the internal polynomial p1(x). However, when complex structures appear, the choice of more
precise AVM solvers is a determinant factor in terms of efficiency (see [49]). This is even true
when AVM solvers are used as building blocks in the design of high-order schemes, as it was
demonstrated in [50].

1.6 High-order methods: general framework

Following closely [57, 52, 43, 40], we describe the general framework to construct high-order
finite volume schemes for (1.3.2) based on reconstruction of states. The following notation will
be used for a given finite volume Cij : |Cij | represents its area; Nk is the set of indexes k such
that Ck is a neighbor of Cij ; Eij,k is the common edge of two neighboring cells Cij and Ck and
|Eij,k| is its lenght; ηij,k = (ηij,k,x, ηij,k,y) is the normal unit vector at the edge Eij,k pointing
towards the cell Ck. Denoting by τ the mesh, Nτx ×Nτy is the number of cells, where Nτα is the
number of gridpoints in the α-direction, α = x, y. We will assume that the reconstructions are

calculated as follows: given a family {Wij}
Nτx ,Nτy
i,j=1 of cell values, first an approximation function

is constructed at every cell Cij , based on the values at some cells close to Cij :

P tij(x) ≡ P tij(x; {Wi±l,j±m(t)}l,m∈Bij),

1.6 High-order methods: general framework 37

for some set of indexes Bij (the stencil). If, for instance, the reconstruction only depends on
the neighboring cells to Cij , then Bij = Nk ∪ {ij}. Moreover, for the 9-point stencil around the
Cij , we have k ∈ {i± 1, j ± 1}. These approximation functions are usually calculated by means
of an interpolation or approximation procedure. Once these functions have been constructed,
the reconstructions at γ ∈ Eij,k are defined as follows:

W−
ij,k(γ, t) = lim

x→γ
P tij(x), W+

ij,k(γ, t) = lim
x→γ

P tk(x). (1.6.1)

The reconstruction operator must satisfy the following properties:

(P1) It is conservative, i.e., the following equality holds for any cell Cij :

Wij =
1

|Cij |

∫

Cij

P tij(x)dx. (1.6.2)

(P2) If the operator is applied to the cell averages {Wij} for some smooth function W (x), then

W±
ij,k(γ, t) = W (γ, t) +O(∆xp), ∀ γ ∈ Eij,k,

and
W+

ij,k(γ, t)−W−
ij,k(γ, t) = O(∆xp+1), ∀ γ ∈ Eij,k,

where p denotes the order of the reconstruction operator.

(P3) It is of order q in the interior of the cells, i.e., if the operator is applied to a sequence
{Wij} for some smooth function W (x), then

P tij(x) = W (x, t) +O(∆xq), ∀x ∈ int(Cij). (1.6.3)

(P4) Under the assumption of the previuos property, the gradient of P tij provides an approxi-
mation of order m of the gradient of W :

∇P tij(x) = ∇W (x, t) +O(∆xm), ∀x ∈ int(Cij). (1.6.4)

Many examples of reconstruction operators satisfying (P1) and (P2) can be found in the
literature: ENO ([113]), WENO ([182, 184]), CWENO ([66]), PHM ([144, 179]), among others
(see also [77, 79, 81, 82, 101]). Once the first-order method and the spatial reconstruction
operator have been chosen, in order to evolve in time several methods can be used. For
instance, discretizing only in space leads to a system of ODE that can be solved using the
TVD Runge-Kutta methods introduced in [111, 112, 183]. Another options are the ADER
approach developed by Toro, Dumbser and Titarev ([188, 78]), and the Compact Approximate
Taylor (CAT) methods recently introduced in [36, 37]. In this dissertation we will employ the
predictor-corrector MUSCL-Hancock procedure ([200, 201]) to achieve second-order accuracy in
space and time.

1.6 High-order methods: general framework 38

For clarity, let us consider initially the conservative equation (1.2.1). Let W ij(t) denote the
cell average of a regular solution W of (1.2.1) over the cell Cij at time t. Integrating (1.2.1)
over the cell Cij , the following equation can be easily obtained for the cell averages:

W ij
′(t) = − 1

|Cij |

(∑

k∈Nk

∫

Eij,k

F ηij,k(W (γ, t))dγ

)
, (1.6.5)

where F η(·) = F (·)ηx +G(·)ηy. The first-order method and the reconstructions are now used
to approach the values of the fluxes at the edges:

Wij
′(t) = − 1

|Cij |
∑

k∈Nk

∫

Eij,k

F
(
W−

ij,k(γ, t),W
+
ij,k(γ, t),ηij,k

)
dγ, (1.6.6)

being Wij(t) the approximation to Wij(t) provided by the scheme and W±
ij,k(γ, t) the

reconstruction at γ ∈ Eij,k corresponding to the family {Wij(t) : i = 1, . . . , Nτx , j = 1, . . . , Nτy}.
It can be shown that (1.6.6) is an approximation of order p of (1.6.5). In practice, the integral
terms in (1.6.6) are approached by means of a numerical quadrature formula of order r ≥ p.
Applying the divergence theorem, we can rewritte (1.6.6) as

Wij
′(t) =− 1

|Cij |
∑

k∈Nk

∫

Eij,k

D−ij
(
W−

ij,k(γ, t),W
+
ij,k(γ, t),ηij,k

)
dγ

− 1

|Cij |

∫

Cij

(
Jx
(
P tij(x)

)∂P tij
∂x

(x) + Jy
(
P tij(x)

)∂P tij
∂y

(x)

)
dx,

(1.6.7)

where (see Remark 1)

D−ij
(
W−

ij,k(γ, t),W
+
ij,k(γ, t),ηij,k

)
= F

(
W−

ij,k(γ, t),W
+
ij,k(γ, t),ηij,k

)
− Fηij,k

(
W−

ij,k(γ, t)
)
.

According to [160], by replacing Jζ by Aζ , ζ = x, y, and D−ij by the fluctuation of a path-
conservative numerical method, the expression (1.6.7) can be extended for a nonconservative
system as

Wij
′(t) =− 1

|Cij |
∑

k∈Nk

∫

Eij,k

D−Φ
(
W−

ij,k(γ, t),W
+
ij,k(γ, t),ηij,k

)
dγ

− 1

|Cij |

∫

Cij

(
Ax

(
P tij(x)

)∂P tij
∂x

(x) +Ay

(
P tij(x)

)∂P tij
∂y

(x)

)
dx,

(1.6.8)

whereD±Φ define a path-conservative scheme for system (1.3.2), in such a way thatD−Φ (W0,W1,η)
satisfies (1.4.2), (1.4.3) and (1.4.4), as well as D+

Φ (W0,W1,η) = D−Φ (W0,W1,−η). In (1.6.8),
the last integral is used to approximate the regular part of the weak solution, while the
fluctuations are used to split the Dirac measures corresponding to the discontinuities at the
interfaces.

Theorem 2. [43] Let us assume that Aζ are of class C2 with bounded derivatives and
D−Φ (·, ·,ηij,k) is bounded for all i, j and k. Let us also suppose that the reconstruction

1.6 High-order methods: general framework 39

operator satisfies the hypothesis (P1)-(P4). Then (1.6.8) is an approximation of order at least
α = min(p, q,m) to the system (1.3.2) in the following sense:

1

|Cij |
∑

k∈Nk

∫

Eij,k

D−Φ
(
W−

ij,k(γ, t),W
+
ij,k(γ, t),ηij,k

)
dγ

+
1

|Cij |

∫

Cij

(
Ax

(
P tij(x)

)∂P tij
∂x

(x) + Ay

(
P tij(x)

)∂P tij
∂y

(x)

)
dx

=
1

|Cij |

∫

Cij

(Ax

(
W (x, t)

)
Wx(x, t) + Ay

(
W (x, t)

)
Wy(x, t)

)
dx +O(∆xα)

for every solution W smooth enough, being W±
ij,k(γ, t) the associated reconstructions and P tij

the approximation functions corresponding to the family

W ij(t) =
1

|Cij |

∫

Cij

W (x, t)dx.

Now, taking into account the relation between systems (1.3.1) and (1.3.2), it is possible to
rewrite (1.6.8) as follows:

U ′ij(t) =− 1

|Cij |
∑

k∈Nk

∫

Eij,k

D−Φ
(
U−ij,k(γ, t),U

+
ij,k(γ, t), σ

−
ij(γ), σ+

ij(γ),ηij,k
)
dγ

− 1

|Cij |
∑

k∈Nk

∫

Eij,k

Fηij,k
(
U−ij,k(γ, t)

)
dγ

− 1

|Cij |

∫

Cij

(
Bx

(
PU,tij (x)

)∂PU,tij

∂x
(x) + By

(
PU,tij (x)

)∂PU,tij

∂y
(x)

)
dx

+
1

|Cij |

∫

Cij

(
Sx
(
PU,tij (x)

)∂P σij
∂x

(x) + Sy
(
PU,tij (x)

)∂P σij
∂y

(x)

)
dx,

(1.6.9)

where PU,tij is the reconstruction approximation function at time t of U t
ij at cell Cij , defined

using the stencil Bij , and P σij is the reconstruction approximation function for σ. The functions

U±ij,k(γ, t) are given by

U−ij,k(γ, t) = lim
x→γ

PU,tij (x), U+
ij,k(γ, t) = lim

x→γ
PU,tk (x), (1.6.10)

and σ±ij,k(γ) are given by

σ−ij,k(γ) = lim
x→γ

P σij(x), σ+
ij,k(γ) = lim

x→γ
P σk (x). (1.6.11)

In practice, the integral terms in (1.6.9) must be approximated numerically using a high-order
quadrature formula, whose order is related to the one of the reconstruction operator ([43]).

1.7 MUSCL-Hancock procedure 40

Remark 3. As it was pointed out in [52, 43, 40], in general we have m ≤ q ≤ p, and
the order of the semi-discrete operator (1.6.9) would be p for conservation laws and m for
nonconservative systems. Therefore, a loss of accuracy for nonconservative systems can be
expected when reconstruction operators are applied. This fact was first noticed for WENO-like
reconstructions in [52], where the accuracy order in the interior of the cells is smaller than the
order at the boundaries, i.e., q < p. An interesting alternative to WENO reconstructions for
which q = p is given by the CWENO method ([66]). Nevertheless, in practice, the predicted
order of accuracy is rather pessimistic: order q is often achieved (see [52, 43]).

1.7 MUSCL-Hancock procedure

In this section we provide general guidelines in order to construct the predictor-corrector
MUSCL-Hancock scheme ([200, 201]) for system (1.3.1). The method is second-order accurate
in space and time, so we can use a middle-point rule integration in order to evaluate the volume
integrals in (1.6.9). The reconstruction operators PU,tij (x) and P σij(x) are often given by a linear
operator with some limiter function. In short, we can define the following steps:

(i) Predictor step: Given reconstruction operators PU,tij (x) and P σij(x), we estimate the

solution at the center of the interfaces, U±ij,k(γ, t) and σ±ij,k(γ), in the same way as (1.6.10)
and (1.6.11). By a Cauchy-Kowalewski procedure, we get

∂tUij(t) =− 1

|Cij |
∑

k∈Nk

∫

Eij,k

Fηij,k
(
U−ij,k(γ, t)

)
dγ

−Bx

(
Uij(t)

)∆Uij(t)

∆x
−By

(
Uij(t)

)∆Uij(t)

∆y

+ Sx
(
Uij(t)

)∆σij
∆x

+ Sy
(
Uij(t)

)∆σij
∆y

.

(1.7.1)

(ii) Corrector step: The center values Uij(t) and the boundary values U±ij,k(γ, t) are now
advanced at a half time using (1.7.1):

Ũij(t) = Uij(t) +
1

2
∆t∂tUij(t), Ũ±ij,k(γ, t) = U±ij,k(γ, t) +

1

2
∆t∂tUij(t). (1.7.2)

Finally, the full scheme reads as

Un+1
ij = Un

ij + ∆t

{
− 1

|Cij |
∑

k∈Nk

∫

Eij,k

D−Φ
(
Ũ−ij,k(γ, t), Ũ

+
ij,k(γ, t), σ

−
ij,k(γ), σ+

ij,k(γ),ηij,k
)
dγ

− 1

|Cij |
∑

k∈Nk

∫

Eij,k

Fηij,k
(
Ũ−ij,k(γ, t)

)
dγ

−Bx

(
Ũij(t)

)∆Uij(t)

∆x
−By

(
Ũij(t)

)∆Uij(t)

∆y

+ Sx
(
Ũij(t)

)∆σij
∆x

+ Sy
(
Ũij(t)

)∆σij
∆y

}
.

Chapter 2

Governing equations

When the fluid under study is an electrically conductive plasma, in which a magnetic field
is present, the governing equations can be described by the magnetohydrodynamic equations
(MHD). If the magnetic field is zero, we recover the system of Euler equations in gas dynamics.
Many astrophysical phenomena are influenced by the presence of magnetic fields and can be
described by the MHD system ([17]). The aim of Section 2.1 is to describe the eigenstructure
and mathematical properties of the MHD system. The divergence-free constraint of the magnetic
field is automatically satisfied in 1D simulations where ∂y = ∂z = 0 and Bx is constant, while
for multidimensional simulations ∇·B = 0 is not ensured by standard numerical methods. The
non-zero divergence can cause spurious numerical effects and numerical instability in practical
simulations ([196]). A wide number of methods satisfying the divergence-free constraint in MHD
have been proposed: see, e.g., [6, 22, 20, 30, 68, 69, 76, 93, 100, 99, 146, 147, 148, 163, 164,
194, 196, 211, 215]. Related to this, a novel technique for divergence cleaning based on Powell’s
([163]) formulation of MHD equations is presented here. This technique has been included in
the two-dimensional AVM solvers (Chapter 3), by modifying the numerical fluxes accordingly to
[149]. Numerical experiments show that the obtained results are comparable to those computed
with the well-known projection method ([30]), but with a smaller computational cost.

Water flows in which the water depth is much smaller than the horizontal length scale can
be modelled by the multi-layer shallow water equations. These equations are derived by vertical
integration of the incompressible Navier-Stokes equations, with the assumption of hydrostatic
pressure between layers. While the one-layer system is hyperbolic, the multi-layer system is
conditionally hyperbolic: the eigenvalues can become complex because of the coupling terms
between layers (see [44] for a numerical treatment for the loss of hyperbolicity in the two-layer
case). In Sections 2.2 and 2.3 are recalled, respectively, the one- and two-layer equations with
bottom topography, that will be used in the numerical experiments in Chapter 4.

Contact discontinuities related to the discontinuous topography are normally not well
captured with conventional numerical methods. The well-balanced property is strongly related
to the capacity of a method to approach well enough contact discontinuities. For Roe-type
methods, this feature is closely related with the choice of the integral paths ([161]). In this
sense, well-balanced numerical methods play an important role when the solutions of shallow
water systems involve perturbations of a steady state, whose amplitude is of greater order

2.1 Magnetohydrodynamic equations 42

than the truncation error of the method. As it was pointed out in [137], this is the case of a
tsunami wave propagation at the ocean: its initial amplitude is small (related to the depth of the
ocean), while presenting a long wavelength, and typically increases when the depth of the water
decreases. It is not ever possible to refine the mesh to the point where the truncation error of
the method is lower than the wave amplitud (in this sense, Adaptively Mesh Refinement (AMR)
algorithms are often used in these situations; see, for instance, [28, 26, 25, 27, 137]). Another
difficulty is related with the numerical computation of steady or nearly steady state solutions.
Standard numerical methods may fail in these situations. In the shallow water framework, if
the method is able to capture water at rest solutions exactly, it is said to satisfy the C-property,
which was introduced by Bermúdez and Vázquez-Cendón in [29]. The design of well-balanced
methods is nowadays an important front of research: see, for instance, [12, 38, 48, 58, 57, 72,
73, 74, 102, 165, 135, 141, 155, 162, 166, 210]. In Section 2.4 we give the necessary background
about well-balanced methods in order to be used within our 2D AVM schemes.

2.1 Magnetohydrodynamic equations

In this section we focus on the ideal Newtonian MHD equations, which characterizes a
conducting fluid in the presence of a magnetic field. This system can be viewed as a coupling of
the hydrodynamic Euler equations with the Maxwell equations of electrodynamics. We will use
the following notation: ρ is density, v = (vx, vy, vz)

t is the velocity field, B = (Bx, By, Bz)
t is the

magnetic field, E is the total energy and P is the hydrodynamic pressure. Then, the equations
of MHD read as 




∂tρ+∇ · (ρv) = 0,

∂t(ρv) +∇ ·
(
ρvvt + (P + 1

2B2)I −BBt
)

= 0,

∂tB +∇ · (Bvt − vBt) = 0,

∂tE +∇ ·
(
(E + P + 1

2B2)v −B(v ·B)
)

= 0,

(2.1.1)

together with the divergence-free condition

∇ ·B = 0. (2.1.2)

To close the system, an ideal equation of state P = (γ − 1)ρε is considered, where γ is the
adiabatic constant and ε is the specific internal energy, which is related to the total energy by
E = 1

2ρv
2 + 1

2B2 +ρε. The total pressure is defined as P ∗ = P + 1
2B2, where 1

2B2 represents the
magnetic pressure. Notice that if B = 0 we recover the conservative system of Euler equations.

On the other hand, define b = B/
√
ρ and the acoustic sound speed as a =

√
γP/ρ. The set

of eigenvalues and eigenvectors for system (2.1.1) is known: a detailed description of its spectral
structure can be found in [31, 181]. The Jacobian of system (2.1.1) is diagonalizable; a full set
of eigenvalues in the α-direction, for α = x, y, is given by

λ1
α ≤ λ2

α ≤ λ3
α ≤ λ4

α ≤ λ5
α ≤ λ6

α ≤ λ7
α,

where
λ1,7
α = vα ∓ cα,f , λ2,6

α = vα ∓ cα,a, λ3,5
α = vα ∓ cα,s, λ4

α = vα, (2.1.3)

2.1 Magnetohydrodynamic equations 43

with

c2
α,a =

B2
α

ρ
, c2

α,f/s =
1

2

(
a2 + b2 ±

√
(a2 + b2)2 − 4a2b2α

)
.

Brio and Wu ([31]) remarked that the ideal MHD system (2.1.1) is nonconvex, which means
that the characteristic fields can be not genuinely nonlinear or linearly degenerate. Thus, the
solution of a Riemann problem can develop compound waves, for example a shock followed by
a rarefaction, what poses additional numerical dificulties.

We remark that in the derivation of (2.1.1) from physical principles, the condition (2.1.2)
is thoroughly used. However, it is also possible to derive a MHD model without imposing the
divergence constraint in the process, as proposed in [163] (see also [100, 164]). This leads to the
nonconservative form of the MHD equations:





∂tρ+∇ · (ρv) = 0,

∂t(ρv) +∇ ·
(
ρvvt + (P + 1

2B2)I −BBt
)

= −(∇ ·B)B,

∂tB +∇ · (Bvt − vBt) = −(∇ ·B)v,

∂tE +∇ ·
(
(E + P + 1

2B2)v −B(v ·B)
)

= −(∇ ·B)(v ·B).

(2.1.4)

Notice that if condition (2.1.2) is imposed, then (2.1.4) reduces to (2.1.1). The spectral structure
of problem (2.1.4) was fully analized in [163]; the eigenvalue corresponding to the 8-th wave is
equal to vα; in particular, the maximal speeds of propagation are the same as in the conservative
case.

When designing numerical methods for solving (2.1.1), it is fundamental to handle the
divergence constraint (2.1.2) in a proper way. In particular, in the presence of shocks, standard
numerical methods can produce large divergence errors which may lead to negative densities or
pressures. Several methods have been proposed in the literature to impose the divergence-free
condition numerically: see [196] for an in-depth review on this topic. A technique of particular
interest to handle the divergence constraint was proposed by Powell in [163], which is based in
the eight-waves model (2.1.4). Notice that taking divergence of the magnetic field equation in
(2.1.4) gives

∂t(∇ ·B) +∇ · ((∇ ·B)v) = 0,

so any possible non-zero divergence produced by the numerical scheme is advected by the velocity
field and eventually leaves the domain through the boundaries. Thus, the nonconservative form
(2.1.4) of the MHD system includes a mechanism to handle the divergence constraint.

From now on we will concentrate on the two-dimensional case. Considering the vector of
conserved variables U = (ρ, ρv,B, E)t, system (2.1.1) can be written in conservative form as

∂tU + ∂xF (U) + ∂yG(U) = 0,

2.1 Magnetohydrodynamic equations 44

where the physical fluxes are given by

F (U) =




ρvx
ρv2
x + P ∗ −B2

x

ρvxvy −BxBy
ρvxvz −BxBz

0
vxBy − vyBx
vxBz − vzBx

vx(E + P ∗)−Bx(v ·B)




, G(U) =




ρvy
ρvxvy −BxBy
ρv2
y + P ∗ −B2

y

ρvyvz −ByBz
vyBx − vxBy

0
vyBz − vzBy

vy(E + P ∗)−By(v ·B)




.

As commented before, some kind of divergence cleaning mechanism has to be added to the
numerical scheme. For doing this we consider the nonconservative system (2.1.4), that can be
expressed as

∂tU + ∂xF (U) + ∂yG(U) = −(∇ ·B)S(U), (2.1.5)

where the source term is given by

S(U) = (0,B,v,v ·B)t.

Alternatively, (2.1.5) can be written in the form

∂tU + ∂xF (U) + ∂yG(U) = −Bx(U)∂xU −By(U)∂yU , (2.1.6)

where Bx(U) and By(U) are the 8× 8 matrices

Bx(U) = (0|0|0|0|S(U)|0|0|0|), By(U) = (0|0|0|0|0|S(U)|0|0|),

with 0 the zero column vector in R8. At this point, we would like to make a remark that will be
useful later in Chapter 3: following [149], both the HLL states and the numerical AVM fluxes
must be properly modified in order to take into account the extra terms Bx(U) and By(U)
appearing in (2.1.6). In particular, the HLL states should be modified as

ŨHLL
x (U0,U1, S0, S1) =

S1U1 − S0U0 + F (U0)− F (U1)−Bx(Ũ)(U1 −U0)

S1 − S0

and

ŨHLL
y (U0,U1, S0, S1) =

S1U1 − S0U0 +G(U0)−G(U1)−By(Ũ)(U1 −U0)

S1 − S0
,

being Ũ some average state. Accordingly, the numerical fluxes now should read as

F̃AVM(U0,U1) =
F (U0) + F (U1)

2
− 1

2
(Qx −Bx(Ũ))(U1 −U0)

and

G̃AVM(U0,U1) =
G(U0) +G(U1)

2
− 1

2
(Qy −By(Ũ))(U1 −U0).

2.1 Magnetohydrodynamic equations 45

Remark 4. For MHD, the vectors Bζ(Ũ)(U1 −U0) are simply

Bx(Ũ) = ((Bx)1 − (Bx)0)S(Ũ), By(Ũ) = ((By)1 − (By)0)S(Ũ).

Notice that the proposed schemes are designed for solving the eight-waves model (2.1.4),
so they automatically include a divergence cleaning procedure. Thus, if both the initial and
boundary conditions satisfy the divergence constraint, it is expected that the scheme will keep
it up to the accuracy of the truncation error. Notice also that the proposed nonconservative
divergence cleaning technique could be applied, in a similar way, to any arbitrary numerical
method.

The well-known projection method ([30]) is based on the Hodge decomposition of the
magnetic field

Bn = curl Φ +∇Ψ, (2.1.7)

where Bn may be not divergence-free at each time step. Taking the divergence in (2.1.7), we
see that Ψ satisfies a Poisson equation

−∇Ψ = ∇ ·Bn, (2.1.8)

which needs to be resolved by an iterative method for elliptic equations. The corrected field

B∗ = Bn −∇Ψ (2.1.9)

will be then divergence-free. Tóth ([196]) states that the resultant projected field should be
fairly close to the minimal solution and the numerical error is not increased in smooth parts of
the solution by the projection. However, this method can be very expensive computationally,
as it requires the solution of a collection of elliptic problems at each time step, with a proper
set of boundary conditions. Many other different approaches have been proposed in order to
solve correctly and efficiently the constraint (2.1.2): divergence cleaning ([68]), potential-based
genuinely multidimensional (GMD) methods ([148]), special divergence operators/staggering
([22, 172, 194]), and constrained transport method ([93, 170]), among others.

In this dissertation, we will consider two versions of the two-dimensional AVM methods
introduced in Chapter 3: the first one, for solving the conservative MHD equations (2.1.1) using
the projection method for divergence cleaning, and the second one for solving the nonconservative
MHD system (2.1.4) as explained above. We will see that both kind of methods produce similar
results, although the second type has a smaller computational cost, as expected.

It must be noted that for the nonconservative case (2.1.4), the viscosity matrix (1.5.4) is
evaluated using Aζ(U) = Jζ(U) + Bζ(U), i.e., the Jacobian matrix Jζ(U) plus the coupling
matrix Bζ(U) (see (1.3.11) and (2.1.6)). For the sake of completeness, we give the form of the

2.1 Magnetohydrodynamic equations 46

Jacobian matrix of (2.1.4):

Jζ(U) =




0 ηx ηy 0 0 0 0 0
δ21 δ22 δ23 δ24 δ25 δ26 δ27 δ28

δ31 δ32 δ33 δ34 δ35 δ36 δ37 δ38

−vxvzηx − vyvzηy vzηx vzηy vxηx + vyηy −Bzηx −Bzηy −Bxηx −Byηy 0

Byvx −Bxvy
ρ

ηy
−By
ρ

ηy
Bx
ρ
ηy 0 vyηy −vxηy 0 0

−Byvx +Bxvy
ρ

ηx
By
ρ
ηx

−Bx
ρ

ηx 0 −vyηx vxηx 0 0

−Bzvx +Bxvz
ρ

ηx

+
−Bzvy +Byvz

ρ
ηy

Bz
ρ
ηx

Bz
ρ
ηy −Bx

ρ
ηx −

By
ρ
ηy −vzηx −vzηy vxηx + vyηy 0

δ81 δ82 δ83 δ84 δ85 δ86 δ87 δ88




(2.1.10)

where the specific total enthalpy is defined as

H∗ =
E + P ∗

ρ
,

and

δ21 = (−v2
x + a2 + (γ − 1)(v2 + b2 −H∗))ηx − vxvyηy,

δ22 = (2vx − (γ − 1)vx)ηx + vyηy, δ23 = (−(γ − 1)vy)ηx + vxηy,

δ24 = (−(γ − 1)vz)ηx, δ25 = −γBxηx −Byηy,
δ26 = (2− γ)Byηx −Bxηy, δ27 = (2− γ)Bzηx, δ28 = (γ − 1)ηx,

δ31 = −vxvyηx + (−v2
y + a2 + (γ − 1)(v2 + b2 −H∗))ηy,

δ32 = vyηx − (γ − 1)vxηy, δ33 = vxηx + (2vy − (γ − 1)vy)ηy,

δ34 = (−(γ − 1)vz)ηy, δ35 = −Byηx − (2− γ)Bxηy,

δ36 = −Bxηx − γByηy, δ37 = (2− γ)Bzηy, δ38 = (γ − 1)ηy,

δ81 =

(
−vxH∗ + vx(δ21 + v2

x) +Bx
(v ·B)

ρ

)
ηx +

(
−vyH∗ + vy(δ31 + v2

y) +By
(v ·B)

ρ

)
ηy,

δ82 =

(
H∗ + vx(δ22 − 2vx)− B2

x

ρ

)
ηx +

(
vyδ32 −

BxBy
ρ

)
ηy,

δ83 =

(
vxδ23 −

BxBy
ρ

)
ηx +

(
H∗ + vy(δ33 − 2vy)−

B2
y

ρ

)
ηy,

δ84 =

(
vxδ24 −

BxBz
ρ

)
ηx +

(
vyδ34 −

ByBz
ρ

)
ηy,

δ85 = ((1− γ)Bxvx − v ·B)ηx + (vyδ25 −Byvx)ηy,

δ86 = (vxδ26 −Bxvy)ηx + ((1− γ)Byvy − (v ·B))ηy,

δ87 = (vxδ27 −Bxvz)ηx + (vyδ37 −Byvz)ηy,
δ88 = vxγηx + vyγηy.

A Roe linearization for the 8-wave system (2.1.4) is obtained by taking ([35])

Û(U0,U1) = U(ρ, vx, vy, vz, Bx, By, Bz, H∗),

2.2 Shallow water equations: one-layer approximation 47

where the Roe averages depend of the quantities

ξ ≡ ξ(ξ0, ξ1) =

√
ρ0ξ0 +

√
ρ1ξ1√

ρ0 +
√
ρ1

, ξ ≡ ξ(ξ0, ξ1) =

√
ρ1ξ0 +

√
ρ0ξ1√

ρ0 +
√
ρ1

. (2.1.11)

2.2 Shallow water equations: one-layer approximation

The PDE system governing the flow of a shallow layer of an homogeneous inviscid fluid
occupying a domain Ω ⊂ R2 can be written as

{
∂th+∇ · (hv) = 0,

∂t(hv) +∇ ·
(
hvvt + 1

2gh
2I
)

= gh∇H,
(2.2.1)

or in the quasi-linear form (1.3.1) with

U =



h
qx
qy


 , F (U) =




qx

q2
x

h
+
g

2
h2

qxqy
h


 , G(U) =




qy
qxqy
h

q2
y

h
+
g

2
h2



,

Bx(U) = 0, By(U) = 0, Sx(U) =




0
gh
0


 , Sy(U) =




0
0
gh


 ,

where: σ(x) ≡ H(x) is the depth function, measured from a fixed level of reference; g is the
gravity constant; h(x, t) is the thickness of the water layer; and qζ(x, t), ζ = x, y, are the
discharges in the coordinate directions, which are related to the vertical averaged velocities by
qζ(x, t) = h(x, t)vζ(x, t). The non-zero eigenvalues of the system are given by vx± c and vy ± c,
where c =

√
gh.

In the particular case in which the paths Φ are chosen as segments, we can build a Roe
linerization of the form (1.3.11) with ([161])

Ax(U0,U1) =




0 1 0
−v̂2

x + ĉ2 2v̂x 0
−v̂xv̂y v̂y v̂x


 , S1(U0,U1) =




0
ĉ2

0


 , (2.2.2)

Ay(U0,U1) =




0 0 1
−v̂xv̂y v̂y v̂x
−v̂2

y + ĉ2 0 2v̂y


 , Sy(U0,U1) =




0
0
ĉ2


 , (2.2.3)

where

v̂ζ =

√
h0vζ,0 +

√
h1vζ,1√

h0 +
√
h1

, ĉ =

√
gĥ, ĥ =

h0 + h1

2
.

2.3 Shallow water equations: two-layer approximation 48

2.3 Shallow water equations: two-layer approximation

The equations modelling a two-dimensional flow of two superposed inmiscible layers of
shallow water fluids can be written as





∂th1 +∇ · (h1v1) = 0,

∂t(h1v1) +∇ ·
(
h1v1v

t
1 + 1

2gh
2
1I
)

= −gh1∇h2 + gh1∇H,
∂th2 +∇ · (h2v2) = 0,

∂t(h2v2) +∇ ·
(
h2v2v

t
2 + 1

2gh
2
2I
)

= −ρgh2∇h1 + gh2∇H,

(2.3.1)

or under the form (1.3.1) taking

U = (h1, q1,x, q1,y, h2, q2,x, q2,y)
t,

F (U) =




q1,x

q2
1,x

h1
+
g

2
h2

1

q1,xq1,y

h1
q2,x

q2
2,x

h2
+
g

2
h2

2

q2,xq2,y

h2




, G(U) =




q1,y

q1,xq1,y

h1

q2
1,y

h1
+
g

2
h2

1

q2,y

q2,xq2,y

h2
q2

2,y

h2
+
g

2
h2

2




,

Bx(U) =




0 0 0 0 0 0
0 0 0 −gh1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−ρgh2 0 0 0 0 0
0 0 0 0 0 0



, Sx(U) =




0
gh1

0
0
gh2

0



,

By(U) =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −gh1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−ρgh2 0 0 0 0 0



, Sy(U) =




0
0
gh1

0
0
gh2



,

where index 1 and 2 refer, respectively, to the upper and lower layer of fluid. It is assumed that
the two layers have constant densities ρ1 < ρ2, and their ratio is denoted as ρ = ρ1/ρ2. The
rest of the notation is analogous to that in Section 2.2. An additional numerical difficulty arises
when ρ is close to unity, as the internal eigenvalues are close to zero; this situation arises in
many practical situations (see, e.g., [53]).

2.4 Well-balancing 49

For the two-layer system, there are no simple analytical expressions for the eigenstructure
of the system. However, the following approximation to the maximal speeds of propagation is
available when v1,ζ ≈ v2,ζ and ρ ≈ 1 ([176]):

|λmax
ζ | ≈ |v̄ζ |+ c̄, ζ = x, y,

where

v̄ζ =
q1,ζ + q2,ζ

h1 + h2
, c̄ =

√
g(h1 + h2).

Finally, it is also possible to construct a Roe linearization for the two-layer shallow water
system, in a similar way as shown in Section 2.2: see [43, Sect. 7.2] for details.

2.4 Well-balancing

It is a known issue that, in the presence of source terms, standard numerical methods may
fail when computing steady or nearly steady state solutions. A way to overcome this problem
is to consider well-balanced methods, which are able to preserve a chosen family of stationary
solutions (see, e.g., [48]). In this section, we resume the main results about the well-balanced
property for the scheme (1.6.9).

Definition 4. Consider a semi-discrete method to approximate (1.3.1)




U ′ij(t) = − 1

|Cij |
H(Uk(t), k ∈ Bij

)
,

U(0) = U0,
(2.4.1)

where U(t) = {Uij(t)}
Nτx ,Nτy
i,j=1 represents the vector of approximations to the averaged values of

the exact solution; U0 = {Uij(0)} is the vector of averages of the initial condition; and Bij are
the stencils. Given a smooth stationary solution U of the system, the numerical scheme is said
to be exactly well-balanced for U if the vector of cell averages is a critical point of (2.4.1), i.e.,

H(Uk(t), k ∈ Bij

)
= 0. (2.4.2)

Let us also introduce now the concept of well-balanced reconstruction operator:

Definition 5. Given a smooth stationary solution of (1.3.1), a reconstruction operator is said
to be well-balanced for U(x) if the approximation functions P tij(x) associated to the averaged
values of U are also stationary solutions of system (1.3.1).

The following results can be proven [40]:

Theorem 3. Let U be a stationary solution of (1.3.1) and let us assume that the family of
paths Φ(s;W0,W1,η) = (ΦU (s;W0,W1,η),Φσ(s;W0,W1,η))t connecting two states W0 =
(U(x0), σ(x0))t and W1 = (U(x1), σ(x1))t with x0 < x1 is a reparametrization of x ∈ [x0, x1] 7→
U(x), then the first-order AVM scheme is exactly well-balanced for U .

2.4 Well-balancing 50

Theorem 4. Let U be a stationary solution of (1.3.1). Let us suppose that the first-order AVM
path-conservative scheme and the reconstruction operator chosen are exactly well-balanced for
U . Then the numerical scheme (1.6.9) is also exactly well-balanced for U .

Remark 5. Note that if the stationary solution is smooth, then U−ij = U+
ij and D±Φ = 0.

Therefore, the well-balanced property of the high-order method only depends on the well-balanced
property of the reconstruction operator.

Notice that standard reconstruction operators are not expected, in general, to be well-
balanced. In [48], a general procedure to modify any standard reconstruction operator in order to
be well-balanced for every stationary solution was proposed. Let us also remark that quadrature
formulae also play an important role in preserving the well-balanced properties of the scheme.
The previous results have been established assuming that the integrals are exactly well-balanced.
Otherwise, the strategy developed in [58] can be used.

In our case, we are interested in the so-called C-property, which consists in preserving water
at rest solutions:

qx = qy = 0, h−H = constant (2.4.3)

for the one-layer shallow water system, and

q1,x = q2,x = q1,y = q2,y = 0, h1 = constant, h2 −H = constant

for the two-layer system. To accomplish this, we follow the modified identity technique
introduced in [59]. For the sake of completeness, we briefly describe here the procedure for the
one-layer shallow water equations, being the adaptation to the bilayer system straightforward.

Notice that the fluctuations in the x-direction given by (1.5.3) are not well-defined when
qx = qy = 0, as the matrix Ax becomes singular. However, for regular Ax it is easy to check

that A−1
x Sx = (1, 0, 0)t ≡ Â−1

x Sx. Thus, we consider the modified fluctuations

D±x =
1

2

(
F1 − F0 − Sx(H1 −H0)

)
± 1

2
Qx

(
U1 −U0 − Â−1

x Sx(H1 −H0)
)
,

which can be written as

D±x =
1

2

(
F1 − F0 − Sx(H1 −H0)

)
± 1

2
Qx




η1 − η0

qx,1 − qx,0
qy,1 − qy,0


 ,

and similarly in the y-direction. Therefore, for a stationary solution of the form (2.4.3), we
would have

D±x =
1

2




0
g
2(h2

1 − h2
0)− gĥ(H1 −H0)

0


±Qx




0
0
0


 =




0
0
0


 .

As a consequence, the scheme preserves the stationary solution.

Remark 6. In the particular case of a PVM method, where Q =
∑r

i=0 αiA
i, we have that

QA−1S = α0A
−1S +

r∑

i=1

αiA
i−1S,

so the proposed modification only needs to be applied in the α0 term.

2.4 Well-balancing 51

Regarding high-order schemes, in order to have a reconstruction operator which is well-
balanced for water at rest solutions the following strategy may be followed for the one-layer
shallow water equations: given a set (hij , qx,ij , qy,ij , Hij) of cell values, consider the new set
(hij , qx,ij , qy,ij , ηij), with ηij = hij − Hij , and apply the reconstruction operator to obtain
polynomials

Pij,h, Pij,qx , Pij,qy , Pij,η

then, define
Pij,H = Pij,h − Pij,η.

This reconstruction is exactly well-balanced for stationary solutions corresponding to water
at rest if the operator is exact for constant functions (see [43, Prop. 17]). The same idea
can be applied for the two-layer case: given a set (h1,ij , qx1,ij , qy1,ij , h2,ij , qx2,ij , qy2,ij , Hij), we
apply the reconstruction operador to the new set (h1,ij , qx1,ij , qy1,ij , h2,ij , qx2,ij , qy2,ij , η2,ij), with
η2,ij = h2,ij −Hij , to obtain

Pij,h1 , Pij,qx1 , Pij,qy1 , Pij,h2 , Pij,qx2 , Pij,qy2 , Pij,η2 ;

then, define
Pij,H = Pij,h2 − Pij,η2 .

(see [43, Prop. 19]).

Chapter 3

Multidimensional AVM-type solvers:
the conservative case

Since the pioneering work of Godunov ([108]), Riemann solvers have been an important
ingredient in the design of robust and accurate numerical methods for hyperbolic conservation
laws. Usually, the exact solution of a Riemann problem contains many complex features which
makes it unsuitable in practice, even more in multidimensional problems ([180, 213, 214]). For
this reason, a number of incomplete Riemann solvers have been devised in the literature (Lax-
Friedrichs, Rusanov, HLL, FORCE, etc; see [41] and the references therein), which take into
account only some of the waves appearing in the Riemann fan.

In Section 1.5, we described a general framework for the so-called AVM methods, which
constitute a general class of incomplete Riemann solvers defined in terms of viscosity matrices
based on the polynomial/rational evaluation of a given Roe matrix, if available, or the Jacobian
of the flux at some average state. This class of Roe-type Riemann solvers was introduced for the
first time in [41] for polynomial approximations (PVM), and later extended in [49] to rational
functions (RVM), which provide a much more precise representation of internal waves. In [49]
it was also shown that the choice of a precise first-order solver is important when designing
high-order methods in terms of computational efficiency, at least for solutions involving complex
structures. In particular, the choice of appropriate underlying functions for an AVM solver
allows to control the amount of numerical diffusion of the resulting scheme.

When applied to multidimensional problems, most of the numerical methods found in
the literature are based on a dimensional splitting, which does not take into account
multidimensional features. Furthermore, as it has been pointed out in the literature, this type of
approximation can produce errors in maintaining the isotropy of solutions and reduce the CFL
number in multidimensional simulations. Related to this, many authors have developed several
techniques which introduce multidimensional features in the numerical schemes: see, e.g., [14,
15, 19, 16, 18, 21, 74, 104, 178, 203]. It is worth mentioning that there are alternative classes
of schemes that are Riemann-solver free, although they are outside the scope of this thesis: see,
for instance, residual distributions schemes in [4, 67, 167], or Godunov-type Riemann-problem-
solver-free central schemes in [121, 123, 120, 60] and the references therein.

In [206], Wendroff proposed an multidimensional HLL Riemann solver for the Euler

53

equations, where features at corners were taken into account. However, the extension of
Wendroff’s method to high-order and to general hyperbolic systems is not easy. In [14, 15],
Balsara introduced a genuinely two-dimensional Riemann solver based on the HLL and HLLC
methods, which provided closed-form expressions of the fluxes and allowed an easy extension
to high-order. Another extension of Wendroff’s scheme has been proposed in [203]. In recent
years, a new class of multidimensional Riemann solvers with self-similar internal structure has
been introduced in [19, 21]. Also, extensions to unstructured meshes have been considered in
[16, 18]. Recently, a new class of genuinely two-dimensional incomplete Riemann solvers based
on AVM-type solvers was introduced in [104], which constitutes the core of the present chapter.

These solvers can be viewed as general AVM extensions of Balsara’s HLL solver [15]. To
achieve this, first we propose a reinterpretation of Balsara’s solver in the particular case in which
a simple four-wave model is considered for the two-dimensional corrections at cell vertices. These
corrections can be viewed as suitable combinations of one-dimensional numerical fluxes of HLL
type. Once the role of the underlying one-dimensional HLL solver is clearly identified, it can be
changed by an appropriate one-dimensional AVM numerical flux. This leads to two-dimensional
contributions of AVM type at the cell corners, which take into account the transversal features of
the flow. It is noteworthy that the proposed solvers are applicable to general hyperbolic systems
of conservation laws; in particular, they are not restricted to the Euler or MHD equations. An
additional feature of these multidimensional AVM solvers is that they are theoretically stable
up to a CFL number of unity.

Several families of basis functions for AVM methods were considered in [41, 49]; in particular,
good results were obtained with Chebyshev polynomials and Newman rational functions. In this
chapter we will consider PVM solvers based on the internal polynomials previously studied in
[51], together with new families of RVM solvers based on the Padé approximations proposed in
[104], which enjoy good stability properties (see Section 1.5 for details). An additional advantage
of these solvers is that no entropy fix is needed in the presence of sonic points.

We will focus on the comparison of the proposed methods in the first-order case, as done
previously for one-dimensional RVM methods in [49]. As commented before, the choice of
accurate first-order solvers is important when analizing complex scenarios. On the other hand,
the use of our solvers as building blocks for high-order methods will be considered in Chapter 4.

In order to compare with other methods in the literature, applications to MHD equations
will be considered, using the novel technique for divergence cleaning based on Powell’s ([163])
formulation of MHD equations presented in Section 2.1. This technique has been included in our
two-dimensional AVM solvers, modifying the numerical fluxes accordingly to [149]. Numerical
experiments show that the results of our methods are comparable to those obtained with the
well-known projection method [30], but with a smaller computational cost.

As it was remarked in [110], the inclusion of source terms in Balsara’s solver seems to be
a nontrivial matter. A way to handle source or coupling terms is to reformulate the system
in nonconservative form, and then to apply the theory of path-conservative numerical schemes.
Taking into account the form of our multidimensional AVM methods, it is possible to extend
them to the nonconservative case following the guidelines in [41, 49]. This extension will be
analized in detail in Chapter 4, where we will construct high-order multidimensional AVM
schemes that will be applied, in particular, for solving multilayer shallow water systems including
depth variations.

3.1 Preliminaries and four-waves model 54

This chapter is organized as follows. In Section 3.1, Balsara’s multidimensional HLL solver
is recalled. The core of the chapter is Section 3.2, where multidimensional AVM solvers are
introduced. Applications to MHD, including the proposed divergence cleaning technique, and
numerical experiments are then presented in Section 3.3.

3.1 Preliminaries and four-waves model

The purpose of this section is to give a brief review of Balsara’s HLL multidimensional solver.
Although all the details can be found in [14, 15] (see also [203]), we give here the information that
will be needed later to construct our schemes in Section 3.2. We focus here in a two-dimensional
conservation law of the form (1.2.1), i.e.,

∂tU + ∂xF (U) + ∂yG(U) = 0, (3.1.1)

where U is defined on Ω× [0, T], being Ω ⊆ R2 a domain, and takes values on an open convex set
O ⊂ Rm; F = (F ,G) is a regular function from O to Rm × Rm. In addition, we are interested
in finite volume approximations given by

Un+1
ij = Un

ij −
∆t

∆x
(F n

i+1/2,j − F n
i−1/2,j)−

∆t

∆y
(Gn

i,j+1/2 −Gn
i,j−1/2), (3.1.2)

accordingly to (1.2.2) (see Section 1.2).
To define the numerical flux at a given edge, Balsara’s solver considers a linear convex

combination of a one-dimensional HLL flux and two multidimensional contributions at vertices.
To be more precise, let us consider for a given cell Cij the six-cell stencil depicted in Figure 3.1.
The flux in the x-direction through the right edge can be expressed as

Fi+1/2,j = αF ∗i+1/2,j+1/2 + βF ∗i+1/2,j + γF ∗i+1/2,j−1/2, (3.1.3)

where F ∗i+1/2,j is the usual one-dimensional HLL flux between the cells Cij and Ci+1,j , and

F ∗i+1/2,j±1/2 represent the two-dimensional contributions at the vertices (xi+1/2, yj±1/2); proper
choices of the coefficients α, β and γ will be given later. Similar expressions can be stated for
the y-flux Gi,j+1/2.

To define the two-dimensional flux F ∗i+1/2,j+1/2, Balsara considered a two-dimensional
Riemann problem with initial condition given by the constant states at each of the four cells
which have (xi+1/2, yj+1/2) as a common vertex. To simplify the notation, let us consider the
local stencil depicted in Figure 3.2 (left); for example, for O ≡ (xi+1/2, yj+1/2) the cell values
would be given by ULD = Uij , URD = Ui+1,j , ULU = Ui,j+1 and URU = Ui+1,j+1. The initial
condition for the local Riemann problem is then

U(x, y, t0) =





ULD if x < 0, y < 0,

URD if x > 0, y < 0,

ULU if x < 0, y > 0,

URU if x > 0, y > 0.

(3.1.4)

3.1 Preliminaries and four-waves model 55

Ci,jCi−1,j Ci+1,j

Ci,j+1

Ci,j−1Ci−1,j−1 Ci+1,j−1

Ci−1,j+1 Ci+1,j+1

yj+1/2

yj−1/2

xi−1/2 xi+1/2

F ∗i+1/2,j+1/2

F ∗i+1/2,j

F ∗i+1/2,j−1/2

Figure 3.1: Stencil used to build the numerical flux Fi+1/2,j .

ULD

ULU

URD

URU

O

ULD

ULU

U ∗L

U ∗U

U ∗D

U ∗

URD

URU

U ∗R

SL∆t SR∆t

SD∆t

SU∆t

Figure 3.2: Left: Local stencil. Right: Structure of the solution of the Riemann problem.

It is known that problem (3.1.1)-(3.1.4) has a self-similar solution, roughly consisting of four
directional one-dimensional Riemann problems arising at common edges, along with a region of
strong interaction where complex structures appear; see, for example, [128, 180, 213] for more
detailed descriptions. In the design of numerical methods, however, it is impractical to resolve
all the fine structures arising in the strong interaction region. Thus, this region is averaged
into a single constant state, in a similar way to the intermediate state arising in the one-
dimensional HLL solver. In Balsara’s formulation, the region of strong interaction is assumed

3.1 Preliminaries and four-waves model 56

to be rectangular, although other options are possible (see, e. g., [203]).
To build a two-dimensional Riemann solver of HLL type, first we need to identify the maximal

speeds in the coordinate directions. Following the notation in [15], let SUL and SUR denote the
fastest left and right speeds at the edge between ULU and URU (see Figure 3.2, right). An usual
choice for SUR and SUL are given by

SUR = max(λNx (URU), λ̄Nx (ULU ,URU)),

SUL = min(λ1
x(ULU), λ̄1

x(ULU ,URU)),
(3.1.5)

where λ1
x(ULU) and λNx (URU) denote the maximal left- and right-going wave speeds associated to

the states ULU and URU , respectively, while λ̄1
x(ULU ,URU) and λ̄Nx (ULU ,URU) are the maximal

left- and right-going speeds arising from a linearized Riemann solver between the states ULU
and URU . Similar definitions apply for SDL and SDR . Speeds in the y-direction, SLD, SRD, SLU and
SRU , are defined in an analogous way. Finally, the strong interaction region is assumed to be
bounded by the maximal left and right wave speeds given by

SL = min(SDL , S
U
L), SR = max(SDR , S

U
R), (3.1.6)

and the maximal downward and upward speeds

SD = min(SLD, S
R
D), SU = max(SLU , S

R
U). (3.1.7)

SD
L

SU
L

SL
U SR

U

SU
R

SD
R

SR
DSL

D

SU

SD

SL SR

Figure 3.3: Local view (left) and global view (right) of the four-waves model.

A simplifying assumption can be made at this point, which consists in considering only the
four speeds SL, SR, SD and SU in the wave structure of the solution. That is, we assume
that Sα = SDα = SUα for α = L,R, and Sβ = SLβ = SRβ for β = D,U . This leads to compact
expressions for the strongly interacting state and its associated numerical fluxes. See Figure 3.3

3.1 Preliminaries and four-waves model 57

for both local and global views of the four-waves model. On the right side, we have a arbitrary
cell where are depicted all the waves arising at the edges and vertices. On the left side, we have a
representation of the strong interaction region determined by the maximal wave speeds for each
direction. As later in Section 3.2 we will be interested on a four-wave model, this assumption
will be made in what follows.

Ci,jCi−1,j Ci+1,j

Ci,j+1

Ci,j−1Ci−1,j−1 Ci+1,j−1

Ci−1,j+1 Ci+1,j+1

yj+1/2

yj−1/2

xi−1/2 xi+1/2

U LD

U LU

U RD

U RU

U
∗
D

U
∗
U

U
∗
L

U
∗
R

U
∗

U LD

U LU

U RD

U RU

Figure 3.4: Structure of the solution of the 2D Riemann problem at a vertex.

Assume now that we are in the subsonic case in both directions, that is, SL < 0 < SR and
SD < 0 < SU . Figure 3.2 (right) shows the proposed wave structure at time t = ∆t. The
one-dimensional Riemann problems arising at the edges give rise to four HLL states; thus, for
α = D,U , the states ULα and URα give

U∗α =
SRURα − SLULα + FLα − FRα

SR − SL
, (3.1.8)

while for β = L,R, the states UβD and UβU give

U∗β =
SUUβU − SDUβD +GβD −GβU

SU − SD
, (3.1.9)

where Fβα and Gβα denote, respectively, the fluxes F (Uβα) and G(Uβα). The corresponding
HLL fluxes are then given by

F ∗α =
SRFLα − SLFRα + SLSR(URα −ULα)

SR − SL
, α = D,U,

3.1 Preliminaries and four-waves model 58

and

G∗β =
SUGβD − SDGβU + SDSU (UβU −UβD)

SU − SD
, β = L,R.

Now, integration of (3.1.1) on the control volume (SL∆t, SR∆t) × (SD∆t, SU∆t) × (0,∆t)
leads to an explicit expression for the constant resolved state U∗, namely

U∗ =
SRSUURU + SLSDULD − SRSDURD − SLSUULU

(SR − SL)(SU − SD)

− (FRU − FLU)SU − (FRD − FLD)SD
2(SR − SL)(SU − SD)

− (GRU −GRD)SR − (GLU −GLD)SL
2(SR − SL)(SU − SD)

− F ∗R − F ∗L
2(SR − SL)

− G∗U −G∗D
2(SU − SD)

.

Figure 3.4 shows the considered structure of the solution of the two-dimensional Riemann
problem at a vertex. Notice that all the terms appearing in the definition of U∗ are known,
except the transverse fluxes appearing in the last two terms, which have to be defined taking
into account the corresponding intermediate state and the normal flux. For example, F ∗R is
constructed using the state U∗R and the flux G∗R previously defined; in particular, notice that
F ∗R 6= F (U∗R) in general. Balsara offers an explicit solution in [15] for the Euler equations,
although similar constructions may be done for other systems: see Section 3.3 for the case of
MHD equations.

To compute the resolved flux F ∗, equation (3.1.1) is integrated on the subvolume (0, SR∆t)×
(SD∆t, SU∆t)× (0,∆t), yielding

F ∗ =
SU

SU − SD
F ∗U −

SD
SU − SD

F ∗D

− SLSR
(SR − SL)(SU − SD)

(GRU −GLU +GLD −GRD)

− SLSU (FRU − F ∗R)− SRSU (FLU − F ∗L)

(SR − SL)(SU − SD)

− SRSD(FLD − F ∗L)− SLSD(FRD − F ∗R)

(SR − SL)(SU − SD)
.

(3.1.10)

Notice again that, in general, F ∗ 6= F (U∗). Similarly, integration of (3.1.1) on (SL∆t, SR∆t)×
(0, SU∆t)× (0,∆t) leads to

G∗ =
SR

SR − SL
G∗R −

SL
SR − SL

G∗L

− SDSU
(SR − SL)(SU − SD)

(FRU − FLU + FLD − FRD)

− SRSD(GRU −G∗U)− SLSD(GLU −G∗U)

(SR − SL)(SU − SD)

− SLSU (GLD −G∗D)− SRSU (GRD −G∗D)

(SR − SL)(SU − SD)
.

(3.1.11)

3.1 Preliminaries and four-waves model 59

As stated before, the fluxes (3.1.10) and (3.1.11) are used when the flow is subsonic in both spatial
directions. When the flow is supersonic in some of the spatial directions, the corresponding
expressions for F ∗ and G∗ may be defined as the corresponding upwinded fluxes; the details can
be found in [15, Sect. 2.1].

Ci,j

Ci,j−1

Ci,j+1

Ci+1,j−1

Ci+1,j+1

SD,i+1/2,j+1/2∆t

SU,i+1/2,j−1/2∆t

F ∗i+1/2,j+1/2

F ∗i+1/2,j−1/2

F ∗i+1/2,j
∆y

Figure 3.5: Assembling of one- and two-dimensional fluxes at an edge.

Finally, the assembling (3.1.3) is obtained from a time-space average of the normal flux
through the edge (see Figure 3.5). This leads to the coefficients

α = −SD,i+1/2,j+1/2
∆t

2∆y
, γ = SU,i+1/2,j−1/2

∆t

2∆y

and

β = 1− (SU,i+1/2,j−1/2 − SD,i+1/2,j+1/2)
∆t

2∆y
,

with the obvious notations. Strictly speaking, these values are valid only for the subsonic case in
both directions. However, supersonic cases can be accommodated by simply substituting SU,R
by S+

U,R = max(SU,R, 0) and SD,L by S−D,L = min(SD,L, 0). Another option is to use Simpson’s
rule to approximate the integral, which leads to the simpler choice

α =
1

6
, β =

2

3
, γ =

1

6
.

3.2 2D AVM-type solvers for conservation laws 60

We have chosen this approach in the numerical experiments, although no significative differences
have been found when the first option is used. More accurate approaches are possible: see, e.g.,
[203, Sect. 3.3.2].

With respect to the CFL condition needed to ensure stability, the multidimensional
corrections allow for a maximum CFL number of unity: see [14] for a discussion on this point.
In particular, the condition which ensures that the waves emanating from the corners do not
touch each other is given by

∆t ≤ min

(
∆x

SR,i−1/2,j+1/2 − SL,i+1/2,j+1/2
,

∆x

SR,i−1/2,j−1/2 − SL,i+1/2,j−1/2
,

∆y

SU,i+1/2,j−1/2 − SD,i+1/2,j+1/2
,

∆y

SU,i−1/2,j−1/2 − SD,i−1/2,j+1/2

)
.

Nevertheless, this condition could be relaxed, considering that the numerical flux at the edge is
assembled as a linear convex combination of the one-dimensional contribution at the edge and
the two-dimensional contributions at the vertices. Therefore, in order to allow for the maximal
CFL number, we impose

∆t ≤ min

(
2∆x

SR,i−1/2,j+1/2 − SL,i+1/2,j+1/2
,

2∆x

SR,i−1/2,j−1/2 − SL,i+1/2,j−1/2
,

2∆y

SU,i+1/2,j−1/2 − SD,i+1/2,j+1/2
,

2∆y

SU,i−1/2,j−1/2 − SD,i−1/2,j+1/2

)
. (3.1.12)

Despite this, we use a standard central zone CFL condition in our experiments in Section 3.3.
In Section 4.3.3, after analyzing the modified equation of the scheme (4.1.9), we find exactly the
condition (3.1.12) for the 2D linear transport equation, and we prove the linear L∞-stability of
the scheme.

3.2 2D AVM-type solvers for conservation laws

The purpose of this section is to extend Balsara’s multidimensional solver by changing, in
an appropriate way, the underlying HLL flux by a more precise AVM solver. The key point to
achieve this is the reinterpretation of Balsara’s solver in such a way that the two-dimensional
corrections are expressed as suitable combinations of one-dimensional numerical fluxes of HLL
type, which in turn can be changed by another AVM flux. We will use the same notations as
in Section 3.1 for the speeds, states and fluxes. In particular, we are interested in a simple
four-wave model, so only the speeds SL, SR, SD and SU will be taken into account.

To begin with, consider the local stencil shown in Figure 3.2, and let us see how the two-
dimensional resolved flux F ∗ is defined. Let U∗L and U∗R be the HLL states given by (3.1.9),
and let F ∗L and F ∗R be the transverse fluxes considered in Section 3.1. Notice that the explicit
form of these transverse fluxes is problem-dependent: see Section 3.3 for the case of the MHD
equations. Next, consider the AVM-type flux (1.5.1) in the x-direction given by

F ∗ =
F ∗L + F ∗R

2
− 1

2
Q∗x(U∗R −U∗L), (3.2.1)

3.2 2D AVM-type solvers for conservation laws 61

withQ∗x = |λxmax|f(|λxmax|−1A∗), where f(x) is a function verifying the stability condition (1.5.5),
A∗ is a Roe-like matrix such that

A∗(U∗R −U∗L) = F ∗R − F ∗L, (3.2.2)

and λxmax is a bound on its spectral radius.

Remark 7. As stated in Section 3.1, in general F ∗α 6= F (U∗α), α = L,R, so A∗ is not exactly
a Roe matrix. Its form will depend on how the transverse fluxes are built. In the cases in which
such a matrix cannot be constructed, A∗ can be taken as the Jacobian of the flux F evaluated at
some average state, so (3.2.2) holds only approximately.

Remark 8. Notice that the vertical contributions in the fluxes (3.2.1) are included through the
transverse fluxes F ∗R ≡ F ∗R(U∗R,G

∗
R) and F ∗L ≡ F ∗L(U∗L,G

∗
L), as commented in Section 3.1.

It was shown in [41] that the HLL method can be viewed as an AVM solver based on the
first-order polynomial

f(x) = α0 + α1x, (3.2.3)

with

α0 =
SR|SL| − SL|SR|

SR − SL
, α1 =

|SR| − |SL|
SR − SL

.

Thus, substituting in (3.2.1) and using (3.2.2), we get the following expression:

F ∗ =
SU

SU − SD

(
F ∗L + F ∗R

2
− 1

2

(
α0(URU −ULU) + α1(F ∗R − F ∗L)

))

− SD
SU − SD

(
F ∗L + F ∗R

2
− 1

2

(
α0(URD −ULD) + α1(F ∗R − F ∗L)

))

+
α0

2(SU − SD)
(GRU −GLU +GLD −GRD),

(3.2.4)

where the explicit form (3.1.9) for the HLL states has been applied. Notice that the first two
lines of (3.2.1) can be interpreted as two one-dimensional HLL fluxes associated, respectively,
to the upper and lower parts of the stencil, while the last line accounts for the cross derivative
of the flux G.

Assuming now that we are in the subsonic case in both directions, so

α0 = −2
SLSR
SR − SL

, α1 =
SR + SL
SR − SL

,

substitution in (3.2.4) leads to exactly the same formula (3.1.10) for Balsara’s resolved flux. This
means that the two-dimensional resolved flux (3.1.10) can be reinterpreted as an AVM-type flux
of the form (3.2.1). Analogous conclusions are obtained when the flux is supersonic in one or
both directions.

Similar computations can be done to write the resolved flux (3.1.11) in the y-direction as

G∗ =
G∗D +G∗U

2
− 1

2
Q∗y(U

∗
U −U∗D), (3.2.5)

3.2 2D AVM-type solvers for conservation laws 62

whereQ∗y = |λymax|g(|λymax|−1B∗); here g(x) is a function verifying the stability condition (1.5.5),
B∗ is a Roe-like matrix verifying B∗(U∗U−U∗D) = G∗U−G∗D, and λymax is a bound on its spectral
radius.

Once the two-dimensional fluxes (3.1.10) and (3.1.11) have been expressed as the AVM-type
fluxes (3.2.1) and (3.2.5), it is possible to extend these to build more precise two-dimensional
solvers. This is achieved by changing the underlying HLL polynomial (3.2.3) by another suitable
function satisfying (1.5.5), thus obtaining an AVM-type two-dimensional flux. It is important
to remark that to build an AVM solver, only the maximum wave speeds Sα are needed; despite
simplicity, this is another reason why we consider a four-wave model. In particular, we always
assume that the wave structure of the solution is that shown in Figure 3.2 (right). On the
other hand, notice that in (3.2.1)-(3.2.5) the resolved states U∗α are precisely the HLL states
(3.1.8)-(3.1.9). We will conserve these resolved states even though the basis function f(x) used
to build the fluxes (3.2.1)-(3.2.5) is changed. A possible way to introduce more structure in the
resolved states, in the case of a PVM solver, could be through the equivalence of PVM solvers
and simple Riemann solvers stated in [149].

An important consequence of the above considerations is that our two-dimensional AVM
solvers could be adapted to define path-conservative schemes for nonconservative systems, in
the spirit of [160]. In particular, this allows to extend the two-dimensional AVM solvers to the
case of hyperbolic systems with coupling and source terms. This is the subject of Chapter 4.

For the sake of completeness, we end this section by summarizing the construction of the
horizontal numerical flux Fi+1/2,j and the vertical numerical fluxGi,j+1/2 for a 2D AVM method.

First of all, for generic cell values U0 and U1, and maximal speeds of propagation S0 and
S1, define the HLL states

UHLL
x (U0,U1, S0, S1) =

S1U1 − S0U0 + F (U0)− F (U1)

S1 − S0

and

UHLL
y (U0,U1, S0, S1) =

S1U1 − S0U0 +G(U0)−G(U1)

S1 − S0
.

Given a function f(x) satisfying (1.5.5), define the one-dimensional AVM fluxes

FAVM(U0,U1) =
F (U0) + F (U1)

2
− 1

2
Qx(U1 −U0)

and

GAVM(U0,U1) =
G(U0) +G(U1)

2
− 1

2
Qy(U1 −U0),

where the viscosity matrices Qx and Qy are defined as in (1.5.4), in terms of suitable Roe or
Jacobian matrices Ax and Ay, respectively.

Let us focus first on the horizontal flux Fi+1/2,j . Consider the six-cell stencil around the
vertical edge depicted in Figure 3.1. Then:

• The 1D flux through the edge is defined by

F ∗i+1/2,j = FAVM(Uij ,Ui+1,j).

3.2 2D AVM-type solvers for conservation laws 63

• To build the 2D flux F ∗i+1/2,j+1/2 at the vertex (xi+1/2, yj+1/2), first compute the four local

speeds of propagation SL, SR, SU and SD (we omit the indexes for clarity) as explained
in Section 3.1.

Subsonic case in both directions: SL < 0 < SR and SD < 0 < SU . Define the states

U∗L = UHLL
y (Uij ,Ui,j+1, SD, SU),

U∗R = UHLL
y (Ui+1,j ,Ui+1,j+1, SD, SU),

(3.2.6)

and the 1D AVM fluxes

G∗L = GAVM(Uij ,Ui,j+1),

G∗R = GAVM(Ui+1,j ,Ui+1,j+1).
(3.2.7)

Then build the transverse flux F ∗L in terms of U∗L and G∗L, and the transverse flux F ∗R in
terms of U∗R and G∗R. Finally, the 2D flux is given by

F ∗i+1/2,j+1/2 =
F ∗L + F ∗R

2
− 1

2
Q∗x(U∗R −U∗L),

where Q∗x is defined as explained in Section 1.5 in terms of a Roe-like matrix A∗x satisfying
(3.2.2); if such a matrix is not available, we simply take the Jacobian of the physical flux
F evaluated at some average state.

Supersonic case in some or both directions: The flux F ∗i+1/2,j+1/2 is defined as the corres-

ponding upwinded flux, exactly as in [15, Sect. 2.1].

• The 2D flux F ∗i+1/2,j−1/2 at the lower vertex is defined similarly.

• Finally, the 1D and 2D fluxes are assembled as

Fi+1/2,j =
1

6
F ∗i+1/2,j+1/2 +

2

3
F ∗i+1/2,j +

1

6
F ∗i+1/2,j−1/2, (3.2.8)

where, for simplicity, Simpson’s rule has been considered (see the end of Section 3.1).

In short, the two-dimensional flux F ∗ can be interpreted as follows. First, from the right
states URD and URU in Figure 3.2, we build the associated state U∗R and the AVM vertical
flux G∗R; from these we define the transverse flux F ∗R, which may be viewed as a flux in the
x-direction involving the states URD and URU and the contributions GRD and GRU in the
y-direction. Next, the flux F ∗L is similarly defined from the left states ULD and ULU . Once
U∗L, U∗R, F ∗L and F ∗R have been constructed, we use them as building blocks to define F ∗ as
an AVM-type flux: F ∗ ≡ FAVM(U∗L,U

∗
R), where the fluxes F (U∗L) and F (U∗R) are substituted

by F ∗L and F ∗R respectively. The AVM solver used is determined by the choice of the viscosity
matrix Q∗x.

Similarly, the vertical flux G∗i,j+1/2 is constructed as follows. Consider the six-cell stencil

around the horizontal edge between cells Cij and Ci,j+1 (see Figure 3.1). Then:

3.2 2D AVM-type solvers for conservation laws 64

• The 1D flux through the edge is simply given by

G∗i,j+1/2 = GAVM(Uij ,Ui,j+1).

• To define the 2D flux G∗i+1/2,j+1/2 at the vertex (xi+1/2, yj+1/2), first compute the four

local speeds of propagation SL, SR, SU and SD (Section 3.1).

Subsonic case in both directions: Consider the states

U∗D = UHLL
x (Uij ,Ui+1,j , SL, SR),

U∗U = UHLL
x (Ui,j+1,Ui+1,j+1, SL, SR),

and the 1D AVM fluxes

F ∗D = FAVM(Uij ,Ui+1,j),

F ∗U = FAVM(Ui,j+1,Ui+1,j+1).

Next, define the transverse flux G∗D in terms of U∗D and F ∗D, and the transverse flux G∗U
in terms of U∗U and F ∗U . The 2D flux is then given by

G∗i+1/2,j+1/2 =
G∗D +G∗U

2
− 1

2
Q∗y(U

∗
U −U∗D),

where Q∗y is a functional evaluation of the matrix A∗y (see Section 1.5).

Supersonic case in some or both directions: The flux G∗i+1/2,j+1/2 is defined as the corres-

ponding upwinded flux (see [15, Sec. 2.1]).

• The 2D flux G∗i−1/2,j+1/2 at the left vertex is defined in an analogous way.

• Finally, the 1D and 2D fluxes are assembled as

Gi,j+1/2 =
1

6
G∗i+1/2,j+1/2 +

2

3
G∗i,j+1/2 +

1

6
G∗i−1/2,j+1/2.

Notice that the two-dimensional fluxes at vertices have been constructed as combinations
of several one-dimensional fluxes. Thus, for practical implementation only the definition of a
one-dimensional AVM flux is really needed, what makes the computer coding simple and clear.

Finally, the choice of the time step is given by the CFL condition

∆t = 2δ ·min
ij

∆tij , δ ∈ (0, 1], (3.2.9)

where each local time step ∆tij is defined as

∆tij =

(
λxij
∆x

+
λyij
∆y

)−1

,

where λαij denotes the maximal speed of propagation in the cell Cij in the α-direction, α = x, y,
taking into account both the speeds at the edges and those arising in the two-dimensional
Riemann problems at vertices. As it was remarked in Section 3.1 (see also [14]), the two-
dimensional contributions allow the use of a maximal CFL number δ of unity. This represents
an additional advantage with respect to standard methods in which a one-dimensional solver is
applied dimension by dimension, for which the maximum CFL number is 0.5.

3.3 Numerical results 65

3.3 Numerical results

The performances of the proposed multidimensional AVM schemes are analyzed in this
section. To this end, we have chosen a number of tests that constitute standard references
in MHD, in order that our schemes could be confronted with other methods in the literature.

An important issue in the construction of the schemes is the proper choice of the speeds
of propagation. For this we have followed the guidelines stated in Section 3.1, with the
expressions (2.1.3) for the maximal wave speeds. In particular, for the intermediate speeds
λ̄α(U0,U1) appearing in (3.1.5) we have simply chosen the speeds λα(Ũ) at the intermediate
state Ũ = U0+U1

2 . Another possible but more expensive choice is to consider Ũ as the Roe state
associated to the states U0 and U1. In our computational experiments, both choices have led to
similar results. Once the maximal speeds of propagation have been computed, the time step is
determined from the CFL condition (3.2.9). In particular, we remark that for the 2D methods
the theoretical admissible CFL number is 1, while for the 1D×1D methods is 0.5.

The transverse fluxes (see Remark 8) can be defined using values from the associated
intermediate state and the normal fluxes. Thus, denoting the components of the states (3.2.6)
as U∗α = (u∗α,i)

8
i=1 and the fluxes (3.2.7) as G∗α = (g∗α,i)

8
i=1, for α = L,R, the transverse fluxes

F ∗α are defined as

F ∗α =




u∗α,2

g∗α,3 +
(u∗α,2)2 − (u∗α,3)2

u∗α,1
+ (u∗α,6)2 − (u∗α,5)2

g∗α,2
u∗α,2u

∗
α,4

u∗α,1
− u∗α,5u∗α,7

0

u∗α,2u
∗
α,6 − u∗α,3u∗α,5
u∗α,1

u∗α,2u
∗
α,7 − u∗α,4u∗α,5
u∗α,1

u∗α,2
u∗α,1

(u∗α,8 + g∗α,3 −
(u∗α,3)2

u∗α,1
+ u∗α,6

2)−
u∗α,5
u∗α,1

(u∗α,2u
∗
α,5 + u∗α,3u

∗
α,6 + u∗α,4u

∗
α,7)




,

taking into account the form of the fluxes F and G. The transverse fluxes G∗β, for β = D,U ,
can be constructed in an analogous way from U∗β and F ∗β .

The definition of a two-dimensional AVM flux for the nonconservative system (2.1.6) follows
exactly the same guidelines explained at the end of Section 3.2, substituting UHLL

x , UHLL
y , FAVM

and GAVM by ŨHLL
x , ŨHLL

y , F̃AVM and G̃AVM respectively.
We will denote as Int-n and Padé-[m/k] the AVM methods based on the internal polynomial

pn(x) and the Padé approximation r
[m/k]
1 (x), respectively. For each AVM method, 2D denotes

its multidimensional version, where the numerical flux at an edge is given by (3.2.8); on the

3.3 Numerical results 66

other hand, 1D×1D refers to the corresponding one-dimensional solver applied dimension by
dimension, which is equivalent to taking Fi+1/2,j = F ∗i+1/2,j in (3.2.8).

Finally, unless otherwise stated, the divergence cleaning technique introduced in Section 2.1
will be used in all the numerical experiments.

3.3.1 First-order accuracy

To study the accuracy of the proposed schemes, we first consider a test from [139] for the
ideal Euler equations with exact smooth solution given by

ρ(x, y, t) = 1 + 0.2 sin(π(x+ y − t/2)), vx = 1, vy = −1/2, P = 1,

and adiabatic constant γ = 1.4. The computational domain is [−1, 1] × [−1, 1], with periodic
boundary conditions in both directions. The schemes have been run until a final time T = 4,
which corresponds to a full period of the wave.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

HLL 1D 1D

HLL 2D

Int-3 1D 1D

Int-3 2D

Padé-[4/4] 1D 1D

Padé-[4/4] 2D

Exact

Figure 3.6: Test 3.3.1. Comparison of several 1D×1D-2D AVM methods on a 100×100 mesh. Diagonal
cut along the main diagonal for the density variable.

Figure 3.6 shows a cut along the main diagonal of the final densities obtained on a 100×100
mesh with the 1D×1D and 2D versions of HLL, Int-3 and Padé-[4/4] schemes. Notice that the
Int-3 method is based on an polynomial of eighth degree, while the Padé-[4/4] method is based
on a rational function of degree [8/8]. All the computations have been done using a common
CFL number of 0.5, although the 2D methods perform well with CFL numbers up to 0.8. As

3.3 Numerical results 67

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Int-1 2D

Int-2 2D

Int-3 2D

Int-4 2D

Int-5 2D

Exact

Figure 3.7: Test 3.3.1. Solutions obtained with the Int-n 2D schemes, for n = 1, 2, 3, 4, 5. Diagonal cut
along the main diagonal for the density variable.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
Time: 4

25x25

50x50

100x100

200x200

Exact

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
Time: 4

25x25

50x50

100x100

200x200

Exact

Figure 3.8: Test 3.3.1. Diagonal cut along the main diagonal for the density variable on several meshes.
Left: Int-3 2D. Right: Padé-[4/4] 2D.

it can be observed, for each scheme the two-dimensional contributions provide a more precise
computation of the solution than their one-dimensional counterparts.

3.3 Numerical results 68

Table 3.1: Test 3.3.1. Comparison of the L1-errors obtained with several 1D×1D and 2D AVM schemes.

Scheme Mesh size L1-error Scheme Mesh size L1-error

HLL 1D×1D 25× 25 4.9299e-01 HLL 2D 25× 25 4.8377e-01
50× 50 4.2625e-01 50× 50 4.0087e-01
100× 100 3.0486e-01 100× 100 2.7504e-01
200× 200 1.8684e-01 200× 200 1.6402e-01

Int-3 1D×1D 25× 25 4.6978e-01 Int-3 2D 25× 25 4.5315e-01
50× 50 3.7274e-01 50× 50 3.4422e-01
100× 100 2.4677e-01 100× 100 2.2038e-01
200× 200 1.4393e-01 200× 200 1.2603e-01

Padé-[4/4] 1D×1D 25× 25 4.5418e-01 Padé-[4/4] 2D 25× 25 4.3194e-01
50× 50 3.4670e-01 50× 50 3.1343e-01
100× 100 2.2308e-01 100× 100 1.9403e-01
200× 200 1.2791e-01 200× 200 1.0871e-01

10 3 10 4

Mesh size

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

L
1

e
r
r
o
r

HLL 1D 1D

HLL 2D

Int-3 1D 1D

Int-3 2D

Padé-[4,4] 1D 1D

Padé-[4,4] 2D

Figure 3.9: Test 3.3.1. Error curves for several 1D×1D and 2D AVM methods.

3.3 Numerical results 69

Table 3.2: Test 3.3.1 for MHD. Comparison of L1-errors for the components of the magnetic field.

Scheme Mesh size ||B‖||1 ||B⊥||1 ||Bz||1
HLL 2D 25× 25 3.0669e-02 1.1424e-01 1.2152e-01

50× 50 2.4932e-02 9.3082e-02 1.0301e-01
100× 100 1.7197e-02 6.4162e-02 7.3016e-02
200× 200 1.1149e-02 4.1526e-02 4.7752e-02

Int-3 2D 25× 25 2.3482e-02 8.3083e-02 7.4624e-02
50× 50 1.5832e-02 5.5190e-02 4.7937e-02
100× 100 9.3169e-03 3.2080e-02 2.7637e-02
200× 200 4.7735e-03 1.7490e-02 1.5038e-02

Padé-[4/4] 2D 25× 25 1.8935e-02 7.0178e-02 7.2807e-02
50× 50 1.2102e-02 4.4361e-02 4.6467e-02
100× 100 6.8124e-03 2.4736e-02 2.6259e-02
200× 200 3.6967e-03 1.3130e-02 1.4008e-02

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
Time: 5s

25x25

50x50

100x100

200x200

Exact

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
Time: 5s

25x25

50x50

100x100

200x200

Exact

Figure 3.10: Test 3.3.1 for MHD. Diagonal cut along the main diagonal for the B⊥ variable on several
meshes. Left: Int-3 2D. Right: Padé-[4/4] 2D.

To check the behavior of the solutions in terms of the basis function chosen for an AVM 2D
method, we have represented in Figure 3.7 the results obtained with the Int-n 2D schemes, for
n = 1, 2, 3, 4, 5. It is clear that the precision of the solutions increases as the degree of the basis
polynomial pn(x) increases. A similar remark is also valid for the Padé-[m/k] 2D schemes.

On the other hand, to check the convergence to the exact solution as the mesh is refined, in

3.3 Numerical results 70

Figure 3.8 are represented the solutions obtained with different meshes of size N ×N , for N =
25, 50, 100, 200. Table 3.1 shows the L1-errors in the density variable, while the corresponding
error curves are depicted in Figure 3.9. Notice that the Int-3 2D scheme provides very similar
result as the Padé-[4/4] 1D×1D method.

In order to verify the accuracy of our schemes for MHD flows, we consider now the rotated
circularly polarized Alfvén wave test proposed in [196], for which an analytical solution is
available. The computational domain is given by [0, 1/ cos(α)] × [0, 1/ sin(α)] for a given angle
α, with periodic boundary conditions. As initial conditions we take ρ = 1, v‖ = 0, p = 0.1,
B‖ = 1, v⊥ = 0.1 sin[2π(x cosα + y sinα)] = B⊥ and vz = 0.1 cos[2π(x cosα + y sinα)] = Bz,
with adiabatic constant γ = 5/3. The simulations have been run until a final time T = 5
(corresponding to five full periods), using a CFL number of 0.8. Table 3.2 shows the L1-errors
corresponding to the components of the magnetic field for an angle α = 45◦, which are in good
agreement with those presented in [196]. Finally, to check the convergence to the exact solution
as the mesh is refined, Figure 3.10 shows the solutions obtained with different meshes of size
N ×N , for N = 25, 50, 100, 200.

3.3.2 Orszag-Tang vortex

The Orszag-Tang vortex [158] is a well-known model of complex MHD flow containing many
significant features. Departing from an initial smooth state, the system develops a series of
complex interactions between the different shock waves generated as the system evolves in the
transition to turbulence.

Specifically, we consider the initial conditions proposed in [100]:

ρ(x, y, 0) = γ2, vx(x, y, 0) = − sin(y), vy(x, y, 0) = sin(x),

Bx(x, y, 0) = − sin(y), By(x, y, 0) = sin(2x), P (x, y, 0) = γ,

with γ = 5/3. The computational domain is given by [0, 2π] × [0, 2π], with periodic boundary
conditions in both directions.

We use this problem to test the robustness of several AVM 2D schemes equipped with the
divergence cleaning technique introduced in Section 2.1. As it is well-known (see, e.g., [100]),
negative pressures may appear if the divergence is not properly controlled. In order to compare,
we have considered the HLL 2D, Int-3 2D and Padé-[4/4] 2D methods, with a common CFL
number of 0.8.

Figure 3.11 shows the densities and pressures obtained at time T = π. Although there
is no accepted reference solution for this test, our results are in good agreement with those
found in the literature: see, e.g., [14, 100, 138]. As it can be observed, the Int-3 2D and Padé-
[4/4] 2D schemes provide a sharper resolution of the solution than Balsara’s HLL 2D method.
This can also be seen in Figure 3.12, where cuts along the main diagonal at different times are
shown. As time evolves and the solution becomes more complex, the Padé-[4/4] scheme provides
significantly the best approximations, followed by Int-3 2D.

On the other hand, we have compared the technique for imposing the divergence constraint
defined in Section 2.1 with the well-known projection method introduced in [30]. Figure 3.13
shows cuts along the main diagonal of the solutions obtained with the Int-3 2D scheme at
time T = π with both divergence cleaning techniques. As it can be observed, the results are

3.3 Numerical results 71

Figure 3.11: Test 3.3.2. Density (left) and pressure (right) computed at time T = π on a 200 × 200
mesh. From top to bottom: HLL 2D, Int-3 2D and Padé-[4/4] 2D.

3.3 Numerical results 72

1 2 3 4 5 6

1.5

2

2.5

3

3.5

4

HLL 2D

Int-3 2D

Padé-[4/4] 2D

Reference sol.

1 2 3 4 5 6

1

1.5

2

2.5

3

3.5

HLL 2D

Int-3 2D

Padé-[4/4] 2D

Reference sol.

1 2 3 4 5 6

1

1.5

2

2.5

3

HLL 2D

Int-3 2D

Padé-[4/4] 2D

Reference sol.

1 2 3 4 5 6

1.5

2

2.5

3

3.5

4

4.5

HLL 2D

Int-3 2D

Padé-[4/4] 2D

Reference sol.

Figure 3.12: Test 3.3.2. Cuts along the main diagonal of the density at times t = 1, t = 1.5, t = 2 and
t = π.

comparable. Also, Table 3.3 shows the relative CPU times obtained when using both divergence
cleaning methods. The results are again comparable, although our method seems to be faster.

As it was remarked in [100], the numerical solutions for this test may have non-zero
divergence, possibly due to the fact that the periodic boundary conditions reintroduce any
non-zero divergence that exits through the domain boundary. However, these divergence errors
decrease as the mesh is refined, which may be a reason for the stability of the schemes. To
test the accuracy of a scheme it is usual to compute the maximum pressure, as no analytical
solution is available. Table 3.4 shows the maximum pressure and the L1-norm of the divergence
of the magnetic field at the final time T = π. In particular, it can be observed that in fact
the divergence of the magnetic field decreases when the mesh is refined. The obtained results
are in good agreement with those presented in [100, Table 2] for their schemes based on the

3.3 Numerical results 73

Table 3.3: Test 3.3.2. Relative CPU times. Comparison between the divergence cleaning technique in
Section 2.1 (left) and the projection method (right) on several meshes.

Mesh size Scheme CPU CPU (projection)

100× 100 HLL 2D 1.00 1.27
Int-3 2D 5.02 5.29
Padé-[4/4] 2D 9.40 9.91

200× 200 HLL 2D 1.00 1.74
Int-3 2D 5.13 5.62
Padé-[4/4] 2D 9.78 10.50

300× 300 HLL 2D 1.00 1.53
Int-3 2D 5.72 5.94
Padé-[4/4] 2D 10.37 10.70

400× 400 HLL 2D 1.00 1.35
Int-3 2D 5.22 5.40
Padé-[4/4] 2D 9.86 10.32

500× 500 HLL 2D 1.00 1.21
Int-3 2D 5.16 5.27
Padé-[4/4] 2D 9.84 10.14

1 2 3 4 5 6

1.5

2

2.5

3

3.5

4

4.5 Int3 2D

Int3 2D projection

Reference sol.

1 2 3 4 5 6

1

1.5

2

2.5

3

3.5

4

4.5 Int3 2D

Int3 2D projection

Reference sol.

Figure 3.13: Test 3.3.2. Comparison of the divergence cleaning technique of Section 2.1 with the
projection method using the Int-3 2D scheme. Cut along the main diagonal: density (left) and pressure
(right) computed at time T = π on a 100× 100 mesh.

3.3 Numerical results 74

nonconservative form of the MHD equations.

Table 3.4: Test 3.3.2. Maximum presure (top) and L1 norm of the divergence of the magnetic field
(bottom) at time T = π for the Orszag-Tang vortex problem.

Mesh size HLL 2D Int-3 2D Padé-[4/4] 2D

25× 25 3.381 3.405 3.421
50× 50 3.720 3.974 4.250
100× 100 4.346 4.681 4.848
200× 200 4.833 5.051 5.084
400× 400 5.144 5.283 5.400
800× 800 5.382 5.780 5.872

25× 25 1.324 3.456 6.592
50× 50 1.749 3.579 6.691
100× 100 1.821 3.172 5.985
200× 200 1.690 2.766 5.192
400× 400 1.538 2.416 4.261
800× 800 1.399 1.902 3.277

3.3.3 The rotor problem

The rotor problem, initially proposed in [22], is considered in this section. The initial
condition consists of a dense rotating disk at the center of the domain, which is connected
by means of a taper function with the ambient fluid at rest. The rotor is not in equilibrium,
as the centrifugal forces are not balanced. Eventually, the rotating dense fluid will be confined
into an oblate shape due to the action of the magnetic field.

Given r0 = 0.1, r1 = 0.115, f = (r1 − r)/(r1 − r0) and r = [(x − 0.5)2 + (y − 0.5)2]1/2, the
initial conditions are given by

(ρ, vx, vy) =





(10,−(y − 0.5)/r0, (x− 0.5)/r0) if r < r0,

(1 + 9f,−(y − 0.5)f/r, (x− 0.5)f/r) if r0 < r < r1,

(1, 0, 0) if r > r1,

with Bx = 2.5/
√

4π, By = 0 and P = 0.5. We take γ = 5/3. The computational domain is
[0, 1]× [0, 1] and transmissive boundary conditions are considered.

Figure 3.14 shows the solution obtained with the Padé-[4/4] 2D scheme at time T = 0.295 on
a 200×200 mesh with CFL= 0.8. The results are in good agreement with those presented in [22,
50, 138, 196]. In particular, it is worth noticing that the results produced with the first-order
Padé-[4/4] 2D scheme have a similar quality as those obtained in [50] with a one-dimensional
third-order approximate Chebyshev-DOT scheme on the same mesh.

3.3 Numerical results 75

Figure 3.14: Test 3.3.3. Density ρ (top left), pressure P (top right), Mach number |v|/a (bottom left)
and magnetic pressure |B|2/2 (bottom right) computed at time T = 0.295. Results obtained with the
Padé-[4/4] 2D scheme with 200× 200 cells.

3.3.4 Two-dimensional Riemann problem

In this section we consider a two-dimensional Riemann problem originally proposed in [68].
The initial condition, given in Table 3.5, is chosen so that the solutions of three of the four one-
dimensional Riemann problems are simple waves. Denoting the quadrants by Roman numbers
as in Table 3.5, there is a rarefaction wave for problem I↔II and shocks for II↔III and III↔IV.

The problem has been solved in the computational domain [−1, 1]× [−1, 1] using a 200×200
mesh until a final time T = 0.2, with γ = 5/3. Following [138], we have considered Neumann
boundary conditions.

Figure 3.15 shows the contours of Bx and By computed with the Padé-[4/4] 2D scheme using
a CFL of 0.8; for this test, the Int-3 2D scheme gives similar results. It was reported in [68] that
some schemes present problems to keep By constant across the shock in II↔III, and they can
also produce strong distortions in Bx and By behind the rarefaction wave in I↔II. As it can be

3.3 Numerical results 76

Table 3.5: Test 3.3.4. Initial data for the 2d Riemann problem.

Quadrant ρ ρvx ρvy ρvz Bx By Bz E

I: x > 0, y > 0 0.9308 1.4557 -0.4633 0.0575 0.3501 0.9830 0.3050 5.0838

II: x < 0, y > 0 1.0304 1.5774 -1.0455 -0.1016 0.3501 0.5078 0.1576 5.7813

III: x < 0, y < 0 1.0000 1.7500 -1.0000 0.0000 0.5642 0.5078 0.2539 6.0000

IV: x > 0, y < 0 1.8887 0.2334 -1.7422 0.0733 0.5642 0.9830 0.4915 12.999

Figure 3.15: Test 3.3.4. Contours at time T = 0.2 obtained with the Padé-[4/4] 2D scheme on a
200× 200 mesh. Left: Bx. Right: By.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Padé-[4/4] 2D

Reference

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Padé-[4/4] 2D

Reference

Figure 3.16: Test 3.3.4. Cuts at x = 0.93 and T = 0.2. Solid line: reference solution. Dots: Padé-[4/4]
2D. Left: Bx. Right: vx.

3.3 Numerical results 77

observed in Figure 3.15, none of those pathologies appear in the computed solutions, that can
be directly compared with those presented in [68, 138].

Finally, Figure 3.16 shows a comparison between the solution of the two-dimensional
Riemann problem obtained with the Padé-[4/4] 2D scheme and a one-dimensional reference
solution. This serves to compare the quality of the solution of the I↔IV Riemann problem at
x = 0.93, in a similar way as it was done in [68, 138].

-50 -40 -30 -20 -10 0 10 20 30 40 50

0

0.5

1

1.5

2

2.5

3

Figure 3.17: Test 3.3.5. Solution obtained with initial magnetic field (Bx, By, Bz) = (0, 0, 0). Density
ρ (top left), pressure P (top right), kinetic energy (bottom left) and density along y = 0.5 (bottom right)
computed at time T = 3.

3.3.5 Spherical explosion

This test concerns the evolution of an explosion produced by an overpressured spherical
region located at the center of the domain. It was originally proposed in [212], although we have

3.3 Numerical results 78

considered here the data proposed in [186]. Specifically, the initial pressure is P = 100 inside a
circle of radius r = 10 and P = 1 outside. The density is ρ = 1 on the whole domain and the
velocity field is set to zero. As in [186], three different values of the initial magnetic field are
considered, with a common value of the adiabatic constant γ = 2. The computations have been
performed with the Padé-[4/4] 2D scheme on the computational domain [−50, 50] × [−50, 50],
using a 400× 400 uniform mesh and CFL=0.8.

Figure 3.18: Test 3.3.5. Solution obtained with initial magnetic field (Bx, By, Bz) = (0, 5/
√
π, 0).

Density ρ (top left), pressure P (top right), magnetic pressure (bottom left) and kinetic energy (bottom
right) computed at time T = 3.

Taking the initial magnetic field as (Bx, By, Bz) = (0, 0, 0) the solution propagates
symmetrically in the radial direction, as expected for the Euler equations. This behavior can
be seen in Figure 3.17, which shows the results of the simulation at time T = 3. If the initial
magnetic field is taken as (Bx, By, Bz) = (0, 5/

√
π, 0), the increasing of the strength of the

magnetic field produces a slightly elongated shock in the y-direction: see Figure 3.18.

3.3 Numerical results 79

Figure 3.19: Test 3.3.5. Solution obtained with initial magnetic field (Bx, By, Bz) = (0, 50/
√
π, 0).

Density ρ (top left), pressure P (top right), magnetic pressure (bottom left) and kinetic energy (bottom
right) computed at time T = 1.05.

For an even stronger initial magnetic field (Bx, By, Bz) = (0, 50/
√
π, 0), the solution becomes

highly anisotropic, with essentially no displacement of fluid in the orthogonal direction to the
magnetic field. Figure 3.19 shows the results obtained at time T = 1.05, which is the time
considered in [186] for which the perturbation has not yet reached the boundary.

In all the three cases so far considered, our results are in good agreement with those presented
in [186, 212].

Chapter 4

Multidimensional AVM-type solvers:
the nonconservative case

The extension of the multidimensional Riemann solvers seen in Chapter 3 from the
conservative to the nonconservative case is not straightforward. However, the form in which
the two-dimensional AVM solvers have been defined opens the door to extend them to the
case of hyperbolic systems in nonconservative form, within the framework of path-conservative
schemes (see Section 1.4). In particular, this allows to extend the two-dimensional AVM solvers
to the case of hyperbolic systems with coupling and source terms. A possible way to do this is
presented in this chapter, whose results have been presented in [178].

In this Chapter, we use the path-conservative formalism in order to derive a general
strategy to construct two-dimensional Riemann solvers for nonconservative hyperbolic systems
on structured meshes. In particular, we define second-order genuinely two-dimensional AVM-
type Riemann solvers for general hyperbolic systems. Our schemes are based on the rectangular
four-waves model proposed in [14] (see Section 3.1), where the differences of fluxes in the
conservative formulation are replaced by fluctuations along the paths considered in the definition
of the nonconservative products. Initially, we consider the extension of a 2D HLL scheme, which
is then rewritten as a 2D scheme in PVM form than can be readily extended to a general 2D
AVM-type scheme. We prove the consistency and linear L∞-stability for the resultant first-
order schemes. Second-order accuracy in space and time is obtained by means of a predictor-
corrector MUSCL-Hancock procedure. Applications to the one-layer and two-layer shallow water
equations have been considered. The schemes have been proved to be well-balanced for water at
rest solutions. An additional advantage of the proposed two-dimensional solvers is that they are
stable up to a CFL number of unity, whereas the maximal CFL for schemes based on dimensional
splitting is usually 0.5.

Section 4.1 is devoted to building genuinely multidimensional Riemann solvers on structured
meshes for general hyperbolic systems. As a particular case, we derive a simple multidimensional
HLL solver in Section 4.2. Then, in Section 4.3 we introduce AVM-type Riemann solvers for two-
dimensional nonconservative systems. In particular, a study of linear stability is presented in
Section 4.3.3 and a second-order extension in Section 4.3.4. A number of numerical experiments
for shallow water systems are presented in Section 4.4 in order to verify the accuracy, well-
balancedness and performances of the proposed numerical schemes.

4.1 General framework 81

4.1 General framework

In this section we derive a general strategy to construct genuinely multidimensional Riemann
solvers on structured meshes. To this end, we will follow the ideas in [14, 15] to introduce
multidimensional effects through the solution of two-dimensional Riemann problems at vertices.

To make the exposition clearer, we first focus on a purely conservative system:

∂tU + ∂xF (U) + ∂yG(U) = 0. (4.1.1)

where U , F and G are defined in (1.2.1). The initial condition for the two-dimensional Riemann
problem at a given point consists of four constant states denoted as URU , ULU , ULD and URD:
see Figure 3.2 (left). It is known that this problem has a self-similar solution consisting of four
directional one-dimensional Riemann problems arising at common edges, along with a region of
strong interaction where complex structures appear ([128]). However, when designing numerical
methods it is impractical to consider all the detailed structure arising in the strong interaction
region, so this is usually averaged into a single constant state (see, e.g., [14, 15, 203, 104]).
Here, we will follow the approach in [15], in which the strong interaction region is assumed to
be rectangular and limited by the maximal speeds of propagation.

Following the four-waves model presented in Section 3.1, we assume that the strong
interaction region arising around the vertex is bounded by the maximal horizontal wave speeds
(3.1.6) and the maximal vertical speeds (3.1.7) (see also Figure 3.3). For the sake of clarity we
will denote Fνµ = F (Uνµ) and Gνµ = G(Uνµ), for ν ∈ {L,R}, µ ∈ {D,U}.

Assume first that we are in the subsonic case in both directions, that is, SL < 0 < SR
and SD < 0 < SU . In this case, the wave structure of the solution of the two-dimensional
Riemann problem is assumed to be of the form represented in Figure 4.1, which consists of a
central strongly interacting state surrounded by the solutions of the one-dimensional Riemann
problems arising at edges.

Consider now the similarity variables ξ = x/t and ψ = y/t, and denote as Rx(ξ;U ,V)
the self-similar solution of the one-dimensional Riemann problem in the x-direction with initial
data given by arbitrary states U and V ; similarly, Ry(ψ;U ,V) denotes the solution of the
one-dimensional Riemann problem in the vertical direction. Finally, the solution of the two-
dimensional Riemann problem in similarity variables is denoted as U(x, y, t) ≡ R(ξ, ψ).

Integration of (4.1.1) over a space-time domain Q× [0, T] gives
∫

Q
(U(x, y, T)−U0)dxdy = −

∫ T

0

∫

∂Q
F · n dγdt,

where U0 ≡ U0(x, y, 0) is the initial condition of the Riemann problem. In particular, taking
Q = [SLT, SRT]× [SDT, SUT] and denoting ∂Q = ∪4

i=1Γi (see Figure 4.1), we get
∫ SRT

SLT

∫ SUT

SDT
(U(x, y, t)−U0)dxdy =

−
∫ T

0

{
−
∫

Γ1

G
(
U(x, SDT, t)

)
dx+

∫

Γ2

F
(
U(SRT, y, t)

)
dy

+

∫

Γ3

G
(
U(x, SUT, t)

)
dx−

∫

Γ4

F
(
U(SLT, y, t)

)
dy

}
dt.

4.1 General framework 82

SDt

SU t

SLt SRt

R
y

(
y t

;W
L
D
,W

L
U

)

R
y (

yt
;W

R
D
,W

R
U)

Rx

(
x

t
;WLU ,WRU

)

Rx

(
x

t
;WLD,WRD

)
Γ1

Γ3

Γ
4

Γ
2

R
(
x

t
,
y

t

)

WLU

WLD

WRU

WRD

Figure 4.1: Structure of the solution of the 2D Riemann problem for the nonconservative system (5.1.1).
Subsonic case.

Taking into account the solution of the 1D Riemann problem between ULD and URD, we have

∫ T

0

∫

Γ1

G
(
U(x, SDT, t)

)
dxdt =

∫ T

0

{∫ SLt

SLT
GLDdx

+

∫ SRt

SLt
G
(
Rx

(
x
t ;ULD,URD

))
dx+

∫ SRT

SRt
GRDdx

}
dt

=
T 2

2

(
− SLGLD +

∫ SR

SL

G
(
Rx

(
ξ;ULD,URD

))
dξ + SRGRD

)
,

and similarly for the integrals over the remaining edges. Finally, choosing T = 1, we deduce the
following consistency condition in similarity variables:

∫ SR

SL

∫ SU

SD

(
R(ξ, ψ)−U0(ξ, ψ)

)
dξdψ =

SD(FRD − FLD)− SU (FRU − FLU)

2

− 1

2

∫ SU

SD

(
F
(
Ry(ψ;URD,URU)

)
− F

(
Ry(ψ;ULD,ULU)

))
dψ

+
SL(GLU −GLD)− SR(GRU −GRD)

2

− 1

2

∫ SR

SL

(
G
(
Rx(ξ;ULU ,URU)

)
−G

(
Rx(ξ;ULD,URD)

))
dξ

(4.1.2)

4.1 General framework 83

where U0(ξ, ψ) = U(ξ, ψ, 0).

Remark 9. In [15] Balsara considered an HLL-type 2D solver for (4.1.1), in which the 1D solver
Rx is the usual HLL solver defined by the HLL state U∗α and the HLL flux F ∗α (α = L,R),
and similarly for Ry. Moreover, the strongly interaction area was assumed to be constant:
R(ξ, ψ) ≡ U∗. In this case, condition (4.1.2) allows us to explicitely determine the resolved
state U∗, which in turn coincides with the one obtained in [15] (see also Section 3.1).

Let us now focus on the nonconservative case

∂tW + Ax(W)∂xW + Ay(W)∂yW = 0. (4.1.3)

where W , Ax and Ay are defined in (1.3.2). Following [160], condition (4.1.2) can be extended
in a natural way by expressing the differences of fluxes as integrals along the paths Φ considered
in the definition of the nonconservative products. For example, writing

FRD − FLD =

∫ 1

0

dF

dU

(
ΦLD,RD

) d
ds

ΦLD,RDds,

(recall the notation Φa,b from (1.3.6)) the Jacobian ∂F
∂U could be substituted by Ax

(
ΦLD,RD

)
, and

similarly for the remaining terms in (4.1.2). This procedure leads to the following consistency
condition for the nonconservative system (5.1.1):

∫ SR

SL

∫ SU

SD

(R(ξ, ψ)−W0(ξ, ψ)
)
dξdψ =

SD
2

∫ 1

0
Ax

(
ΦLD,RD

) d
ds

ΦLD,RDds−
1

2

∫ SU

SD

∫ 1

0
Ax

(
ΦLψ,Rψ

) d
ds

ΦLψ,Rψds

− SU
2

∫ 1

0
Ax

(
ΦLU,RU

) d
ds

ΦLU,RUds

+
SL
2

∫ 1

0
Ay(ΦLD,LU)

d

ds
ΦLD,LUds−

1

2

∫ SR

SL

∫ 1

0
Ay

(
ΦξD,ξU

) d
ds

ΦξD,ξUds

− SR
2

∫ 1

0
Ay(ΦRD,RU)

d

ds
ΦRD,RUds,

(4.1.4)

where
ΦLψ,Rψ = Φ(s;Ry(ψ;WLD,WLU),Ry(ψ;WRD,WRU)) (4.1.5)

and
ΦξD,ξU = Φ(s;Rx(ξ;WLD,WRD),Rx(ξ;WLU ,WRU)). (4.1.6)

Note that when the self-similar solution only depends on U we use the notation R, while for
W = (U , σ)T we use the notation R. Notice that the right hand side in (4.1.4) can be written
as

−
∫ SR

SL

∫ SU

SD

(R(ξ, ψ)−W0(ξ, ψ))dξdψ = DRU + DLU + DRD + DLD, (4.1.7)

4.1 General framework 84

being the four contributions at the vertex given by

DRU = −
∫ SR

0

∫ SU

0
(R(ξ, ψ)−WRU)dξdψ,

DLU = −
∫ 0

SL

∫ SU

0
(R(ξ, ψ)−WLU)dξdψ,

DRD = −
∫ SR

0

∫ 0

SD

(R(ξ, ψ)−WRD)dξdψ,

DLD = −
∫ 0

SL

∫ 0

SD

(R(ξ, ψ)−WLD)dξdψ.

(4.1.8)

At a given cell Cij , the contributions at the four edges are defined by using a one-dimensional
path-conservative scheme (see Section 1.4). Specifically, we consider fluctuations of the form
D+
i−1/2,j and D−i+1/2,j at vertical edges, and of the form D+

i,j−1/2 and D−i,j+1/2 at horizontal

ones. Moreover, the two-dimensional contributions at vertices are given by (4.1.8), which in this
case read as

DRU
i−1/2,j−1/2 = −

∫ SR
i−1/2,j−1/2

0

∫ SU
i−1/2,j−1/2

0
(R(ξ, ψ)−Wij)dξdψ,

DRD
i−1/2,j+1/2 = −

∫ SR
i−1/2,j+1/2

0

∫ 0

SD
i−1/2,j+1/2

(R(ξ, ψ)−Wij)dξdψ,

DLU
i+1/2,j−1/2 = −

∫ 0

SL
i+1/2,j−1/2

∫ SU
i+1/2,j−1/2

0
(R(ξ, ψ)−Wij)dξdψ,

DLD
i+1/2,j+1/2 = −

∫ 0

SL
i+1/2,j+1/2

∫ 0

SD
i+1/2,j+1/2

(R(ξ, ψ)−Wij)dξdψ.

where Sαi+1/2,j+1/2, α = L,R,D,U , denotes the corresponding maximal speed of propagation

given by (3.1.6) and (3.1.7) at the vertex (xi+1/2, yj+1/2). Finally, the numerical scheme in
semidiscrete form is defined as (see Figure 4.2):

dWij

dt
= − 1

∆x∆y

[
βLD+

i−1/2,j + βRD−i+1/2,j + βDD+
i,j−1/2 + βUD−i,j+1/2

+ ∆t
(DRU

i−1/2,j−1/2 + DLU
i+1/2,j−1/2 + DRD

i−1/2,j+1/2 + DLD
i+1/2,j+1/2

)]
,

(4.1.9)

where 



βL = ∆y + SDi−1/2,j+1/2∆t− SUi−1/2,j−1/2∆t,

βR = ∆y + SDi+1/2,j+1/2∆t− SUi+1/2,j−1/2∆t,

βD = ∆x+ SLi+1/2,j−1/2∆t− SRi−1/2,j−1/2∆t,

βU = ∆x+ SLi+1/2,j+1/2∆t− SRi−1/2,j+1/2∆t.

(4.1.10)

4.1 General framework 85

SR
i−1/2,j+1/2∆t SL

i+1/2,j+1/2∆t

SR
i−1/2,j−1/2∆t SL

i+1/2,j−1/2∆t

b

SD
i−1/2,j+1/2∆t

bb

SD
i+1/2,j+1/2∆t

SU
i−1/2,j−1/2∆t SU

i+1/2,j−1/2∆t

DRD
i−1/2,j+1/2 DLD

i+1/2,j+1/2D−
i,j+1/2

DRU
i−1/2,j−1/2 DLU

i+1/2,j−1/2D+
i,j−1/2

D+
i−1/2,j D−

i+1/2,jWij

Figure 4.2: Contributions in the numerical scheme (4.1.9).

We have the following result.

Proposition 1. Let us suppose that Aζ(W), for ζ = x, y, are C1 matrices with bounded
derivatives. Let us consider regular finite volume meshes with constant size of edges. The
scheme (4.1.9) is consistent with the nonconservative system (5.1.1) for smooth solutions.

Proof. Let W be a smooth solution of (5.1.1) and define W n
ij = W (xi, yj , t

n) (the index n will
be dropped unless necessary). Given x = (x, y), t, we want to estimate the consistency error

E(x, t) =
W n+1

ij −W n
ij

∆t
+

1

∆x∆y

[
βLD+

i−1/2,j + βRD−i+1/2,j + βDD+
i,j−1/2 + βUD−i,j+1/2

+ ∆t
(DRU

i−1/2,j−1/2 + DLU
i+1/2,j−1/2 + DRD

i−1/2,j+1/2 + DLD
i+1/2,j+1/2

)]
,

where
W n

ij = W (x+ i∆x, y + j∆y, t+ n∆t), i, j = −1, 0, 1, n = 0, 1.

First we have

E(x, t) =
∂W

∂t
(x, t) +

1

∆x∆y

[
β̂LD̂

+

i−1/2,j + β̂RD̂
−
i+1/2,j + β̂DD̂

+

i,j−1/2 + β̂UD̂
−
i,j+1/2

+ ∆t
(D̂RU

i−1/2,j−1/2 + D̂LU

i+1/2,j−1/2 + D̂RD

i−1/2,j+1/2 + D̂LD

i+1/2,j+1/2

)]

+O(∆x,∆t),

4.1 General framework 86

where

D̂±i±1/2,j = D± (W (x−∆x/2, y, t),W (x+ ∆x/2, y, t)) ,

D̂±i,j±1/2 = D± (W (x, y −∆y/2, t),W (x, y + ∆y/2, t)) ,

the D̂νµ
, ν = L,R, µ = D,U , fluctuations are computed using the states

WLD = W (x−∆x/2, y −∆y/2, t), WLU = W (x−∆x/2, y + ∆y/2, t),

WRD = W (x+ ∆x/2, y −∆y/2, t), WRU = W (x+ ∆x/2, y + ∆y/2, t),

and the wave speeds are taken to be

SR = max(|λ1
x(W (x, t))|, |λNx (W (x, t)|), SL = −SR,

SU = max(|λ1
y(W (x, t))|, |λNy (W (x, t))|), SD = −SU .

Using (4.1.4), (1.4.3), (1.4.4), we obtain

E(x, t) =
∂W

∂t
(x, t) +

1

∆x∆y

[
(∆y − 2SU∆t)

∫ 1

0
Ax

(
Φ(i−1/2)j,(i+1/2)j

) d
ds

Φ(i−1/2)j,(i+1/2)jds

+ (∆x− 2SR∆t)

∫ 1

0
Ay

(
Φi(j−1/2),i(j+1/2)

) d
ds

Φi(j−1/2),i(j+1/2)ds

+ ∆t
SU
2

∫ 1

0
Ax

(
Φ(i−1/2)(j−1/2),(i+1/2)(j+1/2)

) d
ds

Φ(i−1/2)(j−1/2),(i+1/2)(j+1/2)ds

+ ∆t
1

2

∫ SU

−SU

∫ 1

0
Ax

(
Φ(i−1/2)ψ,(i+1/2)ψ

) d
ds

Φ(i−1/2)ψ,(i+1/2)ψds dψ

+ ∆t
SU
2

∫ 1

0
Ax

(
Φ(i−1/2)(j+1/2),(i+1/2)(j+1/2)

) d
ds

Φ(i−1/2)(j+1/2),(i+1/2)(j+1/2)ds

+ ∆t
SR
2

∫ 1

0
Ay(Φ(i−1/2)(j−1/2),(i−1/2)(j+1/2))

d

ds
Φ(i−1/2)(j−1/2),(i−1/2)(j+1/2))ds

+ ∆t
1

2

∫ SR

−SR

∫ 1

0
Ay

(
Φξ(j−1/2),ξ(j+1/2)

) d
ds

Φξ(j−1/2),ξ(j+1/2)ds dξ

+ ∆t
SR
2

∫ 1

0
Ay(Φ(i+1/2)(j−1/2),(i+1/2)(j+1/2))

d

ds
Φ(i+1/2)(j−1/2),(i+1/2)(j+1/2)ds

]

+O(∆x,∆t).

4.2 Well-Balanced 2D HLL Riemann solver 87

Changing now the extremes of the paths (what add new errors of order O(∆x)) we obtain

E(x, t) =
∂W

∂t
(x, t) +

1

∆x∆y

[
(∆y − 2SU∆t)

∫ 1

0
Ax

(
Φ(i−1/2)j,(i+1/2)j

) d
ds

Φ(i−1/2)j,(i+1/2)jds

+ (∆x− 2SR∆t)

∫ 1

0
Ay

(
Φi(j−1/2),i(j+1/2)

) d
ds

Φi(j−1/2),i(j+1/2)ds

+ ∆t
SU
2

∫ 1

0
Ax

(
Φ(i−1/2)j,(i+1/2)j

) d
ds

Φ(i−1/2)j,(i+1/2)jds

+ ∆t
1

2

∫ SU

−SU

∫ 1

0
Ax

(
Φ(i−1/2)j,(i+1/2)j

) d
ds

Φ(i−1/2)j,(i+1/2)jds dψ

+ ∆t
SU
2

∫ 1

0
Ax

(
Φ(i−1/2)j,(i+1/2)j

) d
ds

Φ(i−1/2)j,(i+1/2)jds

+ ∆t
SR
2

∫ 1

0
Ay(Φi(j−1/2),i(j+1/2))

d

ds
Φi(j−1/2),i(j+1/2))ds

+ ∆t
1

2

∫ SR

−SR

∫ 1

0
Ay

(
Φi(j−1/2),i(j+1/2)

) d
ds

Φi(j−1/2),i(j+1/2)ds dξ

+ ∆t
SR
2

∫ 1

0
Ay(Φi(j−1/2),i(j+1/2))

d

ds
Φ(i(j−1/2),i(j+1/2)ds

]
+O(∆x,∆t),

what leads to

E(x, t) =
∂W

∂t
(x, t) +

1

∆x

∫ 1

0
Ax

(
Φ(i−1/2)j,(i+1/2)j

) d
ds

Φ(i−1/2)j,(i+1/2)jds

+
1

∆y

∫ 1

0
Ay

(
Φi(j−1/2),i(j+1/2)

) d
ds

Φi(j−1/2),i(j+1/2)ds+O(∆x,∆t)

=
∂W

∂t
(x, t) + Ax(W (x, t))Wx(x, t) + Ay(W (x, t))Wy(x, t) +O(∆x,∆t)

= O(∆x,∆t),

as we wanted to prove.

Remark 10. The scheme (4.1.9) is conservative when it is applied to a conservative system.

4.2 Well-Balanced 2D HLL Riemann solver

The results presented in Section 4.1 were valid for a general nonconservative system of the
form (5.1.1) for the subsonic case in both directions. The supersonic cases will be discussed in
Section 4.2.1. In this section we return to the original system

∂tU +∇ ·F(U) + B(U) · ∇U = S(U) · ∇σ (4.2.1)

4.2 Well-Balanced 2D HLL Riemann solver 88

SDL
SD SDR

SUL
SU SUR

SLU

SL

SLD

SRU

SR

SRD

WLU

WL2

WL1

WLD

W 1U

W ∗
LU

W ∗
LD

W 1D

W 2U

W ∗
RU

W ∗
RD

W 2D

WRU

WR2

WR1

WRD

Figure 4.3: Structure of the solution of the 2D Riemann problem for system (4.2.1). Subsonic case.

where U ,F ,B,S, σ are defined in (1.3.1), for which we will derive a simple HLL-type Riemann
solver. Later in Section 4.3 we will see how to build more precise solvers of AVM type.

The first step is to consider an approximation to the structure of the solution of the 2D
Riemann problem. The following notation will be useful:

∆Fµ = FRµ − FLµ + Bx,Φ(URµ −ULµ)− Sx,Φ(σRµ − σLµ), µ = 1, 2, D, U,

and
∆Gν = GνU −GνD + By,Φ(UνU −UνD)− Sy,Φ(σνU − σνD), ν = 1, 2, L,R,

where Bζ,Φ and Sζ,Φ are evaluated in the corresponding states and depend on the chosen family
of paths Φ (see Section 1.4). When no confusion arises, we can drop the dependence on Φ. In
our case, the proposed solution has the structure sketched in Figure 4.3. In particular,

W ∗
νµ =

(
U∗νµ
σνµ

)
, ν = L,R, µ = D,U,

4.2 Well-Balanced 2D HLL Riemann solver 89

being U∗νµ states to be determined. The remaining HLL states Wαi (α ∈ {L,R,D,U}, i = 1, 2)
come from the corresponding one-dimensional Riemann problems arising at edges. For example,
for µ = D,U , we would have Wµ1 = (Uµ1, σLµ)t and Wµ2 = (Uµ2, σRµ)t, where

Uµ1 =
SRURµ − SLULµ −∆Fµ

SR − SL
− SR
SR − SL

A−1
x Sx(σRµ − σLµ) (4.2.2)

and

Uµ2 =
SRURµ − SLULµ −∆Fµ

SR − SL
− SL
SR − SL

A−1
x Sx(σRµ − σLµ), (4.2.3)

and similarly for the remaining states: see [149] for details.
In this context, the consistency condition (4.1.4) adopts the following form:

∫ SR

SL

∫ SU

SD

(R(ξ, ψ)−W0(ξ, ψ)
)
dξdψ =

SD
2

∫ 1

0
Ax(ΦLD,RD)

d

ds
ΦLD,RDds+

SD
2

∫ 1

0
Ax(ΦL1,R1)

d

ds
ΦL1,R1ds

− SU
2

∫ 1

0
Ax(ΦL2,R2)

d

ds
ΦL2,R2ds−

SU
2

∫ 1

0
Ax(ΦLU,RU)

d

ds
ΦLU,RUds

+
SL
2

∫ 1

0
Ay(ΦLD,LU)

d

ds
ΦLD,LUds+

SL
2

∫ 1

0
Ay(Φ1D,1U)

d

ds
Φ1D,1Uds

− SR
2

∫ 1

0
Ay(Φ2D,2U)

d

ds
Φ2D,2Uds−

SR
2

∫ 1

0
Ay(ΦRD,RU)

d

ds
ΦRD,RUds,

(4.2.4)

where property (1.3.5) has been applied. The self-similar solution R(ξ, ψ) is supposed to be
constant in the domain Qξ = [SL, SR] × [SD, SU], i.e., R(ξ, ψ) = W ∗. We have also assumed
that Qξ is limited by the maximal waves speeds for each direction, in such a way that there are
no boundary parts between the original states and the strong interaction region (see Figure 4.3).
Furthermore, the approximated structure of the solution for the 2D Riemann problem is taken
such that W ∗ is decomposed in a set of four non overlapping subregions, i.e. W ∗ =

∑
W ∗

AB,
where AB corresponds to LD,LU,RD,RU , withW ∗

AB constant states, not necessarily the same.
Then, taking into account (1.3.3) and (1.3.11), we deduce the following condition:

SLSD(U∗LD −ULD)− SLSU (U∗LU −ULU)

− SRSD(U∗RD −URD) + SRSU (U∗RU −URU) = C , (4.2.5)

where the term C is given by

C =
SD
2

(∆FD + ∆F1)− SU
2

(∆F2 + ∆FU) +
SL
2

(∆GL + ∆G1)− SR
2

(∆G2 + ∆GR). (4.2.6)

On the other hand, in order to have a complete nonlinear system, we use the jump conditions
through the internal boundaries of Qξ. The Rankine-Hugoniot conditions (1.3.13) through the

4.2 Well-Balanced 2D HLL Riemann solver 90

zero waves can be expressed as




U∗LU −U∗LD = Ay

(
U∗LD,U

∗
LU

)−1
Sy
(
U∗LD,U

∗
LU

)
(σLU − σLD) ≡ α,

U∗RU −U∗RD = Ay

(
U∗RD,U

∗
RU

)−1
Sy
(
U∗RD,U

∗
RU

)
(σRU − σRD) ≡ β,

U∗RD −U∗LD = Ax

(
U∗LD,U

∗
RD

)−1
Sx
(
U∗LD,U

∗
RD

)
(σRD − σLD) ≡ γ,

U∗RU −U∗LU = Ax

(
U∗LU ,U

∗
RU

)−1
Sx
(
U∗LU ,U

∗
RU

)
(σRU − σLU) ≡ δ.

(4.2.7)

As α− β − γ + δ = 0, we can consider (4.2.5) and three of the equations in (4.2.7) to determine
the four star states. We thus obtain

U∗RU =
1

(SR − SL)(SU − SD)

(
SLSDULD − SLSUULU − SRSDURD

+ SRSUURU + SLSDα− SL(SU − SD)δ − SRSDβ + C
)

(4.2.8)

and
U∗RD = U∗RU − β, U∗LU = U∗RU − δ, U∗LD = U∗RU − δ − α. (4.2.9)

A remark about the computation of U∗RU is in order. Notice that U∗RU depends on the term
C defined by (4.2.6), which in turn rely on terms of the form (1.3.9)-(1.3.10). To be consistent
with the structure of the approximate solution (see Figure 4.3), the path should also involve the
intermediate states. In fact, integration along the boundaries of the subregions of Qξ results in
coupling terms of the form (1.3.9), with dependence on the star states W ∗

AB. This dependence
is also clear in the jump conditions (4.2.7). For example, using (1.3.5) we would have

∫ 1

0
Bx

(
ΦL2,R2

) d
ds

ΦL2,R2ds =

∫ 1

0
Bx

(
ΦL2,LU∗

) d
ds

ΦL2,LU∗ds

+

∫ 1

0
Bx

(
ΦLU∗,RU∗

) d
ds

ΦLU∗,RU∗ds+

∫ 1

0
Bx

(
ΦRU∗,R2

) d
ds

ΦRU∗,R2ds,

so, using (1.3.9),

Bx,Φ(UL2, UR2)(UR2 − UL2) = Bx,Φ(UL2, U
∗
LU)(U∗LU − UL2)

+ Bx,Φ(U∗LU , U
∗
RU)(U∗RU − U∗LU) + Bx,Φ(U∗RU , UR2)(UR2 − U∗RU), (4.2.10)

and similarly for the other terms appearing in (4.2.6). In the case in which a linearization
Bx,Φ is not available, the path integrals in (1.3.9) should be numerically approximated using an
appropriate quadrature rule. An analogous situation has already been considered in [75, Sect.
2.1] for the one-dimensional case, and we have followed here a similar approach. Therefore,
(4.2.8) would define U∗RU in an implicit way. Therefore, the solution of the system formed
by (4.2.4) and three of the jump relations through the zero wave (4.2.7) requires an iterative
procedure. First, the initial value can be set to

(U∗RU)0 =
1

(SR − SL)(SU − SD)

(
SLSDULD − SLSUULU − SRSDURD

+ SRSUURU + SLSDα
0 − SL(SU − SD))δ0 − SRSDβ0 + C 0

)

4.2 Well-Balanced 2D HLL Riemann solver 91

where the C 0 term is given by (4.2.6) with

∆Fµ = FRµ − FLµ + Bx,Φ0(URµ −ULµ)− Sx,Φσ(σRµ − σLµ), µ = 1, 2, D, U, (4.2.11)

and

∆Gν = GνU −GνD + By,Φ0(UνU −UνD)− Sy,Φσ(σνU − σνD), ν = 1, 2, L,R, (4.2.12)

Here, Φ0 is the path joining ULµ and URµ (or UνD and UνU) without passing through the
intermediate star states. Also, after evaluating (U∗RU)0, we define

(U∗RD)0 = (U∗RU)0 − β0,

(U∗LU)0 = (U∗RU)0 − δ0,

(U∗LD)0 = (U∗RU)0 − δ0 − α0.

The initial guess for α, β, γ, δ can be taken as



Ay

(
ULD,ULU

)−1
Sy
(
ULD,ULU

)
(σLU − σLD) ≡ α0,

Ay

(
URD,URU

)−1
Sy
(
URD,URU

)
(σRU − σRD) ≡ β0,

Ax

(
ULD,URD

)−1
Sx
(
ULD,URD

)
(σRD − σLD) ≡ γ0,

Ax

(
ULU ,URU

)−1
Sx
(
ULU ,URU

)
(σRU − σLU) ≡ δ0.

Finally, we can compute, for instance,

(U∗RU)m+1 =
1

(SR − SL)(SU − SD)

(
SLSDULD − SLSUULU − SRSDURD

+ SRSUURU + SLSDα
m+1 − SL(SU − SD))δm+1 − SRSDβm+1 + Cm+1

)

where Cm+1 is still given by (4.2.6), but with the integral path in (4.2.11) and (4.2.12) passing
through the intermediate states (see (4.2.10)). We consider now





Ay

(
(U∗LD)m, (U∗LU)m

)−1
Sy
(
(U∗LD)m, (U∗LU)m

)
(σLU − σLD) ≡ αm+1,

Ay

(
(U∗RD)m, (U∗RU)m

)−1
Sy
(
(U∗RD)m, (U∗RU)m

)
(σRU − σRD) ≡ βm+1,

Ax

(
(U∗LD)m, (U∗RD)m

)−1
Sx
(
(U∗LD)m, (U∗RD)m

)
(σRD − σLD) ≡ γm+1,

Ax

(
(U∗LU)m, (U∗RU)m

)−1
Sx
(
(U∗LU)m, (U∗RU)m

)
(σRU − σLU) ≡ δm+1.

Obviously, after computing (U∗RU)m+1, we define

(U∗RD)m+1 = (U∗RU)m+1 − βm+1,

(U∗LU)m+1 = (U∗RU)m+1 − δm+1,

(U∗LD)m+1 = (U∗RU)m+1 − δm+1 − αm+1.

Finally, notice that there is no need to consider a path Φσ involving an intermediate state in
the definition of the source terms (1.3.10), as for the variable σ we have only a 1-wave problem.
Therefore, it suffices to consider a simple choice (e.g., a segment) for the path-integral connecting
different values of σ.

This completely determines the approximate solution R(ξ, ψ) of the 2D Riemann problem,
which in turn allows to compute the contributions (4.1.8) at vertices. Therefore, the scheme
(4.1.9) can be fully defined. Notice that the one-dimensional contributions D± are simply those
given by the usual HLL solver.

4.2 Well-Balanced 2D HLL Riemann solver 92

4.2.1 Supersonic cases

Up to now, we have focused in the case in which the flow is subsonic in both directions.
When the flow is supersonic in some direction, several possibilities could be considered (see,
e.g., [15, 203, 206]). The simplest one consists in substituting the speeds SL, SR, SD and SU
by S−L , S+

R , S−D, S+
U , respectively, where a− = min(a, 0) and a+ = max(a, 0); this forces the

solution to be always in the subsonic case. A more accurate approach is to analize the position
of the interaction area in each case, similarly as it was done in [203]. To this end, we proceed
as in Section 4.1 with Q = [S−L T, S

+
RT] × [S−DT, S

+
U T] to derive the corresponding consistency

condition.

SD

SU

0

SL SR

Γ1

Γ3

Γ
4

Γ
2

W LU

W LD

WRU

WRD

W L2

W L1

WR2

WR1

W U1 W U2

WD1 WD2

W ∗
LU

W
∗
LD

W ∗
RU

W
∗
RD

Figure 4.4: Structure of the solution of the 2D Riemann problem for system (4.2.1). Supersonic case
in the y-direction.

For example, Figure 4.4 shows the structure of the solution when the flow is subsonic in the
x-direction and supersonic in the y-direction, i.e., SL < 0 < SR and SD > 0 (for clarity, a bar
has been added to those states related to supersonic cases). In this case, the contributions at
the edges Γ1 and Γ3 would be again

SL
2

∫ 1

0
Ay

(
ΦLD,LU

) d
ds

ΦLD,LUds−
1

2

∫ SR

SL

∫ 1

0
Ay

(
ΦξD,ξU

) d
ds

ΦξD,ξUds dξ

− SR
2

∫ 1

0
Ay

(
ΦRD,RU

) d
ds

ΦRD,RUds,

following the notation in (4.1.5) and (4.1.6), while the contributions at the edges Γ2 and Γ4

4.2 Well-Balanced 2D HLL Riemann solver 93

would be given by

− SD
2

∫ 1

0
Ax

(
ΦL1,R1

) d
ds

ΦL1,R1ds−
SU
2

∫ 1

0
Ax

(
ΦLU,RU

) d
ds

ΦLU,RUds

− 1

2

∫ SU

SD

∫ 1

0
Ax

(
Φ(s;R2(ψ;WL1,WLU),R2(ψ;WR1,WRU)

)
Φ′(s)ds dψ.

This allows to write the corresponding term C in this case. Notice that the states Uν1, ν = L,R,
are now defined as

Uν1 = UνD +A−1
y Sy(σνU − σνD)

instead of (4.2.2), while the states Uν2 are still given by (4.2.3). On the other hand, the
approximate solution R is given by

R(ξ, ψ) =





U∗LU in [SL, 0]× [SD, SU],

U∗RU in [0, SR]× [SD, SU],

U
∗
LD in [SL, 0]× [0, SD],

U
∗
RD in [0, SR]× [0, SD].

Integrating R(ξ, ψ)−W0(ξ, ψ) on [SL, SR]× [0, SU] we get

− SL(SU − SD)U∗LU + SR(SU − SD)U∗RU

− SLSDU∗LD + SRSDU
∗
RD + SLSUULU − SRSUURU = C . (4.2.13)

Moreover, the Rankine-Hugoniot conditions (1.3.13) read now as




U∗RU −U∗LU = Ax

(
U∗LU ,U

∗
RU

)−1
Sx
(
U∗LU ,U

∗
RU

)
(σRU − σLU) ≡ α,

U
∗
RD −U

∗
LD = Ax

(
U
∗
LD,U

∗
RD

)−1
Sx
(
U
∗
LD,U

∗
RD

)
(σRU − σLU) ≡ β,

U
∗
LD −U1D = Ay

(
U1D,U

∗
LD

)−1
Sy
(
U1D,U

∗
LD

)
(σLU − σLD) ≡ γ,

U
∗
RD −U2D = Ay

(
U2D,U

∗
RD

)−1
Sy
(
U2D,U

∗
RD

)
(σRU − σRD) ≡ δ.

(4.2.14)

In this case is not true that α−β−γ+δ = 0 and the system (4.2.13)-(4.2.14) is overdetermined.
However, β = δ− γ if we use the modify identity technique for the well-balanceness (see Section
(2.4)), and that system have unique solution. Finally, we get

U∗LU =
SLSDU

∗
LD − SRSDU

∗
RD − SLSUULU + SRSUURU + C

(SR − SL)(SU − SD)
− SR
SR − SL

δ, (4.2.15)

and
U∗RU = U∗LU + δ, U

∗
LD = U1D + α, U

∗
RD = U2D + β. (4.2.16)

Again, in order to evaluate the star states an iterative procedure is required, similarly to the
subsonic case. Once the star states have been computed, the contributions at the vertex read
now as

DLD = 0,

DLU = SLSD(U
∗
LD −ULU) + SL(SU − SD)(U∗LU −ULU),

DRD = 0,

DRU = −SRSD(U
∗
RD −URU)− SR(SU − SD)(U∗RU −URU).

4.3 Well-Balanced 2D AVM-type Riemann solvers 94

The remaining supersonic cases can be treated in a totally analogous way. For the sake of
completeness, we present in Appendix B the complete solution for (4.2.1) with all the subsonic
and supersonic cases.

4.3 Well-Balanced 2D AVM-type Riemann solvers

4.3.1 HLL 2D solver in AVM form

The purpose of this section is to reinterpret the simple HLL 2D solver introduced in Section
4.2 in a form that resembles an AVM solver. In particular, the 2D vertex contributions (4.1.8)
will be rewritten as combinations of 1D AVM-type Riemann solvers.

Assume first that we are in the subsonic case, and let us analize one of the contributions in
(4.1.8), say DLD:

DLD = −
∫ 0

SL

∫ 0

SD

(U∗LD −ULD)dξdψ = −SLSD(U∗RU − δ − α−ULD).

Substituting the value of U∗RU found in Section 4.2, we have that

DLD = SLSDULD + SLSDδ + SLSDα

− SLSD
(SR − SL)(SU − SD)

{
SLSDULD − SLSUULU − SRSDURD

+ SRSUURU + SLSD(α+ δ)− SLSUδ − SRSDβ

+
SD
2

∆FD +
SD
2

∆F1 −
SU
2

∆F2 −
SU
2

∆FU

+
SL
2

∆GL +
SL
2

∆G1 −
SR
2

∆G2 −
SR
2

∆GR
}
.

After some algebra, the above expression can be written as

DLD =− SL
2

(
SDSU
SU − SD

(U1U −U1D − α)− SD
SU − SD

∆G1

)

− SD
2

(
SLSR
SR − SL

(UR1 −UL1 − γ)− SL
SR − SL

∆F1

)

− SLSD
2

U1D −
SLSD

2
UL1 + SLSDULD

− SLSD
(SU − SD)(SR − SL)

(
SU
2

(∆F1 −∆F2) +
SR
2

(∆G1 −∆G2)

)
.

Define now the contributions in the x-direction:

Dµ,±
x =

1

2
∆Fµ ±

1

2
QHLL
x (URµ −ULµ −A−1

x Sx(σRµ − σLµ)), (4.3.1)

for µ = 1, 2, D, U , being QHLL
x = α0I + α1Ax the HLL diffusion matrix, where α0 =

SR|SL|−SL|SR|
SR−SL = − 2SLSR

SR−SL and α1 = |SR|−|SL|
SR−SL = SR+SL

SR−SL . Similarly, the contributions in the

4.3 Well-Balanced 2D AVM-type Riemann solvers 95

y-direction are given by

Dν,±
y =

1

2
∆Gν ±

1

2
QHLL
y (UUν −UDν −A−1

y Sy(σUν − σDν)), (4.3.2)

for ν = 1, 2, L,R, withQHLL
y = β0I+β1Ay, β0 = SU |SD|−SD|SU |

SU−SD = − 2SDSU
SU−SD and β1 = |SU |−|SD|

SU−SD =
SU+SD
SU−SD . Using this notation, we can write

DLD =− SL
2
D1,−
y − SD

2
D1,−
x − SLSD

2
(UL1 +U1D − 2ULD)

− SLSD
(SU − SD)(SR − SL)

{
SU
2

(∆F1 −∆F2) +
SR
2

(∆G1 −∆G2)

}
.

Now, on the one hand,

−SLSD
2

(UL1 +U1D − 2ULD) = −SD
2
DD,−
x − SL

2
DL,−
y ,

and, on the other hand,

− SLSD
(SU − SD)(SR − SL)

{
SU
2

(∆F1 −∆F2) +
SR
2

(∆G1 −∆G2)

}
=

SDSU
2(SU − SD)

(D1,−
x −D2,−

x)

− SDSU
2(SU − SD)

SLSR
SR − SL

(UR1 −UL1 − γ − (UR2 −UL2 − δ))

+
SLSR

2(SR − SL)
(D1,−

y −D2,−
y)

− SLSR
2(SR − SL)

SDSU
SU − SD

(U1U −U1D − α− (U2U −U2D − β)).

Notice that
UR1 −UL1 − γ − (UR2 −UL2 − δ) = −β + α− γ + δ = 0

and, similarly,
U1U −U1D − α− (U2U −U2D − β) = 0.

Therefore, we finally deduce the following expression for DLD:

DLD =
SL
2

(
SL

SR − SL
D1,−
y − SR

SR − SL
D2,−
y −DL,−

y

)

+
SD
2

(
SD

SU − SD
D1,−
x − SU

SU − SD
D2,−
x −DD,−

x

)
.

(4.3.3)

Reasoning in a totally analogous way, we obtain

DLU =
SL
2

(
SL

SR − SL
D1,+
y − SR

SR − SL
D2,+
y −DL,+

y

)

− SU
2

(
SD

SU − SD
D1,−
x − SU

SU − SD
D2,−
x −DU,−

x

)
,

(4.3.4)

4.3 Well-Balanced 2D AVM-type Riemann solvers 96

DRD =− SR
2

(
SL

SR − SL
D1,−
y − SR

SR − SL
D2,−
y −DR,−

y

)

+
SD
2

(
SD

SU − SD
D1,+
x − SU

SU − SD
D2,+
x −DD,+

x

)
,

(4.3.5)

and

DRU =− SR
2

(
SL

SR − SL
D1,+
y − SR

SR − SL
D2,+
y −DR,+

y

)

− SU
2

(
SD

SU − SD
D1,+
x − SU

SU − SD
D2,+
x −DU,+

x

)
.

(4.3.6)

Similar computations can be performed when the flow is supersonic in some direction. For
example, is SL < 0 < SR and SD > 0, we would have

DLU =
SU
2
DU,−
x +

SU − SD
2

D2,−
x +

SD
2
D1,−
x

− SL
2

∫ 1

0

(
Ay

(
ΦLD,LU

) d
ds

ΦU
LD,LU − Sy

(
ΦLD,LU

) d
ds

Φσ
LD,LU

)
ds

+
SL

2(SR − SL)

(
SL

∫ 1

0

(
Ay

(
Φ1D,1U

) d
ds

ΦU
1D,1U − Sy

(
Φ1D,1U

) d
ds

Φσ
1D,1U

)
ds

− SR
∫ 1

0

(
Ay

(
Φ2D,2U

) d
ds

ΦU
2D,2U − Sy

(
Φ2D,2U

) d
ds

Φσ
2D,2U

)
ds

)

and

DRU =
SU
2
DU,+
x +

SU − SD
2

D2,+
x +

SD
2
D1,+
x

+
SR
2

∫ 1

0

(
Ay

(
ΦRD,RU

) d
ds

ΦU
RD,RU − Sy

(
ΦRD,RU

) d
ds

Φσ
RD,RU

)
ds

− SR
2(SR − SL)

(
SL

∫ 1

0

(
Ay

(
Φ1D,1U

) d
ds

ΦU
1D,1U − Sy

(
Φ1D,1U

) d
ds

Φσ
1D,1U

)
ds

− SR
∫ 1

0

(
Ay

(
Φ2D,2U

) d
ds

ΦU
2D,2U − Sy

(
Φ2D,2U

) d
ds

Φσ
2D,2U

)
ds

)
,

while DLD = DRD = 0.
A complete solution considering all the subsonic and supersonic cases is given in Appendix

D. As commented in Section 4.2, in order to be consistent with the structure of the approximate
solution (see Figure 4.3), the family of paths Φ must pass through the intermediate star states
of the 2D Riemann problem, which means that the star states have, in general, a non-linear
dependence on the coupling terms Bζ ≡ Bζ,Φ. So, in order to estimate the contribution of
the coupling terms in Dµ,±

x and Dν,±
y , we need to compute the star states through an implicit

procedure, as shown in Section 4.2. Luckily, a few number of iterations is enough for convergence.

4.3 Well-Balanced 2D AVM-type Riemann solvers 97

4.3.2 Multidimensional AVM solvers

For the 2D HLL solver introduced in Section 4.2, the results stated in the previous section
allow to express the right hand side of the numerical scheme (4.1.9) as a linear combination of
one-dimensional fluctuations. All these fluctuations can be written, for arbitrary states W0 =
(U0, σ0)t and W1 = (U1, σ1)t, under the common form

D±x =
1

2

(
F1 − F0 + Bx(U1 −U0)− Sx(σ1 − σ0)

)

± 1

2
QHLL
x

(
U1 −U0 −A−1

x Sx(σ1 − σ0)
) (4.3.7)

in the x-direction, and

D±y =
1

2

(
G1 −G0 + By(U1 −U0)− Sy(σ1 − σ0)

)

± 1

2
QHLL
y

(
U1 −U0 −A−1

y Sy(σ1 − σ0)
) (4.3.8)

in the y-direction. Remember that Aζ , Bζ , Sζ depend on U0 and U1, and also on the family
of paths Φ. On the other hand, the viscosity matrix QHLL

x = α0I + α1Ax can be expressed
as Qx = p(Ax), where p(x) = α0 + α1x and, similarly, QHLL

y = q(Ay), with q(x) = β0 + β1x.
Therefore, the numerical fluctuations (4.3.7)-(4.3.8) can be viewed as particular cases of AVM
solvers based on the first-order polynomials p(x) and q(x), respectively. These considerations
allow to define general two-dimensional AVM solvers by substituting the viscosity matricesQHLL

x

and QHLL
y by proper functional approximations of the form Qx = f(Ax) and Qy = g(Ay),

respectively.
For the sake of clarity, the detailed construction of a 2D AVM solver is described in what

follows:

• Consider functional approximations f(x) and g(x) to the absolute value function, verifying
the stability condition (1.5.5). In the numerical tests, we have taken f ≡ g.

• Use f(x) and Ax to define the viscosity matrix QAVM
x as in (1.5.4), and similarly with

g(x) and Ay to define QAVM
y .

• Compute the 1D contributions given by (4.3.1) and (4.3.2) with QAVM
ζ instead of QHLL

ζ ,
for ζ = x, y. Use them to define the 2D vertex contributions (4.3.3)-(4.3.6).

• Similarly, define the corresponding 1D AVM fluctuations D± at edges, using (4.3.7) and
(4.3.8) with QAVM

ζ instead of QHLL
ζ , for ζ = x, y.

• Finally, use the 1D and 2D contributions previously computed to assemble the numerical
scheme (4.1.9).

Only the subsonic case has been considered here, as the adaptation to include supersonic cases
is straighforward following the guidelines in Section 4.2.1 (See also Appendix D).

4.3 Well-Balanced 2D AVM-type Riemann solvers 98

4.3.3 Modified equation and linear stability

In this section we perform a linear stability analysis of the genuinely two-dimensional
Riemann solver (4.1.9), for which we focus on the lineal advection equation

wt + awx + bwy = 0.

Assume that SR = |a|, SL = −|a|, SU = |b| and SD = −|b|, so we are always in the subsonic
case. The shrink parameters for the one-dimensional contributions at each edge are given by
βL = βR = ∆y − 2|b|∆t and βD = βU = ∆x − 2|a|∆t. Departing from the splitting writing in
Section 4.3.1, after some straightforward calculations it is possible to write the scheme (4.1.9)
as

wn+1
ij =wnij −

∆t

∆x

[(
1− 2|b|∆t

∆y

)(
D+
i−1/2,j +D−i+1/2,j

)

+ |b| ∆t

2∆y

(
DD,−
x +D∗,−x

)
i+1/2,j+1/2

+ |b| ∆t

2∆y

(
DU,−
x +D∗,−x

)
i+1/2,j−1/2

+ |b| ∆t

2∆y

(
DD,+
x +D∗,+x

)
i−1/2,j+1/2

+ |b| ∆t

2∆y

(
DU,+
x +D∗,+x

)
i−1/2,j−1/2

]

− ∆t

∆y

[(
1− 2|a|∆t

∆x

)(
D+
i,j−1/2 +D−i,j+1/2

)

+ |a| ∆t

2∆x

(
DL,−
y +D∗,−y

)
i+1/2,j+1/2

+ |a| ∆t

2∆x

(
DL,+
y +D∗,+y

)
i+1/2,j−1/2

+ |a| ∆t

2∆x

(
DR,−
y +D∗,−y

)
i−1/2,j+1/2

+ |a| ∆t

2∆x

(
DR,+
y +D∗,+y

)
i−1/2,j−1/2

]
,

where we have used ∗ instead of 1 or 2 to identify the intermediate one-dimensional HLL states.
It is easy to check that

D±x =
a± |a|

2
(w1 − w0), D±y =

b± |b|
2

(w1 − w0)

for arbitrary states w0 and w1, so

wn+1
ij − wnij

∆t
=− 1

2∆x

(
1− 2|b|∆t

∆y

)(
a(wi+1,j − wi−1,j)− |a|(wi+1,j − 2wij + wi−1,j)

)

− 1

2∆y

(
1− 2|a|∆t

∆x

)(
b(wi,j+1 − wi,j−1)− |b|(wi,j+1 − 2wij + wi,j−1)

)

+
(a− |a|)(b− |b|)∆t

4∆x∆y
wi+1,j+1 −

(a− |a|)(b+ |b|)∆t
4∆x∆y

wi+1,j−1

− (a+ |a|)(b− |b|)∆t
4∆x∆y

wi−1,j+1 +
(a+ |a|)(b+ |b|)∆t

4∆x∆y
wi−1,j−1

− |a|(b− |b|)∆t
2∆x∆y

wi,j+1 −
|b|(a− |a|)∆t

2∆x∆y
wi+1,j

+
|a|(b+ |b|)∆t

2∆x∆y
wi,j−1 +

|b|(a+ |a|)∆t
2∆x∆y

wi−1,j − 3
|a||b|∆t
∆x∆y

wij .

4.3 Well-Balanced 2D AVM-type Riemann solvers 99

Therefore, the corresponding modified equation would be

wt + awx + bwy =
|a|∆x

2
wxx +

|b|∆y
2

wyy +
∆t

4
w̃xy,

where the anti-diffusion term w̃xy is given by

w̃xy =(a− |a|)(b− |b|)(wxy)i+1/2,j+1/2 + (a− |a|)(b+ |b|)(wxy)i+1/2,j−1/2

+ (a+ |a|)(b− |b|)(wxy)i−1/2,j+1/2 + (a+ |a|)(b+ |b|)(wxy)i−1/2,j−1/2

+O(∆x2,∆y2).

The effect of this term is shown in Figure 4.5, where a diagonal advected Gaussian profile is
shown. As it can be observed, the anti-diffusion term allows to preserve the symmetry of the
initial data.

1Dx1D scheme

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10
2D scheme

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10
Exact solution

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

Figure 4.5: Diagonal advection. Left: 1D×1D scheme. Center: 2D scheme. Right: exact solution.

On the other hand, observe that the coefficients of the vertex contributions wi±1,j±1 are
clearly positive. The coefficients of wi,j±1 are positive under the condition ∆t ≤ ∆x

|a| , and the

coefficients of wi±1,j are positive if ∆t ≤ ∆y
|b| . Finally, the coefficients of wij are positive if

1−∆t

(|b|
∆y

+
|a|
∆x

)
+ ∆t2

|a||b|
∆x∆y

≥ 0,

which is accomplished if

∆t ≤ min

(
∆x

|a| ,
∆y

|b|

)
. (4.3.9)

A similar analysis can be performed for supersonic cases. As a result, we have that

max
ij
||wn+1

ij ||∞ ≤ max
ij
||wnij ||∞,

which implies the following result.

Proposition 2. The scheme (4.1.9) is linearly L∞-stable under the stability condition (4.3.9).

4.3 Well-Balanced 2D AVM-type Riemann solvers 100

The choice of the time step for nonlinear problems is given by the CFL condition

∆t = δmin
ij

∆tij , δ ∈ (0, 1], (4.3.10)

with each local time step ∆tij being defined as

∆tij =
min(∆x,∆y)√
(λxij)

2 + (λyij)
2
, (4.3.11)

where λαij denotes the maximal speed of propagation at cell Cij in the α-direction, taking into
acount both the speeds at the edges and those arising in the two-dimensional Riemann problems
at vertices. In practice, the two-dimensional contributions allow the use of a maximal CFL
number δ of unity, whereas for the equivalent 1D×1D schemes the maximum CFL is 0.5.

4.3.4 Second-order schemes

In this section we describe a second-order extension of the scheme (4.1.9), both in space and
time, using a MUSCL-Hancock procedure following the guidelines in [75]. Spatial reconstructions
are performed by means of piecewise bilinear operators of the form

P tij(x) = α0 + α1(x− xi) + α2(y − yj) + α3(x− xi)(y − yj), (4.3.12)

combined with a minmod limiter, similarly as it was done in [74]. The predictor step
approximates the solution at a half-time level: the reconstructed states are given by

W̃
n+1/2,∓
i±1/2,j = W n

ij ±
1

2
∆xW

n
ij +

1

2
∆t∂tW

n
ij ,

W̃
n+1/2,∓
i,j±1/2 = W n

ij ±
1

2
∆yW

n
ij +

1

2
∆t∂tW

n
ij

for the midpoint of edges, and

W̃
n+1/2,∓,∓
i±1/2,j±1/2 = W n

ij ±
1

2
∆xW

n
ij ±

1

2
∆yW

n
ij +

(
±1

2

)(
±1

2

)
∆xyW

n
ij +

1

2
∆t∂tW

n
ij

for the vertices. The time derivative is obtained by means of a Cauchy-Kowalevski procedure:

∂tW
n
ij = −Ax(W n

ij)∆xW
n
ij −Ay(W

n
ij)∆yW

n
ij ,

and the spatial derivatives are computed as

∆xW
n
ij = minmod

(
θδxW

n
ij , θδxW

n
i+1,j , µxδxW

n
i+1,j

)
,

∆yW
n
ij = minmod

(
θδyW

n
ij , θδyW

n
i,j+1, µyδyW

n
i,j+1

)
,

∆xyW
n
ij = minmod

(
1
2θδxδy

(
W n

i+1,j+1 +W n
ij

)
, 1

2θδxδy
(
W n

i+1,j +W n
i,j+1

)
, µxµyδxδyW

n
i+1,j+1

)
,

4.3 Well-Balanced 2D AVM-type Riemann solvers 101

with θ ∈ [1, 2], µxW
n
ij := 1

2(W n
ij +W n

i−1,j) and δxW
n
ij := W n

ij −W n
i−1,j , and similarly for δy and

µy. Finally, after a second half-time step, and dropping the σ component, the corrector step is
given by

Un+1
ij =Un

ij −
∆t

∆x∆y

[
β̃LD̃

+
i−1/2,j + β̃RD̃

−
i+1/2,j + β̃DD̃

+
i,j−1/2 + β̃UD̃

−
i,j+1/2

+ ∆t
(
D̃RU
i−1/2,j−1/2 + D̃LU

i+1/2,j−1/2 + D̃RD
i−1/2,j+1/2 + D̃LD

i+1/2,j+1/2

)

+ ∆y(F̃i+1/2,j − F̃i−1/2,j) + ∆x(G̃i,j+1/2 − G̃i,j−1/2)

+ ∆yBx

(
Ũ
n+1/2
ij

)
∆xŨ

n
ij + ∆xBy

(
Ũ
n+1/2
ij

)
∆yŨ

n
ij

−∆ySx
(
Ũ
n+1/2
ij

)
∆xσ̃

n
ij −∆xSy

(
Ũ
n+1/2
ij

)
∆yσ̃

n
ij

]
,

(4.3.13)

where the coefficients β̃ are computed as in (4.1.10) using reconstructed states; Ũ
n+1/2
ij are the

reconstructed values at the cell center computed in the predictor step,

Ũ
n+1/2
ij = Un

ij +
1

2
∆t∂tU

n
ij ; (4.3.14)

the fluctuations are given by

D̃±i±1/2,j = D±AVM

(
Ũ
n+1/2,−
i±1/2,j , Ũ

n+1/2,+
i±1/2,j

)
,

D̃±i,j±1/2 = D±AVM

(
Ũ
n+1/2,−
i,j±1/2 , Ũ

n+1/2,+
i,j±1/2

)
,

D̃AB
V = DAB

AVM

(
Ũ
n+1/2,+,+
V , Ũ

n+1/2,+,−
V , Ũ

n+1/2,−,+
V , Ũ

n+1/2,−,−
V

)
,

(4.3.15)

for AB ∈ {LD,LU,RD,RU} and V = (xi±1/2, yj±1/2), where DAVM denotes the fluctuations

associated to a given AVM solver; finally, F̃ and G̃ are the physical fluxes evaluated at the
reconstructed states.

In the original works of Balsara ([14, 15]), the 2D Riemann solver was applied both in the
predictor and corrector steps with the consequence of rising the maximal CFL number. Later,
Vides et al. ([203]) noticed that this is only necessary for certain problems, so in general it suffices
to apply a 1D×1D method in the predictor step. In the present work we have adopted the latter
technique, so we always use the 1D×1D Riemann solver in the predictor step, combined with the
polynomial reconstruction (4.3.12) which includes cross derivatives only in the corrector step.
This allows to use a maximal CFL number of unity in the numerical experiments, reducing at the
same time the total computational cost. In addition, it has also been found in the simulations
that isotropy is preserved.

As commented previously, another important issue is that the class of 2D AVM-type solvers
only need a bound of the maximal wave speeds in order to compute the viscosity matrices of
the scheme. This means that we could reduce always to the subsonic case, just taking SR as
the absolute maximal wave speed and SL = −SR, and similarly in the y-direction. This choice
can help to reduce the computational cost of the scheme; in practice, no significative differences
have been found with respect to 2D AVM solvers taking into account supersonic cases.

4.4 Numerical results 102

4.4 Numerical results

In order to test the performances of the proposed multidimensional AVM-type schemes,
we present a number of numerical experiments in this section. On the one hand, we test the
differences between the 2D solvers and their projected 1D×1D counterparts and, on the other
hand, we compare the simple 2D HLL scheme with more precise 2D AVM-type schemes.

As it has already been commented for the conservative case in Section 3.3, the maximal and
minimal wave speeds at each direction are taken from the expressions (3.1.6) and (3.1.7). In
particular, for the intermediate speeds λα(U0,U1) appearing in (3.1.5) we have simply chosen the
speeds λα(Ũ) at the intermediate state Ũ = U0+U1

2 . Another possible choice, more expensive,

is to consider Ũ as the Roe state associated to the states U0 and U1. No noticiable differences
have been found in our experiments between both choices. The time step is computed by the
CFL condition (4.3.10). The accuracy test 4.4.1 and the C-property test 4.4.2 have been run
with CFL 1.0, while for the remainder tests a CFL number of 0.9 has been considered.

We will denote simply by Chebyshev the PVM solver based on an eighth-degree Chebyshev
polynomial, and by Newman the RVM solver based on a Newman rational function of degree
8/8. For each AVM method, its two-dimensional version is denoted as 2D, whereas 1D×1D is
the projected one-dimensional version.

All the presented results have been computed with the second-order predictor-corrector
method, which can be shortly summarized as:

• Predictor step: Using spatial reconstructed states at each edge of the cell into the 1D×1D
Riemann solver, by a Cauchy-Kowalevski procedure compute the predicted half-time
evaluation of the solution.

• Corrector step: Using the spatial reconstruction operator (4.3.12) and the half-time
solution previously calculated, compute the four states that go into the 2D Riemann solver.
In this step we also evaluate the volume integrals appearing in the scheme in Section 4.3.4.

4.4.1 Second-order accuracy

In order to test the accuracy of the proposed schemes for the one-layer and two-layer 2D
shallow water systems, let us first build exact steady state solutions. This can be achieved by
imposing rotational symmetry (∂∂θ = 0) in cylindrical coordinates r-θ; this procedure is described
in [78] for the two-layer case with flat bottom. The resultant ODEs read, respectively, as

gh
∂

∂r
(h−H) =

(vθ1)2h

r
, (4.4.1)

and 



gh1
∂

∂r
(h1 + h2 −H) =

(vθ1)2h1

r
,

gh2
∂

∂r
(h2 + ρh1 −H) =

(vθ2)2h2

r
,

(4.4.2)

where vθi denote the velocities in the angular direction θ. Now, we need to define velocities
verifying the compatibility conditions (4.4.1) and (4.4.2). Following [78], we can easily check

4.4 Numerical results 103

that
vθi = rvi0e

si(1−r2)

satisfies vθi → 0 for r → ∞, and consequently the compatibility conditions. In order to solve
(4.4.1) and (4.4.2) we still need to set appropriate boundary conditions for the conserved height
variables. We can choose h(0) = h0 for the one-layer case and hi(0) = hi0 for the two-layer case.
With these data, we can solve the nonlinear ODEs (4.4.1) and (4.4.2), obtaining

ϕ := h(r) =
v2

10e
2s1

4gs1

(
1− e−2s1r2

)
+ h0 +H(r)−H(0),

and

ϕ1 := h1(r) =
v2

10s2e
2s1
(
1− e−2s1r2

)
− v2

20s1e
2s2
(
1− e−2s2r2

)

4gs1s2(1− ρ)
+ h10,

ϕ2 := h2(r) =
v2

20s1e
2s2
(
1− e−2s2r2

)
− ρv2

10s2e
2s1
(
1− e−2s1r2

)

4gs1s2(1− ρ)
+ h20 +H(r)−H(0).

The computational domain has been taken as [−5, 5]×[−5, 5] with periodic boundary conditions.
We set g = 10, density ratio ρ = 0.9, and take

H(r) = 2− 0.2e−r
2
.

The other parameters are chosen as s1 = 2, v10 = 1 and h0 = 1.5 for the one-layer case, and
s1 = 0.5, s2 = 1, v10 = 0.75, v20 = 0.1, and h10 = h20 = 1 for the two-layer case. The steady
state solutions are finally given by

W = (ϕ,−vθ1 sin(θ), vθ1 cos(θ),−H(r)),

and
W =

(
ϕ1,−vθ1 sin(θ), vθ1 cos(θ), ϕ2,−vθ2 sin(θ), vθ2 cos(θ),−H(r)

)
,

for the one-layer and two-layer 2D shallow water systems, respectively. The results of the
numerical convergence study are summarized in Tables 4.1 and 4.2, where the maximal CFL
number of unity has been used. The solutions were computed until a final time T = 2 with
different meshes of size N ×N , for N = 25, 50, 100, 200, 400, 800, and no limiters were applied.
As expected, although the 2D PVM based on Chebyshev polynomials and the 2D RVM based
on Newman rational functions are slightly better than two-dimensional HLL scheme, the solvers
produce similar results, mainly due to the smoothness of the particular solutions considered.
Moreover, it can be observed that all the solvers present second-order accuracy in space and
time.

4.4.2 C-property

This test was designed in [43] to verify numerically the C-property in shallow water systems.
The bathymetry function H(x) is taken as a smooth function with a random perturbation (see
Figure 4.6). The initial condition for the one-layer case is given by h(x, 0) = H(x) and q = 0,

4.4 Numerical results 104

‖h‖1 ‖qx‖1 ‖qy‖1
Scheme N Error Order Error Order Error Order

HLL 2D 25 1.39e-04 – 1.62e-03 – 1.62e-03 –
50 7.42e-05 0.90 7.16e-04 1.18 7.16e-04 1.18
100 1.74e-05 2.09 1.42e-04 2.33 1.42e-04 2.33
200 2.61e-06 2.74 2.32e-05 2.62 2.32e-05 2.62
400 3.77e-07 2.79 3.31e-06 2.81 3.31e-06 2.81
800 6.53e-08 2.53 5.23e-07 2.66 5.23e-07 2.66

Chebyshev 2D 25 9.52e-05 – 1.04e-03 – 1.04e-03 –
50 3.72e-05 1.36 3.21e-04 1.70 3.21e-04 1.70
100 7.39e-06 2.33 5.59e-05 2.52 5.59e-05 2.52
200 1.21e-06 2.61 8.99e-06 2.64 8.99e-06 2.64
400 2.16e-07 2.48 1.55e-06 2.54 1.55e-06 2.54
800 4.80e-08 2.17 3.27e-07 2.24 3.27e-07 2.24

Newman 2D 25 9.38e-05 – 1.02e-03 – 1.02e-03 –
50 3.52e-05 1.41 3.04e-04 1.74 3.04e-04 1.74
100 7.03e-06 2.32 5.32e-05 2.51 5.32e-05 2.51
200 1.16e-06 2.59 8.63e-06 2.62 8.63e-06 2.62
400 2.11e-07 2.46 1.50e-06 2.52 1.50e-06 2.52
800 4.74e-08 2.15 3.22e-07 2.23 3.22e-07 2.23

Table 4.1: Test 4.4.1. L1-errors and orders of accuracy obtained with the 2D AVM schemes for the
conserved variables of the one-layer shallow water system.

‖h1‖1 ‖qx,1‖1 ‖qy,1‖1 ‖h2‖2 ‖qx,2‖2 ‖qy,2‖2
Scheme N Error Order Error Order Error Order Error Order Error Order Error Order

HLL 2D 25 1.63e-04 – 4.47e-04 – 4.47e-04 – 1.51e-04 – 7.32e-05 – 7.32e-05 –
50 3.09e-05 2.40 8.81e-05 2.34 8.81e-05 2.34 2.82e-05 2.42 1.97e-05 1.90 1.97e-05 1.90
100 5.17e-06 2.58 1.41e-05 2.64 1.41e-05 2.64 4.75e-06 2.57 3.31e-06 2.57 3.31e-06 2.57
200 7.54e-07 2.78 2.00e-06 2.82 2.00e-06 2.82 6.86e-07 2.79 4.60e-07 2.85 4.60e-07 2.85
400 1.17e-07 2.69 3.03e-07 2.72 3.03e-07 2.72 1.05e-07 2.71 6.42e-08 2.84 6.42e-08 2.84
800 2.41e-08 2.28 5.99e-08 2.34 5.99e-08 2.34 2.06e-08 2.35 1.07e-08 2.58 1.07e-08 2.58

Chebyshev 2D 25 4.93e-05 – 1.31e-04 – 1.31e-04 – 4.50e-05 – 3.90e-05 – 3.90e-05 –
50 9.43e-06 2.39 2.33e-05 2.49 2.33e-05 2.49 8.54e-06 2.40 6.59e-06 2.56 6.59e-06 2.56
100 1.70e-06 2.47 3.69e-06 2.66 3.69e-06 2.66 1.52e-06 2.49 9.53e-07 2.79 9.53e-07 2.79
200 3.33e-07 2.36 7.02e-07 2.39 7.02e-07 2.39 2.91e-07 2.39 1.48e-07 2.69 1.48e-07 2.69
400 7.67e-08 2.12 1.68e-07 2.06 1.68e-07 2.06 6.49e-08 2.16 2.93e-08 2.33 2.93e-08 2.33
800 2.06e-08 1.89 4.23e-08 1.99 4.23e-08 1.99 1.74e-08 1.90 7.00e-09 2.07 7.00e-09 2.07

Newman 2D 25 4.40e-05 – 1.17e-04 – 1.17e-04 – 4.02e-05 – 3.73e-05 – 3.73e-05 –
50 8.37e-06 2.39 2.03e-05 2.53 2.03e-05 2.53 7.59e-06 2.40 6.00e-06 2.64 6.00e-06 2.64
100 1.55e-06 2.44 3.23e-06 2.65 3.23e-06 2.65 1.38e-06 2.46 9.06e-07 2.73 9.06e-07 2.73
200 3.22e-07 2.27 6.53e-07 2.31 6.53e-07 2.31 2.76e-07 2.32 1.48e-07 2.62 1.48e-07 2.62
400 7.62e-08 2.08 1.63e-07 2.00 1.63e-07 2.00 6.40e-08 2.11 3.02e-08 2.29 3.02e-08 2.29
800 2.05e-08 1.89 4.11e-08 1.99 4.11e-08 1.99 1.73e-08 1.89 6.89e-09 2.13 6.89e-09 2.13

Table 4.2: Test 4.4.1. L1-errors and orders of accuracy obtained with the 2D AVM schemes for the
conserved variables of the 2D two-layer shallow water system.

4.4 Numerical results 105

Scheme ‖h‖1 ‖qx‖1 ‖qy‖1
HLL 2D 2.46e-20 1.11e-19 1.51e-19
Chebyshev 2D 2.46e-20 1.11e-19 1.51e-19
Newman 2D 2.46e-20 1.11e-19 1.51e-19

Table 4.3: Test 4.4.2. Verification of C-property for the one-layer SWE.

Scheme ‖h1‖1 ‖qx,1‖1 ‖qy,1‖1 ‖h2‖2 ‖qx,2‖2 ‖qy,2‖2
HLL 2D 9.18e-20 5.09e-20 1.85e-19 9.36e-20 9.77e-19 8.62e-19
Chebyshev 2D 1.11e-19 9.38e-20 1.06e-19 1.04e-19 6.61e-19 9.86e-19
Newman 2D 1.29e-19 2.01e-19 2.06e-19 1.32e-19 1.36e-18 1.35e-18

Table 4.4: Test 4.4.2. Verification of C-property for the two-layer SWE.

while for two-layer case is taken as h1(x, 0) = 0.4, h2(x, 0) = H(x) and q1 = q2 = 0. We set a
100× 100 mesh grid over a square domain [0, 1]× [0, 1] with periodic boundary conditions. The
ratio of densities is set to ρ = 0.998, g = 9.81 and the CFL number is 1. Tables 4.3 and 4.4
show the L1-error at time T = 5. As expected, all the numerical schemes preserve the water at
rest solution up to machine accuracy.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
Time: 5.0

-H

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Time: 5.0

1 2 -H

Figure 4.6: Test 4.4.2. Cut along the main diagonal of the steady state solution.

4.4.3 Applications to the one-layer shallow water system

4.4.3.1 Circular dam-break

This test consists of a circular dam-break in a square domain [−5, 5] × [−5, 5] with wall
boundary conditions. The depth function is given by

H(x) = 4− 1.5e−r
2
,

4.4 Numerical results 106

-5 -4 -3 -2 -1 0 1 2 3 4 5

2

2.2

2.4

2.6

2.8

3

3.2
Time: 1.0

HLL 1D 1D

HLL 2D

Reference

-5 -4 -3 -2 -1 0 1 2 3 4 5

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9
Time: 1.3

HLL 1D 1D

HLL 2D

Reference

-5 -4 -3 -2 -1 0 1 2 3 4 5

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
Time: 1.6

HLL 1D 1D

HLL 2D

Reference

-5 -4 -3 -2 -1 0 1 2 3 4 5

1.8

2

2.2

2.4

2.6

2.8

3
Time: 2.0

HLL 1D 1D

HLL 2D

Reference

Figure 4.7: Test 4.4.3.1. Diagonal cuts of the free surface at different times, computed with the 2D
HLL Riemann solver on a 200× 200 mesh.

where r2 = x2 + y2, and for the initial condition we take q = 0 and h(x, 0) = H(x) + f(x), with

f(x) =

{
5 if r2 < 1,

2.5 otherwise.

We run the test with CFL=0.9 until the final time T = 2, and the spatial domain is discretized
with 200×200 grid points. Figure 4.7 shows a comparison between the 1D×1D and the genuinely
2D versions of the HLL Riemann solver: it can be clearly seen the improvement of including
vertex contributions in the Riemann solver. In Figure 4.8 we plot the contour lines of the free
surface: the results are in good agreement with those presented in [159].

We should remark that, in this problem, the PVM and RVM Riemann solvers do not present
significative improvements compared with HLL. Even though the 2D one-layer SWE is a 3-
waves model and the middle waves are ignored by HLL, we only found tiny differences in the

4.4 Numerical results 107

Figure 4.8: Test 4.4.3.1. Contour plots of the free surface at different times, obtained with the 2D HLL
Riemann solver on a 200× 200 mesh.

test case presented here. On the other hand, we do have found significative differences between
the 1D×1D and the 2D Riemann solvers.

We have also done a slightly change in the test, considering an extended domain [−12, 12]×
[−12, 12] with free boundary conditions, and a final time T = 1. A coarse mesh of 80× 80 grid
points and a refined mesh of 400×400 grid points have been considered. In Figure 4.9 we can see
that the 2D Riemann solver preserves the isotropy of the solution, whereas the 1D×1D solver
suffers a loss of isotropy on the upper and lower extremes of the wave propagation for both the
coarse and the refined meshes.

4.4 Numerical results 108

-10 -5 0 5 10
2.4

2.45

2.5

2.55

2.6

2.65
Time: 1.0

x-axis

Main diagonal

-10 -5 0 5 10
2.4

2.45

2.5

2.55

2.6

2.65
Time: 1.0

x-axis

Main diagonal

-10 -5 0 5 10
2.2

2.3

2.4

2.5

2.6

2.7

2.8
Time: 1.0

x-axis

Main diagonal

-10 -5 0 5 10
2.2

2.3

2.4

2.5

2.6

2.7

2.8
Time: 1.0

x-axis

Main diagonal

Figure 4.9: Test 4.4.3.1. Cuts of the free surface along the x-axis and in the main diagonal direction,
using an 80× 80 coarse mesh (left top: HLL 1D×1D; right top: HLL 2D), and a 400× 400 refined mesh
(left down: HLL 1D×1D; right down: HLL 2D).

4.4.3.2 Non-linear breaking waves

This test, originally presented in [187], simulates rapid spatial and temporal deformations of
the free surface. The sharper gradients formed by the nonlinear waves allow to see significative
differences when we consider two-dimensional vertex contributions in the numerical scheme. A

4.4 Numerical results 109

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1
Time: 0.5

HLL 1D 1D

HLL 2D

Reference

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04
Time: 1.5

HLL 1D 1D

HLL 2D

Reference

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02
Time: 2.9

HLL 1D 1D

HLL 2D

Reference

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02
Time: 4.8

HLL 1D 1D

HLL 2D

Reference

Figure 4.10: Test 4.4.3.2. Cuts of the free surface along the main diagonal at different times.
Comparison between the 1D×1D and the 2D HLL Riemann solvers.

flat bottom is considered and the initial condition is given by

h(x) = 1 +A sin(ly) sin(kx),

ux(x) = −kAg
ω

sin(ly) sin(kx),

uy(x) =
lAg

ω
cos(ly) cos(kx),

where the parameters are taken as k = 2πm, l = (2n + 1)π, ω2 = g(k2 + l2), A = 0.1, g = 1,
m = 2 and n = 0. A 100 × 100 meshgrid over a square domain [−0.5, 0.5] × [−0.5, 0.5] has
been taken, with wall boundary conditions at y = ±0.5 and periodic boundary conditions in the
x-direction.

4.4 Numerical results 110

Figure 4.10 shows a cut along the main diagonal comparing the 1D×1D and 2D HLL schemes
with 200 × 200 grid points at different times. Near the sharper gradients, it is visible that the
two-dimensional contributions increase the accuracy of the numerical scheme.

Time: 2.0

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 5 10 15 20 25

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
o
rm

L
1
 norm

L norm

Figure 4.11: Test 4.4.3.2 Left: Potential vorticity contour plot at time T = 2. Right: L1 and L∞ norms
until time T = 25.

A conserved quantity that the numerical scheme should preserve is the potential vorticity
(PV), defined as Π = (∇×u)/h. In Figure 4.11 (left) we show the contour plot of the potential
vorticity at time T = 2, which is in good agreement with the one presented in [207]. We also
present, in Figure 4.11 (right), the L1 and L∞ norms of Π: it can be seen that, after the
higher amplitudes around T ≈ 0.5, the L∞-norm decreases and remains almost constant as time
progresses. The L1-norm shows that the numerical scheme conserves the potential vorticity.

4.4.4 Applications to the two-layer shallow water system

4.4.4.1 Internal circular dam-break

Let us consider an internal circular dam-break problem over a flat bottom H(x) = 2, initially
proposed in [43]. The initial condition is given by

h1(x, 0) =

{
1.8 if x2 + y2 > 4,

0.2 otherwise,

h2(x, 0) = 2−h1(x, 0) and ux = uy = 0, on the computational domain [−5, 5]×[−5, 5] discretized
with a 200× 200 mesh. The CFL number is set to 0.9 and g = 9.81.

The ratio of densities is taken as ρ = 0.998 in order to set closer to zero the internal
eigenvalues of the two-layer system (see Section 2.3). As expected, this choice makes
more evident the differences between RVM and PVM Riemann solvers, because the rational
approximations of |x| are much closer to zero than the polynomial approximations of the same

4.4 Numerical results 111

-5 -4 -3 -2 -1 0 1 2 3 4 5

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Time: 4.0

HLL 2D

PVM-Chebyshev 2D

RVM-Newman 2D

Reference

-5 -4 -3 -2 -1 0 1 2 3 4 5

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Time: 6.0

HLL 2D

PVM-Chebyshev 2D

RVM-Newman 2D

Reference

-5 -4 -3 -2 -1 0 1 2 3 4 5

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Time: 10.0

HLL 2D

PVM-Chebyshev 2D

RVM-Newman 2D

Reference

-5 -4 -3 -2 -1 0 1 2 3 4 5

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Time: 14.0

HLL 2D

PVM-Chebyshev 2D

RVM-Newman 2D

Reference

-5 -4 -3 -2 -1 0 1 2 3 4 5

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Time: 16.0

HLL 2D

PVM-Chebyshev 2D

RVM-Newman 2D

Reference

-5 -4 -3 -2 -1 0 1 2 3 4 5

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Time: 20.0

HLL 2D

PVM-Chebyshev 2D

RVM-Newman 2D

Reference

Figure 4.12: Test 4.4.4.1. Cuts along the main diagonal at different times, computed on a 200 × 200
mesh grid.

4.4 Numerical results 112

order. In Figure 4.12 there are shown cuts along the main diagonal of the free surface, the
interface and the bottom topography, comparing the two-dimensional versions of HLL, PVM-
Chebyshev and RVM-Newman schemes, for different computational times. It is worth noticing
the significative differences when approximating the internal slow waves.

-6 -4 -2 0 2 4 6
0.6

0.8

1

1.2

1.4

1.6

1.8

2
Time: 4.0

HLL 2D

PVM-Chebyshev 2D

RVM-Newman 2D

Reference

-6 -4 -2 0 2 4 6
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Time: 5.0

HLL 2D

PVM-Chebyshev 2D

RVM-Newman 2D

Reference

-6 -4 -2 0 2 4 6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Time: 6.0

HLL 2D

PVM-Chebyshev 2D

RVM-Newman 2D

Reference

-6 -4 -2 0 2 4 6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Time: 7.0

HLL 2D

PVM-Chebyshev 2D

RVM-Newman 2D

Reference

Figure 4.13: Test 4.4.4.2. Cuts of the interface along the main diagonal at different times.

4.4.4.2 Evolution to a complex state

In order to test the robustness of the 2D AVM Riemann solvers, we propose here a new test
showing the transition to a complex state. Initially, it is assumed that the free surface and the
interface are constants, η1 = 5 and η2 = 1. The velocity fields are defined as

vx1 = −0.9A sin(y), vy1 = 0.9B sin(x), vx2 = −A sin(y), vy2 = B sin(x),

4.4 Numerical results 113

in such a way that there are not big differences in the velocity gradient between the two layers.
We take the parameters A = 1 and B = 0.25. In addition, the bottom topography is given by

H(x, y) = 2− 0.5e−2(x2+y2).

We impose wall boundary conditions in the y-direction and periodic ones in the x-direction.
The spatial domain is taken as [−2π, 2π]× [−2π, 2π]. Finally, we take g = 9.81 and the ratio of
densities ρ = 0.998.

-6 -4 -2 0 2 4 6

0

0.5

1

1.5

2

2.5
Time: 4.0

HLL2D

Cheb2D

Newman2D

Reference

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Time: 5.0

HLL 2D

Chebyshev 2D

Newman 2D

Reference

-6 -4 -2 0 2 4 6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Time: 6.0

HLL 2D

Chebyshev 2D

Newman 2D

Reference

-6 -4 -2 0 2 4 6
-0.5

0

0.5

1

1.5

2
Time: 7.0

HLL 2D

Chebyshev 2D

Newman 2D

Reference

Figure 4.14: Test 4.4.4.2. Cuts of the interface along the x-axis at different times.

In Figures 4.13 and 4.14 we show cuts along the main diagonal and the x-axis, respectively,
comparing the 2D HLL scheme, the 2D PVM Chebyshev and the 2D RVM Newman schemes.
The solutions have been computed on a 200× 200 mesh with CFL number 0.9. It is clear from
the figures that the AVM solvers provide much better results than the HLL solver and, also,

4.4 Numerical results 114

that the rational-based solver gives better approximations than the polynomial-based scheme.
This can also be seen in Figure 4.15, where contour plots of the interface at different times
are compared. As a conclusion, this test clearly shows that the proposed 2D AVM solvers are
robust, running stable and accurately for CFL up to unity in complex problems and for a ratio
of densities close to 1.

4.4 Numerical results 115

Figure 4.15: Test 4.4.4.2. Contour plots of the interface at times t = 4, 5, 6, 7, from top to bottom.
Left: 2D HLL; center: 2D PVM Chebyshev; right: 2D RVM Newman.

Chapter 5

Efficient GPU implementation

This chapter deals with the development of an efficient implementation based on Graphics
Processing Units (GPUs) architectures for the genuinely two-dimensional Riemann solvers
presented in this thesis, whose results are based on a recent and oingoing work [177]. GPU
codes can provide dramatic speedups over their counterpart sequencial codes ([9, 10, 54]).
Parallelism appears to be a key ingredient to increase performance, which is important in realistic
applications where big computational domains and long time simulations are necessary. See, for
instance, the webpage of the EDANYA research group ([87]) and the publications therein, where
real-life problems as avalanches, tsunami propagation, ocean currents, hazard assessment, among
others, are considered.

Architecturally, GPUs are a kind of vectorial processors, i.e., they are able to perform the
same task over multiple portions of data simultaneously. The GPU computation consists in
the combined use of CPU/GPU in a co-processing system, in which data with high parallelism
degree are executed in GPU and the rest of the code is executed in CPU. This arrangement gives
support to the High Performance Computation (HPC) at a very affordable price, due to the mass
production for the entertainment market. An interesting overview about GPU programming is
given in [33].

Since 2006, the company NVIDIA has made available the CUDA programming toolkit ([156]),
which allows the use of the C language, offering a set of additional functions in order to access and
manage data processing on GPU, avoiding the programmer having to understand the internal
details of the GPU. Efficient GPU implementations, based on CUDA programming, of finite
volume solvers with applications to shallow water systems have been presented, for instance,
in [7, 9, 10, 11, 8, 54, 92, 101, 124, 159]. Specific CUDA solvers for one-layer and two-layer
systems, using two-dimensional Roe-type solvers based on projected one-dimensional splitting,
are described, respectively, in [10] and [9]. CUDA solvers for MHD equations can be found, for
instance, in [23, 208, 209].

In this chapter we revisit the genuinely 2D AVM-type schemes presented in this thesis
and propose an efficient implementation of the two-dimensional numerical algorithm on GPU
architectures. Our numerical schemes present a high degree of potential data parallelism, as
well as the systems of shallow water and MHD flows, which suggests the design of parallel codes
in order to solve and analyze these systems in reasonable execution times.

5.1 Rewriting of the numerical schemes 117

5.1 Rewriting of the numerical schemes

In this section we present a brief description of the first- and second-order two-dimensional
AVM schemes derived in (4.1.9) and (4.3.13), respectively, in order to make them easier
to implement. This reinterpretation allows also to unify the implementations of the two-
dimensional scheme for conservations laws introduced in Chapter 3 and the nonconservative
path-conservative schemes discussed in Chapter 4. Let us now focus on the general case

∂tW + Ax(W)∂xW + Ay(W)∂yW = 0, (5.1.1)

where W , Ax and Ay are defined in (1.3.2). Considering the splitting AVM formulation given
in Sections 4.3.1 and 4.3.2, we can share the vertex contributions in a suited combination
of fluctuations in the coordinate directions. Therefore, in an analogous fashion as the two-
dimensional scheme for conservation laws in Chapter 3, we can rewrite the numerical fluctuations
at a given edge of the first-order scheme (4.1.9) as a linear convex combination of a one-
dimensional contribution at the edge and two 2D contributions at vertices. Both the first-
and second-order schemes can be put in the form

Un+1
ij = Un

ij +Mn
ij , (5.1.2)

where we have dropped the σ component of W = (U , σ)t. The vector Mn
ij represents the

fluctuations of all the edge and vertex contributions for a cell Cij at time tn, and it has the
same dimension as Un

ij . For each Mn
ij , we have twelve contributions (see Figure 5.1 for clarity),

four from the Riemann problems arising at the edges and eight from the 2D Riemann problems
at the vertices. Mimicking the numerical fluxes assembling in (3.1.3), the fluctuations for the
first-order scheme (4.1.9) can be written as

Mn
ij =− ∆t

∆x

{
αRx,i−1/2,j+1/2D

RD
x,i−1/2,j+1/2 + βRx,i−1/2D

+
i−1/2,j + γRx,i−1/2,j−1/2D

RU
x,i−1/2,j−1/2

}

− ∆t

∆x

{
αLx,i+1/2,j+1/2D

LD
x,i+1/2,j+1/2 + βLx,i+1/2D

−
i+1/2,j + γLx,i+1/2,j−1/2D

LU
x,i+1/2,j−1/2

}

− ∆t

∆y

{
αUy,i+1/2,j−1/2D

LU
y,i+1/2,j−1/2 + βUy,j−1/2D

+
i,j−1/2 + γUy,i−1/2,j−1/2D

RU
y,i−1/2,j−1/2

}

− ∆t

∆y

{
αDy,i+1/2,j+1/2D

LD
y,i+1/2,j+1/2 + βDy,j+1/2D

−
i,j+1/2 + γDy,i−1/2,j+1/2D

RD
y,i−1/2,j+1/2

}
,

(5.1.3)

5.1 Rewriting of the numerical schemes 118

γRx,i−1/2,j−1/2

γLx,i+1/2,j−1/2

αR
x,i−1/2,j+1/2

αL
x,i+1/2,j+1/2

γDy,i−1/2,j+1/2

γUy,i−1/2,j−1/2

αD
y,i+1/2,j+1/2

αU
y,i+1/2,j−1/2

DRU
x,V

DRU
y,V

DRD
y,V

DRD
x,V

DLU
y,V

DLU
x,V

DLD
x,V

DLD
y,V

βL
x,i+1/2

βR
x,i−1/2

βU
y,j+1/2

βD
y,j−1/2

D+
x,i−1/2

D−
x,i+1/2

D+
y,j−1/2

D−
y,j+1/2

Cij

(a)

αDy,V

DRD
ζ,V

γDy,V

αUy,V

DRU
ζ,V

γUy,V

γLx,V

DLU
ζ,V

αLx,V

γRx,V

DLD
ζ,V

αRx,V

Cij

Ci,j+1

Ci+1,j

Ci+1,j+1

V ≡ Vi+1/2,j+1/2

(b)

Figure 5.1: (a) Global notation for the scheme (5.1.2)-(5.1.3). The twelve contributions to the cell Cij
are represented. (b) Local notation for a vertex.

where the vertex fluctuations are given by

DLD
x =− SD

SU − SD
D1,−
x +

SU
SU − SD

D2,−
x ,

DLD
y =− SL

SR − SL
D1,−
y +

SR
SR − SL

D2,−
y ,

DLU
x =− SD

SU − SD
D1,−
x +

SU
SU − SD

D2,−
x ,

DLU
y =− SL

SR − SL
D1,+
y +

SR
SR − SL

D2,+
y ,

DRD
x =− SD

SU − SD
D1,+
x +

SU
SU − SD

D2,+
x ,

DRD
y =− SL

SR − SL
D1,−
y +

SR
SR − SL

D2,−
y ,

DRU
x =− SD

SU − SD
D1,+
x +

SU
SU − SD

D2,+
x ,

DRU
y =− SL

SR − SL
D1,+
y +

SR
SR − SL

D2,+
y ,

(5.1.4)

5.1 Rewriting of the numerical schemes 119

and

βRx = 1 + (SDi−1/2,j+1/2 − SUi−1/2,j−1/2)
∆t

2∆y
, βLx = 1 + (SDi+1/2,j+1/2 − SUi+1/2,j−1/2)

∆t

2∆y
,

βUx = 1 + (SLi+1/2,j−1/2 − SRi−1/2,j−1/2)
∆t

2∆x
, βDx = 1 + (SLi+1/2,j+1/2 − SRi−1/2,j+1/2)

∆t

2∆x
,

αRx = −SDi−1/2,j+1/2

∆t

2∆y
, αLx = −SDi+1/2,j+1/2

∆t

2∆y
,

αUy = −SLi+1/2,j−1/2

∆t

2∆x
, αDy = −SLi+1/2,j+1/2

∆t

2∆x
,

γRx = SUi−1/2,j−1/2

∆t

2∆y
, γLx = SUi+1/2,j−1/2

∆t

2∆y
, γUy = SRi−1/2,j−1/2

∆t

2∆x
, γDy = SRi−1/2,j+1/2

∆t

2∆x
,

(5.1.5)

with Dµ,±
x and Dν,±

y defined by (4.3.1) and (4.3.2), respectively. Figure 5.1 helps to clarify the
notation. In a similar way, the fluctations for the second-order scheme read as

Mn
ij =− ∆t

∆x

{
α̃Rx,i−1/2,j+1/2D̃

RD

x,i−1/2,j+1/2 + β̃Rx,i−1/2D̃
+

i−1/2,j + γ̃Rx,i−1/2,j−1/2D̃
RU

x,i−1/2,j−1/2

}

− ∆t

∆x

{
α̃Lx,i+1/2,j+1/2D̃

LD

x,i+1/2,j+1/2 + β̃Lx,i+1/2D̃
−
i+1/2,j + γ̃Lx,i+1/2,j−1/2D̃

LU

x,i+1/2,j−1/2

}

− ∆t

∆y

{
α̃Uy,i+1/2,j−1/2D̃

LU

y,i+1/2,j−1/2 + β̃Uy,j−1/2D̃
+

i,j−1/2 + γ̃Uy,i−1/2,j−1/2D̃
RU

y,i−1/2,j−1/2

}

− ∆t

∆y

{
α̃Dy,i+1/2,j+1/2D̃

LD

y,i+1/2,j+1/2 + β̃Dy,j+1/2D̃
−
i,j+1/2 + γ̃Dy,i−1/2,j+1/2D̃

RD

y,i−1/2,j+1/2

}

− ∆t

∆x

{
F̃ i+1/2,j − F̃ i−1/2,j + Bx(Ũ

n+1/2
ij)∆xŨ

n
ij − Sx(Ũ

n+1/2
ij)∆xσ̃

n
ij

}

− ∆t

∆y

{
G̃i,j+1/2 − G̃i,j−1/2 + By(Ũ

n+1/2
ij)∆yŨ

n
ij − Sy(Ũn+1/2

ij)∆yσ̃
n
ij

}
,

(5.1.6)

where the coefficients α̃, β̃, γ̃ are computed as in (5.1.5), but with vertex speeds calculated

by using time-space reconstructed states; Ũ
n+1/2
ij are the reconstructed values in time at

the center zone computed as in (4.3.14); D̃± are the 1D fluctuations on the cell boundaries
evaluated at the time-space reconstructed states; and the vertex fluctuations are calculated
as in (4.3.15), changing D̃AB

V by the vertex fluctuations D̃AB
ζ,V in (5.1.4), for ζ = x, y and

AB = LD,LU,RD,RU ; finally, F̃ and G̃ are the physical fluxes evaluated at the reconstructed
states in space and time.

5.1 Rewriting of the numerical schemes 120

5.1.1 Improving efficiency of AVM schemes

The idea behind of AVM schemes (Section 1.5) is to use a functional evaluation of a Roe
matrix of the system, f(Aζ) ≈ |Aζ |, where Aζ = Axηx +Ayηy, if available, or more generally
the Jacobian matrix evaluated in a given averaged state, in order to compute the numerical
viscosity matrix of the numerical scheme. For the PVM and RVM cases, this involves the
computation of power matrices. Particularly, for the proposed 2D AVM schemes, this leads to
several matrix multiplications, which can reduce the computational efficiency of the schemes.
Considering the splitting formulation of the 2D scheme presented in Sections 4.3.1 and 4.3.2,
for each vertex we need to apply the one-dimensional Riemann solver eight times, four in each
direction. So, while for the 1D×1D AVM solver, for a Nx ×Ny meshgrid, we need to compute
(Nx+1)Ny+Nx(Ny+1) times the one-dimensional Riemann solver, for the 2D versions we have
additional 4(Nx + 1)(Ny + 1) applications for that Riemann solver in the vertex contributions,
which represents many additional matrix multiplications.

An idea to circumvent this problem is to make use of the Cayley-Hamilton theorem (see,
for instance, [118]), that allows to powerfully simplify matrix multiplications. As the Roe
matrix of the system (or the approximated Jacobian matrix) is a square matrix, calculating
the characteristic polynomial p(λ) = det(λI − Aζ), where I represents the identity matrix,
the theorem ensures that p(Aζ) = 0. So, at least from certain degree m, the order of the
characteristic polynomial, we can switch the matrix power Am

ζ by a sum of matrices, i.e.,

Am
ζ = −cm−1A

m−1
ζ − . . .− c1Aζ − c0I, (5.1.7)

where the coefficients ci, i = 0, 1, . . . ,m− 1, can be determined by a Newton’s recurrence relation
(see [205]). For example, consider the Roe linearization (2.2.2)-(2.2.3) for the one-layer shallow
water system (2.2.1). The characteristic polynomial in the x-direction (for the y-direction the
procedure is completely analougous) is given by

p(λ) = λ3 − 3v̂xλ
2 − (−3v̂2

x + gĥ)λ+ v̂x(v̂2
x − gĥv̂x).

Solving p(Ax) = 0, we find that

A3
x = 3v̂xA

2
x + (−3v̂2

x + gĥ)Ax + v̂x(v̂2
x − gĥv̂x)I

or, more generally, that

Am
x = 3v̂xA

m−1
x + (−3v̂2

x + gĥ)Am−2
x + v̂x(v̂2

x − gĥv̂x)Am−3
x , m ≥ 3. (5.1.8)

Furthermore, formula (5.1.8) ensures that we can express all the mth power matrices Am
x , for

m ≥ 3, as a linear combination of A2
x, Ax and I, i.e., all the power matrices of degree m can be

written as linear combination of the power matrices Am−1
ζ , . . . ,Aζ ,I. In this way, all the mth

power matrices can be expressed as a sum of m(m− 1)/2 matrices.
Additionally, in some cases it is possible to calculate explicitly the power matrices of order

less than m, further reducing the computational cost. This is the case, for instance, of the Roe
matrix for the one-layer shallow water system.

5.1 Rewriting of the numerical schemes 121

For the two-layer shallow water system, a Roe linearization in the x-direction of the form
(1.3.11) for the two-dimensional AVM scheme is given by

Ax(U0,U1) =




0 1 0 0 0 0
−v̂1

2
x + ĉ1

2 2v̂1x 0 ĉ1
2 0 0

−v̂1xv̂1y v̂1y v̂1x 0 0 0
0 0 0 0 1 0

ρĉ2
2 0 0 −v̂2

2
x + ĉ2

2 2v̂2x

0 0 0 −v̂2xv̂2y v̂2y v̂2x



,

where

v̂iζ =

√
hi0viζ,0 +

√
hi1viζ,1√

hi0 +
√
hi1

, ĉi =

√
gĥi, ĥi =

hi0 + hi1
2

.

The characteristic polynomial for this matrix can be read as

p(λ) = −(v̂1x − λ)(v̂2x − λ)(−λ4 + a3λ
3 + a2λ

2 + a1λ+ a0),

where

a3 = 2(v̂1x + v̂2x), a2 = α1 + α2 − 4v̂1x v̂2x , a1 = −2(α1v̂2x + α2v̂1x), a0 = −α1α2 + (gĥ1)(ρgĥ2),

defining α1 = −v̂2
1x + gh1 and α2 = −v̂2

2x + gh2. Solving p(Ax) = 0, we find that

A6
x = −c5A

5
x − c4A

4
x − c3A

3
x − c2A

2
x − c1Ax − c0I

or, more generally, that

Am
x = −c5A

m−1
x − c4A

m−2
x − c3A

m−3
x − c2A

m−4
x − c1A

m−5
x − c0A

m−6
x , m ≥ 6, (5.1.9)

where, using the short notation v̂1x + v̂2x = vx,

c5 = a3 + vx, c4 = v̂1x v̂2x + a3vx − a2, c3 = −v̂1x v̂2xa3 + vxa2 − a1,

c2 = −v̂1x v̂2xa2 + vxa1 − a0, c1 = −v̂1x v̂2xa1 + vxa0, c0 = detAx = −v̂1x v̂2xa0.
(5.1.10)

In the case of RVM schemes, one matrix inversion is required. The functional viscosity
matrix is approximated by f(A) = p(A)q(A)−1 ≈ |A|, for certain polynomial functions p and
q. An interesting tool for square matrices is a blockwise matrix inversion ([109]) by using the
analytic inversion formula

(
M11 M12

M21 M22

)−1

=

(
M−1

11 +M−1
11 M12S

−1M21M
−1
11 −M−1

11 M12S
−1

−S−1M21M
−1
11 S−1

)
, (5.1.11)

where Mij are square sub-block matrices. The only matrices requiring inversion are M11 and
the so-called Schur complement of M11, defined as S = M22 −M21M

−1
11 M12. This formula is

particularly interesting when M11 and S are small matrices, as it can reduce the computational
cost of the code.

5.2 Parallelism sources 122

5.2 Parallelism sources

In this section we describe the main steps to build the first- and second-order algorithms
for the two-dimensional AVM numerical schemes explained in the previous section, as well their
main sources of parallelism. We follow the guidelines of [7, 9, 10] in order to build our CUDA
solver. We present here a small explanation about the features of a GPU CUDA code. For a
complete explanation, we refer to the recent publication [143].

blockDim x

bl
oc

kD
im

y

2D Grid
i

j

2D Block

N
=
50

i +N ∗ j Ghost cells

Local stencil

Thread(4,2)

Figure 5.2: Sketch of an arrangement of a 2D Grid of 7×7 blocks of 8×8 threads to a 50×50 meshgrid.
The starting thread should be a multiple of the warp size. Figure adapted from [143]

Each component of the finite volume algorithm can be implemented as a CUDA kernel, which
is a function executed on the GPU ([156]). In the CUDA program, when a kernel is executed,
this function is performed by several processing units at the same time, creating distinct running
threads. Internally, each thread have its unique identifier in order to select which data it will
process. CUDA groups threads into a grid of blocks. The blocks can be 1D, 2D, or 3D, meaning
that the threads will have identifiers with 1, 2 or 3 indexes, respectively. This enables to
identify the physical coordinates with each thread and block. Each thread runs in a single
multiprocessor. The thread are staggered for execution in groups called warps. Each warp is a
group of 32 threads that run physically in parallel on a multiprocessor ([143]). For this reason,
it is always convenient that the number of threads defined by kernel be a multiple of 32. Figure
5.2 shows a possible arrangement of a 2D grid to a 50 × 50 physical meshgrid: each gridpoint
is perfectly identified by a block identifier (blockId) and a thread identifier (threadId).

5.2 Parallelism sources 123

For example, the coordinate i can be defined as i=threadId.x+blockDim.x*blockId.x, and
similarly j=threadId.y+blockDim.y*blockId.y.

For memory access there are various types of memory, with different sizes and access speeds.
Registers are the fastest access memory and are uniquely allocated to each thread. Within a
block, shared memory is shared by all the threads of a block. The global memory can be accessed
by all the threads of a grid and also by the CPU. It is the slowest memory and it have greater
storage capacity. For detailed information, we refer the reader to [143, 33].

The CUDA code typically performs the following steps: it reads the input data with the
appropriate setting of initial and boundary conditions; GPU memory space is reserved; it
transfers CPU memory input data to the global GPU memory; it runs the kernels (after
calculating the initial time step, the process is repetead until the final time); it transfers the
processed data from GPU memory to CPU memory; it displays the results and performs the
required completion.

In Figure 5.3 we represent using a simple diagram the main calculation phases and mark
with a circle the steps where we have a high degree of data parallelism. One accumulator array
of NVAR*NV double elements is used to store in the global memory the contributions given by the
edges and vertex calculations, where NVAR is the number of conserved variables of the system and
NV is the total number of volumes of the discretization. We can identify the accumulator as the
term Mn

ij in (5.1.2). The main stages of the first- and second-order algorithms are summarized
in what follows.

5.2.1 Vertex-based calculations

In the kernel design, there are some features to be taken into account. A GPU has a lot
of processors and each one can execute multiple blocks concurrently. An important care to be
taken when programming a parallel code is to avoid memory conflicts when many threads try
to write to the same address. If many threads, whether from the same warp or different warps,
access the same address, the final result may not reflect the true result. If each thread write
different values over the same GPU memory location, it is possible that only one is read and
so broadcasted to all threads ([143]). For vertex-based calculations, each control volume Cij is
accessed four times for four distinct vertex, which means that can exist memory conflicts at the
time of adding the contributions of each cell around the vertex to the accumulator array in the
global memory.

We consider three ways to avoid this problem. The first idea is to separate the vertex kernel in
four non-intersecting kernels each one working on a subset of the vertex meshgrid, in a way such
that the four states surrounding the vertex do not intersect the other four states surrounding
other vertex. This subdivision can be seen schematically in Figure 5.4. A consequence of non-
overlapping cells is that the vertices for a single kernel do not require synchronization when it
comes to compute the contributions for a specific control volume.

5.2 Parallelism sources 124

Input initial data

Build the finite volume mesh
and compute initial ∆t

While t < tend

For each volume
Cij, M

n
ij = 0T

For each vertex Vi+1/2,j+1/2

Compute states around the vertex, W n,AB
i+1/2,j+1/2

Compute vertex wave speeds Sαi+1/2,j+1/2

Mn
ij = Mn

ij − ∆t
∆x

{
αLx,VD

LD
x,V

}
− ∆t

∆y

{
αDy,VD

LD
y,V

}

Mn
i,j+1 = Mn

i,j+1 − ∆t
∆x

{
γLx,VD

LU
x,V

}
− ∆t

∆y

{
αUy,VD

LU
y,V

}

Mn
i+1,j = Mn

i+1,j − ∆t
∆x

{
αRx,VD

RD
x,V

}
− ∆t

∆y

{
γDy,VD

RD
y,V

}

Mn
i+1,j+1 = Mn

i+1,j+1 − ∆t
∆x

{
γRx,VD

RU
x,V

}
− ∆t

∆y

{
γUy,VD

RU
y,V

}

For each edge Eij,k

Compute neighbors states W n,±
i±1/2,j and W n,±

i,j±1/2

Compute shrink wave speeds βα
Mn

ij = Mn
ij + βLD

+
i−1/2,j + βRD

−
i+1/2,j

Mn
ij = Mn

ij + βDD
+
i,j−1/2 + βUD

−
i,j+1/2

For each volume Cij

Un+1
ij = Un

ij + Mn
ij

t = t + ∆t

For each volume Cij
Compute ∆tij

∆t = min ∆tij

1

2

3

4

5

(a)

Input initial data

Build the finite volume mesh
and compute initial ∆t

While t < tend

For each volume
Cij, M

n
ij = 0T

For each volume Cij
Compute the slopes ∆x,ij ,∆y,ij ,∆xy,ij

For each volume Cij

Compute time derivatives ∂tU
n
ij

Compute integral contributions IBij ∧ ISij

M ij = IBij + ISij

For each vertex Vi+1/2,j+1/2

Compute reconstructed states W̃
n+1/2,AB

i+1/2,j+1/2

Compute vertex wave speeds S̃αi+1/2,j+1/2

Mn
ij = Mn

ij − ∆t
∆x

{
αLx,V D̃

LD

x,V

}
− ∆t

∆y

{
αDy,V D̃

LD

y,V

}

Mn
i,j+1 = Mn

i,j+1 − ∆t
∆x

{
γLx,V D̃

LU

x,V

}
− ∆t

∆y

{
αUy,V D̃

LU

y,V

}

Mn
i+1,j = Mn

i+1,j − ∆t
∆x

{
αRx,V D̃

RD

x,V

}
− ∆t

∆y

{
γDy,V D̃

RD

y,V

}

Mn
i+1,j+1 = Mn

i+1,j+1 − ∆t
∆x

{
γRx,V D̃

RU

x,V

}
− ∆t

∆y

{
γUy,V D̃

RU

y,V

}

For each edge Eij,k

Compute reconstructed states W̃
n+1/2,±
i±1/2,j and W̃

n+1/2,±
i,j±1/2

Compute shrink wave speeds β̃α

M ij = M ij + β̃LD̃
+

i−1/2,j + β̃RD̃
−
i+1/2,j

M ij = M ij + β̃DD̃
+

i,j−1/2 + β̃UD̃
−
i,j+1/2

M ij = M ij +
∑ |Eij,k|F̃

±
η,ij

For each volume Cij

Un+1
ij = Un

ij + M ij

t = t + ∆t

For each volume Cij
Compute ∆tij

∆t = min ∆tij

1

2

3

4

5

6

7

(b)

Figure 5.3: (a) First-order CUDA solver. (b) Second-order CUDA solver.

5.2 Parallelism sources 125

Figure 5.4: Different vertex processing steps.

For each vertex V ≡ Vi+1/2,j+1/2, we compute

Mn
ij = −∆t

∆x

{
αLx,VD

LD
x,V

}
− ∆t

∆y

{
αDy,VD

LD
y,V

}
,

Mn
i,j+1 = −∆t

∆x

{
γLx,VD

LU
x,V

}
− ∆t

∆y

{
αUy,VD

LU
y,V

}
,

Mn
i+1,j = −∆t

∆x

{
αRx,VD

RD
x,V

}
− ∆t

∆y

{
γDy,VD

RD
y,V

}
,

Mn
i+1,j+1 = −∆t

∆x

{
γRx,VD

RU
x,V

}
− ∆t

∆y

{
γUy,VD

RU
y,V

}
,

(5.2.1)

which represent the contributions to the calculation of the new states around the vertex V ,
namely ULD = Uij , URD = Ui+1,j , ULU = Ui,j+1 and URU = Ui+1,j+1. Each thread computes
the contribution of every vertex of four adjacent states and adds up to the partial sums Mn

AB

associated with each state UAB around the vertex, being AB = LD,LU,RD,RU .
The second idea to avoid that different threads access and modify the same data is to use

atomic functions of CUDA ([157]). Atomic operations ensure correct updates for shared variables
in the global memory without conflicts. Thus, there is no interference of concurrent threads to
read-modify-write operations, i.e., other thread cannot interfere in the current operation at the
same address until the atomic operation is completed. For instance, an atomic add instruction
reads a variable from the memory, modify that variable adding up some quantity to it, and
write it back to the memory, all without interference of other threads. Although AtomicAdd()

instructions in CUDA only supports data type of int or float, it is possible to overload atomic
sums for double data type using AtomicCAS() (compare and swap) instructions. AtomicAdd()
instructions only works for CUDA 6.0 or higher.

The third idea is not to write over the acumulator array in the vertex kernel. Instead, we
store the four vertex contributions around a given vertex V in an array S of size 4*NVAR*NV, and
later in the volume kernel we add these contributions to the accumulator array. If the volume
kernel have not memory conflicts, for a given cell Cij , we identify the neighboring vertices around
the cell, access the vertex contributions stored in the S arrays and add the respective portion of
each vertex to the control volume. Figure 5.5 shows a depiction of this procedure.

Thereby, in all the proposed ideas, a single accumulator is enough to store the contributions
of each vertex and an appreciable reduction of memory access is achieved. In our experiments,

5.2 Parallelism sources 126

Vertex kernel

SijSijSijSijSijSijSijSijSij

ULU URU

ULD URD Sij

Si,j+1

Si+1,j

Si+1,j+1

URU

URD

ULU

ULD

Cij

Vi−1/2,j−1/2

Vi−1/2,j+1/2

Vi+1/2,j−1/2

Vi+1/2,j+1/2

Volume kernel

Figure 5.5: Storing in the vertex kernel and adding up in the volume kernel the vertex contributions to
the accumulator in the control volume Cij .

for small meshes the three techniques provided similar performances, while as the mesh is refined
the vertex kernel using atomic functions presents a slight improvement in terms of computational
cost. Further investigations on this topic are the subject of future research.

5.2.2 Edge-based calculations

Taking into account the notation given in Section 1.6, we denote as Eij,k, with k ∈ {i±1, j±
1}, the edge communicating two adjacent cells, Cij and Ck. The edges processing follows the
same approach as the one applied in [9, 10]. In order to avoid memory conflicts when adding the
contributions to adjacent cells communicated through an edge Eij,k to the respective volumes,
the edges are split in four non-intersecting sets: horizontal and vertical edges, with odd and
even numbering. Within this approach, it is not possible that the same memory address can be
accessed at the same time for different threads. For vertical edges ηy = 0, while for horizontal
edges ηx = 0, where η = (ηx, ηy) is the normal unit vector at the edge Eij,k pointing towards the
cell Ck. Thus, all the operations where this terms appears can be avoided using the four kernels,
thus enhancing the efficiency. Also, as each edge Eij,k only needs the data of the neighboring
control volumes Cij and Ck, there is a higher spatial locallity. Note that this works only for
structured meshes. Further details can be found in [9, 10] and [7].

The contributions between the volumes Cij and Ci+1,j are computed by

Mn
ij = −∆t

∆x
βLx,i+1/2D

−
i+1/2,j , Mn

i+1,j = −∆t

∆x
βRx,i+1/2D

+
i+1/2,j , (5.2.2)

which represents the contributions to the calculation of the new states adjacent to the edge,
namely Uij and Ui+1,j . These contributions are added up to the respective partial sums Mij

and Mi+1,j associated with the adjacents states.
Also, in high-order path-conservative schemes, an additional difference of fluxes appears

from the integration of the Jacobian matrix of the system (recall the Section 1.6). We add these
contributions to the respective accumulator array also in the edge kernels, taking advantage on
the data access.

5.2 Parallelism sources 127

5.2.3 Volume-based calculations

Each thread represents a volume and it has not overlapping problems with respect to read-
modify-write procedures in the calculations. The new state Un+1

ij is calculated over each volume
Cij from the nth state and the data storaged on the acumulators in the previuos steps (see
formula (5.1.2)).

For second-order schemes, we have two additional steps: one kernel to compute the slopes for
the second-order reconstruction operator (4.3.12); and another to calculate the predictor states
at time n+ 1/2 used in the MUSCL-Hancock procedure and the volume integrals corresponding
to the regular part of the path-conservative schemes (see Section 4.3.4). The first one computes
and stores the slopes in the coordinate directions, as well as the cross derivatives for each volume
Cij using a compact 9-stencil; also, limiters are applied to avoid spurious oscillations. In our
experiments we adopt the generalized minmod limiter ([185]). Three double arrays of size

NVAR*NV are used to store the slopes. The other kernel update W n
ij in a half-time, W

n+1/2
ij ,

for each volume, by a Cauchy-Kowalewski procedure and stores it in an double array of size
NVAR*NV. Furthemore, the regular integral contributions (1.3.9) and (1.3.10) are added to the
accumulators of the respective volume. The full Mn

ij is obtained adding all the edges, vertex
and integrals contributions and updates the state Un

ij in the volume kernel.
Volume-based calculations are also used to compute the time step. Each thread represents

a volume and computes the local ∆tij corresponding to the volume Vij . Later, the minimum is
obtained by appling a reduction parallel algorithm of CUDA.

Table 5.1 shows the mean values of the percentages of the execution times for the main
GPU kernels that are depicted in the diagram 5.3 for a second-order scheme using HLL, PVM-
Chebyshev and RVM-Newman schemes, respectively. The PVM-Chebyshev method is based
on a polynomial of eighth degree, while the RVM-Newman is based on a rational function of
degree 8/8. We take into account the two-dimensional schemes based on the projected one-
dimensional Riemann solvers, denoted as 1D×1D, and the genuinely two-dimensional AVM
schemes considering the three strategies for the vertex kernel previously discussed in order to
avoid memory conflicts: atomic operations, adding the vertex contributions in the volume kernel,
and four non-overlapping vertex kernels. Clearly, for the genuinely 2D schemes, the vertex
processing step consumes the major part of the execution time. As expected, PVM-Chebyshev
and RVM-Newman schemes spent more time than the HLL scheme in the vertex processing, and
particularly RVM-schemes spent much more time since at each step it is necessary to compute
inverse matrices. As it was previously commented, in our experiments the vertex processing
using atomic instructions provided a slight improvement with respect to the other two strategies.
Table 5.1 was built using experiments for the two-layer shallow water equations, since for this
system we have both source and coupling terms. When considering the one-layer shallow water
system, which does not contain coupling terms, we have a reduction of about 5% in the vertex
processing steps.

5.2 Parallelism sources 128

Table 5.1: Mean values of the percentages of the execution times for the main GPU kernels for the
second-order HLL, PVM-Chebyshev and RVM-Newman schemes, respectively. For genuinely 2D schemes,
the three strategies considered in Section 5.2.1 have been considered.

% Execution time

Computing step HLL 1D×1D
HLL 2D

with AtomicAdd()

instructions

HLL 2D
with adding

vertex contr. in
volume kernel

HLL 2D
with four

vertex kernels

Process vertex - 44.50 37.12 47.92

Process vertical edges 20.36 17.66 17.26 16.03

Process horizontal edges 22.15 14.77 14.36 13.05

Compute predicted states
and integrals contributions

26.20 7.68 9.33 8.41

Compute Un+1
ij 13.32 5.75 11.69 5.38

Compute slopes 11.58 6.85 7.25 6.40

Compute ∆tij 1.69 0.78 0.80 0.73

Get minimum ∆t 0.26 0.07 0.08 0.07

Other minor instructions 4.44 1.94 2.11 2.01

% Execution time

Computing step
PVM-

Chebyshev
1D×1D

PVM-Chebyshev 2D
with AtomicAdd()

instructions

PVM-Chebyshev 2D
with adding

vertex contr. in
volume kernel

PVM-Chebyshev 2D
with four

vertex kernels

Process vertex - 45.04 41.15 48.57

Process vertical edges 30.44 18.01 18.48 17.69

Process horizontal edges 30.50 15.69 17.24 16.32

Compute predicted states
and integrals contributions

15.59 7.07 6.89 6.36

Compute Un+1
ij 10.32 5.29 8.65 4.08

Compute slopes 7.70 6.32 5.33 4.86

Compute ∆tij 1.98 0.72 0.59 0.55

Get minimum ∆t 0.26 0.07 0.06 0.05

Other minor instructions 3.21 1.79 1.61 1.52

% Execution time

Computing step
RVM-

Newman
1D×1D

RVM-Newman 2D
with AtomicAdd()

instructions

RVM-Newman 2D
with adding

vertex contr. in
volume kernel

RVM-Newman 2D
with four

vertex kernels

Process vertex - 52.04 52.03 53.08

Process vertical edges 33.36 17.12 16.44 17.13

Process horizontal edges 38.17 15.75 15.42 16.00

Compute predicted states
and integrals contributions

12.07 5.01 4.79 5.02

Compute Un+1
ij 6.85 3.75 6.03 3.24

Compute slopes 6.09 4.49 3.72 3.85

Compute ∆tij 0.98 0.51 0.41 0.44

Get minimum ∆t 0.07 0.05 0.04 0.04

Other minor instructions 2.41 1.28 1.12 1.20

5.3 CUDA implementation 129

5.3 CUDA implementation

In this section we put in order the main details of the parallel implementation in CUDA of the
second-order 2D AVM schemes. We closely follow the general approach applied in [9, 10], with
substantial modifications regarding vertex contributions and the MUSCL-Hancock procedure.
The general steps of the parallel algorithm are depicted in Figure 5.3. When executing the
parallel code, each step performed by a CUDA kernel is a sequencial code with a large number
of threads operating simultaneously, with its own set of instructions. Each kernel instruction
will be shortly described in what follows. We have considered the vertex kernel approach by
using atomic instructions of CUDA. The adaptation to the other strategies is straighforward.

1. Build data structure and initialize ∆t

From the initial data read in CPU, the data structure that will be used in GPU calculations
is built. To store the initial data, an array of double data type of NVAR*NV elements is
used, i.e., we store the initial state of physical variables U0 for each control volume. In
fact, the meshgrid is enlarged in order to fill in with ghost cells, since boundary conditions
are applied before each iteration. Later, the initial step is calculated and the main loop
starts, until the final time is reached. At the beginning of each iteration, the fluctuations
accumulator Mn

ij is set to zero and the meshgrid is fulfilled with the boundary conditions.
For shallow water systems, the bathymetry Hij is fixed for each volume in such a way that
Mn

ij can be taken as an array of (NVAR-1)*NV elements.

2. Reconstruction of states

In this step, the slopes ∆x,ij , ∆y,ij and the cross derivatives ∆xy,ij are calculated and
stored, separately, in arrays of NVAR*NV double elements in the global memory. Slope
limiters are used to control spurious oscillations. For shallow water systems, we reconstruct
the free surface (one-layer case) or the interface (two-layer case), in order to ensure well-
balancing (see Section 2.4). Next, each mesh of local derivatives is extended with ghost
cells, according to the boundary conditions. This is done because the reconstructed states
around a given vertex are used to compute the vertex contributions in the vertex kernel.

3. Predictor step

For each volume, spatial reconstructions in the coordinate directions are performed by
using the previously computed slope arrays, since it is enough to apply a 1D×1D method
in the predictor step (recall Section 4.3.4). Following the MUSCL-Hancock method, we
compute the time derivatives ∂tW

n
ij through a Cauchy-Kowalweski procedure and store

∆t∂tW
n
ij in a double array of NVAR*NV elements.

At the same time, the numerical approximation of the volume integrals of type (1.3.9)

and (1.3.10) are performed in this step. The reconstructed values at time W
n+1/2
ij at the

quadrature points are computed, and using a second-order quadrature rule we estimate
the approximate volume integrals (see the expressions in (5.1.6)) and add them to the
accumulator array Mn

ij , for each volume.

In the same way as the spatial reconstructions, the meshgrid of time derivatives is extended
with ghost cells in order to use that values in the vertex kernel.

5.3 CUDA implementation 130

3. Vertex processing

For each vertex Vi+1/2,j+1/2, reconstructions in space and time are performed for each

cell around the vertex, namely Ũ
n+1/2
ij , Ũ

n+1/2
i+1,j , Ũ

n+1/2
i,j+1 and Ũ

n+1/2
i+1,j+1. For shallow

water systems, also the topography is reconstructed, following the well-balancing approach
given in Section 2.4. Secondly, the wave speeds arising in the strong interaction region,
namely S̃LDi+1/2,j+1/2, S̃RDi+1/2,j+1/2, S̃LUi+1/2,j+1/2 and S̃RUi+1/2,j+1/2, are computed using the
reconstructed states. Next, the star states related to the four one-dimensional Riemann
problems arising in the coordinate directions are computed. Once the twelve states around
the strong interaction region have been defined, we can calculate the four star states
inside the strong interaction region, namely ULD,∗

V , URD,∗
V , ULU,∗

V and URU,∗
V , following

the iterative procedure given in Section 4.3.1, when nonconservative products are present.
Now, we are able to calculate the eight fluctuations, four for each coordinate direction,
given by equations 5.1.4, changing DAB

ζ,V by D̃AB
ζ,V . These contributions are added to the

accumulator array related to the respective control volume (see (5.2.1)), by using atomic
instructions of CUDA.

Remark 11. For the two-layer shallow water system (2.3.1), we can follow the same idea
as in [64] for the shear shallow water system, and compute exactly the star states in the
strong interaction region. In the nonconservative product Bζ , ζ = x, y, it only appears
terms depending on the water heights h1 and h2, which conform a conservative susbsystem
of (2.3.1). Therefore, we can compute explicitly hAB,∗1 and hAB,∗2 by using (4.2.8) and
(4.2.9) without the coupling and source terms. Next, the nonconservative subsystem given
by the moments equations can be determined by using again (4.2.8) and (4.2.9) with the
coupling terms completely defined with the water height star states previously constructed.
The topography H only changes through the zero-wave and it is directly computed by
the reconstructed topography around the vertex. This avoids the iterative procedure and
increases the efficiency of the code.

4. Edge processing

The edge processing follows the same guidelines as in [9, 10]. The edges are divided into
four non-intersecting kernels: vertical and horizontal edges, with even and odd numbering.
For each kernel in the x-direction, the reconstructed states in space and time of two

adjacent cells U
n+1/2,−
i±1,j and U

n+1/2,+
i±1,j are computed, as well as the topography H−i±1,j

and H+
i±1,j in shallow water systems, using the appropriate stencial values. The shrink

parameters β̃L and β̃R, that determine the proportion of the one-dimensional contributions
with respect to the edge, are estimated using the vertex wave speeds computed beforehand
in the vertex kernel. Following this, the contributions are independently computed and
added to the respective accumulator array. The kernels in the y-direction follow the same
steps.

5. Compute the new state Un+1
ij

For each volume, the (n + 1)-th state Un+1
ij is finally computed from the previous state

Un
ij and the accumulator array Mn

ij .

5.4 Experimental results 131

6. Compute the local ∆tij for each volume

For each volume, the local ∆tij is computed in the central zone by (4.3.11).

7. Get the minimum ∆t

By a reduction algorithm of CUDA, the minimum of the local ∆tij previuosly computed
is obtained. This minimum is the next time step that will be used in the time loop of the
algorithm.

Remark 12. To ensure positivity of the numerical schemes, first we consider the desingular-
ization formula ([122])

vζ =

√
2hqζ√

h4 + max (h4, ε)
, ζ = x, y, (5.3.1)

where usually ε = max {∆x4,∆y4} (see [173] for a different choice). Next, the discharge qζ is
redefined by qζ := vζh. Following [122], the reconstruction of the water height is modified to
ensure the positivity of the reconstructed heights.

5.4 Experimental results

The CUDA code for the genuinely two-dimensional AVM schemes is tested in this section. A
comparison in terms of efficiency is done against the 1D×1D counterpart schemes. The numerical
computations have been performed at the Laboratory of Numerical Methods of the University
of Málaga, which has an HPC cluster with 8 computing nodes, each server with dual processors
Intel(R) Xeon(R) CPU 2.10 GHz, equipped with two supercomputing GPUs GeForce GTX
Titan Black with 2880 processing kernels @889 MHz at each node, with KEPLER architecture
from NVIDIA. In total, the power processement is about 870 GFLOPS ([87]). NVIDIA CUDA
Compiler 10.2 has been used. All the computations have been realized using double precision,
in order to avoid numerical instabilities.

We will focus in a numerical experiment concerning the two-layer shallow water system,
where coupling and source terms appear. As test problem, we consider the evolution to a
complex state introduced in Section 4.4.4.2, due to the fact that the differences between PVM
and RVM schemes are more evident for complex problems ([49, 50]). In order to compare the
2D AVM schemes with their 1D×1D counterparts, jointly with the original problem we consider
also a slight modification in the initial conditions, giving a higher frequency to the velocity fields,
i.e., considering short wavelenghts in the propagation of the solution, in order to make faster
the change in the gradients and thus to increase the difficulty of the test. Namely, the velocity
fields will be given by

vx1 = −0.9A sin(ky), vy1 = 0.9B sin(kx), vx2 = −A sin(ky), vy2 = −A sin(kx). (5.4.1)

where for k = 1 we recover the original initial condition. The test was run for k = 1 and
k = 2 until the final time T = 0.5. We use the best configuration for each scheme, with 95%
of the maximal theoretical CFL number. The PVM-Chebyshev Riemann solver is based on a
polynomial of eighth degree, while the RVM-Newman Riemann solver is defined using a rational
function of 8/8 degree.

5.4 Experimental results 132

Figures 5.6 and 5.7 show the efficiency curves for k = 1 and k = 2, repectively. These curves
display, in logarithmic scale, the GPU simulation times versus the L1-norm with respect to a
reference solution computed with a very fine mesh, as we do not have the exact solution for
this problem, for increasing refined meshes. As it can be seen, the 2D RVM solvers have a clear
advantage over the 2D PVM schemes and indeed over the 2D HLL scheme, mainly in terms of
the quality of the solution. This fact was also confirmed for the 1D×1D RVM schemes in [50],
mainly for complex internal wave patterns.

10
-1

10
0

10
1

10
2

GPU time

10
-9

10
-8

10
-7

10
-6

L
1
 e

rr
o

r

RVM-Newman 1D 1D
RVM-Newman 2D

PVM-Chebyshev 1D 1D
PVM-Chebyshev 2D

HLL 1D 1D

HLL 2D

Figure 5.6: Efficiency curves GPU time vs. L1-error. Comparison of the 2D AVM schemes with respect
to their 1D×1D counterparts. Case k = 1.

The genuinely two-dimensional codes for RVM-Newman, PVM-Chebyshev and HLL are more
efficient with respect to the 1D×1D versions in our experiments. In Table 5.2 we compare the
rate of the GPU computational time, where we measure how much faster or slower is the 2D
CUDA code with respect to the 1D×1D CUDA code, and the rate of the L1-error with respect
to a reference solution, where we measure how much more accurate is the 2D solution with
respect to the 1D×1D solution. If

rate
t2D

t1D×1D
< rate

e1D×1D

e2D
,

5.4 Experimental results 133

10
-1

10
0

10
1

10
2

GPU time

10
-5

10
-4

L
1
 e

rr
o

r
RVM-Newman 1D 1D
RVM-Newman 2D

PVM-Chebyshev 1D 1D
PVM-Chebyshev 2D

HLL 1D 1D

HLL 2D

Figure 5.7: Efficiency curves GPU time vs. L1-error. Comparison of the 2D AVM schemes with respect
to their 1D×1D counterparts. Case k = 2.

is accomplished, we could say that the 2D CUDA solver is more efficient than the 1D×1D
counterpart. As it can be seen, 2D RVM-Newman, 2D PVM-Chebyshev and 2D HLL solvers
provide faster and more accurate solutions than their 1D×1D versions as the mesh is refined.
Although our CUDA kernels are of memory-bound type, where the kernels spend more time
accessing memory than in calculations, the short writing (5.1.2)-(5.1.6) instead of (4.3.13) with
fluctuations (4.3.3)-(4.3.6) is crucial for this behavior, mainly for the RVM-Newman 2D, due
to the matrix inverse calculations. Even if the number of time steps is halved by the 2D code
(the permissible CFL number is twice than for the 1D×1D code), the matrix inversions reduce
the computational efficiency as the mesh is refined. For each vertex computation, using (5.1.2)-
(5.1.6) we reduce from eight to four additional viscosity matrix computations with respect to
the 1D×1D code, and as the mesh is refined this makes the difference since the time spent in
this task accumulates. Table 5.1 shows that the time spent in the vertex processing is around
52% for the RVM-Newman code using atomic instructions in the vertex kernel or using the other
strategies commented in Section 5.2.1. If we use (4.3.13) with (4.3.3)-(4.3.6) the time spent in
this task would increase to 67% for the RVM-Newman code. Even with the positive results, we

5.4 Experimental results 134

would like to further deepen this topic in future investigations.

Table 5.2: Efficiency rates comparison between the genuinely 2D and the 1D×1D AVM CUDA codes
for different meshes of sizes N ×N . The upper part of the table is related to the numerical experiment
with k = 1 in (5.4.1), while the lower part is related to k = 2. Both tests were run until the final time
T = 0.5, with a 95% of the maximum theoretical CFL number for each scheme.

N
HLL PVM-Chebyshev RVM-Newman

rate t2D

t1D×1D rate e1D×1D

e2D
rate t2D

t1D×1D rate e1D×1D

e2D
rate t2D

t1D×1D rate e1D×1D

e2D

100 0.957712 1.02713 0.826552 1.10891 0.876436 1.16781
200 0.971985 1.05136 0.881478 1.11635 0.941926 1.22561
400 0.993731 1.08475 0.871478 1.15299 0.961445 1.21899
800 0.991841 1.09223 0.871884 1.21005 0.965497 1.20588

100 0.899876 1.00000 0.826332 1.01490 0.850749 1.10054
200 0.914167 1.00494 0.858403 1.05000 0.962792 1.19139
400 0.969587 1.02321 0.875040 1.06952 0.966767 1.14655
800 0.964692 1.03053 0.874789 1.17376 0.960590 1.19310

Chapter 6

Conclusions and future work

The primary aim of this research is the development of a general class of genuinely incomplete
multidimensional Riemann solvers for general hyperbolic systems. The numerical framework is
based on a general formulation which takes into account robustness, easy coding, computational
efficiency and flexibility in order to be applied for general hyperbolic systems. We present a
summary of the main results obtained in this thesis, as well as future research lines.

6.1 Conclusions

In the first part of this dissertation, we deal with the building of genuinely multidimensional
incomplete Riemann solvers for conservation laws. Following Balsara’s work, a four-waves
model is considered which introduces a single resolved state in the so-called strong interaction
region. The vertex region is bounded by the maximal wave speeds for each coordinate direction.
Neverthless, it is known that the HLL scheme introduces excessive numerical diffusion in the
solution. Departing from a reinterpretation of Balsara’s two-dimensional HLL scheme, we have
extended it by substituting the underlying one-dimensional HLL solver by an arbitrary AVM-
type numerical flux. This allows, in particular, to control the numerical diffusion of the scheme
by using suitable approximations to the absolute value function as basis of the AVM flux. The
numerical flux at an edge is built as a linear convex combination of a one-dimensional AVM flux
and two multidimensional AVM corrections at the corners, which take into account transversal
features of the flow. As Balsara’s multidimensional HLL scheme, our solver includes approximate
and closed-form expressions for the fluxes in the region of strong interaction. In principle, the
two-dimensional AVM solvers could be extended to three-dimensional problems, although this
point is not addressed in this thesis.

We have focused on applications to the MHD equations, in order to make comparisons
with other existing methods in the literature and to show that this approach works well for
complex systems. An accuracy analysis for multidimensional Euler and MHD problems shows
that the proposed 2D AVM schemes have better accuracy than their projected one-dimensional
counterparts. Additionally, we have proposed a new technique for imposing the divergence-
free condition on the magnetic field for MHD simulations, based on the nonconservative
writing of MHD equations. The nonconservative form allows to impose the divergence-free

6.1 Conclusions 136

condition automatically in the framework of path-conservative schemes. This technique has
been incorporated in our multidimensional Riemman solvers, giving comparable results as the
standard projection method. The performances of the proposed schemes have been illustrated
by several numerical results obtained from test problems including genuinely two-dimensional
effects, especially in the subsonic case in both directions with strong discontinuities.

Next, a possible extension of the multidimensional AVM-type solvers to general hyperbolic
systems is obtained by considering a four-waves model in the vertices of the cell. We design a
general strategy for defining two-dimensional Riemann solvers. In particular, we have introduced
a simple version of the 2D HLL scheme and, departing from its rewriting as a 2D PVM scheme, we
have established a new class of genuinely two-dimensional AVM-type Riemann solvers. We have
also supplied an alternative splitting writing of the fluctuations at each face as a linear convex
combination of one- and two-dimensional contributions, likewise to the conservative case. The
second-order extension is constructed by using a predictor-corrector MUSCL-Hancock procedure,
where the predictor-step is applied with the projected one-dimensional Riemann solvers on the
edges of the cell, and in the corrector step we consider a reconstruction operator which takes
into account cross derivatives. It has been shown through a modified equation analysis that our
schemes are L∞-linearly stable for CFL number up to unity.

The proposed multidimensional AVM methods can be applied to arbitrary hyperbolic
systems, both in conservative and nonconservative form. We focus on applications to one-
layer and two-layers shallow water systems with bottom topography. The presence of bottom
topography and nonconservative coupling terms represent an additional difficulty, which is solved
by reformulating the problem within the path-conservative framework. A number of numerical
experiments have been run in order to test the accuracy, well-balancedness and performances of
the proposed schemes.

Finally, the 2D AVM schemes have been implemented on GPU architectures. GPU
implementations using the CUDA programming toolkit were carried out, testing the efficiency of
our genuinely 2D AVM schemes against the two-dimensional Riemann solvers based on projected
one-dimensional Riemann solvers.

Different implementations of the two-dimensional AVM schemes on structured meshes have
been performed. An unified rewriting of the first- and second-order 2D AVM schemes for
both conservative and nonconservative has been proposed. Optimization strategies for the
efficient parallelization of the schemes have been considered, especially for the kernel of vertex
contributions. To avoid memory conflicts of read-modify-write operations, three strategies have
been designed: splitting up the kernel in four non-intersecting kernels, using atomic instructions
of CUDA, and adding the vertex contributions later in the volume kernel. Similar results have
been found for coarse meshes, while a single kernel using atomic instructions presented better
results for fine meshes.

Improving techniques to avoid matrix multiplications in PVM/RVM schemes have been also
considered. Two-dimensional RVM-Newman, PVM-Chebyshev and HLL schemes have shown
to be more efficient that their 1D×1D counterparts. Both proved to be more accurate, using
double precision arithmetic, and faster with respect to GPU computational time in comparison
with the projected 1D×1D counterparts. The proposed CUDA solvers allow to obtain a fast
and accurate method, with a simple and flexibe algorithm that can be adapted for arbitrary
hyperbolic systems.

6.2 Future work 137

6.2 Future work

An extension of the first- and second-order 2D AVM-type schemes presented in this memory
to very high-order schemes by means of the ADER procedure ([78]) or an approximate Taylor
method ([36]) seem to be possible, using our solver as a building block. The presented 2D
schemes can be applied to general hyperbolic systems, in such a way that applications to different
hyperbolic systems, with inclusion of different source terms, can be performed. Moreover,
inclusion of wet/dry situations in shallow water simulations should be included in our already
well-balanced methods.

Our solvers have been designed for structured meshes within the framework of path-
conservative schemes. A natural extension to unstructured meshes can be considered following
[19, 52]. Also, in [58], shallow water equations in spherical coordinates have been efficiently
solved by means of path-conservative schemes, and an adaptation to consider vertex contribu-
tions seems to be worthwhile.

Further improvements regarding GPU implementations will be carried out. Particularly,
since our code is memory-bound, enhancements to memory access in the kernel of the vertices
will be analyzed. High degree of spatial locality, reorganization of the data into self-cointaned
patterns and reduction of memory latencies are issues that we will be investigated. These
features will be taken into account in the designing of new multidimensional solvers.

Appendix A

PVM-Chebyshev and RVM-Newman
coefficients

The PVM scheme based on Chebyshev polynomials and the RVM scheme based on Newman
rational functions have been applied in the experiments presented in Chapters 4 and 5. To help
in the implementation, the explicit form of the functions τ ε2p(x) and Rεr(x) are detailed in this
appendix.

Table A.1: Coefficients of the polynomial function τ ε2p(x), for p = 2, 3, 4, 5.

τ ε4 (x) τ ε6 (x)

ε = 0.046247442822796479754767575100032 ε = 0.032374415885002219312182891997173

a0 = 0.12732395447351627648657768077101 a0 = 0.090945681766797340347555486265004

a2 = 1.5278874536821953178389321692521 a2 = 2.1826963624031361683413316703601

a4 = −0.6790610905254201412617476307787 a4 = −2.4252181804479290759348129670668

a6 = 1.1641047266150059564487102241921

τ ε8 (x) τ ε10(x)

ε = 0.024964785249174241687787479115755 ε = 0.020335772797933675236913796189363

a0 = 0.070735530263064598048098711539448 a0 = 0.057874524760689216584808036714094

a2 = 2.8294212105225839219239484615779 a2 = 3.4724714856413529950884822028456

a4 = −5.6588424210451678438478969231558 a4 = −10.803244621995320429164166853298

a6 = 6.3379035115705879851096445539345 a6 = 20.742229674231015223995200358331

a8 = −2.5868993924777910143304671648712 a8 = −19.048986435518279287342530941325

a10 = 6.5848348172161953092048255105813

As commented in [49, Appendix], the different choices of the set of interpolation nodes for
Newman rational functions do not entail noticiable differences. Therefore, the original definition

139

of the nodes has been considered here ([153]). For the sake of completeness, in Table A.1 are
given the coefficients of the function τ ε2p(x) defined in Section 1.5 for p = 2, 3, 4, 5, while in
Table A.2 are shown the coefficients of the rational function Rεr(x) defined in Section 1.5 for
r = 4, 8, 12.

Table A.2: Coefficients of the rational functions Rεr(x), for r = 4, 8, 12.

Rε4(x)

ε = 0.027822696713222914606955742417911

a2 = 0.49033751037680525897615105585372 b0 = 0.049787068367863942979342415650062

a4 = 2.1975402610325055741326037759167 b2 = 1.6380907030414468901294124161203

Rε8(x)

ε = 0.0073705383650891072632840183732724

a2 = 0.0018842014579903037656603840393621 b0 = 0.000050200029851686123319301219847672

a4 = 0.22393339969828904285363062126558 b2 = 0.028396779593646475165309199312845

a6 = 2.6603751323278896683651454746098 b4 = 1.0092054053131152259629651657934

a8 = 3.1593617359609195449592217044025 b6 = 4.0079020845084751726920645179912

Rε12(x)

ε = 0.0029990160769122371705919882347516

a2 = 0.00000049159393999766806046665951661945 b0 = 0.0000000053159245815805308986785370108644

a4 = 0.00042183197118407599197574301796079 b2 = 0.000019261453699132621490963079004224

a6 = 0.051057717051541852586659107695069 b4 = 0.00574011953476405690681722811493

a8 = 1.2221699193416871403891138452786 b6 = 0.30414447621500876915267669568926

a10 = 5.7856224139413543609980179910168 b8 = 3.2889807590223027020888602118755

a12 = 3.8632917934540477728566520487052 b10 = 6.323679545812055958140103204936

Appendix B

Full algorithm for the 2D HLL
Riemann solver

In the generalized 2D consistency condition (4.1.4), the intermediate states have been
constructed for the subsonic case in both directions. In order to consider also the supersonic
cases, the integration limits in the faces Γi change (see Figure 4.1), as seen in Section 4.2.1. In
particular, these changes play an important role in the computation of the term C in (4.2.6).

To accomodate all the cases in a compact expression and facilitate the computation of face
contributions, we can write the contributions of the faces Γ1 and Γ3 for the 2D HLL Riemann
solver as

S−L
2

∫ 1

0
Ay

(
ΦLD,LU

) d
ds

ΦLD,LUds−
|SL|+ S−R

2

∫ 1

0
Ay

(
Φ1D,1U

) d
ds

Φ1D,1Uds

+
S+
L − |SR|

2

∫ 1

0
Ay

(
Φ2D,2U

) d
ds

Φ2D,2Uds−
S+
R

2

∫ 1

0
Ay

(
ΦRD,RU

) d
ds

ΦRD,RUds.

For the contributions of the Γ2 and Γ4 faces the idea is the same. To distinguish between
subsonic and supersonic cases, we use a bar over the star state when we are in some supersonic
case. Thus, the solutions of the 2D Riemann problem are given by nine cases:

• If SL < 0 < SR and SD < 0 < SU ,

R(ξ, ψ) =





U∗LD in [SL, 0]× [SD, 0],

U∗LU in [SL, 0]× [0, SU],

U∗RD in [0, SR]× [SD, 0],

U∗RU in [0, SR]× [0, SU].

(B.0.1)

• If SL < 0 < SR and SD > 0,

R(ξ, ψ) =





U∗LU in [SL, 0]× [SD, SU],

U∗RU in [0, SR]× [SD, SU],

U
∗
LD in [SL, 0]× [0, SD],

U
∗
RD in [0, SR]× [0, SD].

(B.0.2)

141

• If SL < 0 < SR and SU < 0,

R(ξ, ψ) =





U∗LD in [SL, 0]× [SD, SU],

U∗RD in [0, SR]× [SD, SU],

U
∗
LU in [SL, 0]× [SU , 0],

U
∗
RU in [0, SR]× [SU , 0].

(B.0.3)

• If SL > 0 and SD < 0 < SU ,

R(ξ, ψ) =





U∗RU in [SL, SR]× [0, SU],

U∗RD in [SL, SR]× [SD, 0],

U
∗
LU in [0, SL]× [0, SU],

U
∗
LD in [0, SL]× [SD, 0].

(B.0.4)

• If SL > 0 and SD > 0,

R(ξ, ψ) =





U∗RU in [SL, SR]× [SD, SU],

U
∗
LU in [0, SL]× [SD, SU],

U
∗
RD in [SL, SR]× [0, SD],

U
∗
LD in [0, SL]× [0, SD].

(B.0.5)

• If SL > 0 and SU < 0,

R(ξ, ψ) =





U∗RD in [SL, SR]× [SD, SU],

U
∗
LD in [0, SL]× [SD, SU],

U
∗
RU in [SL, SR]× [SU , 0],

U
∗
LU in [0, SL]× [SU , 0].

(B.0.6)

• If SR < 0 and SD < 0 < SU ,

R(ξ, ψ) =





U∗LU in [SL, SR]× [0, SU],

U∗LD in [SL, SR]× [SD, 0],

U
∗
RU in [SR, 0]× [0, SU],

U
∗
RD in [SR, 0]× [SD, 0].

(B.0.7)

• If SR < 0 and SD > 0,

R(ξ, ψ) =





U∗LU in [SL, SR]× [SD, SU],

U
∗
RU in [SR, 0]× [SD, SU],

U
∗
LD in [SL, SR]× [0, SD],

U
∗
RD in [SR, 0]× [0, SD].

(B.0.8)

142

• If SR < 0 and SU < 0,

R(ξ, ψ) =





U∗LD in [SL, SR]× [SD, SU],

U
∗
RD in [SR, 0]× [SD, SU],

U
∗
LU in [SL, SR]× [SU , 0],

U
∗
RU in [SR, 0]× [SU , 0].

(B.0.9)

From the contributions for the faces Γi we can recalculate the term C in (4.2.6) for each
case. Knowing the solution of the 2D Riemann problem in all the cases (B.0.1)-(B.0.9), we
can compute the consistency condition for each case, and finally compute the corresponding
intermediate states. The subsonic case in both directions has already been seen in Section 4.2.
The case where the flow is subsonic in the x-direction and SD > 0 in the y-direction was analyzed
in Section 4.2.1. It is important to recall that the HLL intermediate one-dimensional states also
change when we are in some supersonic case [149]. The subsonic case in the x-direction was
recalled in (4.2.2)-(4.2.3). For the supersonic cases, if 0 < SL < SR the state Uµ1 changes to

Uµ1 = ULµ +A−1
x Sx(σRµ − σLµ),

while Uµ2 is given by (4.2.3). On the other hand, if SL < SR < 0 the state Uµ2 changes to

Uµ2 = URµ −A−1
x Sx(σRµ − σLµ),

whileUµ1 is defined by (4.2.2). Following the procedure described in Section 4.2.1, we summarize
the remaining cases:

• Case SU < 0, SL < 0 < SR. Integrating R(ξ, ψ)−W0(ξ, ψ) on [0, SL]× [SD, SU] we get

−SL(SU − SD)U∗LD+SR(SU − SD)U∗RD + SLSUU
∗
LU

− SRSUU∗RU − SLSDULD + SRSDURD = C .

By the Rankine-Hugoniot conditions (1.3.13) (see Figure B.1),





U∗RD −U∗LD = Ax

(
U∗LD,U

∗
RD

)−1
Sx
(
U∗LD,U

∗
RD

)
(σRD − σLD) ≡ α

U
∗
RU −U

∗
LU = Ax

(
U
∗
LU ,U

∗
RU

)−1
Sx
(
U
∗
LU ,U

∗
RU

)
(σRD − σLD) ≡ β

U1U −U∗LU = Ay

(
U
∗
LU ,U1U

)−1
Sy
(
U
∗
LU ,U1U

)
(σLU − σLD) ≡ γ

U2U −U∗RU = Ay

(
U
∗
RU ,U2U

)−1
Sy
(
U
∗
RU ,U2U

)
(σRU − σRD) ≡ δ

(B.0.10)

Therefore,





U
∗
LU = U1U − α,

U
∗
RU = U2U − β,

U∗LD =
−SLSUU∗LU + SRSUU

∗
RU + SLSDULD − SRSDURD + C

(SR − SL)(SU − SD)
− SR
SR − SL

γ,

U∗RD = U∗LD + γ.

(B.0.11)

143

SL 0 SR

0

SD

SU

ULU

U ∗
RD

U
∗
LU U

∗
RU

U ∗
LD

U 1U U 2U URU

Figure B.1: Sketch of the jumps through the zero wave for the case SU < 0, SL < 0 < SR.

• Case SL > 0, SD < 0 < SU . Integrating R(ξ, ψ)−W0(ξ, ψ) on [SL, SR]× [0, SD] we get

−(SR − SL)SDU
∗
RD+(SR − SL)SUU

∗
RU − SLSDU

∗
LD

+ SLSUU
∗
LU + SRSDURD − SRSUURU = C .

(B.0.12)

By the Rankine-Hugoniot conditions (1.3.13) (see Figure B.2),





U∗RU −U∗RD = Ay

(
U∗RD,U

∗
RU

)−1
Sy
(
U∗RD,U

∗
RU

)
(σRU − σRD) ≡ α

U
∗
LU −U

∗
LD = Ay

(
U
∗
LD,U

∗
LU

)−1
Sy
(
U
∗
LD,U

∗
LU

)
(σRU − σRD) ≡ β

U
∗
LU −UL2 = Ax

(
UL2,U

∗
LU

)−1
Sx
(
UL2,U

∗
LU

)
(σRU − σLU) ≡ γ

U
∗
LD −UL1 = Ax

(
UL1,U

∗
LD

)−1
Sx
(
UL1,U

∗
LD

)
(σRD − σLD) ≡ δ

(B.0.13)

SL0 SR

0

SD

SU

U
∗
LD U ∗

RD

U
∗
LU U ∗

RU

ULD

UL1

UL2

ULU

Figure B.2: Sketch of the jumps through the zero wave for the case SL > 0, SD < 0 < SU .

144

Therefore,




U
∗
LU = UL2 + δ,

U
∗
LD = UL1 + γ,

U∗RD =
SLSDU

∗
LD − SLSUU

∗
LU − SRSDURD + SRSUURU + C

(SR − SL)(SU − SD)
− SU
SU − SD

β,

U∗RU = U∗RD + β.

(B.0.14)

• Case SL > 0, SD > 0. Integrating R(ξ, ψ)−W0(ξ, ψ) on [0, SL]× [0, SD] we get

SLSDU
∗
LD+SL(SU − SD)U

∗
LU + (SR − SL)SDU

∗
RD

+ (SR − SL)(SU − SD)U∗RU − SRSUURU = C .
(B.0.15)

SL0 SR

0

SD

SU

U
∗
LD U

∗
RD

U
∗
LU U ∗

RU

ULD

UL1

UL2

ULU

U 1D U 2D URD

Figure B.3: Sketch of the jumps through the zero wave for the case SL > 0, SD > 0.

By the Rankine-Hugoniot conditions (1.3.13) (see Figure B.3),




U
∗
LU −UL2 = Ax

(
UL2,U

∗
LU

)−1
Sx
(
UL2,U

∗
LU

)
(σRU − σLU) ≡ α

U
∗
LD −UL1 = Ax

(
UL1,U

∗
LD

)−1
Sx
(
UL1,U

∗
LD

)
(σRU − σLU) ≡ β

U
∗
LD −U1D = Ay

(
U1D,U

∗
LD

)−1
Sy
(
U1D,U

∗
LD

)
(σRU − σRD) ≡ γ

U
∗
RD −U2D = Ay

(
U2D,U

∗
RD

)−1
Sy
(
U2D,U

∗
RD

)
(σRU − σRD) ≡ δ

(B.0.16)

Therefore,




U
∗
LU = UL2 + δ,

U
∗
RD = U2D + β,

U
∗
LD = UL1 + δ,

U∗RU =
SRSUURU − SL(SU − SD)U

∗
LU − SD(SR − SL)U

∗
RD − SLSDU

∗
LD + C

(SR − SL)(SU − SD)
.

(B.0.17)

145

• Case SL > 0, SU < 0. Integrating R(ξ, ψ)−W0(ξ, ψ) on [0, SL]× [SD, SU] we get

SL(SU − SD)U
∗
LD−SLSUU

∗
LU − (SR − SL)SUU

∗
RU

+ (SR − SL)(SU − SD)U∗RD + SRSDURD = C .
(B.0.18)

SL0 SR

0

SD

SU
U

∗
LD U ∗

RD

U
∗
LU U

∗
RU

ULU

UL1

UL2

ULD

U 1U U 2U URU

Figure B.4: Sketch of the jumps through the zero wave for the case SL > 0, SU < 0.

By the Rankine-Hugoniot conditions (1.3.13) (see Figure B.4),





U
∗
LU −UL2 = Ax

(
UL2,U

∗
LU

)−1
Sx
(
UL2,U

∗
LU

)
(σRD − σLD) ≡ α

U
∗
LD −UL1 = Ax

(
UL1,U

∗
LD

)−1
Sx
(
UL1,U

∗
LD

)
(σRD − σLD) ≡ β

U2U −U∗RU = Ay

(
U
∗
RU ,U2U

)−1
Sy
(
U
∗
RU ,U2U

)
(σRU − σRD) ≡ γ

U1U −U∗LU = Ay

(
U
∗
LU ,U1U

)−1
Sy
(
U
∗
LU ,U1U

)
(σRU − σRD) ≡ δ

(B.0.19)

Therefore,





U
∗
RU = U2U − β,

U
∗
LU = UL2 + γ,

U
∗
LD = UL1 + γ,

U∗RD =
−SRSDURD + SLSUU

∗
LU + SU (SR − SL)U

∗
RU − SL(SU − SD)U

∗
LD + C

(SR − SL)(SU − SD)
.

(B.0.20)

• Case SR < 0, SD < 0 < SU . Integrating R(ξ, ψ)−W0(ξ, ψ) on [0, SL]× [SD, SU] we get

−(SR − SL)SDU
∗
LD+(SR − SL)SUU

∗
LU + SRSDU

∗
RD

− SRSUU∗RU − SLSDULD + SLSUULU = C .
(B.0.21)

146

By the Rankine-Hugoniot conditions (1.3.13) (see Figure B.5),




U∗LU −U∗LD = A2

(
U∗LD,U

∗
LU

)−1
S2

(
U∗LD,U

∗
LU

)
(σLU − σLD) ≡ α

U
∗
RU −U

∗
RD = A2

(
U
∗
RD,U

∗
RU

)−1
S2

(
U
∗
RD,U

∗
RU

)
(σLU − σLD) ≡ β

UR2 −U∗RU = A1

(
U
∗
RU ,UR2

)−1
S1

(
U
∗
RU ,UR2

)
(σRU − σLU) ≡ γ

UR1 −U∗RD = A1

(
U
∗
RD,UR1

)−1
S1

(
U
∗
RD,UR1

)
(σRD − σLD) ≡ δ

(B.0.22)

SL 0SR

0

SD

SU

U ∗
LD U

∗
RD

U ∗
LU U

∗
RU

URD

UR1

UR2

URU

Figure B.5: Sketch of the jumps through the zero wave for the case SR < 0, SD < 0 < SU .

Therefore,





U
∗
RU = UR2 − δ,

U
∗
RD = UR1 − γ,

U∗LD =
SRSUU

∗
RU − SRSDU

∗
RD + SLSDULD − SLSUULU + C

(SR − SL)(SU − SD)
− SU
SU − SD

α,

U∗LU = U∗LD + α.

(B.0.23)

• Case SR < 0, SD > 0. Integrating R(ξ, ψ)−W0(ξ, ψ) on [SL, SR]× [SD, 0] we get

(SR − SL)SDU
∗
LD+(SR − SL)(SU − SD)U∗LU − SRSDU

∗
RD

− SR(SU − SD)U
∗
RU + SLSUULU = C .

(B.0.24)

By the Rankine-Hugoniot conditions (1.3.13) (see Figure B.6),




UR2 −U∗RU = Ax

(
U
∗
RU ,UR2

)−1
Sx
(
U
∗
RU ,UR2

)
(σRU − σLU) ≡ α

UR1 −U∗RD = Ax

(
U
∗
RD,UR1

)−1
Sx
(
U
∗
RD,UR1

)
(σRU − σLU) ≡ β

U
∗
RD −U2D = Ay

(
U2D,U

∗
RD

)−1
Sy
(
U2D,U

∗
RD

)
(σLU − σLD) ≡ γ

U
∗
LD −U1D = Ay

(
U1D,U

∗
LD

)−1
Sy
(
U1D,U

∗
LD

)
(σLU − σLD) ≡ δ

(B.0.25)

147

SL 0SR

0

SD

SU

U
∗
LD U

∗
RD

U ∗
LU U

∗
RU

URU

UR1

UR2

URDU 2DU 1DULD

Figure B.6: Sketch of the jumps through the zero wave for the case SR < 0, SD > 0.

Therefore,




U
∗
RU = UR2 − δ,

U
∗
RD = U2D + α,

U
∗
LD = U1D + α,

U∗LU =
SRSDU

∗
RD + SR(SU − SD)U

∗
RU − SD(SR − SL)U

∗
LD − SLSUULU + C

(SR − SL)(SU − SD)
.

(B.0.26)

• Case SR < 0, SU < 0. Integrating R(ξ, ψ)−W0(ξ, ψ) on [SL, SR]× [0, SU] we get

(SR − SL)(SU − SD)U∗LD−SR(SU − SD)U
∗
RD − (SR − SL)SUU

∗
LU

+ SRSUU
∗
RU − SLSDULD = C .

(B.0.27)

By the Rankine-Hugoniot conditions (1.3.13) (see Figure B.7),




U1U −U∗LU = Ay

(
U
∗
LU ,U1U

)−1
Sy
(
U
∗
LU ,U1U

)
(σLU − σLD) ≡ α

U2U −U∗RU = Ay

(
U
∗
RU ,U2U

)−1
Sy
(
U
∗
RU ,U2U

)
(σLU − σLD) ≡ β

UR2 −U∗RU = Ax

(
U
∗
RU ,UR2

)−1
Sx
(
U
∗
RU ,UR2

)
(σRD − σLD) ≡ γ

UR1 −U∗RD = Ax

(
U
∗
RD,UR1

)−1
Sx
(
U
∗
RD,UR1

)
(σRD − σLD) ≡ δ

(B.0.28)

Therefore,




U
∗
LU = U1U − α,

U
∗
RU = UR2 − γ,

U
∗
RD = UR1 − γ,

U∗LD =
SR(SU − SD)U

∗
RD + (SR − SL)SUU

∗
LU − SRSUU

∗
RU + SLSDULD + C

(SR − SL)(SU − SD)
.

(B.0.29)

148

SL 0SR

0

SD

SU
U ∗
LD U

∗
RD

U
∗
LU U

∗
RU

URU

UR1

UR2

URD

U 2UU 1UULU

Figure B.7: Sketch of the jumps through the zero wave for the case SR < 0, SU < 0.

Once the intermediate states have been computed, we need to define the contributions at
the vertex for each case. According to (4.1.8), the contributions for each case are given by

• If SL < 0 < SR, SD < 0 < SU :

DLD = −SLSD(U∗LD −ULD),

DLU = SLSU (U∗LU −ULU),

DRD = SRSD(U∗RD −URD),

DRU = −SRSU (U∗RU −URU).

• If SL < 0 < SR, SD > 0:

DLD = DRD = 0,

DLU = SLSD(U
∗
LD −ULU) + SL(SU − SD)(U∗LU −ULU),

DRU = −SRSD(U
∗
RD −URU)− SR(SU − SD)(U∗RU −URU).

• If SL < 0 < SR, SU < 0:

DLU = DRU = 0,

DLD = SL(SU − SD)(U∗LD −ULD)− SLSU (U
∗
LU −ULD),

DRD = −SR(SU − SD)(U∗RD −URD) + SRSU (U
∗
RU −URD).

• If SL > 0, SD < 0 < SU :

DLD = DLU = 0,

DRD = SLSD(U
∗
LD −URD) + (SR − SL)SD(U∗RD −URD),

DRU = −SLSU (U
∗
LU −URU)− (SR − SL)SU (U∗RU −URU).

149

Algorithm 1 Computation of the intermediate HLL states in all the possible cases.

1: subsonicx ← (SL < 0) ∗ (SR > 0)
2: subsonicy ← (SD < 0) ∗ (SU > 0)
3: if subsonicx then
4: if subsonicy then
5: U∗AB ←(4.2.8)-(4.2.9)
6: else
7: if SD ≥ 0 then
8: U∗AB ←(4.2.15)-(4.2.16)
9: else if SU ≤ 0 then

10: U∗AB ←(B.0.11)
11: end if
12: end if
13: else
14: if SL ≥ 0 then
15: if subsonicy then
16: U∗AB ←(B.0.14)
17: else
18: if SD ≥ 0 then
19: U∗AB ←(B.0.17)
20: else if SU ≤ 0 then
21: U∗AB ←(B.0.20)
22: end if
23: end if
24: else if SR ≤ 0 then
25: if subsonicy then
26: U∗AB ←(B.0.23)
27: else
28: if SD ≥ 0 then
29: U∗AB ←(B.0.26)
30: else if SU ≤ 0 then
31: U∗AB ←(B.0.29)
32: end if
33: end if
34: end if
35: end if

150

• If SL > 0, SD > 0:

DLD =DLU = DRD = 0,

DRU =− SLSD(U
∗
LD −URU)− SL(SU − SD)(U

∗
LU −URU)

− (SR − SL)SD(U
∗
RD −URU)− (SR − SL)(SU − SD)(U∗RU −URU).

• If SL > 0, SU < 0:

DLD =DLU = DRU = 0,

DRD =− SL(SU − SD)(U
∗
LD −URD) + SLSU (U

∗
LU −URD)

− (SR − SL)(SU − SD)(U∗RD −URD) + (SR − SL)SU (U
∗
RU −URD).

• If SR < 0, SD < 0 < SU :

DRD = DRU = 0,

DLD = −SRSD(U
∗
RD −ULD) + (SR − SL)SD(U∗LD −ULD),

DLU = SRSU (U
∗
RU −ULU)− (SR − SL)SU (U∗LU −ULU).

• If SR < 0, SD > 0:

DLD =DRD = DRU = 0,

DLU =− (SR − SL)SD(U
∗
LD −ULU)− (SR − SL)(SU − SD)(U∗LU −ULU)

+ SRSD(U
∗
RD −ULU) + SR(SU − SD)(U

∗
RU −ULU).

• If SR < 0, SU < 0:

DLU =DRD = DRU = 0,

DLD =− (SR − SL)(SU − SD)(U∗LD −ULD) + (SR − SL)SU (U
∗
LU −ULD)

+ SR(SU − SD)(U
∗
RD −ULD)− SRSU (U

∗
RU −ULD).

The algorithm for the computation of the contributions DAB for each case follows the same
structure of Algorithm 1, changing U∗AB by DAB in the respective cases. Recall that when the
self-similar solution only depends on U , we write R(ξ, ψ); when it depends on W = (U , σ)T ,
we write R(ξ, ψ). In the same way, DAB indicates dependence only on U , while DAB indicates
dependence on W .

Appendix C

Full algorithm for 2D AVM-type
formulation

In Section 4.3.1, the two-dimensional version of the HLL scheme in Section 4.2 was rewritten
in the PVM framework. In Section 4.3.2 the PVM-HLL two-dimensional scheme was extended to
more precise two-dimensional AVM-type Riemann solvers. Here, for the sake of completeness, we
present the full algorithm for 2D AVM-type solvers, considering all the subsonic and supersonic
cases. To do this, we need to consider the intermediate states and theDAB contributions defined
on Appendix B. Following the same procedure as in Section 4.3.2, we can found the following
expressions:

• Subsonic case in both directions, i.e., SL < 0 < SR and SD < 0 < SU :

DLD =
SL
2

(
SL

SR − SL
D1,−
y − SR

SR − SL
D2,−
y −DL,−

y

)

+
SD
2

(
SD

SU − SD
D1,−
x − SU

SU − SD
D2,−
x −DD,−

x

)
,

DLU =
SL
2

(
SL

SR − SL
D1,+
y − SR

SR − SL
D2,+
y −DL,+

y

)

− SU
2

(
SD

SU − SD
D1,−
x − SU

SU − SD
D2,−
x −DU,−

x

)
,

DRD =− SR
2

(
SL

SR − SL
D1,−
y − SR

SR − SL
D2,−
y −DR,−

y

)

+
SD
2

(
SD

SU − SD
D1,+
x − SU

SU − SD
D2,+
x −DD,+

x

)
,

DRU =− SR
2

(
SL

SR − SL
D1,+
y − SR

SR − SL
D2,+
y −DR,+

y

)

− SU
2

(
SD

SU − SD
D1,+
x − SU

SU − SD
D2,+
x −DU,+

x

)
.

(C.0.1)

152

• Case SL < 0 < SR and SD > 0:

DLD =DRD = 0,

DLU =
SU
2
DU,−
x +

(SU − SD)

2
D2,−
x +

SD
2
D1,−
x

− SL
2

∫ 1

0

(
Ay

(
ΦLD,LU

) d
ds

ΦULD,LU − Sy
(
ΦLD,LU

) d
ds

Φσ
LD,LU

)
ds

+
SL

2(SR − SL)

(
SL

∫ 1

0

(
Ay

(
Φ1D,1U

) d
ds

ΦU1D,1U − Sy
(
Φ1D,1U

) d
ds

Φσ
1D,1U

)
ds

− SR
∫ 1

0

(
Ay

(
Φ2D,2U

) d
ds

ΦU2D,2U − Sy
(
Φ2D,2U

) d
ds

Φσ
2D,2U

)
ds

)
,

DRU =
SU
2
DU,+
x +

(SU − SD)

2
D2,+
x +

SD
2
D1,+
x

+
SR
2

∫ 1

0

(
Ay

(
ΦRD,RU

) d
ds

ΦURD,RU − Sy
(
ΦRD,RU

) d
ds

Φσ
RD,RU

)
ds

− SR
2(SR − SL)

(
SL

∫ 1

0

(
Ay

(
Φ1D,1U

) d
ds

ΦU1D,1U − Sy
(
Φ1D,1U

) d
ds

Φσ
1D,1U

)
ds

− SR
∫ 1

0

(
Ay

(
Φ2D,2U

) d
ds

ΦU2D,2U − Sy
(
Φ2D,2U

) d
ds

Φσ
2D,2U

)
ds

)
.

(C.0.2)

• Case SL < 0 < SR and SU > 0:

DLU =DRU = 0,

DLD =− SD
2
DD,−
x +

(SU − SD)

2
D1,−
x − SU

2
D2,−
x

− SL
2

∫ 1

0

(
Ay

(
ΦLD,LU

) d
ds

ΦULD,LU − Sy
(
ΦLD,LU

) d
ds

Φσ
LD,LU

)
ds

+
SL

2(SR − SL)

(
SL

∫ 1

0

(
Ay

(
Φ1D,1U

) d
ds

]ΦU1D,1Uds− S2

(
Φ1D,1U

) d
ds

Φσ
1D,1Uds

)

− SR
∫ 1

0

(
Ay

(
Φ2D,2U

) d
ds

ΦU2D,2U − Sy
(
Φ2D,2U

) d
ds

Φσ
2D,2U

)
ds

)
,

DRD =− SD
2
DD,+
x +

(SU − SD)

2
D1,+
x − SU

2
D2,+
x

+
SR
2

∫ 1

0

(
Ay

(
ΦRD,RU

) d
ds

ΦURD,RU − Sy
(
ΦRD,RU

) d
ds

Φσ
RD,RU

)
ds

− SR
2(SR − SL)

(
SL

∫ 1

0

(
Ay

(
Φ1D,1U

) d
ds

ΦU1D,1U − Sy
(
Φ1D,1U

) d
ds

Φσ
1D,1U

)
ds

− SR
∫ 1

0

(
Ay

(
Φ2D,2U

) d
ds

ΦU2D,2U − Sy
(
Φ2D,2U

) d
ds

Φσ
2D,2U

)
ds

)
.

(C.0.3)

153

• Case SD < 0 < SU and SL > 0:

DLD =DLU = 0,

DRD =
SR
2
DR,−
y +

(SR − SL)

2
D2,−
y +

SL
2
D1,−
y

− SD
2

∫ 1

0

(
Ax

(
ΦLD,RD

) d
ds

ΦULD,RD − Sx
(
ΦLD,RD

) d
ds

Φσ
LD,RD

)
ds

+
SD

2(SU − SD)

(
SD

∫ 1

0

(
Ax

(
ΦL1,R1

) d
ds

ΦUL1,R1 − Sx
(
ΦL1,R1

) d
ds

Φσ
L1,R1

)
ds

− SU
∫ 1

0

(
Ax

(
ΦL2,R2

) d
ds

ΦUL2,R2 − Sx
(
ΦL2,R2

) d
ds

Φσ
L2,R2

)
ds

)
,

DRU =
SR
2
DR,+
y +

(SR − SL)

2
D2,+
y +

SL
2
D1,+
y

+
SU
2

∫ 1

0

(
Ax

(
ΦLU,RU

) d
ds

ΦULU,RU − Sx
(
ΦLU,RU

) d
ds

Φσ
LU,RU

)
ds

− SU
2(SU − SD)

(
SD

∫ 1

0

(
Ax

(
ΦL1,R1

) d
ds

ΦUL1,R1 − Sx
(
ΦL1,R1

) d
ds

Φσ
L1,R1

)
ds

− SU
∫ 1

0

(
Ax

(
ΦL2,R2

) d
ds

ΦUL2,R2 − S1

(
ΦL2,R2

) d
ds

Φσ
L2,R2

)
ds

)
.

(C.0.4)

• Case SD < 0 < SU and SR < 0:

DRD =DRU = 0,

DLD =− SL
2
DL,−
y +

(SR − SL)

2
D1,−
y − SR

2
D2,−
y

− SD
2

∫ 1

0

(
Ax

(
ΦLD,RD

) d
ds

ΦULD,RD − Sx
(
ΦLD,RD

) d
ds

Φσ
LD,RD

)
ds

+
SD

2(SU − SD)

(
SD

∫ 1

0

(
Ax

(
ΦL1,R1

) d
ds

ΦUL1,R1 − Sx
(
ΦL1,R1

) d
ds

Φσ
L1,R1

)
ds

− SU
∫ 1

0

(
Ax

(
ΦL2,R2

) d
ds

ΦUL2,R2 − Sx
(
ΦL2,R2

) d
ds

Φσ
L2,R2

)
ds

)
,

DLU =− SL
2
DL,+
y +

(SR − SL)

2
D1,+
y − SR

2
D2,+
y

+
SU
2

∫ 1

0

(
Ax

(
ΦLU,RU

) d
ds

ΦULU,RU − Sx
(
ΦLU,RU

) d
ds

Φσ
LU,RU

)
ds

− SU
2(SU − SD)

(
SD

∫ 1

0

(
Ax

(
ΦL1,R1

) d
ds

ΦUL1,R1 − Sx
(
ΦL1,R1

) d
ds

Φσ
L1,R1

)
ds

− SU
∫ 1

0

(
Ax

(
ΦL2,R2

) d
ds

ΦUL2,R2 − Sx
(
ΦL2,R2

) d
ds

Φσ
L2,R2

)
ds

)
.

(C.0.5)

154

• Case SL > 0 and SD > 0:

DLD =DRD = DLU = 0,

DRU =
SL
2

∫ 1

0

(
Ay

(
Φ1D,1U

) d
ds

ΦU1D,1U − Sy
(
Φ1D,1U

) d
ds

Φσ
1D,1U

)
ds

+
SR − SL

2

∫ 1

0

(
Ay

(
Φ2D,2U

) d
ds

ΦU2D,2U − Sy
(
Φ2D,2U

) d
ds

Φσ
2D,2U

)
ds

+
SR
2

∫ 1

0

(
Ay

(
ΦRD,RU

) d
ds

ΦURD,RU − Sy
(
ΦRD,RU

) d
ds

Φσ
RD,RU

)
ds

+
SD
2

∫ 1

0

(
Ax

(
ΦL1,R1

) d
ds

ΦUL1,R1 − Sx
(
ΦL1,R1

) d
ds

Φσ
L1,R1

)
ds

+
SU − SD

2

∫ 1

0

(
Ax

(
ΦL2,R2

) d
ds

ΦU
L2,R2 − Sx

(
ΦL2,R2

) d
ds

Φσ
L2,R2

)
ds

+
SU
2

∫ 1

0

(
Ax

(
ΦLU,RU

) d
ds

ΦU
LU,RU − Sx

(
ΦLU,RU

) d
ds

Φσ
LU,RU

)
ds.

(C.0.6)

• Case SL > 0 and SU < 0:

DLD =DLU = DRU = 0,

DRD =
SL
2

∫ 1

0

(
Ay

(
Φ1D,1U

) d
ds

ΦU1D,1U − Sy
(
ΦD1,U1

) d
ds

Φσ
1D,1U

)
ds

+
SR − SL

2

∫ 1

0

(
Ay

(
Φ2D,2U

) d
ds

ΦU2D,2U − Sy
(
ΦD2,U2

) d
ds

Φσ
2D,2U

)
ds

+
SR
2

∫ 1

0

(
Ay

(
ΦRD,RU

) d
ds

ΦURD,RU − Sy
(
ΦRD,RU

) d
ds

Φσ
RD,RU

)
ds

− SD
2

∫ 1

0

(
Ax

(
ΦLD,RD

) d
ds

ΦULD,RD − Sx
(
ΦLD,RD

) d
ds

Φσ
LD,RD

)
ds

+
SU − SD

2

∫ 1

0

(
Ax

(
ΦL1,R1

) d
ds

ΦUL1,R1 − Sx
(
ΦL1,R1

) d
ds

Φσ
L1,R1

)
ds

− SU
2

∫ 1

0

(
Ax

(
ΦL2,R2

) d
ds

ΦUL2,R2 − Sx
(
ΦL2,R2

) d
ds

Φσ
L2,R2

)
ds.

(C.0.7)

155

• Case SR < 0 and SD > 0:

DLD =DRD = DRU = 0,

DLU =− SL
2

∫ 1

0

(
Ay

(
ΦLD,LU

) d
ds

ΦULD,LU − Sy
(
ΦLD,LU

) d
ds

Φσ
LD,LU

)
ds

+
SR − SL

2

∫ 1

0

(
Ay

(
Φ1D,1U

) d
ds

ΦU1D,1U − Sy
(
Φ1D,1U

) d
ds

Φσ
1D,1U

)
ds

− SR
2

∫ 1

0

(
Ay

(
Φ2D,2U

) d
ds

ΦU2D,2U − Sy
(
Φ2D,2U

) d
ds

Φσ
2D,2U

)
ds

+
SD
2

∫ 1

0

(
Ax

(
ΦL1,R1

) d
ds

ΦUL1,R1 − Sx
(
ΦL1,R1

) d
ds

Φσ
L1,R1

)
ds

+
SU − SD

2

∫ 1

0

(
Ax

(
ΦL2,R2

)
]ΦUL2,R2 − Sx

(
ΦL2,R2

) d
ds

Φσ
L2,R2

)
ds

+
SU
2

∫ 1

0

(
Ax

(
ΦLU,RU

) d
ds

ΦULU,RU − Sx
(
ΦLU,RU

) d
ds

Φσ
LU,RU

)
ds.

(C.0.8)

• Case SR < 0 and SU < 0:

DLU =DRD = DRU = 0,

DLD =− SL
2

∫ 1

0

(
Ay

(
ΦLD,LU

) d
ds

ΦULD,LU − Sy
(
ΦLD,LU

) d
ds

Φσ
LD,LU

)
ds

+
SR − SL

2

∫ 1

0

(
Ay

(
Φ1D,1U

) d
ds

ΦU1D,1U − Sy
(
Φ1D,1U

) d
ds

Φσ
1D,1U

)
ds

− SR
2

∫ 1

0

(
Ay

(
Φ2D,2U

) d
ds

ΦU2D,2U − Sy
(
Φ2D,2U

) d
ds

Φσ
2D,2U

)
ds

− SD
2

∫ 1

0

(
Ax

(
ΦLD,RD

) d
ds

ΦULD,RD − Sx
(
ΦLD,RD

) d
ds

Φσ
LD,RD

)
ds

+
SU − SD

2

∫ 1

0

(
Ax

(
ΦL1,R1

) d
ds

ΦU
L1,R1 − Sx

(
ΦL1,R1

) d
ds

Φσ
L1,R1

)
ds

− SU
2

∫ 1

0

(
Ax

(
ΦL2,R2

) d
ds

ΦU
L2,R2 − Sx

(
ΦL2,R2

) d
ds

Φσ
L2,R2

)
ds.

(C.0.9)

It is important to remind that,in order to be consistent with (4.1.7), we must have

−
∑

A∈{L,R}
B∈{D,U}

DAB = C (C.0.10)

where DAB is given by (C.0.1)-(C.0.9), for a given vertex region V. Adding up the four
contributions in each case we have (C.0.10) satisfied.

Appendix D

An efficient implementation of
well-balanced PVM schemes

In [50, Appendix A] it was showed a short way to compute an approximate Osher Solomon-
Chebyshev scheme. We reproduce here the algorithm in the case of well-balanced PVM schemes
by using the modified identity technique (see Section 2.4). Consider the numerical fluctuation
(4.3.7) written as

D±ζ =
1

2

(
∆F + Bζ(∆U)− Sζ(∆H)

)
± 1

2
Qζ

(
∆U −A−1

ζ Sζ(∆H)
)
, (D.0.1)

where ∆(·) = (·)1−(·)0. The dependence of Bζ and Sζ on the family of paths Φ was dropped for
clarity. The product of the viscosity matrix (1.5.4) for a PVM scheme with ∆U −A−1

ζ Sζ(∆H)
can be written as

Θζ := |λζ,max|p(|λζ,max|−1Aζ)(∆U −A−1
ζ Sζ(∆H))

= |λζ,max|α0(∆U −A−1
ζ Sζ(∆H)) +

r∑

i=1

αi
|λζ,max|i−1

Ai−1
ζ (∆F + Bζ(∆U)− Sζ(∆H)),

where p is some polynomial function of degree r. Recall that Aζ = Jζ + Bζ , where Jζ is the
Jacobian matrix with respect to ζ = x, y. By the modified identity procedure, we can define,
respectively, for the one-layer and two-layer shallow water systems,

Imod = ∆U − Â−1
ζ Sζ(∆H) =




∆η
∆qx
∆qy




or

Imod = ∆U − Â−1
ζ Sζ(∆H) =




∆h1

∆qx1

∆qy1

∆η2

∆qx2

∆qy2



.

157

Once φ := ∆F + Bζ(∆U) − Sζ(∆H) has been computed, we can calculate recursively the
diffusion term of (D.0.1) as follows:

• Θ0 = |λζ,max|−1Aζ ∗ φ,

• Θ1 = |λζ,max|−1Aζ ∗Θ0,

• Θr = |λζ,max|−1Aζ ∗Θr−1, r ≥ 2,

and, finally

Θζ = |λζ,max|α0Imod + α1φ+
r∑

i=2

αiΘi.

In this way, we compute efficiently the diffusion term, avoiding matrix multiplications. Jacobian-
free implementations are also possible following the guidelines in [50].

Bibliography

[1] R. Abgrall. A genuinely multidimensional Riemann solver. [Research Report] RR-1859.
INRIA, 1993, 20 pp. url: https://hal.inria.fr/inria-00074814.

[2] R. Abgrall. Approximation du problème Riemann vraiment multidimensionnel des
équations d’Euler par une méthode de type Roe, I: La linéarisation. C. R. Acad. Sci.
Paris Sér. I Math. 319(5) (1994), 499–504.

[3] R. Abgrall. Approximation du problème Riemann vraiment multidimensionnel des
équations d’Euler par une méthode de type Roe, II: Solution du problème de Riemann
approché. C. R. Acad. Sci. Paris Sér. I Math. 319(6) (1994), 625–629.

[4] R. Abgrall. A review of Residual distribution schemes for hyperbolic and parabolic
problems: the july 2010 state of the art. [Research Report] INRIA. 2011, 39 pp. url:
https://hal.inria.fr/inria-00526162v2.

[5] R. Abgrall and S. Karni. A comment on the computation of non–conservative products.
Journal of Computational Physics 229 (2010), 2759–2763. doi: https://doi.org/10.
1016/j.jcp.2009.12.015.

[6] R. Artebrandt and M. Torrilhon. Increasing the accuracy in locally divergence-preserving
finite volume schemes for MHD. J. Comput. Phys. 227 (2008), 3405–3427. doi: https:
//doi.org/10.1016/j.jcp.2007.12.003.

[7] M. de la Asunción. Desarrollo de software numérico de simulación de flujos geof́ısicos
basado en volúmenes finitos usando hardware gráfico. PhD Thesis. Universidad de
Granada, 2012. url: https://hera.ugr.es/tesisugr/21605099.pdf.

[8] M. de la Asunción, M.J. Castro, J.M. Mantas, and S. Ortega. Numerical simulation of
tsunamis generated by landslides on multiple GPUs. Advances in Engineering Software
99 (2016), 59–72. doi: https://doi.org/10.1016/j.advengsoft.2016.05.005.

[9] M. de la Asunción, J.M. Mantas, and M.J. Castro. Programming CUDA-based GPUs to
simulate two-layer shallow water flows. In: Lectures Notes in Compute Science. Ed. by
P. D’Ambra, M. Guarracino, and D. Talia. Vol. 6272. Euro-Par 2010 – Parallel Processing.
Springer, Berlin, Heidelberg, 2010. doi: https://doi.org/10.1007/978-3-642-15291-
7_32.

[10] M. de la Asunción, J.M. Mantas, and M.J. Castro. Simulation of one-layer shallow water
systems on multicore and CUDA architetures. The Journal of Supercomputing 58(2)
(2011), 206–214. doi: https://doi.org/10.1007/s11227-010-0406-2.

https://hal.inria.fr/inria-00074814
https://hal.inria.fr/inria-00526162v2
https://doi.org/https://doi.org/10.1016/j.jcp.2009.12.015
https://doi.org/https://doi.org/10.1016/j.jcp.2009.12.015
https://doi.org/https://doi.org/10.1016/j.jcp.2007.12.003
https://doi.org/https://doi.org/10.1016/j.jcp.2007.12.003
https://hera.ugr.es/tesisugr/21605099.pdf
https://doi.org/https://doi.org/10.1016/j.advengsoft.2016.05.005
https://doi.org/https://doi.org/10.1007/978-3-642-15291-7_32
https://doi.org/https://doi.org/10.1007/978-3-642-15291-7_32
https://doi.org/https://doi.org/10.1007/s11227-010-0406-2

BIBLIOGRAPHY 160

[11] M. de la Asunción, J.M. Mantas, M.J. Castro, and E.D. Fernández-Nieto. An MPI-
CUDA implementation of an improved Roe method for two-layer shallow water systems.
Journal of Parallel and Distributed Computing, Special Issue on Accelerators for High-
Performance Computing 72.9 (2012), 1065–1072. doi: https://doi.org/10.1016/j.
jpdc.2011.07.012.

[12] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein, and B. Perthame. A fast and
stable well-balanced scheme with hydrostatic reconstruction for shallow water flows.
SIAM J. Sci. Comput. 25 (2004), 2050–2065. doi: https : / / doi . org / 10 . 1137 /

S1064827503431090.

[13] M.R. Baer and J.W. Nunziato. A two-phase mixture theory for the deflagration-to-
detonation transition (ddt) in reactive granular materials. Int. J. Multiphase Flow 12(6)
(1986), 861–889. doi: https://doi.org/10.1016/0301-9322(86)90033-9.

[14] D.S. Balsara. Multidimensional HLLE Riemann solver: application to Euler and mag-
netohydrodynamic flows. J. Comput. Phys. 229 (2010), 1970–1993. doi: https://doi.
org/10.1016/j.jcp.2009.11.018.

[15] D.S. Balsara. A two-dimensional HLLC Riemann solver for conservation laws: application
to Euler and magnetohydrodynamic flows. J. Comput. Phys. 231 (2012), 7476–7503. doi:
https://doi.org/10.1016/j.jcp.2011.12.025.

[16] D.S. Balsara. Multidimensional Riemann problem with self-similar internal structure -
Part I - Application to hyperbolic conservation laws on structured meshes. J. Comput.
Phys. 277 (2014), 163–200. doi: https://doi.org/10.1016/j.jcp.2014.07.053.

[17] D.S. Balsara. Higher-order accurate space-time schemes for computational astrophysics -
Part I: finite volume methods. Living Rev. Comput. Astrophys. 3:2 (2017). 138 pp. doi:
https://doi.org/10.1007/s41115-017-0002-8.

[18] D.S. Balsara and M. Dumbser. Multidimensional Riemann problem with self-similar
internal structure - Part II - Application to hyperbolic conservation laws on unstructured
meshes. J. Comput. Phys. 287 (2015), 269–292. doi: https://doi.org/10.1016/j.jcp.
2014.11.004.

[19] D.S. Balsara, M. Dumbser, and R. Abgrall. Multidimensional HLLC Riemann solver for
unstructured meshes - With application to Euler and MHD flows. J. Comput. Phys. 261
(2014), 172–208. doi: https://doi.org/10.1016/j.jcp.2013.12.029.

[20] D.S. Balsara and J. Kim. A comparison between divergence-cleaning and staggered-mesh
formulations for numerical magnetohydrodynamcis. Astrophys. J. 602 (2004), 1079–1090.
doi: https://doi.org/10.1086/381051.

[21] D.S. Balsara and B. Nkonga. Multidimensional Riemann problem with self-similar
internal structure - Part III - A multidimensional analogue of the HLLI Riemann solver
for conservative hyperbolic systems. J. Comput. Phys. 346 (2017), 25–48. doi: https:
//doi.org/10.1016/j.jcp.2017.05.038.

[22] D.S. Balsara and D.S. Spicer. A staggered mesh algorithm using high order Godunov
fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J.
Comput. Phys. 149 (1999), 270–292. doi: https://doi.org/10.1006/jcph.1998.6153.

https://doi.org/https://doi.org/10.1016/j.jpdc.2011.07.012
https://doi.org/https://doi.org/10.1016/j.jpdc.2011.07.012
https://doi.org/https://doi.org/10.1137/S1064827503431090
https://doi.org/https://doi.org/10.1137/S1064827503431090
https://doi.org/https://doi.org/10.1016/0301-9322(86)90033-9
https://doi.org/https://doi.org/10.1016/j.jcp.2009.11.018
https://doi.org/https://doi.org/10.1016/j.jcp.2009.11.018
https://doi.org/https://doi.org/10.1016/j.jcp.2011.12.025
https://doi.org/https://doi.org/10.1016/j.jcp.2014.07.053
https://doi.org/https://doi.org/10.1007/s41115-017-0002-8
https://doi.org/https://doi.org/10.1016/j.jcp.2014.11.004
https://doi.org/https://doi.org/10.1016/j.jcp.2014.11.004
https://doi.org/https://doi.org/10.1016/j.jcp.2013.12.029
https://doi.org/https://doi.org/10.1086/381051
https://doi.org/https://doi.org/10.1016/j.jcp.2017.05.038
https://doi.org/https://doi.org/10.1016/j.jcp.2017.05.038
https://doi.org/https://doi.org/10.1006/jcph.1998.6153

BIBLIOGRAPHY 161

[23] C.M. Bard and J.C. Dorelli. A simple GPU-accelerated two-dimensional MUSCL-
Hancock solver for ideal magnetohydrodynamics. J. Comput. Phys. 259 (2014), 444–460.
doi: https://doi.org/10.1016/j.jcp.2013.12.006.

[24] P. Batten, W. Clarke, C. Lambert, and D.M. Causon. On the choice of wavespeeds for
the HLLC Riemann solver. SIAM J. Sci. Comput. Phys. 18 (1997), 1553–1570. doi:
https://doi.org/10.1137/S1064827593260140.

[25] M.J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics.
J. Comput. Phys. 82 (1989), 64–84. doi: https://doi.org/10.1016/0021-9991(89)
90035-1.

[26] M.J. Berger and A. Jameson. Automatic adaptive grid refinement for the Euler equations.
AIAA Journal 23 (1985), 561–568. doi: https://doi.org/10.2514/3.8951.

[27] M.J. Berger and R. leVeque. Adaptive mesh refinement using wave-propagation algo-
rithms for hyperbolic systems. SIAM J. Num. Anal. 35 (1998), 2298–2316. doi: https:
//doi.org/10.1137/S0036142997315974.

[28] M.J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. J. Comput. Phys. 53 (1984), 484–512. doi: https://doi.org/10.1016/0021-
9991(84)90073-1.

[29] A. Bermúdez and M.E. Vázquez. Upwind methods for hyperbolic conservation laws with
source terms. Computers & Fluids 23.8 (1994), 1049–1071. doi: https://doi.org/10.
1016/0045-7930(94)90004-3.

[30] J.U. Brackbill and J.C. Barnes. The effect of nonzero ∇ ·B on the numerical solution of
the magnetohydrodynamic equations. J. Comput. Phys. 35 (1980), 426–430. doi: https:
//doi.org/10.1016/0021-9991(80)90079-0.

[31] M. Brio and C.C. Wu. An upwind differencing scheme for the equations of ideal
magnetohydrodynamics. J. Comput. Phys. 75 (1988), 400–422. doi: https://doi.org/
10.1016/0021-9991(88)90120-9.

[32] M. Brio, A.R. Zakharian, and G.M. Webb. Two dimensional Riemann solver for Euler
equations of gas dynamics. J. Comput. Phys. 167 (2001), 177–195. doi: https://doi.
org/10.1006/jcph.2000.6666.

[33] A.R. Brodtkorb, T.R. Hagen, and M.L. Sætra. Graphics processing unit (GPU)
programming strategies and trends in GPU computing. J. Parallel Distrib. Comput. 73(1)
(2013), 4–13. doi: https://doi.org/10.1016/j.jpdc.2012.04.003.

[34] D. Calhoun and R.J. LeVeque. A Cartesian grid finite-volume method for the advection-
diffusion equation in irregular geometries. J. Comput. Phys. 157 (2000), 143–180. doi:
https://doi.org/10.1006/jcph.1999.6369.

[35] P. Cargo and G. Gallice. Roe matrices for ideal MHD and systematic construction of Roe
matrices for systems of conservation laws. J. Comput. Phys. 136 (1997), 446–466. doi:
https://doi.org/10.1006/jcph.1997.5773.

https://doi.org/https://doi.org/10.1016/j.jcp.2013.12.006
https://doi.org/https://doi.org/10.1137/S1064827593260140
https://doi.org/https://doi.org/10.1016/0021-9991(89)90035-1
https://doi.org/https://doi.org/10.1016/0021-9991(89)90035-1
https://doi.org/https://doi.org/10.2514/3.8951
https://doi.org/https://doi.org/10.1137/S0036142997315974
https://doi.org/https://doi.org/10.1137/S0036142997315974
https://doi.org/https://doi.org/10.1016/0021-9991(84)90073-1
https://doi.org/https://doi.org/10.1016/0021-9991(84)90073-1
https://doi.org/https://doi.org/10.1016/0045-7930(94)90004-3
https://doi.org/https://doi.org/10.1016/0045-7930(94)90004-3
https://doi.org/https://doi.org/10.1016/0021-9991(80)90079-0
https://doi.org/https://doi.org/10.1016/0021-9991(80)90079-0
https://doi.org/https://doi.org/10.1016/0021-9991(88)90120-9
https://doi.org/https://doi.org/10.1016/0021-9991(88)90120-9
https://doi.org/https://doi.org/10.1006/jcph.2000.6666
https://doi.org/https://doi.org/10.1006/jcph.2000.6666
https://doi.org/https://doi.org/10.1016/j.jpdc.2012.04.003
https://doi.org/https://doi.org/10.1006/jcph.1999.6369
https://doi.org/https://doi.org/10.1006/jcph.1997.5773

BIBLIOGRAPHY 162

[36] H. Carrillo and C. Parés. Compact Approximate Taylor methods for systems of
conservation laws. J. Sci. Comput. 80 (2019), 1832–1866. doi: https://doi.org/10.
1007/s10915-019-01005-1.

[37] H. Carrillo, C. Parés, and D. Zoŕıo. Lax Wendroff approximate Taylor methods with fast
and optimized weighted essentially non-oscillatory reconstructions. To appear (2020).
url: https://arxiv.org/abs/2002.08426.

[38] M.J. Castro, T. Chacón, E.D. Fernández-Nieto, and C. Parés. On well-balanced finite
volume methods for non-conservative non-homogeneous hyperbolic systems. SIAM J.
Sci. Comput. 29 (2007), 1093–1126. doi: https://doi.org/10.1137/040607642.

[39] M.J. Castro, Y. Cheng, A. Chertock, and A. Kurganov. Solving two-mode shallow water
equations using finite volume methods. Commun. Comput. Phys. 15(5) (2014), 1323–
1354. doi: https://doi.org/10.4208/cicp.180513.230514a.

[40] M.J. Castro, M. de la Asunción, E.D. Fernández-Nieto, J.M. Gallardo, J.M. González-
Vida, J. Maćıas, T. Morales, S. Ortega, and C. Parés. A review on high order well-
balanced path-conservative finite volume schemes for geophysical flows. Proc. Int. Congr.
of Math. - ICM 2018 3 (2018), 3499–3522. url: https://eta.impa.br/dl/119.pdf.

[41] M.J. Castro and E.D. Fernández-Nieto. A class of computationally fast first order finite
volume solvers: PVM methods. SIAM J. Sci. Comput. 34 (2012), A2173–A2196. doi:
https://doi.org/10.1137/100795280.

[42] M.J. Castro, E.D. Fernández-Nieto, and A.M. Ferreiro. Sediment transport models in
shallow water equations and numerical approach by high order finite volume methods.
Comput. & Fluids 37(3) (2008), 299–316. doi: https : / / doi . org / 10 . 1016 / j .

compfluid.2007.07.017.

[43] M.J. Castro, E.D. Fernández-Nieto, A.M. Ferreiro, J.A. Garćıa-Rodŕıguez, and C. Parés.
High order extensions of Roe schemes for two dimensional nonconservative hyperbolic
systems. J. Sci. Comput. 39 (2009), 67–114. doi: https://doi.org/10.1007/s10915-
008-9250-4.

[44] M.J. Castro, E.D. Fernández-Nieto, J.M. González-Vida, and C. Parés. Numerical
treatment of the loss of hyperbolicity of the two-layer shallow-water system. J. Sci.
Comput. 48 (2011), 16–40. doi: https://doi.org/10.1007/s10915-010-9427-5.

[45] M.J. Castro, E.D. Fernández-Nieto, T. Morales de Luna, G. Narbona-Reina, and C.
Parés. A HLLC scheme for nonconservative hyperbolic systems. Application to turbidity
currents with sediment transport. ESAIM: Math. Model. Numer. Anal. 47 (2013), 1–32.
doi: https://doi.org/10.1051/m2an/2012017.

[46] M.J. Castro, A.M. Ferreiro Ferreiro, J.A. Garćıa-Rodŕıguez, J.M. González-Vida, J.
Maćıas, C. Parés, and M.E. Vázquez-Cendón. The numerical treatment of wet/dry fronts
in shallow flows: application to one-layer and two-layer systems. Math. Comput. Model.
42 (2005), 419–439. doi: https://doi.org/10.1016/j.mcm.2004.01.016.

[47] M.J. Castro, U.S. Fjordholm, S. Mishra, and C. Parés. Entropy conservative and entropy
stable schemes for nonconservative hyperbolic systems. SIAM J. Numer. Anal. 51 (2013),
1371–1391. doi: https://doi.org/10.1137/110845379.

https://doi.org/https://doi.org/10.1007/s10915-019-01005-1
https://doi.org/https://doi.org/10.1007/s10915-019-01005-1
https://arxiv.org/abs/2002.08426
https://doi.org/https://doi.org/10.1137/040607642
https://doi.org/https://doi.org/10.4208/cicp.180513.230514a
https://eta.impa.br/dl/119.pdf
https://doi.org/https://doi.org/10.1137/100795280
https://doi.org/https://doi.org/10.1016/j.compfluid.2007.07.017
https://doi.org/https://doi.org/10.1016/j.compfluid.2007.07.017
https://doi.org/https://doi.org/10.1007/s10915-008-9250-4
https://doi.org/https://doi.org/10.1007/s10915-008-9250-4
https://doi.org/https://doi.org/10.1007/s10915-010-9427-5
https://doi.org/ https://doi.org/10.1051/m2an/2012017
https://doi.org/https://doi.org/10.1016/j.mcm.2004.01.016
https://doi.org/https://doi.org/10.1137/110845379

BIBLIOGRAPHY 163

[48] M.J. Castro, J.M. Gallardo, J.A. López-Garćıa, and C. Parés. Well-balanced high order
extensions of Godunov’s method for semilinear balance laws. SIAM J. Numer. Anal. 46
(2009), 1012–1039. doi: https://doi.org/10.1137/060674879.

[49] M.J. Castro, J.M. Gallardo, and A. Marquina. A class of incomplete Riemann solvers
based on uniform rational approximations to the absolute value function. J. Sci. Comput.
60 (2014), 363–389. doi: https://doi.org/10.1007/s10915-013-9800-2.

[50] M.J. Castro, J.M. Gallardo, and A. Marquina. Approximate Osher-Solomon schemes for
hyperbolic systems. Appl. Math. Comput. 272 (2016), 347–368. doi: https://doi.org/
10.1016/j.amc.2015.06.104.

[51] M.J. Castro, J.M. Gallardo, and A. Marquina. Jacobian-free approximate solvers for
hyperbolic systems: Applications to relativistic magnetohydrodynamics. Comput. Phys.
Commun. 219 (2017), 108–120. doi: https://doi.org/10.1016/j.cpc.2017.05.013.

[52] M.J. Castro, J.M. Gallardo, and C. Parés. High order finite volume schemes based on
reconstruction of states for solving hyperbolic systems with nonconservative products.
Applications to shallow water systems. Math. Comput. 75 (2006), 1103–1134. doi: 10.
1090/S0025-5718-06-01851-5.

[53] M.J. Castro, J.A. Garćıa-Rodŕıguez, J.M. González-Vida, C. Parés, and M.E. Vázquez-
Cendón. Numerical simulation of two-layer shallow water flows through channels with
irregular geometry. J. Comput. Phys. 195 (2004), 202–235. doi: https://doi.org/10.
1016/j.jcp.2003.08.035.

[54] M.J. Castro, J.A. Garćıa, J.M. González, and C. Parés. A parallel 2D finite volume
scheme for solving systems of balance laws with nonconservative products: Application
to shallow flows. Comput. Methods in Appl. Mech. Eng. 195.19–22 (2006), 2788–2815.
doi: https://doi.org/10.1016/j.cma.2005.07.007.

[55] M.J. Castro, A. Kurganov, and T. Morales de Luna. Path-conservative Central-upwind
schemes for nonconservative hyperbolic systems. ESAIM: Math. Model. Numer. Anal. 53
(2019), 959–985. doi: https://doi.org/10.1051/m2an/2018077.

[56] M.J. Castro, P.G. LeFloch, M.L. Muñóz-Ruiz, and C. Parés. Why many theories of shock
waves are necessary: convergence error in formally path-consistent schemes. J. Comput.
Phys. 227 (2008), 8107–8129. doi: https://doi.org/10.1016/j.jcp.2008.05.012.

[57] M.J. Castro, T. Morales de Luna, and C. Parés. Chapter 6–Well–Balanced Schemes
and Path–Conservative Numerical Methods. In: Handbook of Numerical Methods for
Hyperbolic Problems. Ed. by Rémi Abgrall and Chi–Wang Shu. Vol. 18. Handbook of
Numerical Analysis. Elsevier, 2017, 131–175. doi: https://doi.org/10.1016/bs.

hna.2016.10.002. url: http://www.sciencedirect.com/science/article/pii/
S1570865916300333.

[58] M.J. Castro, S. Ortega, and C. Parés. Well-balanced methods for the shallow water
equations in spherical coordinates. Comput. & Fluids 157 (2017), 196–207. doi: https:
//doi.org/10.1016/j.compfluid.2017.08.035.

https://doi.org/https://doi.org/10.1137/060674879
https://doi.org/https://doi.org/10.1007/s10915-013-9800-2
https://doi.org/https://doi.org/10.1016/j.amc.2015.06.104
https://doi.org/https://doi.org/10.1016/j.amc.2015.06.104
https://doi.org/https://doi.org/10.1016/j.cpc.2017.05.013
https://doi.org/10.1090/S0025-5718-06-01851-5
https://doi.org/10.1090/S0025-5718-06-01851-5
https://doi.org/https://doi.org/10.1016/j.jcp.2003.08.035
https://doi.org/https://doi.org/10.1016/j.jcp.2003.08.035
https://doi.org/https://doi.org/10.1016/j.cma.2005.07.007
https://doi.org/https://doi.org/10.1051/m2an/2018077
https://doi.org/https://doi.org/10.1016/j.jcp.2008.05.012
https://doi.org/https://doi.org/10.1016/bs.hna.2016.10.002
https://doi.org/https://doi.org/10.1016/bs.hna.2016.10.002
http://www.sciencedirect.com/science/article/pii/S1570865916300333
http://www.sciencedirect.com/science/article/pii/S1570865916300333
https://doi.org/https://doi.org/10.1016/j.compfluid.2017.08.035
https://doi.org/https://doi.org/10.1016/j.compfluid.2017.08.035

BIBLIOGRAPHY 164

[59] M.J. Castro, A. Pardo, C. Parés, and E.F. Toro. On some fast well-balanced first order
solvers for nonconservative systems. Math. Comput. 79 (2010), 1427–1472. doi: 10.1090/
S0025-5718-09-02317-5.

[60] M.J. Castro, C. Parés, G. Puppo, and G. Russo. Central schemes for nonconservative
hyperbolic systems. SIAM J. Sci. Comput. 34 (2012), 523–558. doi: https://doi.org/
10.1137/110828873.

[61] J.J. Cauret, J.F. Colombeau, and A.Y. Le Roux. Discontinuous generalized solutions of
nonlinear nonconservative hyperbolic equations. J. of Math. Analysis and Appl. 139(2)
(1989), 552–573. doi: https://doi.org/10.1016/0022-247X(89)90129-7.

[62] C. Chalons. Path-conservative in-cell discontinuous reconstruction schemes for noncon-
servative hyperbolic systems. To appear in Commun. Math. Sci. (2020). hal-02263335.
url: https://hal.archives-ouvertes.fr/hal-02263335/document.

[63] C. Chalons and F. Coquel. A new comment on the computation of non-conservative
products using Roe-type path conservative schemes. J. Comput. Phys. 335 (2017), 592–
604. doi: https://doi.org/10.1016/j.jcp.2017.01.016.

[64] P. Chandrashekar, B. Nkonga, A.K. Meena, and A. Bhole. A path conservative finite
volume method for a shear shallow water model. J. Comput. Phys. (2019). To appear.
url: https://hal.inria.fr/hal-02294026v2.

[65] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen differenzengleichungen der
mathematischen physiks. Mathematische Annalen 100(1) (1928), 32–74. doi: https :

//doi.org/10.1007/BF01448839.

[66] I. Cravero and M. Semplice. On the accuracy of WENO and CWENO reconstructions
of third order on nonuniform meshes. J. Sci. Comput. 67(3) (2016), 1219–1246. doi:
https://doi.org/10.1007/s10915-015-0123-3.

[67] H. Deconinck and M. Richiuto. Residual distribution schemes: Foundations and analysis.
In: Encyclopedia of Comput. Mech. Wiley Online Library. 2007. doi: https://doi.org/
10.1002/0470091355.ecm054.

[68] A. Dedner, F. Kemm, D. Kröner, C.D. Munz, T. Schnitzer, and M. Wesenberg. Hyperbolic
divergence cleaning for the MHD equations. J. Comput. Phys. 175 (2002), 645–673. doi:
https://doi.org/10.1006/jcph.2001.6961.

[69] A. Dedner, C. Rhode, and M. Wesenberg. A new approach to divergence cleaning
in magnetohydrodynamic simulations. In: Hyperbolic Problems: Theory, Numerics,
Applications. Ed. by T.Y. Hou and E. Tadmor. Berlin; Heidelberg: Spring-Verlag, 2003,
509–518. doi: https://doi.org/10.1007/978-3-642-55711-8_47.

[70] P. Degond, P.F. Peyrard, G. Russo, and Ph. Villedieu. Polynomial upwind schemes for
hyperbolic systems. C. R. Acad. Sci. Paris Sér. I, t. 328 (1999), 479–483. doi: https:
//doi.org/10.1016/S0764-4442(99)80194-3.

[71] I.A. Demirdžić. A finite volume method for computation of fluid flow in complex
geometries. PhD Thesis. Imperial College London (University of London), 1982. url:
http://hdl.handle.net/10044/1/7597.

https://doi.org/10.1090/S0025-5718-09-02317-5
https://doi.org/10.1090/S0025-5718-09-02317-5
https://doi.org/https://doi.org/10.1137/110828873
https://doi.org/https://doi.org/10.1137/110828873
https://doi.org/https://doi.org/10.1016/0022-247X(89)90129-7
https://hal.archives-ouvertes.fr/hal-02263335/document
https://doi.org/https://doi.org/10.1016/j.jcp.2017.01.016
https://hal.inria.fr/hal-02294026v2
https://doi.org/https://doi.org/10.1007/BF01448839
https://doi.org/https://doi.org/10.1007/BF01448839
https://doi.org/https://doi.org/10.1007/s10915-015-0123-3
https://doi.org/https://doi.org/10.1002/0470091355.ecm054
https://doi.org/https://doi.org/10.1002/0470091355.ecm054
https://doi.org/https://doi.org/10.1006/jcph.2001.6961
https://doi.org/https://doi.org/10.1007/978-3-642-55711-8_47
https://doi.org/https://doi.org/10.1016/S0764-4442(99)80194-3
https://doi.org/https://doi.org/10.1016/S0764-4442(99)80194-3
http://hdl.handle.net/10044/1/7597

BIBLIOGRAPHY 165

[72] V. Desveaux, M. Zenk, C. Berthon, and C. Klingenberg. A well-balanced scheme to
capture non-explicit steady states in the Euler equations with gravity. Intern. J. Num.
Methods in Fluids 81(2) (2016), 104–127. doi: https://doi.org/10.1002/fld.4177.

[73] V. Desveaux, M. Zenk, C. Berthon, and C. Klingenberg. Well-balanced schemes to capture
non-explicit steady states: Ripa model. Math. of Comput. 85(300) (2016), 1571–1602. doi:
https://doi.org/10.1090/mcom/3069.

[74] M. Dudzinski and M. Lukáčová-Medvid’ová. Well-balanced bicharacteristic-based scheme
for multilayer shallow water flows including wet/dry fronts. J. Comput. Phys. 235 (2013),
82–113. doi: https://doi.org/10.1016/j.jcp.2012.10.037.

[75] M. Dumbser and D.S. Balsara. A new efficient formulation of the HLLEM Riemann solver
for general conservative and non-conservative hyperbolic systems. J. Comput. Phys. 304
(2016), 275–319. doi: https://doi.org/10.1016/j.jcp.2015.10.014.

[76] M. Dumbser, D.S. Balsara, M. Tavelli, and F. Fambri. A divergence-free semi-implicit
finite volume scheme for ideal, viscous, and resistive magnetohydrodynamics. Int. J.
Numer. Meth. Fluids 89 (2019), 16–42. doi: https://doi.org/10.1002/fld.4681.

[77] M. Dumbser, D.S. Balsara, E.F. Toro, and C.D. Munz. A unified framework for
the construction of one-step finite volume and discontinuous Galerkin schemes on
unstructured schemes. J. Comput. Phys. 227(18) (2008), 8209–8253. doi: https://doi.
org/10.1016/j.jcp.2008.05.025.

[78] M. Dumbser, M.J. Castro, C. Parés, and E.F. Toro. ADER schemes on structured meshes
for nonconservative hyperbolic systems: Applications to geophysical flows. Computer &
Fluids 38 (2009), 1731–1748. doi: https://doi.org/10.1016/j.compfluid.2009.03.
008.

[79] M. Dumbser, C. Enaux, and E.F. Toro. Finite volume schemes of very high order of
accuracy for stiff hyperbolic balance laws. J. Comput. Phys. 227(8) (2008), 3971–4001.
doi: https://doi.org/10.1016/j.jcp.2007.12.005.

[80] M. Dumbser, A. Hidalgo, M.J. Castro, C. Parés, and E.F. Toro. FORCE schemes on
unstructured meshes II: non-conservative hyperbolic systems. Comput. Methods Appl.
Mech. Eng. 199 (2010), 625–647. doi: https://doi.org/10.1016/j.cma.2009.10.016.

[81] M. Dumbser and M. Käser. Arbitrary high order non-oscillatory finite volume schemes
on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221(2) (2007),
693–723. doi: https://doi.org/10.1016/j.jcp.2006.06.043.

[82] M. Dumbser, M. Käser, V.A. Titarev, and E.F. Toro. Quadrature-free non-oscillatory
finite volume schemes on unstrctured meshes for nonlinear hyperbolic systems. J. Comput.
Phys. 226(1) (2007), 204–243. doi: https://doi.org/10.1016/j.jcp.2007.04.004.

[83] M. Dumbser and R. Loubère. A simple robust and accurate a posteriori sub-cell finite
volume limiter for the discontinuous Galerkin method on unstructured meshes. J.
Comput. Phys. 319 (2016), 163–199. doi: https://doi.org/10.1016/j.jcp.2016.05.
002.

https://doi.org/https://doi.org/10.1002/fld.4177
https://doi.org/https://doi.org/10.1090/mcom/3069
https://doi.org/https://doi.org/10.1016/j.jcp.2012.10.037
https://doi.org/https://doi.org/10.1016/j.jcp.2015.10.014
https://doi.org/https://doi.org/10.1002/fld.4681
https://doi.org/https://doi.org/10.1016/j.jcp.2008.05.025
https://doi.org/https://doi.org/10.1016/j.jcp.2008.05.025
https://doi.org/https://doi.org/10.1016/j.compfluid.2009.03.008
https://doi.org/https://doi.org/10.1016/j.compfluid.2009.03.008
https://doi.org/https://doi.org/10.1016/j.jcp.2007.12.005
https://doi.org/https://doi.org/10.1016/j.cma.2009.10.016
https://doi.org/https://doi.org/10.1016/j.jcp.2006.06.043
https://doi.org/https://doi.org/10.1016/j.jcp.2007.04.004
https://doi.org/https://doi.org/10.1016/j.jcp.2016.05.002
https://doi.org/https://doi.org/10.1016/j.jcp.2016.05.002

BIBLIOGRAPHY 166

[84] M. Dumbser and E.F. Toro. A simple extension of the Osher Riemann solver to non-
conservative hyperbolic systems. J. Sci. Comput. 48 (2011), 70–88. doi: https://doi.
org/10.1007/s10915-010-9400-3.

[85] M. Dumbser and E.F. Toro. On universal Osher-type schemes for general nonlinear
hyperbolic conservation laws. Commun. Comput. Phys. 10 (2011), 635–671. doi: https:
//doi.org/10.4208/cicp.170610.021210a.

[86] M. Dumbser, O. Zanotti, R. Loubère, and S. Diot. A posteriori subcell limiting of
the discontinuous Galerkin finite element method for hyperbolic conservation laws. J.
Comput. Phys. 278 (2014), 47–75. doi: https://doi.org/10.1016/j.jcp.2014.08.009.

[87] EDANYA web group. https://edanya.uma.es/hysea.

[88] B. Einfeldt. On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 25
(1988), 294–318. doi: https://doi.org/10.1137/0725021.

[89] B. Einfeldt, P.L. Roe, C.D. Munz, and B. Sjogreen. On Godunov-type methods near low
densities. J. Comput. Phys. 92 (1991), 273–295. doi: https://doi.org/10.1016/0021-
9991(91)90211-3.

[90] C. Escalante, M. Dumbser, and M.J. Castro. An efficient hyperbolic relaxation system
for dispersive non-hydrostatic water waves and its solution with high order discontinuous
Galerkin schemes. J. Comput. Phys. 394 (2019), 385–416. doi: https://doi.org/10.
1016/j.jcp.2019.05.035.

[91] C. Escalante, E.D. Fernández-Nieto, T. Morales, and M.J. Castro. An efficient two-layer
non-hydrostatic approach for dispersive water waves. J. Sci. Comput. 79 (2019), 273–320.
doi: https://doi.org/10.1007/s10915-018-0849-9.

[92] C. Escalante, T. Morales de Luna, and M.J. Castro. Non-hydrostatic pressure flows: GPU
implementation using finite volume and finite difference scheme. Appl. Math. Comput.
338 (2018), 631–659. doi: https://doi.org/10.1016/j.amc.2018.06.035.

[93] C. Evans and J.F. Hawley. Simulation of magnetohydrodynamics flow: a constrained
transport method. Astrophys. J. 332 (1988), 659–677. doi: https://doi.org/10.1086/
166684.

[94] E.D. Fernández-Nieto, F. Bouchut, D. Bresch, M.J. Castro, and A. Mangeney. A new
Savage-Hutter type model for submarine avalanches and generated tsunami. J. Comput.
Phys. 227(16) (2008), 7720–7754. doi: https://doi.org/10.1016/j.jcp.2008.04.039.

[95] E.D. Fernández-Nieto, J.M. Gallardo, and P. Vigneaux. Efficient numerical schemes for
viscoplastic avalanches: Part 1: The 1D case. J. Comput. Phys. 264(1) (2014), 55–90. doi:
https://doi.org/10.1016/j.jcp.2014.01.026.

[96] A.M. Ferreiro-Ferreiro, J.A. Garćıa-Rodŕıguez, J.G. López-Salas, C. Escalante, and M.J.
Castro. Global optimization for data assimilation in landslide tsunami models. J. Comput.
Phys. 403.109069 (2020). doi: https://doi.org/10.1016/j.jcp.2019.109069.

[97] M. Fey. Multidimensional upwinding. Part I. The method of transport for solving the
Euler equations. J. Comput. Phys. 143 (1998), 159–180. doi: https://doi.org/10.
1006/jcph.1998.5958.

https://doi.org/https://doi.org/10.1007/s10915-010-9400-3
https://doi.org/https://doi.org/10.1007/s10915-010-9400-3
https://doi.org/https://doi.org/10.4208/cicp.170610.021210a
https://doi.org/https://doi.org/10.4208/cicp.170610.021210a
https://doi.org/https://doi.org/10.1016/j.jcp.2014.08.009
https://doi.org/https://doi.org/10.1137/0725021
https://doi.org/https://doi.org/10.1016/0021-9991(91)90211-3
https://doi.org/https://doi.org/10.1016/0021-9991(91)90211-3
https://doi.org/https://doi.org/10.1016/j.jcp.2019.05.035
https://doi.org/https://doi.org/10.1016/j.jcp.2019.05.035
https://doi.org/https://doi.org/10.1007/s10915-018-0849-9
https://doi.org/https://doi.org/10.1016/j.amc.2018.06.035
https://doi.org/https://doi.org/10.1086/166684
https://doi.org/https://doi.org/10.1086/166684
https://doi.org/https://doi.org/10.1016/j.jcp.2008.04.039
https://doi.org/https://doi.org/10.1016/j.jcp.2014.01.026
https://doi.org/https://doi.org/10.1016/j.jcp.2019.109069
https://doi.org/https://doi.org/10.1006/jcph.1998.5958
https://doi.org/https://doi.org/10.1006/jcph.1998.5958

BIBLIOGRAPHY 167

[98] M. Fey. Multidimensional upwinding. Part II. Decomposition of the Euler equations into
advection equations. J. Comput. Phys. 143 (1998), 181–199. doi: https://doi.org/10.
1006/jcph.1998.5959.

[99] F.G. Fuchs, K. Karlsen, S. Mishra, and N.H. Risebro. Stable upwind schemes for the
magnetic induction equation. ESAIM: M2AN 43(5) (2009), 825–852. doi: https://doi.
org/10.1051/m2an/2009006.

[100] F.G. Fuchs, S. Mishra, and N.H. Risebro. Splitting based finite volume schemes for ideal
MHD equations. J. Comput. Phys. 228 (2009), 641–660. doi: https://doi.org/10.
1016/j.jcp.2008.09.027.

[101] J.M. Gallardo, S. Ortega, M. de la Asunción, and J.M. Mantas. Two-dimensional third-
order polynomial reconstructions. Solving nonconservative hyperbolic systems using
GPUs. J. Sci. Comput. 48 (2011), 141–163. doi: https://doi.org/10.1007/s10915-
011-9470-x.

[102] J.M. Gallardo, C. Parés, and M.J. Castro. On a well-balanced high-order finite volume
scheme for shallow water equations with topography and dry areas. J. Comput. Phys.
227 (2007), 574–601. doi: https://doi.org/10.1090/psapm/067.2/2605254.

[103] J.M. Gallardo, K.A. Schneider, and M.J. Castro. On a class of genuinely 2D incomplete
Riemann solvers for hyperbolic systems. Comp. and Math. Methods (2019), 1–21. doi:
https://doi.org/10.1002/cmm4.1074.

[104] J.M. Gallardo, K.A. Schneider, and M.J. Castro. On a class of two-dimensional incomplete
Riemann solvers. J. Comput. Phys. 386 (2019), 541–547. doi: https://doi.org/10.
1016/j.jcp.2019.02.034.

[105] H. Gilquing, J. Laurens, and C. Rosier. Multidimensional Riemann problems for linear
hyperbolic systems: Part II. Notes Numer. Fluid Mech. 43 (1993), 284–290. doi: https:
//doi.org/10.1051/m2an/1996300505271.

[106] J. Glimm. Solution in the large for nonlinear hyperbolic systems of equations. Commun.
Pure Appl. Math. 18 (1965), 697–715. doi: https://doi.org/10.1002/cpa.3160180408.

[107] E. Godlewski and P.A. Raviart. Numerical approximation of hyperbolic systems of
conservation laws. Springer Science & Business Media, 2013. doi: https://doi.org/
10.1007/978-1-4612-0713-9.

[108] S.K. Godunov. Finite difference methods for the computation of discontinuous solutions
of the equations of fluid dynamics. Math. USSR Sbornik 47 (1959), 271–306. url: https:
//hal.archives-ouvertes.fr/hal-01620642.

[109] G.H. Golub and C. F. Van Loan. Matrix Computations (3rd Ed.) Johns Hopkins
University Press, 1996.

[110] L. Gosse. A two-dimensional version of the Godunov scheme for scalar balance laws. SIAM
J. Numer. Anal. 52 (2014), 626–652. doi: https://doi.org/10.1137/130925906.

[111] S. Gottlieb and C.-W. Shu. Total variation diminishing Runge-Kutta schemes. Math.
Comp. 67(221) (1998), 73–85. doi: https://doi.org/10.1090/S0025-5718-98-00913-
2.

https://doi.org/https://doi.org/10.1006/jcph.1998.5959
https://doi.org/https://doi.org/10.1006/jcph.1998.5959
https://doi.org/https://doi.org/10.1051/m2an/2009006
https://doi.org/https://doi.org/10.1051/m2an/2009006
https://doi.org/https://doi.org/10.1016/j.jcp.2008.09.027
https://doi.org/https://doi.org/10.1016/j.jcp.2008.09.027
https://doi.org/https://doi.org/10.1007/s10915-011-9470-x
https://doi.org/https://doi.org/10.1007/s10915-011-9470-x
https://doi.org/https://doi.org/10.1090/psapm/067.2/2605254
https://doi.org/https://doi.org/10.1002/cmm4.1074
https://doi.org/https://doi.org/10.1016/j.jcp.2019.02.034
https://doi.org/https://doi.org/10.1016/j.jcp.2019.02.034
https://doi.org/https://doi.org/10.1051/m2an/1996300505271
https://doi.org/https://doi.org/10.1051/m2an/1996300505271
https://doi.org/https://doi.org/10.1002/cpa.3160180408
https://doi.org/https://doi.org/10.1007/978-1-4612-0713-9
https://doi.org/https://doi.org/10.1007/978-1-4612-0713-9
https://hal.archives-ouvertes.fr/hal-01620642
https://hal.archives-ouvertes.fr/hal-01620642
https://doi.org/https://doi.org/10.1137/130925906
https://doi.org/https://doi.org/10.1090/S0025-5718-98-00913-2
https://doi.org/https://doi.org/10.1090/S0025-5718-98-00913-2

BIBLIOGRAPHY 168

[112] S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong stability-preserving high-order time
discretization methods. SIAM Review 43(1) (2001), 89–112. doi: https://doi.org/
10.1137/S003614450036757X.

[113] A. Harten, B. Engquist, S. Osher, and S.R. Chakravarthy. Uniformly high-order accurate
essentially nonoscillatory schemes. III. J. Comput. Phys. 712 (1987), 231–303. doi: https:
//doi.org/10.1007/978-3-642-60543-7_12.

[114] A. Harten and J.M. Hyman. Self adjusting grid methods for one-dimensional hyperbolic
conservation laws. J. Comput. Phys. 50(2) (1983), 235–269. doi: https://doi.org/10.
1016/0021-9991(83)90066-9.

[115] A. Harten, P. Lax, and B. van Leer. On upstream differencing and Godunov type schemes
for hyperbolic conservation laws. SIAM Rev. 25(1) (1983), 35–61. doi: https://doi.
org/10.1137/1025002.

[116] A. Hiltebrand, S. Mishra, and C. Parés. Entropy-stable space-time DG schemes for non-
conservative hyperbolic systems. ESAIM: Math. Model. Numer. Anal. 52(3) (2018), 995–
1022. doi: https://doi.org/10.1051/m2an/2017056.

[117] T.Y. Hou and P.G. LeFloch. Why nonconservative schemes converge to wrong solutions.
Error analysis. Math. Comp. 62 (1994), 497–530. doi: https://doi.org/10.2307/
2153520.

[118] T. Kaczorek. Polynomial and Rational matrices. Applications in Dynamical Systems
Theory. Communications and Control Engineering. Springer-Verlag London, 2007. doi:
https://doi.org/10.1007/978-1-84628-605-6.

[119] C. Keney and A.J. Laub. Rational iterative methods for the matrix sign function. SIAM
J. Matrix Anal. Appl. 12 (1991), 273–291. doi: https://doi.org/10.1137/0612020.

[120] A. Kurganov. Finite-volume schemes for shallow-water equations. Acta Numerica (2018),
289–351. doi: https://doi.org/10.1017/S0962492918000028.

[121] A. Kurganov, S. Noelle, and G. Petrova. Semi-discrete central-upwind schemes for
hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23
(2000), 707–740. doi: https://doi.org/10.1137/S1064827500373413.

[122] A. Kurganov and G. Petrova. A second-order well-balanced positivity preserving central-
upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5(1) (2007), 133–160.
doi: https://doi.org/10.4310/CMS.2007.v5.n1.a6.

[123] A. Kurganov and E. Tadmor. Solution of two-dimensional Riemann problems for gas
dynamic without Riemann problem solvers. Numer. Meth. Partial Diff. Equations 18(5)
(2002), 584–608. doi: https://doi.org/10.1002/num.10025.

[124] M. Lastra, M.J. Castro Dı́az, C. Ureña, and M. de la Asunción. Efficient multilayer
shallow-water simulation system based on GPUs. Math. and Computers in Simul. 148
(2018), 48–65. doi: https://doi.org/10.1016/j.matcom.2017.11.008.

[125] P. Lax. Weak solutions of nonlinear hyperbolic equations and their numerical computa-
tion. Comm. Pure Appl. Math. 7 (1954), 159–193. doi: https://doi.org/10.1002/
cpa.3160070112.

https://doi.org/https://doi.org/10.1137/S003614450036757X
https://doi.org/https://doi.org/10.1137/S003614450036757X
https://doi.org/https://doi.org/10.1007/978-3-642-60543-7_12
https://doi.org/https://doi.org/10.1007/978-3-642-60543-7_12
https://doi.org/https://doi.org/10.1016/0021-9991(83)90066-9
https://doi.org/https://doi.org/10.1016/0021-9991(83)90066-9
https://doi.org/https://doi.org/10.1137/1025002
https://doi.org/https://doi.org/10.1137/1025002
https://doi.org/https://doi.org/10.1051/m2an/2017056
https://doi.org/https://doi.org/10.2307/2153520
https://doi.org/https://doi.org/10.2307/2153520
https://doi.org/https://doi.org/10.1007/978-1-84628-605-6
https://doi.org/https://doi.org/10.1137/0612020
https://doi.org/https://doi.org/10.1017/S0962492918000028
https://doi.org/https://doi.org/10.1137/S1064827500373413
https://doi.org/https://doi.org/10.4310/CMS.2007.v5.n1.a6
https://doi.org/https://doi.org/10.1002/num.10025
https://doi.org/https://doi.org/10.1016/j.matcom.2017.11.008
https://doi.org/https://doi.org/10.1002/cpa.3160070112
https://doi.org/https://doi.org/10.1002/cpa.3160070112

BIBLIOGRAPHY 169

[126] P. Lax. Hyperbolic systems of conservation laws. II. Comm. Pure Appl. Math. 10 (1957),
537–566. doi: https://doi.org/10.1002/cpa.3160100406.

[127] P. Lax. Hyperbolic systems of conservation laws and the mathematical theory of shock
waves. CBMS Monograph, Society for Industrial and Applied Mathematics, 1973. doi:
https://doi.org/10.1137/1.9781611970562.

[128] P. Lax and X. Liu. Solution of two-dimensional Riemann problems of gas dynamics by
positive schemes. SIAM J. Sci. Comput. 19 (1998), 319–340. doi: https://doi.org/
10.1137/S1064827595291819.

[129] P. Lax and B. Wendroff. Systems of conservation laws. Comm. Pure Appl. Math. 13(2)
(1960), 217–237. doi: https://doi.org/10.1002/cpa.3160130205.

[130] P.G. LeFloch. Shock waves for nonlinear hyperbolic systems in nonconseravtive form.
Institute for Math. and its Appl., Minneapolis, Preprint 503. 1989. url: http://hdl.
handle.net/11299/5107.

[131] P.G. LeFloch. Hyperbolic systems of conservation laws: the theory of classical and
nonclassical shock waves. Lecture Notes in Mathematics, ETH Zurich, Birkhäuser, 2002.
doi: https://doi.org/10.1007/978-3-0348-8150-0.

[132] P.G. LeFloch and S. Mishra. Numerical methods with controlled dissipation for small-
scale dependent shocks. Acta Numer. 23 (2014), 743–816. doi: https://doi.org/10.
1017/S0962492914000099.

[133] R.J. LeVeque. High resolution Finite Volume methods on arbitrary grids via wave
propagation. J. Comput. Phys. 78 (1988), 36–63. doi: https://doi.org/10.1007/978-
3-642-60543-7_20.

[134] R.J. LeVeque. Wave propagation algorithms for multidimensional hyperbolic systems. J.
Comput. Phys. 131 (1997), 327–353. doi: https://doi.org/10.1006/jcph.1996.5603.

[135] R.J. LeVeque. Balancing source terms and flux gradients in high-resolution Godunov
methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146(1) (1998),
346–365. doi: https://doi.org/doi:10.1006/jcph.1998.6058.

[136] R.J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge University
Press, 2002. doi: https://doi.org/10.1017/CBO9780511791253.

[137] R.J. LeVeque, D.L. George, and M.J. Berger. Tsunami modelling with adaptively refined
finite volume methods. J. Comput. Phys. 20 (2011), 211–289. doi: https://doi.org/
10.1017/S0962492911000043.

[138] F. Li and C.-W. Shu. Locally divergence-free discontinuous Galerkin methods for MHD
equations. J. Sci. Comput. 22–23 (2005), 413–442. doi: https://doi.org/10.1007/
s10915-004-4146-4.

[139] R. Liska and B. Wendroff. Comparison of several difference schemes on 1d and 2d test
problems for the Euler equations. SIAM J. Sci. Comput. 25 (2003), 995–1017. doi: https:
//doi.org/10.1137/S1064827502402120.

https://doi.org/https://doi.org/10.1002/cpa.3160100406
https://doi.org/https://doi.org/10.1137/1.9781611970562
https://doi.org/https://doi.org/10.1137/S1064827595291819
https://doi.org/https://doi.org/10.1137/S1064827595291819
https://doi.org/https://doi.org/10.1002/cpa.3160130205
http://hdl.handle.net/11299/5107
http://hdl.handle.net/11299/5107
https://doi.org/https://doi.org/10.1007/978-3-0348-8150-0
https://doi.org/https://doi.org/10.1017/S0962492914000099
https://doi.org/https://doi.org/10.1017/S0962492914000099
https://doi.org/https://doi.org/10.1007/978-3-642-60543-7_20
https://doi.org/https://doi.org/10.1007/978-3-642-60543-7_20
https://doi.org/https://doi.org/10.1006/jcph.1996.5603
https://doi.org/https://doi.org/doi:10.1006/jcph.1998.6058
https://doi.org/https://doi.org/10.1017/CBO9780511791253
https://doi.org/https://doi.org/10.1017/S0962492911000043
https://doi.org/https://doi.org/10.1017/S0962492911000043
https://doi.org/https://doi.org/10.1007/s10915-004-4146-4
https://doi.org/https://doi.org/10.1007/s10915-004-4146-4
https://doi.org/https://doi.org/10.1137/S1064827502402120
https://doi.org/https://doi.org/10.1137/S1064827502402120

BIBLIOGRAPHY 170

[140] M. Lukáčová-Medvid’ová, K.W. Morton, and G. Warnecke. Finite volume evolution
Galerkin methods for Euler equations of gas dynamics. Int. J. Numer. Methods in Fluids
40 (3–4) (2002), 425–434. doi: https://doi.org/10.1002/fld.297.

[141] M. Lukáčová-Medvid’ová, S. Noelle, and M. Kraft. Well-balanced finite volume evolution
Galerkin methods for the shallow water equations. J. Comput. Phys. 22(1) (2007), 122–
147. doi: https://doi.org/10.1016/j.jcp.2006.06.015.

[142] J. Maćıas, M.J. Castro, S. Ortega, C. Escalante, and J.M. González-Vida. Performance
benchmarking of Tsunami-HySEA model for NTHMP’s innundation mapping activities.
Pue Appl. Geophys. 174 (2017), 3147–3183. doi: https://doi.org/10.1007/s00024-
017-1583-1.

[143] J.M. Mantas, M. de la Asunción, and M.J. Castro. An introduction to GPU computing
for numerical simulation. In: Numerical Simulations in Physics and Engineering. Ed. by
I. Higueras, T. Roldán, and J. Torrens. Vol. 9. SEMA SIMAI Springer Series. Springer,
Cham, 2016. doi: https://doi.org/10.1007/978-3-319-32146-2_5.

[144] A. Marquina. Local piecewise hyperbolic reconstruction of numerical fluxes for nonlinear
scalar conservation laws. SIAM J. Sci. Comput. 15(4) (1994), 892–915. doi: https:

//doi.org/10.1137/0915054.

[145] G. dal Maso, P.G. LeFloch, and F. Murat. Definition and weak stability of nonconserva-
tive products. J. Math. Pures Appl. 74 (1995), 483–548.

[146] A. Mignone and P. Tzeferacos. A second-order unsplit Godunov scheme for cell-centered
MHD: the CTU-GLM scheme. J. Comput. Phys. 229 (2010), 2117–2138. doi: https:
//doi.org/10.1016/j.jcp.2009.11.026.

[147] A. Mignone, P. Tzeferacos, and G. Bodo. High-order conservative finite difference GLM-
MHD schemes for cell-centered MHD. J. Comput. Phys. 229 (2010), 5896–5920. doi:
https://doi.org/10.1016/j.jcp.2010.04.013.

[148] S. Mishra and E. Tadmor. Constraint preserving schemes using potential-based fluxes. III.
Genuinely multi-dimensional schemes for MHD equations. ESAIM: Math. Model. Numer.
Anal. 46 (2012), 661–680. doi: https://doi.org/10.1051/m2an/20110509.

[149] T. Morales de Luna, M.J. Castro, and C. Parés. Relation between PVM schemes and
simple Riemann solvers. Numer. Math. Part. D. E. 30 (2014), 1315–1341. doi: https:
//doi.org/10.1002/num.21871.

[150] T. Morales de Luna, M.J. Castro, C. Parés, and E.D. Fernández-Nieto. On a shallow water
model for the simulation of turbidity currents. Commun. Comput. Phys. 6(4) (2009),
848–882. doi: https://doi.org/10.4208/cicp.2009.v6.p848.

[151] L.O. Müller, C. Parés, and E.F. Toro. Well-balanced high-order numerical schemes for
one-dimensional blood flow in Vessels with varying mechanical properties. J. Comput.
Phys. 242 (2013), 53–85. doi: https://doi.org/10.1016/j.jcp.2013.01.050.

[152] M.L. Muñóz and C. Parés. Godunov methods for nonconservative hyperbolic systems.
Math. Model. Numer. Anal. 41 (2007), 169–185. doi: https://doi.org/10.1051/m2an:
2007011.

https://doi.org/https://doi.org/10.1002/fld.297
https://doi.org/https://doi.org/10.1016/j.jcp.2006.06.015
https://doi.org/https://doi.org/10.1007/s00024-017-1583-1
https://doi.org/https://doi.org/10.1007/s00024-017-1583-1
https://doi.org/https://doi.org/10.1007/978-3-319-32146-2_5
https://doi.org/https://doi.org/10.1137/0915054
https://doi.org/https://doi.org/10.1137/0915054
https://doi.org/https://doi.org/10.1016/j.jcp.2009.11.026
https://doi.org/https://doi.org/10.1016/j.jcp.2009.11.026
https://doi.org/https://doi.org/10.1016/j.jcp.2010.04.013
https://doi.org/https://doi.org/10.1051/m2an/20110509
https://doi.org/https://doi.org/10.1002/num.21871
https://doi.org/https://doi.org/10.1002/num.21871
https://doi.org/https://doi.org/10.4208/cicp.2009.v6.p848
https://doi.org/https://doi.org/10.1016/j.jcp.2013.01.050
https://doi.org/https://doi.org/10.1051/m2an:2007011
https://doi.org/https://doi.org/10.1051/m2an:2007011

BIBLIOGRAPHY 171

[153] D.J. Newman. Rational approximation to |x|. Mich. Math. J. 11 (1964), 11–14. doi:
https://doi.org/10.1307/mmj/1028999029.

[154] N.T. Nguyen and M. Dumbser. A path-conservative finite volume scheme for compressible
multi-phase flows with surface tension. Appl. Math. Comput. 271 (2015), 959–978. doi:
https://doi.org/10.1016/j.amc.2015.09.026.

[155] S. Noelle, N. Pankratz, G. Puppo, and J.R. Natvig. Well-balanced finite volume schemes
of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213(2) (2006),
474–499. doi: https://doi.org/10.1016/j.jcp.2005.08.019.

[156] NVIDIA. CUDA home page. http://www.nvidia.com/object/cuda home new.html.

[157] NVIDIA. CUDA toolkit documentation. https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html.

[158] S.A. Orszag and C.M. Tang. Small scale structure of two-dimensional magnetohydrody-
namic turbulence. J. Fluid Mech. 90 (1979), 129–143. doi: https://doi.org/10.1017/
S002211207900210X.

[159] S. Ortega. Esquemas de volúmenes finitos de alto orden: implementación en GPUs y
aplicación a la simulación de flujos geof́ısicos. PhD Thesis. Universidad de Málaga, 2016.
url: http://hdl.handle.net/10630/11946.

[160] C. Parés. Numerical methods for nonconservative hyperbolic systems: a theoretical
framework. SIAM J. Num. Anal. 44 (2006), 300–321. doi: https://doi.org/10.

1137/050628052.

[161] C. Parés and M.J. Castro. On the well-balance property of Roe’s method for noncon-
servative hyperbolic systems. Applications to shallow-water systems. ESAIM: M2AN 38
(2004), 821–852. doi: https://doi.org/10.1051/m2an:2004041.

[162] C. Parés and C. Parés-Pulido. Well-balanced high-order finite difference methods for
systems of balance laws. To appear (2020). url: https://arxiv.org/abs/2001.10074.

[163] K.G. Powell. An approximate Riemann solver for magnetohydrodynamics (that works in
more than one space dimension). Tech. rep. 94-24. ICASE, Hampton, VA, 1994. url:
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19940028527.pdf.

[164] K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, and D.L. De Zeeuw. A solution adaptive
upwind scheme for ideal MHD. J. Comput. Phys. 154 (1999), 284–309. doi: https:

//doi.org/10.1006/jcph.1999.6299.

[165] R. Käppeli R. and S. Mishra. Well-balanced schemes for gravitationally stratified
media. In: Numerical Modeling of Space Plasma Flows ASTRONUM-2014. Ed. by
N.V. Pogorelov, E. Audit, and G.P. Zank. Vol. 498. Astronomical Society of the Pacific
Conference Series. 2015, 210–215. url: http://hdl.handle.net/20.500.11850/96676.

[166] S. Rhebergen, O. Bokhove, and J.J.W. van der Vegt. Discontinuous Galerkin finite
element methods for hyperbolic nonconservative partial differential equations. J. Comput.
Phys. 227(3) (2008), 1887–1922. doi: https://doi.org/10.1016/j.jcp.2007.10.007.

https://doi.org/https://doi.org/10.1307/mmj/1028999029
https://doi.org/https://doi.org/10.1016/j.amc.2015.09.026
https://doi.org/https://doi.org/10.1016/j.jcp.2005.08.019
https://doi.org/https://doi.org/10.1017/S002211207900210X
https://doi.org/https://doi.org/10.1017/S002211207900210X
http://hdl.handle.net/10630/11946
https://doi.org/https://doi.org/10.1137/050628052
https://doi.org/https://doi.org/10.1137/050628052
https://doi.org/https://doi.org/10.1051/m2an:2004041
https://arxiv.org/abs/2001.10074
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19940028527.pdf
https://doi.org/https://doi.org/10.1006/jcph.1999.6299
https://doi.org/https://doi.org/10.1006/jcph.1999.6299
http://hdl.handle.net/20.500.11850/96676
https://doi.org/https://doi.org/10.1016/j.jcp.2007.10.007

BIBLIOGRAPHY 172

[167] M. Ricchiuto. Contributions to the development of residual discretizations for hyperbolic
conservation laws with application to shallow water flows. PhD Thesis. Université Sciences
et Technologies - Bordeaux I, 2011. url: https://tel.archives-ouvertes.fr/tel-
00651688v1.

[168] P.L. Roe. Approximate Riemann solvers, parameters vectors, and difference schemes. J.
Comput. Phys. 43 (1981), 357–372. doi: https://doi.org/10.1016/0021-9991(81)
90128-5.

[169] P.L. Roe. Multidimensional upwinding. In: Handbook of Numerical Analysis, vol. 18.
Ed. by Elsevier. Amsterdam, 2017, 53–80. doi: https://doi.org/10.1016/bs.hna.
2016.10.009.

[170] J.A. Rossmanith. An unstaggered, high-resolution constrained transport method for
magnetohydrodynamic flows. SIAM J. Sci. Comput. 28(5) (2006), 1766–1797. doi:
https://doi.org/10.1137/050627022.

[171] V.V. Rusanov. Calculation of interaction of non-steady shock waves with obstacles. USSR
Comput. Mathematcis and Math. Phys. 1(2) (1962), 304–320. doi: https://doi.org/
10.1016/0041-5553(62)90062-9.

[172] D. Ryu, F. Miniati, T.W. Jones, and A. Frank. A divergence-free upwind code for
multidimensional magnetohydrodynamic flows. The Astrophys. J. 509 (1998), 244–255.
doi: https://doi.org/10.1086/306481.

[173] M.L. Sætra. Shallow waters simulations on graphics hardware. PhD Thesis. University
of Oslo, 2014. url: http://urn.nb.no/URN:NBN:no-45020.

[174] C. Sánchez-Linares, M. de la Asunción, M.J. Castro, S. Mishra, and J. Šukys. Multi-level
Monte Carlo finite volume method for shallow water equations uncertain parameters
applied to landslides-generated tsunamis. Appl. Math. Model. 39 (23-24) (2015), 7211–
7226. doi: https://doi.org/10.1016/j.apm.2015.03.011.

[175] C. Sánchez-Linares, T. Morales de Luna, and M.J. Castro. A HLLC scheme for Ripa
model. Appl. Math. Comput. 272, Part 2 (2016), 369–384. doi: https://doi.org/10.
1016/j.amc.2015.05.137.

[176] J.B. Schijf and J.C. Schonfeld. Theoretical considerations on the motion of salt and
fresh water. In: Proceedings of the Minnesota International Hydraulics Convention, Joint
meeting International Association Hydraulic Research and Hydraulic Division American
Society Civil Engineer. 1953, 321–333. url: http://resolver.tudelft.nl/uuid:

5d1c2eb0-d51c-4b3c-ad77-a77513941c6c.

[177] K.A. Schneider and J.M. Gallardo. Efficient GPU implementation for high-order mul-
tidimensional incomplete Riemann solvers for hyperbolic nonconservative systems.
Applications to shallow water systems with topography and dry areas. In preparation
(2020).

[178] K.A. Schneider, J.M. Gallardo, D.S. Balsara, B. Nkonga, and C. Parés. Multidimensional
approximate Riemann solvers for hyperbolic nonconservative systems. Applications to
shallow water systems. J. Comput. Phys. In preparation (2020).

https://tel.archives-ouvertes.fr/tel-00651688v1
https://tel.archives-ouvertes.fr/tel-00651688v1
https://doi.org/https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/https://doi.org/10.1016/bs.hna.2016.10.009
https://doi.org/https://doi.org/10.1016/bs.hna.2016.10.009
https://doi.org/https://doi.org/10.1137/050627022
https://doi.org/https://doi.org/10.1016/0041-5553(62)90062-9
https://doi.org/https://doi.org/10.1016/0041-5553(62)90062-9
https://doi.org/https://doi.org/10.1086/306481
http://urn.nb.no/URN:NBN:no-45020
https://doi.org/https://doi.org/10.1016/j.apm.2015.03.011
https://doi.org/https://doi.org/10.1016/j.amc.2015.05.137
https://doi.org/https://doi.org/10.1016/j.amc.2015.05.137
http://resolver.tudelft.nl/uuid:5d1c2eb0-d51c-4b3c-ad77-a77513941c6c
http://resolver.tudelft.nl/uuid:5d1c2eb0-d51c-4b3c-ad77-a77513941c6c

BIBLIOGRAPHY 173

[179] A. Schroll and F. Svensson. A bi-hyperbolic finite volume method on quadrilateral meshes.
J. Sci. Comput. 26(2) (2006), 237–260. doi: https://doi.org/10.1007/s10915-004-
4927-9.

[180] C.W. Schulz-Rinne, J.P. Collins, and H.M. Glaz. Numerical solution of the Riemann
problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 14 (1993), 1394–1414.
doi: https://doi.org/10.1137/0914082.

[181] S. Serna. A charasteristic-based nonconvex entropy-fix upwind scheme for the ideal
magnetohydrodynamic equations. J. Comput. Phys. 228 (2009), 4232–4247. doi: https:
//doi.org/10.1016/j.jcp.2009.03.001.

[182] C.-W. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes
for hyperbolic conservation laws. In: Advanced numerical approximation of nonlinear
hyperbolic equations (Cetrao,1997), vol. 1697. Lecture Notes in Math. Ed. by Springer.
Berlin, 1998, 325–432. doi: https://doi.org/10.1007/bfb0096355.

[183] C.-W. Shu and S. Osher. Efficient implementation of essentially nonoscillatory shock-
capturing schemes. J. Comput. Phys. 77(2) (1988), 439–471. doi: https://doi.org/10.
1016/0021-9991(88)90177-5.

[184] C.-W. Shu and S. Osher. Efficient implementation of essentially nonoscillatory shock-
capturing schemes. II. J. Comput. Phys. 83(1) (1989), 32–78. doi: https://doi.org/
10.1016/0021-9991(89)90222-2.

[185] P.K. Sweby. High resolution schemes using flux limiters for hyperbolic conservation laws.
SIAM J. Numer. Anal. 21 (1984), 995–1011. url: https://www.jstor.org/stable/
2156939.

[186] H.-Z. Tang and K. Xu. A high-order gas-kinetic method for multidimensional ideal
magnetohydrodynamics. J. Comput. Phys. 165 (2000), 69–88. doi: https://doi.org/
10.1006/jcph.2000.6597.

[187] P. Tassi, O. Bokhove, and C. Vionnet. Space discontinuous Galerkin method for shallow
water flows - kinetic and HLLC flux, and potential vorticity generation. Adv. in Water
Resources 30 (2007), 998–1015. doi: https://doi.org/10.1016/j.advwatres.2006.
09.003.

[188] V.A. Titarev and E.F. Toro. ADER schemes for three-dimensional non-linear hyperbolic
systems. J. Comput. Phys. 204(2) (2005), 715–736. doi: https://doi.org/10.1016/j.
jcp.2004.10.028.

[189] E.F. Toro. MUSTA: A multi-stage numerical flux. Appl. Num. Math. 56(10-11) (2006),
1464–1479. doi: https://doi.org/10.1016/j.apnum.2006.03.022.

[190] E.F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. third ed.
Springer, 2009. doi: https://doi.org/10.1007/b79761.

[191] E.F. Toro and S.J. Billet. Centered TVD schemes for hyperbolic conservation laws. IMA
J. Numer. Anal. 20 (2000), 44–79. doi: https://doi.org/10.1093/imanum/20.1.47.

[192] E.F. Toro, M. Spruce, and W. Spears. Restoration of the contact surface in HLL-Riemann
solver. Shock Waves 4 (1994), 25–34. doi: https://doi.org/10.1007/BF01414629.

https://doi.org/https://doi.org/10.1007/s10915-004-4927-9
https://doi.org/https://doi.org/10.1007/s10915-004-4927-9
https://doi.org/https://doi.org/10.1137/0914082
https://doi.org/https://doi.org/10.1016/j.jcp.2009.03.001
https://doi.org/https://doi.org/10.1016/j.jcp.2009.03.001
https://doi.org/https://doi.org/10.1007/bfb0096355
https://doi.org/https://doi.org/10.1016/0021-9991(88)90177-5
https://doi.org/https://doi.org/10.1016/0021-9991(88)90177-5
https://doi.org/https://doi.org/10.1016/0021-9991(89)90222-2
https://doi.org/https://doi.org/10.1016/0021-9991(89)90222-2
https://www.jstor.org/stable/2156939
https://www.jstor.org/stable/2156939
https://doi.org/https://doi.org/10.1006/jcph.2000.6597
https://doi.org/https://doi.org/10.1006/jcph.2000.6597
https://doi.org/https://doi.org/10.1016/j.advwatres.2006.09.003
https://doi.org/https://doi.org/10.1016/j.advwatres.2006.09.003
https://doi.org/https://doi.org/10.1016/j.jcp.2004.10.028
https://doi.org/https://doi.org/10.1016/j.jcp.2004.10.028
https://doi.org/https://doi.org/10.1016/j.apnum.2006.03.022
https://doi.org/https://doi.org/10.1007/b79761
https://doi.org/https://doi.org/10.1093/imanum/20.1.47
https://doi.org/https://doi.org/10.1007/BF01414629

BIBLIOGRAPHY 174

[193] E.F. Toro and V.A. Titarev. MUSTA fluxes for systems of conservation laws. J. Comput.
Phys. 216(2) (2006), 403–429. doi: https://doi.org/10.1016/j.jcp.2005.12.012.

[194] M. Torrilhon. Locally divergence-preserving upwind finite volume schemes for magneto-
hydrodynamic equations. SIAM J. Sci, Comput. 26(4) (2005), 1166–1191. doi: https:
//doi.org/10.1137/S1064827503426401.

[195] M. Torrilhon. Krylov-Riemann solver for large hyperbolic systems of conservation laws.
SIAM J. Sci, Comput. 34(4) (2012), A2072–A2091. doi: https://doi.org/10.1137/
110840832.

[196] G. Tóth. The ∇ · B = 0 constraint in shock-capturing magnetohydrodynamics codes. J.
Comput. Phys. 161 (2000), 605–652. doi: https://doi.org/10.1006/jcph.2000.6519.

[197] I. Toumi. A weak formulation of Roe’s approximate Riemann solver. J. Comput. Phys.
102 (1992), 360–373. doi: https://doi.org/10.1016/0021-9991(92)90378-C.

[198] J.A. Trangestein. Numerical solution of hyperbolic partial differential equations. Cam-
bridge, 2009.

[199] P. Váchal, R. Liska, and B. Wendroff. Fully two dimensional HLLEC Riemann solver. In:
Proceedings of Czech-Japanese Seminar in Applied Mathematics. Prague, 2004, 195–206.
url: http://geraldine.fjfi.cvut.cz.

[200] B. Van Leer. Towards the ultimate conservative difference scheme. V. A second order
sequel to Godunov’s method. Computational Physics 32 (1979), 101–136. doi: https:
//doi.org/10.1016/0021-9991(79)90145-1.

[201] B. Van Leer. On the relation between the upwind-differencing schemes of Godunov,
Engquist-Osher and Roe. SIAM J. Sci. Statist. Comput. 5(1) (1984), 1–20. doi: https:
//doi.org/10.1137/0905001.

[202] M.E. Vázquez-Cendón. Solving hyperbolic equations with finite volume methods. Springer,
2015. doi: https://doi.org/10.1007/978-3-319-14784-0.

[203] J. Vides, B. Nkonga, and E. Audit. A simple two-dimensional extension of the HLL
Riemann solver for hyperbolic systems of conservation laws. J. Comput. Phys. 280 (2015),
643–675. doi: https://doi.org/10.1016/j.jcp.2014.10.013.

[204] A. I. Volpert. Spaces BV and quasilinear equations. Mat. Sb. (N.S.) 73 (115) (1967),
255–302. doi: https://doi.org/10.1070/SM1967v002n02ABEH002340.

[205] H. Wayland. Expansion of determinantial equations into polynomial form. Quarterly
Appl. Math. 2(4) (1945), 277–306. url: https://www.jstor.org/stable/43633470.

[206] B. Wendroff. A two-dimensional HLLE Riemann solver and associated Godunov type
difference scheme for gas dynamics. Comput. Math. Appl. 38 (1999), 175–185. doi: https:
//doi.org/10.1016/S0898-1221(99)00296-5.

[207] N. Wintermeyer, A.R. Winters, G.J. Gassner, and D.A. Kopriva. An entropy stable
nodal discontinuous Galerkin method for the two dimensional shallow water equations
on unstructured curvilinear meshes with discontinuity bathymetry. J. Comput. Phys. 340
(2017), 200–242. doi: https://doi.org/10.1016/j.jcp.2017.03.036.

https://doi.org/https://doi.org/10.1016/j.jcp.2005.12.012
https://doi.org/https://doi.org/10.1137/S1064827503426401
https://doi.org/https://doi.org/10.1137/S1064827503426401
https://doi.org/https://doi.org/10.1137/110840832
https://doi.org/https://doi.org/10.1137/110840832
https://doi.org/https://doi.org/10.1006/jcph.2000.6519
https://doi.org/https://doi.org/10.1016/0021-9991(92)90378-C
http://geraldine.fjfi.cvut.cz
https://doi.org/https://doi.org/10.1016/0021-9991(79)90145-1
https://doi.org/https://doi.org/10.1016/0021-9991(79)90145-1
https://doi.org/https://doi.org/10.1137/0905001
https://doi.org/https://doi.org/10.1137/0905001
https://doi.org/https://doi.org/10.1007/978-3-319-14784-0
https://doi.org/https://doi.org/10.1016/j.jcp.2014.10.013
https://doi.org/https://doi.org/10.1070/SM1967v002n02ABEH002340
https://www.jstor.org/stable/43633470
https://doi.org/https://doi.org/10.1016/S0898-1221(99)00296-5
https://doi.org/https://doi.org/10.1016/S0898-1221(99)00296-5
https://doi.org/https://doi.org/10.1016/j.jcp.2017.03.036

BIBLIOGRAPHY 175

[208] H.-C. Wong, U.-H. Wong, X. Feng, and Z. Tang. Efficient magnetohydrodynamic
simulations on graphics processing units with CUDA. Computer Phys. Commun. 182
(2011), 2132–2160. doi: https://doi.org/10.1016/j.cpc.2011.05.011.

[209] U.-H. Wong, H.-C. Wong, and Y. Ma. Global magnetohydrodynamic simulations on
multiple GPUs. Computer Phys. Commun. 185 (2014), 144–152. doi: https://doi.
org/10.1016/J.CPC.2013.08.027.

[210] Y. Xing and C.-W. Shu. High order well-balanced finite volume WENO schemes and
discontinuous Galerkin methods for a class of hyperbolic systems with source terms. J.
Comput. Phys. 214(2) (2006), 567–598. doi: https://doi.org/10.1016/j.jcp.2005.
10.005.

[211] M. Yagi, K. Seki, and Y. Matsumoto. Development of a magnetohydrodynamic simulation
code satisfying the solenoidal magnetic field condition. Computer Phys. Commun. 180
(2009), 1550–1557. doi: https://doi.org/10.1016/j.cpc.2009.04.010.

[212] A.L. Zachary, A. Malagoli, and P. Colella. A higher-oder Godunov method for multi-
dimensional magnetohydrodynamics. SIAM J. Sci. Comput. 15 (1994), 263–284. doi:
https://doi.org/10.1137/0915019.

[213] T. Zhang and Y. Zheng. Conjecture on the structure of solutions of the Riemann problem
for two-dimensional gas dynamics systems. SIAM J. Math. Anal. 21 (1990), 593–630. doi:
https://doi.org/10.1137/0521032.

[214] Y. Zheng. Systems of Conservation Laws: Two-dimensional Riemann problems. Vol. 38.
Progress in Nonlinear Differential Equations and their Applications. Birkhäuser, 2001.
doi: https://doi.org/10.1007/978-1-4612-0141-0.

[215] U. Ziegler. A central-constrained transport scheme for ideal magnetohydrodynamics. J.
Comput. Phys. 196 (2004), 393–416. doi: https://doi.org/10.1016/j.cpc.2003.11.
003.

https://doi.org/https://doi.org/10.1016/j.cpc.2011.05.011
https://doi.org/https://doi.org/10.1016/J.CPC.2013.08.027
https://doi.org/https://doi.org/10.1016/J.CPC.2013.08.027
https://doi.org/https://doi.org/10.1016/j.jcp.2005.10.005
https://doi.org/https://doi.org/10.1016/j.jcp.2005.10.005
https://doi.org/https://doi.org/10.1016/j.cpc.2009.04.010
https://doi.org/https://doi.org/10.1137/0915019
https://doi.org/https://doi.org/10.1137/0521032
https://doi.org/https://doi.org/10.1007/978-1-4612-0141-0
https://doi.org/https://doi.org/10.1016/j.cpc.2003.11.003
https://doi.org/https://doi.org/10.1016/j.cpc.2003.11.003

	List of figures
	Introduction
	Introduction (in Spanish)
	Hyperbolic systems and finite volume schemes
	Conservation laws
	Finite volume approximation
	Nonconservative systems
	Path-conservative schemes
	AVM-type solvers
	High-order methods: general framework
	MUSCL-Hancock procedure

	Governing equations
	Magnetohydrodynamic equations
	Shallow water equations: one-layer approximation
	Shallow water equations: two-layer approximation
	Well-balancing

	Multidimensional AVM-type solvers: the conservative case
	Preliminaries and four-waves model
	2D AVM-type solvers for conservation laws
	Numerical results
	First-order accuracy
	Orszag-Tang vortex
	The rotor problem
	Two-dimensional Riemann problem
	Spherical explosion

	Multidimensional AVM-type solvers: the nonconservative case
	General framework
	Well-Balanced 2D HLL Riemann solver
	Supersonic cases

	Well-Balanced 2D AVM-type Riemann solvers
	HLL 2D solver in AVM form
	Multidimensional AVM solvers
	Modified equation and linear stability
	Second-order schemes

	Numerical results
	Second-order accuracy
	C-property
	Applications to the one-layer shallow water system
	Circular dam-break
	Non-linear breaking waves

	Applications to the two-layer shallow water system
	Internal circular dam-break
	Evolution to a complex state

	Efficient GPU implementation
	Rewriting of the numerical schemes
	Improving efficiency of AVM schemes

	Parallelism sources
	Vertex-based calculations
	Edge-based calculations
	Volume-based calculations

	CUDA implementation
	Experimental results

	Conclusions and future work
	Conclusions
	Future work

	PVM-Chebyshev and RVM-Newman coefficients
	Full algorithm for the 2D HLL Riemann solver
	Full algorithm for 2D AVM-type formulation
	An efficient implementation of well-balanced PVM schemes
	Bibliography

