149 research outputs found

    Développement d'architectures HW/SW tolérantes aux fautes et auto-calibrantes pour les technologies Intégrées 3D

    Get PDF
    Malgré les avantages de l'intégration 3D, le test, le rendement et la fiabilité des Through-Silicon-Vias (TSVs) restent parmi les plus grands défis pour les systèmes 3D à base de Réseaux-sur-Puce (Network-on-Chip - NoC). Dans cette thèse, une stratégie de test hors-ligne a été proposé pour les interconnections TSV des liens inter-die des NoCs 3D. Pour le TSV Interconnect Built-In Self-Test (TSV-IBIST) on propose une nouvelle stratégie pour générer des vecteurs de test qui permet la détection des fautes structuraux (open et short) et paramétriques (fautes de délaye). Des stratégies de correction des fautes transitoires et permanents sur les TSV sont aussi proposées aux plusieurs niveaux d'abstraction: data link et network. Au niveau data link, des techniques qui utilisent des codes de correction (ECC) et retransmission sont utilisées pour protégé les liens verticales. Des codes de correction sont aussi utilisés pour la protection au niveau network. Les défauts de fabrication ou vieillissement des TSVs sont réparé au niveau data link avec des stratégies à base de redondance et sérialisation. Dans le réseau, les liens inter-die défaillante ne sont pas utilisables et un algorithme de routage tolérant aux fautes est proposé. On peut implémenter des techniques de tolérance aux fautes sur plusieurs niveaux. Les résultats ont montré qu'une stratégie multi-level atteint des très hauts niveaux de fiabilité avec un cout plus bas. Malheureusement, il n'y as pas une solution unique et chaque stratégie a ses avantages et limitations. C'est très difficile d'évaluer tôt dans le design flow les couts et l'impact sur la performance. Donc, une méthodologie d'exploration de la résilience aux fautes est proposée pour les NoC 3D mesh.3D technology promises energy-efficient heterogeneous integrated systems, which may open the way to thousands cores chips. Silicon dies containing processing elements are stacked and connected by vertical wires called Through-Silicon-Vias. In 3D chips, interconnecting an increasing number of processing elements requires a scalable high-performance interconnect solution: the 3D Network-on-Chip. Despite the advantages of 3D integration, testing, reliability and yield remain the major challenges for 3D NoC-based systems. In this thesis, the TSV interconnect test issue is addressed by an off-line Interconnect Built-In Self-Test (IBIST) strategy that detects both structural (i.e. opens, shorts) and parametric faults (i.e. delays and delay due to crosstalk). The IBIST circuitry implements a novel algorithm based on the aggressor-victim scenario and alleviates limitations of existing strategies. The proposed Kth-aggressor fault (KAF) model assumes that the aggressors of a victim TSV are neighboring wires within a distance given by the aggressor order K. Using this model, TSV interconnect tests of inter-die 3D NoC links may be performed for different aggressor order, reducing test times and circuitry complexity. In 3D NoCs, TSV permanent and transient faults can be mitigated at different abstraction levels. In this thesis, several error resilience schemes are proposed at data link and network levels. For transient faults, 3D NoC links can be protected using error correction codes (ECC) and retransmission schemes using error detection (Automatic Retransmission Query) and correction codes (i.e. Hybrid error correction and retransmission).For transients along a source-destination path, ECC codes can be implemented at network level (i.e. Network-level Forward Error Correction). Data link solutions also include TSV repair schemes for faults due to fabrication processes (i.e. TSV-Spare-and-Replace and Configurable Serial Links) and aging (i.e. Interconnect Built-In Self-Repair and Adaptive Serialization) defects. At network-level, the faulty inter-die links of 3D mesh NoCs are repaired by implementing a TSV fault-tolerant routing algorithm. Although single-level solutions can achieve the desired yield / reliability targets, error mitigation can be realized by a combination of approaches at several abstraction levels. To this end, multi-level error resilience strategies have been proposed. Experimental results show that there are cases where this multi-layer strategy pays-off both in terms of cost and performance. Unfortunately, one-fits-all solution does not exist, as each strategy has its advantages and limitations. For system designers, it is very difficult to assess early in the design stages the costs and the impact on performance of error resilience. Therefore, an error resilience exploration (ERX) methodology is proposed for 3D NoCs.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    On Fault Resilient Network-on-Chip for Many Core Systems

    Get PDF
    Rapid scaling of transistor gate sizes has increased the density of on-chip integration and paved the way for heterogeneous many-core systems-on-chip, significantly improving the speed of on-chip processing. The design of the interconnection network of these complex systems is a challenging one and the network-on-chip (NoC) is now the accepted scalable and bandwidth efficient interconnect for multi-processor systems on-chip (MPSoCs). However, the performance enhancements of technology scaling come at the cost of reliability as on-chip components particularly the network-on-chip become increasingly prone to faults. In this thesis, we focus on approaches to deal with the errors caused by such faults. The results of these approaches are obtained not only via time-consuming cycle-accurate simulations but also by analytical approaches, allowing for faster and accurate evaluations, especially for larger networks. Redundancy is the general approach to deal with faults, the mode of which varies according to the type of fault. For the NoC, there exists a classification of faults into transient, intermittent and permanent faults. Transient faults appear randomly for a few cycles and may be caused by the radiation of particles. Intermittent faults are similar to transient faults, however, differing in the fact that they occur repeatedly at the same location, eventually leading to a permanent fault. Permanent faults by definition are caused by wires and transistors being permanently short or open. Generally, spatial redundancy or the use of redundant components is used for dealing with permanent faults. Temporal redundancy deals with failures by re-execution or by retransmission of data while information redundancy adds redundant information to the data packets allowing for error detection and correction. Temporal and information redundancy methods are useful when dealing with transient and intermittent faults. In this dissertation, we begin with permanent faults in NoC in the form of faulty links and routers. Our approach for spatial redundancy adds redundant links in the diagonal direction to the standard rectangular mesh topology resulting in the hexagonal and octagonal NoCs. In addition to redundant links, adaptive routing must be used to bypass faulty components. We develop novel fault-tolerant deadlock-free adaptive routing algorithms for these topologies based on the turn model without the use of virtual channels. Our results show that the hexagonal and octagonal NoCs can tolerate all 2-router and 3-router faults, respectively, while the mesh has been shown to tolerate all 1-router faults. To simplify the restricted-turn selection process for achieving deadlock freedom, we devised an approach based on the channel dependency matrix instead of the state-of-the-art Duato's method of observing the channel dependency graph for cycles. The approach is general and can be used for the turn selection process for any regular topology. We further use algebraic manipulations of the channel dependency matrix to analytically assess the fault resilience of the adaptive routing algorithms when affected by permanent faults. We present and validate this method for the 2D mesh and hexagonal NoC topologies achieving very high accuracy with a maximum error of 1%. The approach is very general and allows for faster evaluations as compared to the generally used cycle-accurate simulations. In comparison, existing works usually assume a limited number of faults to be able to analytically assess the network reliability. We apply the approach to evaluate the fault resilience of larger NoCs demonstrating the usefulness of the approach especially compared to cycle-accurate simulations. Finally, we concentrate on temporal and information redundancy techniques to deal with transient and intermittent faults in the router resulting in the dropping and hence loss of packets. Temporal redundancy is applied in the form of ARQ and retransmission of lost packets. Information redundancy is applied by the generation and transmission of redundant linear combinations of packets known as random linear network coding. We develop an analytic model for flexible evaluation of these approaches to determine the network performance parameters such as residual error rates and increased network load. The analytic model allows to evaluate larger NoCs and different topologies and to investigate the advantage of network coding compared to uncoded transmissions. We further extend the work with a small insight to the problem of secure communication over the NoC. Assuming large heterogeneous MPSoCs with components from third parties, the communication is subject to active attacks in the form of packet modification and drops in the NoC routers. Devising approaches to resolve these issues, we again formulate analytic models for their flexible and accurate evaluations, with a maximum estimation error of 7%

    Reliability-aware and energy-efficient system level design for networks-on-chip

    Get PDF
    2015 Spring.Includes bibliographical references.With CMOS technology aggressively scaling into the ultra-deep sub-micron (UDSM) regime and application complexity growing rapidly in recent years, processors today are being driven to integrate multiple cores on a chip. Such chip multiprocessor (CMP) architectures offer unprecedented levels of computing performance for highly parallel emerging applications in the era of digital convergence. However, a major challenge facing the designers of these emerging multicore architectures is the increased likelihood of failure due to the rise in transient, permanent, and intermittent faults caused by a variety of factors that are becoming more and more prevalent with technology scaling. On-chip interconnect architectures are particularly susceptible to faults that can corrupt transmitted data or prevent it from reaching its destination. Reliability concerns in UDSM nodes have in part contributed to the shift from traditional bus-based communication fabrics to network-on-chip (NoC) architectures that provide better scalability, performance, and utilization than buses. In this thesis, to overcome potential faults in NoCs, my research began by exploring fault-tolerant routing algorithms. Under the constraint of deadlock freedom, we make use of the inherent redundancy in NoCs due to multiple paths between packet sources and sinks and propose different fault-tolerant routing schemes to achieve much better fault tolerance capabilities than possible with traditional routing schemes. The proposed schemes also use replication opportunistically to optimize the balance between energy overhead and arrival rate. As 3D integrated circuit (3D-IC) technology with wafer-to-wafer bonding has been recently proposed as a promising candidate for future CMPs, we also propose a fault-tolerant routing scheme for 3D NoCs which outperforms the existing popular routing schemes in terms of energy consumption, performance and reliability. To quantify reliability and provide different levels of intelligent protection, for the first time, we propose the network vulnerability factor (NVF) metric to characterize the vulnerability of NoC components to faults. NVF determines the probabilities that faults in NoC components manifest as errors in the final program output of the CMP system. With NVF aware partial protection for NoC components, almost 50% energy cost can be saved compared to the traditional approach of comprehensively protecting all NoC components. Lastly, we focus on the problem of fault-tolerant NoC design, that involves many NP-hard sub-problems such as core mapping, fault-tolerant routing, and fault-tolerant router configuration. We propose a novel design-time (RESYN) and a hybrid design and runtime (HEFT) synthesis framework to trade-off energy consumption and reliability in the NoC fabric at the system level for CMPs. Together, our research in fault-tolerant NoC routing, reliability modeling, and reliability aware NoC synthesis substantially enhances NoC reliability and energy-efficiency beyond what is possible with traditional approaches and state-of-the-art strategies from prior work

    Security of Electrical, Optical and Wireless On-Chip Interconnects: A Survey

    Full text link
    The advancement of manufacturing technologies has enabled the integration of more intellectual property (IP) cores on the same system-on-chip (SoC). Scalable and high throughput on-chip communication architecture has become a vital component in today's SoCs. Diverse technologies such as electrical, wireless, optical, and hybrid are available for on-chip communication with different architectures supporting them. Security of the on-chip communication is crucial because exploiting any vulnerability would be a goldmine for an attacker. In this survey, we provide a comprehensive review of threat models, attacks, and countermeasures over diverse on-chip communication technologies as well as sophisticated architectures.Comment: 41 pages, 24 figures, 4 table

    On Energy Efficient Computing Platforms

    Get PDF
    In accordance with the Moore's law, the increasing number of on-chip integrated transistors has enabled modern computing platforms with not only higher processing power but also more affordable prices. As a result, these platforms, including portable devices, work stations and data centres, are becoming an inevitable part of the human society. However, with the demand for portability and raising cost of power, energy efficiency has emerged to be a major concern for modern computing platforms. As the complexity of on-chip systems increases, Network-on-Chip (NoC) has been proved as an efficient communication architecture which can further improve system performances and scalability while reducing the design cost. Therefore, in this thesis, we study and propose energy optimization approaches based on NoC architecture, with special focuses on the following aspects. As the architectural trend of future computing platforms, 3D systems have many bene ts including higher integration density, smaller footprint, heterogeneous integration, etc. Moreover, 3D technology can signi cantly improve the network communication and effectively avoid long wirings, and therefore, provide higher system performance and energy efficiency. With the dynamic nature of on-chip communication in large scale NoC based systems, run-time system optimization is of crucial importance in order to achieve higher system reliability and essentially energy efficiency. In this thesis, we propose an agent based system design approach where agents are on-chip components which monitor and control system parameters such as supply voltage, operating frequency, etc. With this approach, we have analysed the implementation alternatives for dynamic voltage and frequency scaling and power gating techniques at different granularity, which reduce both dynamic and leakage energy consumption. Topologies, being one of the key factors for NoCs, are also explored for energy saving purpose. A Honeycomb NoC architecture is proposed in this thesis with turn-model based deadlock-free routing algorithms. Our analysis and simulation based evaluation show that Honeycomb NoCs outperform their Mesh based counterparts in terms of network cost, system performance as well as energy efficiency.Siirretty Doriast

    Side-Channel Protected MPSoC through Secure Real-Time Networks-on-Chip

    Get PDF
    The integration of Multi-Processors System-on-Chip (MPSoCs) into the Internet -of -Things (IoT) context brings new opportunities, but also represent risks. Tight real-time constraints and security requirements should be considered simultaneously when designing MPSoCs. Network-on-Chip (NoCs) are specially critical when meeting these two conflicting characteristics. For instance the NoC design has a huge influence in the security of the system. A vital threat to system security are so-called side-channel attacks based on the NoC communication observations. To this end, we propose a NoC security mechanism suitable for hard real-time systems, in which schedulability is a vital design requirement. We present three contributions. First, we show the impact of the NoC routing in the security of the system. Second, we propose a packet route randomisation mechanism to increase NoC resilience against side-channel attacks. Third, using an evolutionary optimisation approach, we effectively apply route randomisation while controlling its impact on hard real-time performance guarantees. Extensive experimental evidence based on analytical and simulation models supports our findings

    Fault-tolerant vertical link design for effective 3D stacking

    Full text link
    [EN] Recently, 3D stacking has been proposed to alleviate the memory bandwidth limitation arising in chip multiprocessors (CMPs). As the number of integrated cores in the chip increases the access to external memory becomes the bottleneck, thus demanding larger memory amounts inside the chip. The most accepted solution to implement vertical links between stacked dies is by using Through Silicon Vias (TSVs). However, TSVs are exposed to misalignment and random defects compromising the yield of the manufactured 3D chip. A common solution to this problem is by over-provisioning, thus impacting on area and cost. In this paper, we propose a fault-tolerant vertical link design. With its adoption, fault-tolerant vertical links can be implemented in a 3D chip design at low cost without the need of adding redundant TSVs (no over-provision). Preliminary results are very promising as the fault-tolerant vertical link design increases switch area only by 6.69% while the achieved interconnect yield tends to 100%.This work was supported by the Spanish MEC and MICINN, as well as European Comission FEDER funds, under Grants CSD2006-00046 and TIN2009-14475-C04. It was also partly supported by the project NaNoC (project label 248972) which is funded by the European Commission within the Research Programme FP7.Hernández Luz, C.; Roca Pérez, A.; Flich Cardo, J.; Silla Jiménez, F.; Duato Marín, JF. (2011). Fault-tolerant vertical link design for effective 3D stacking. IEEE Computer Architecture Letters. 10(2):41-44. https://doi.org/10.1109/L-CA.2011.17S414410
    • …
    corecore