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Abstract

Rapid scaling of transistor gate sizes has increased the density of on-chip integration and

paved the way for heterogeneous many-core systems-on-chip, significantly improving the

speed of on-chip processing. The design of the interconnection network of these complex

systems is a challenging one and the network-on-chip (NoC) is now the accepted scal-

able and bandwidth efficient interconnect for multi-processor systems on-chip (MPSoCs).

However, the performance enhancements of technology scaling come at the cost of relia-

bility as on-chip components particularly the network-on-chip become increasingly prone

to faults. In this thesis, we focus on approaches to deal with the errors caused by such

faults. The results of these approaches are obtained not only via time-consuming cycle-

accurate simulations but also by analytical approaches, allowing for faster and accurate

evaluations, especially for larger networks.

Redundancy is the general approach to deal with faults, the mode of which varies accord-

ing to the type of fault. For the NoC, there exists a classification of faults into transient,

intermittent and permanent faults. Transient faults appear randomly for a few cycles and

may be caused by the radiation of particles. Intermittent faults are similar to transient

faults, however, differing in the fact that they occur repeatedly at the same location, even-

tually leading to a permanent fault. Permanent faults by definition are caused by wires

and transistors being permanently short or open. Generally, spatial redundancy or the

use of redundant components is used for dealing with permanent faults. Temporal redun-

dancy deals with failures by re-execution or by retransmission of data while information

redundancy adds redundant information to the data packets allowing for error detection

and correction. Temporal and information redundancy methods are useful when dealing

with transient and intermittent faults.

In this dissertation, we begin with permanent faults in NoC in the form of faulty links

and routers. Our approach for spatial redundancy adds redundant links in the diagonal

direction to the standard rectangular mesh topology resulting in the hexagonal and oc-

tagonal NoCs. In addition to redundant links, adaptive routing must be used to bypass

faulty components. We develop novel fault-tolerant deadlock-free adaptive routing algo-

rithms for these topologies based on the turn model without the use of virtual channels.

Our results show that the hexagonal and octagonal NoCs can tolerate all 2-router and

3-router faults, respectively, while the mesh has been shown to tolerate all 1-router faults.

To simplify the restricted-turn selection process for achieving deadlock freedom, we de-

vised an approach based on the channel dependency matrix instead of the state-of-the-art

Duato’s method of observing the channel dependency graph for cycles. The approach is
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general and can be used for the turn selection process for any regular topology.

We further use algebraic manipulations of the channel dependency matrix to analytically

assess the fault resilience of the adaptive routing algorithms when affected by permanent

faults. We present and validate this method for the 2D mesh and hexagonal NoC topolo-

gies achieving very high accuracy with a maximum error of 1%. The approach is very

general and allows for faster evaluations as compared to the generally used cycle-accurate

simulations. In comparison, existing works usually assume a limited number of faults to

be able to analytically assess the network reliability. We apply the approach to evaluate

the fault resilience of larger NoCs demonstrating the usefulness of the approach especially

compared to cycle-accurate simulations.

Finally, we concentrate on temporal and information redundancy techniques to deal with

transient and intermittent faults in the router resulting in the dropping and hence loss

of packets. Temporal redundancy is applied in the form of ARQ and retransmission of

lost packets. Information redundancy is applied by the generation and transmission of

redundant linear combinations of packets known as random linear network coding. We

develop an analytic model for flexible evaluation of these approaches to determine the

network performance parameters such as residual error rates and increased network load.

The analytic model allows to evaluate larger NoCs and different topologies and to inves-

tigate the advantage of network coding compared to uncoded transmissions. We further

extend the work with a small insight to the problem of secure communication over the

NoC. Assuming large heterogeneous MPSoCs with components from third parties, the

communication is subject to active attacks in the form of packet modification and drops

in the NoC routers. Devising approaches to resolve these issues, we again formulate ana-

lytic models for their flexible and accurate evaluations, with a maximum estimation error

of 7%.
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Chapter 1

Introduction

The rising power consumption and reduced performance of single core processors has led

to the evolution towards multi-processor systems-on-chip (MPSoCs) [Bor07]. Network-on-

chip (NoC) has emerged as the dominant solution to the interconnect problem of complex

heterogeneous MPSoCs [DMB06] replacing previously used bus based systems. NoCs com-

prise a high bandwidth packet switched communication network composed of links and

routers, connected in any arbitrary topology and with arbitrary routing protocol. Flow

control digit or flit is the smallest transmission unit in the NoC. As with any commu-

nication network, the challenges are to provide high throughput and low latency as well

as providing secure and fault-tolerant communication. The aggressive scaling of transis-

tor gate sizes into the deep sub-micron (DSM) has increased the susceptibility of NoC

components to transient and permanent faults, making fault resilience a critical design

parameter [RFZJ13]. Transient faults occur randomly lasting for a few cycles only and

may be caused by radiation of neutrons and α-particles. Intermittent faults are similar to

transient faults occurring in bursts but usually at the same location and eventually leading

to a permanent fault. Permanent faults refer to physical shorts and opens in the tran-

sistors and wires and may be caused by electromigration and time dependent dielectric

breakdowns, processes which are accelerated by process variations.

Redundancy is the general approach to fault tolerance and there are different modes to

deal with different fault classes [RFZJ13]. Using redundant links and routers to tolerate

failing links and routers is called spatial redundancy. In addition, adaptive routing must

be used to be able to bypass faulty links and routers using redundant paths. Using packet

retransmission to deal with lost flits or in general the re-execution of a task can deal with

the loss of flits due to transient and intermittent errors and is termed temporal redundancy.

Finally, another redundancy involves sending redundant information to compensate for

flit loss or errors due to bit flips.

State-of-the-art (SOTA) works concentrate on the standard 2D mesh NoC topology, which

already provides redundant pathways for flit traversal and devise fault-tolerant routing

algorithms with/without the use of virtual channels [IY11, MDP13, VMPL10, FFH09,

1
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Wu03]. In this dissertation, we focus on fault-tolerant routing without the use of virtual

channels since they are costly in terms of on-chip area and power consumption. One of

the most important features of adaptive routing algorithms is that it should be deadlock

free. To prevent deadlock, we use the turn model [GN94], commonly used in many SOTA

works [Wu03, GN93, FDC+09]. However, the process of selecting the right combination

of prevented turns quickly becomes complicated when we consider topologies other than

the mesh such as the hexagonal (hex) and octagonal (oct) topologies which have multiple

turns and many possible deadlock cycles in comparison to the relatively simple mesh.

To simplify this process, instead of using the general approach of observing the channel

dependency graph (CDG)[Dua93, JTWB09], which can again be quite cumbersome, we

use powers of the channel dependency matrix (CDM) to obtain the reachability matrix.

Using a simple algorithm to loop over the possible prevented turns, we simplify this process

to achieve a set of adaptive routing algorithms for the hex and oct NoCs. The approach

is very general and can be used to develop adaptive routing algorithms for any regular

topology based on the turn model.

Evaluation of fault resilience of adaptive routing algorithms is done via cycle-accurate

simulations [MDP13, ZPG07, JTWB09], which can be quite time-consuming especially

for larger NoC sizes. To resolve this problem, we further use the algebraic manipulations of

the CDM to assess analytically the fault-resilience of the adaptive routing algorithms for

the mesh and hex topologies. Analytic assessment of fault-tolerant routing algorithms have

been tackled in previous works [VMS08, Val11]. However, in these works a small number

of failures is assumed which simplifies the reliability assessment problem considerably. In

our analytic assessment approach, we modeled the connectivity of nodes in the 2D mesh

and hex NoCs with in the presence of any number of faults and we assume the router has

only the knowledge of fault status of its immediate neighbors. The approach is general

and be easily adapted to other fault-tolerant routing algorithms.

Finally, we consider the loss of flits in the NoC due to transient and intermittent faults.

With rising fault rates in the DSM region, SOTA ARQ (Automatic Repeat Request) and

retransmission with/without Forward Error Correction (FEC) techniques used in works

such as [PNJ+06, MTV+05] are not sufficient anymore. Therefore we consider the use of

other approaches such as network coding.

Scope and Outline of this Work

The dissertation is structured as follows:

• In Chapter 2, we provide the general background on NoC such as interconnection

topology, routing, flow control etc. Moreover, a deeper introduction to faults and

fault tolerance in NoC is provided. These provide the necessary background for the

concepts introduced and investigated in the following chapters.
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• In Chapter 3, we investigate spatial redundancy via addition of redundant links

to the 2D rectangular mesh topology. We introduce and investigate deadlock-free

fault-adaptive routing algorithms for the hexagonal and octagonal topologies. An

approach based on matrix algebra of the CDM was used to efficiently generate the

different possible routing algorithms based the combinations of prevented turns to

avoid deadlock. The investigation of the resulting algorithms show the increase of

fault tolerance with spatial redundancy combined with adaptive routing.

• In Chapter 4, the CDM approach is further extended to analytically asses the net-

work connectivity in the presence of permanent faults. The approach is highly gen-

eral and provides highly accurate results (estimation error of approximate 1%) when

validated against cycle-accurate simulations. The approach was used to assess fault

resilience of adaptive routing algorithms for the mesh and hexagonal NoCs.

• In Chapter 5, temporal and information redundancy techniques were investigated to

compensate for transient flits loss in NoC routers. Fast and highly accurate analytic

models were introduced to deduce performance parameters such as residual error

rate and network load or gross traffic. The analytic model allowed the investigation

of larger NoCs of 1000 cores with relatively fast speed as well as investigation of

different topologies. Further, a brief investigation into security in the form of pro-

tecting NoC communication against active attacks is also provided in this chapter.

The results showed the benefit of network coding to increase throughput and ro-

bustness when faced with data modification and loss by malign routers in NoC. An

analytic model was further developed for faster and flexible evaluations.

• Chapter 6 provides a summary of the findings of the dissertation and look ahead

into future research possibilities.
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Chapter 2

Fundamentals of NoC

2.1 Network-on-chip Architecture

The main components of NoCs are the links, routers and network interfaces, as depicted in

Fig. 2.1. Links connect the processing elements (PE) or cores to each other via the routers.

One or multiple PEs maybe connected to a router via the Network-on-chip interface

(NoCIF). The NoCIF receives the data to be sent from the connected core and convert

them into the NoC packets flits after the addition of routing information such as the

source and target addresses. Flits or flow control digits are the smallest transmission unit

in the NoC. The flit is then sent to the router which then determines to which connected

router to forward the flit based on the implemented routing algorithm. In the following

sections, we describe in greater details the fundamental architecture and concepts of NoC.

2.1.1 Topology

The NoC topology determines how the routers, links and PEs are physically connected

to each other in the network and as such has a great effect on the NoC performance.

The topology dictates how many routers (or hops) must be crossed by a flit to reach a

destination, thereby affecting the average network latency and throughput. Since each

hop incurs energy consumption, topology affects the overall network energy consumption.

Importantly, topology decides the number of alternate paths between nodes affecting the

ability to use different paths to avoid network congestion or faults. Fig. 2.2 shows the

common NoC topologies, in addition to the 2D mesh shown in Fig.2.1.

Metrics for comparing topologies A number of factors are used to compare topologies,

which are described in the following according to [EJP09].

• Degree The degree defines the number of links at each router connecting it to its

neighbors. Looking at the common NoC topologies in Fig. 2.2, the ring has a degree

5
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Figure 2.1: A 3×3 mesh connected NoC illustrating its basic components.
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Figure 2.2: Common NoC topologies.

of 2 as it is connected to 2 neighbor routers whereas the torus with its wrap-around

links has a degree of 4. The 2D mesh or hexagonal NoC does not have a uniform

degree since not all its routers have the same degree. The routers at the corners of

the 2D mesh e.g. has a degree of 2 while the edge and center routers have a degree

of 3 and 4, respectively.

• Bisection bandwidth The bisection bandwidth is the bandwidth across a cut

through the middle of the network and provides an estimation of the cost of the

network.

• Hop count Hop count refers to the total number of links that are crossed by a

flit from the source to the destination. It provides a useful estimation of the latency
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when there is no congestion in the NoC.

• Maximum channel load This metric provides the maximum bandwidth sup-

ported by the NoC or the number of flits that can be injected by a node into the

NoC before the network saturates. We refer to this metric as the NoC acceptance

rate in later chapters such as in Chapter 3.

• Path diversity Path diversity is the number of alternate paths provided by the

network between a source and destination node pair. Although, diversity usually

refers to the minimum paths, we do not restrict our calculations to minimal paths

only since we focus on NoCs with faulty components so that even non-minimal paths

count toward the path diversity. A NoC with a higher path diversity is more robust

to faulty links and routers and is better able to balance traffic in the network.

2.1.2 Routing

Routing determines the path taken by the flit from the source to the destination and

aims to evenly spread out traffic between the available paths in order to reduce latency

and increase throughput. There are three main types of routing algorithms: deterministic,

oblivious and adaptive [EJP09]. With deterministic routing, the flit will always follow

the same path from the source to the destination. A popular example of deterministic

routing is dimension-ordered routing (DOR). With DOR, the flit travels to the destination

dimension by dimension traveling first along one dimension until reaching the ordinate

matching its destination before switching to the next dimension e.g. X-Y routing or the

diagonal-X-Y routing, depicted in Fig. 2.3.

R

R R

R R

R R R

R

Source

Destination

R

R R

R R

R

Source

Destination

R

R

R R

R

R

RR

(a) X Y routing in 2D mesh. (b) Diagonal X Y routing in 2D hexagonal NoC.

Figure 2.3: Dimension ordered routing in the 2D mesh and hexagonal topolo-

gies.

With oblivious routing, different routes are selected by the algorithm in traversing from

the source to the destination but network conditions such as faults or congestion is not
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taken into consideration. Valiant’s routing algorithm is an example of oblivious routing

in which the flit is first routed to a random intermediate node (via e.g. X-Y routing)

and then routed from there to destination, as illustrated in Fig.2.4. In contrast, adaptive

routing takes these into account when choosing between alternate routes to a destination.

Adaptive routing is discussed in greater detail in Sec. 2.1.2.2.

R

R R

R R

R

Source

Destination

R

R

R R R

R R R R

R

Intermediate

node

Figure 2.4: Valiant routing: an example of oblivious routing where an in-

termediate node is randomly selected and then the flit is routed from source

to intermediate node and from there to the destination using deterministic

routing.

The computation of the route to the destination can be decided entirely at the source,

called source routing or decided at each hop, known as distributive routing. In this thesis,

we always use distributed routing and limited forms of non-minimal routing in the case

of fault-tolerant routing.

2.1.2.1 Deadlock avoidance

NoCs use wormhole switching, in which a bigger packet is broken down into smaller flits

before being transported in a pipeline fashion along the route [NM93]. The first or header

flit determines the route, reserving the channels as it travels to the destination and the

remaining flits follow. The last or tail flit releases a channel as it passes each each channel,

so that it may be used by other packets, as depicted in Fig. 2.5. Wormhole switching has

the advantage that it requires only small FIFO (first-in-first-out) buffers to store the flits

at the intermediate routers. Moreover, once a route has been acquired by a packet, it does

not face any contention from other packets.

The disadvantage of wormhole switching is that it makes the routing algorithm particu-

larly prone to deadlock, a situation in which a set of packets may be blocked forever in
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Source Destination
PE

Router
flit

Figure 2.5: Wormhole switching of flits.

the network [NM93]. It occurs when packets holding channels are waiting to get access to

some other channels and the waiting-for and requesting happens in a closed cycle. Fig. 2.6

shows an example of a deadlock involving four packets 1, 2, 3 and 4 wanting to eventu-

ally reach routers B, A, C, and D respectively, but unable to do so since the channels

are in turn held and blocked by packets 2, 3, 4 and 1 respectively. The usual approach

to avoiding deadlock is via designing the routing algorithm so that this closed cycle of

dependencies are never allowed to occur [DYN03].

Packet 1         B

Progressing

packet

Packet waiting for

a free channel

Flit buffer

Arbitration unit

Packet 2         A

Packet 3         C

Packet 4         D

Packet 1

Packet 2

Packet 3

A

C

B

D

Packet 4

Figure 2.6: A deadlock involving packets 1, 2, 3 and 4.

2.1.2.2 Adaptive routing

As mentioned, adaptive routing takes into account network conditions such as congestion

and/or faults in making routing decisions from a source to a destination. Local or global

information of the network state can be used such as the buffer occupancy or fault state of

neighboring links/routers. Adaptive routing can be minimal or non-minimal. In minimal

routing, paths with the minimum hop count are adaptively selected to the destination

as shown in Fig. 2.7 whereas in non-minimal routing longer routes may be taken and
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is a more robust approach. However, with non-minimal routing there is a possibility of

livelock, in which the flit traverses the network without ever reaching the destination.

This is managed by the routing algorithm by ensuring a fixed number of mis-routing. The

most critical challenge of adaptive routing is avoiding deadlock and one of the common

approaches to avoid deadlock in adaptive routing is by using the turn model.

R

R R

R R

R R R

R

Source

Destination

Figure 2.7: Minimal adaptive routing.

Turn model Deadlock is created when due to routing a set of channels are requested

in a closed cycle. According to the turn model, a turn occurs when a flit traveling in a

certain direction is forwarded to a different direction and a closed cycle of turns can lead

to deadlock. In the 2D mesh, there are four turns possible in the clockwise (CW) and

counter-clockwise directions (CCW). X-Y routing allows only allows 2 of these turns i.e.

the turns from the X-direction to the Y-direction only 2.8(a). The turn model allows 3 of

these turns, preventing only one turn in each direction.

As a result, three different adaptive routing algorithms are possible in the 2D mesh, as

illustrated in Fig. 2.8(b). Considering that the north-to-west or NW turn is prevented in

the CCW direction, preventing the SW, NE or ES turns in the CW direction results in

adaptive routing algorithms called the West-First, North-Last or Negative-First adaptive

routing algorithms respectively. In West-first, all turns to the west are prohibited. Thus,

a packet must start out in that direction in order to travel west. In North-last, all turns

from the North are prohibited, so that a flit should only travel north when that is the last

direction it needs to travel. In Negative-first, all turns from a positive direction (+X or

+Y) to a negative direction are prohibited, so that a packet must start out in a negative

direction in order to travel in a negative direction. These are all partially adaptive routing

algorithms in the sense that the algorithm does not provide adaptive minimum routes for

all source-destination pairs. It is to be noted that preventing the NW and the the WN

turns will result in complex cycles and is this not a valid combination of turns.
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(a) X Y routing allows only 2 turns
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North(+Y)

South( Y)
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First

E S

W N

N W Counter
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N W

+

(b) Turn model prevents 1 turn in each direction.

Prohibited turn

Figure 2.8: The turns allowed in X-Y routing and in the turn model.

2.2 NoC Reliability Challenge

Delving into the deep submicron (DSM) has allowed a higher integration of cores on to

a single chip allowing massive parallelization of on-chip processing and thus significantly

improving performance. Unfortunately, with smaller transistor gate sizes the chip com-

ponents including the NoC becomes more susceptible to failures. Heat from high power

dissipation accelerates the aging process of NoCs. Moreover, there is a higher susceptibil-

ity to radiation and crosstalk effects [RFZJ13]. Thus, technology scaling has made NoC

reliability a serious concern for present and future technologies. According to [RFZJ13], a

common classification of NoC faults is into transient, intermittent and permanent faults.

• Transient faults appear randomly and last for a short period of time causing un-

expected changes to data in interconnects or in storage elements (e.g. SRAM and



12 2 Fundamentals of NoC

DRAM). They may be caused by crosstalk coupling between long wires or due to ra-

diation of neutron and alpha particles from impurities in electronic materials. Due to

their transient nature, the effect of these faults may be reversed with a re-execution

e.g. retransmission of a flit in the NoC.

• Intermittent faults are similar to transient faults, however they tend to appear re-

peatedly at the same location and occurring in bursts. Replacing the faulty elements

may remove the intermittent errors. They may be caused by electromagnetic inter-

ference and also depend on manufacturing variations. Unless removed, intermittent

faults may eventually lead to permanent faults.

• Permanent faults can be caused by transistors being permanently shortcut or open

or by delay faults resulting from imperfect manufacture and accelerated device

wearout from mechanisms such as electromigration, time-dependent dielectric break-

down etc.

The technique to deal with these faults depends on the class of fault which is described

in the next section.

2.2.1 Fault-tolerance techniques

Redundancy is the general approach to fault tolerance. The different forms of redun-

dancy [RFZJ13] and their application is described in greater detail in the following para-

graphs.

• Spatial redundancy is the use of redundant components to deal with the effect

of failing ones and is thus appropriate to deal with permanent faults. A popular

example is the use of triple modular redundancy (TMR) to have 3 identical copies

of a component executing the same function after which the results are compared to

find a majority. For the NoC, this might mean e.g. using 3 route computation logic

units to determine the route. More commonly, spatial redundancy translates into

the use of redundant links and routers and/or routes to deal with the permanent

failures of these components. Many topologies such as the 2D mesh inherently pro-

vides redundant routes for packet traversal; however, the routing algorithm must

be able to use these redundant pathways while taking into account the network

fault conditions i.e. it must be adaptive. Although, the network may provide many

redundant pathways, the use of many of these may be restricted in order to avoid

deadlock. Spatial redundancy, although effective for dealing with permanent faults,

entails an overhead in resources and there is often a trade-off in their use and the

advantage gained depending on the occurrence of faults.

Temporal redundancy is time-based redundancy and are best suited to deal with

transient and intermittent faults and means re-execution of the process to achieve
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a correct result. For the NoC, this could be e.g. used to deal with transiently failing

logic in the links and routers causing corruption or dropping of flits. Retransmission

of the lost or corrupted flit can resolve the error and has been used in NoC in works

such as [MTV+05][PNJ+06]. As shown in Fig. 2.9, when a transiently failing link

causes some of the transmitted flits (marked in green) to be lost and the receiver

becomes aware of this, an automatic repeat request or ARQ is issued by the receiver

to ask for a retransmission. Upon receiving the ARQ, the sender issues a retrans-

mission of the requested flit(s). The process of retransmission will be controlled by

mechanisms such as timers in case the ARQ or the retransmission is again lost and

the receiver must again issue a further ARQ. ARQ and retransmission can be issued

on a hop-by-hop basis between the NoC routers or on a end-to-end basis between

the sender and the receiver. As can be expected, the transmission of ARQs and

retransmissions increases the network traffic and their use must often be limited in

order to reduce the network load.

ARQ

Retransmission

Transmission

Sender Receiver

Flit loss

Figure 2.9: Issuing ARQ and retransmission to deal with the loss of a flit

due to a transiently failing NoC link.

Information redundancy is the use of redundant bits of information in the flit,

such as error detection and correction codes which can be used to recover the original

message in case a transient or intermittent error causes the corruption of the flit.

Common examples are the use of coding schemes such as single error correction

codes or forward error correction codes [DT07]. Information redundancy causes an

increase in area and power overhead e.g. due to the increase in flit size as well

greater processing and the use of the coding scheme must be traded off against the

gain obtained by their use. In Chapter 5 we investigate network coding (explained

in greater detail in Sec. 2.3)for NoC as an information redundancy approach to

overcome transient and intermittent errors in NoC.
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2.3 Introduction to Network Coding
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Figure 2.10: Butterfly network displaying the concept of network coding.

In this section we give a brief introduction to network coding as a form of information

redundancy, which will be used for overcoming transient and intermitent errors in NoC

in Chapter 5. Network coding is the notion of using coding at intermediate nodes in a

network [ACLY00][Yeu08]. In the scenario of multicasting information from a source node

to a specific group of destination nodes, the advantage of network coding over simple

forwarding is explained in the following example. Considering the network in Fig.2.10(a),

the source node s generates two messages b1 and b2 and wants to send them to two

destination nodes, t1 and t2. If only routing is allowed, then the central link between node

3 and node 4, would be able to carry only one of the messages but not both. Hence, simple

routing would be insufficient since it cannot simultaneously transmit both messages to

both destination. Here, if network coding is done, as shown in Fig.2.10(b), both b1 and

b2 are multicast to t1 and t2 by doing a modulo 2 addition of at node 3 (b1 + b2) and

forwarded to the destinations. At node t1, b1 is received and b2 can be recovered by the

modulo2 addition of b1 and b1 + b2. Similarly b2 is received at t2 and b1 can be recovered

so that in total smaller number of transmissions are needed, thereby increasing system

throughput.

The advantage of network coding for unicast can be observed in the simple example of

Fig.2.11 [LL04]. Here, there is only one path connecting s1 to t1 via s1 → 1 → 2 → t1

and there is only one oath connecting s2 to t2 via s2 → 1 → 2 → t2. These paths

share the link 1 → 2 with a unit link capacity bound and without coding, simple routing

would break this bound.

Another advantage gained from network coding is robustness in a lossy environment with

packet loss. Here, an FEC can be used at the source to combat the packet. However,

with intermediate coding the rate of packets received would be greater than with source

coding. For communication security, network coding can be both advantageous. Taking
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Figure 2.11: Network Coded unicast communications in a directed network.

our previous example of Fig. 2.10, an eavesdropper has greater difficulty getting the

information when he receives only b1 ⊕ b2. On the other hand, a malicious node could

alter the contents of b1 ⊕ b2 thus sending out false information over the network.

2.3.1 Random Linear Network Coding

In Random Linear Network Coding (RLNC), the sender nodes first organize data packets

xi into matrices (generations) of size g and sends out a linear combination of the g input

packets using randomly chosen coefficients from a finite field[HKM+03] so that the output

packets, known as combinations are yi =
∑g

j=1 Gt,i × xj:
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where Gt is known as the global encoding vector (GEV) and the receiver can recover the

original data packets as long as the matrix Gt has rank g. Chou et al. introduced a prac-

tical implementation of this approach that allows for a decentralized solution [CWJ03],

where no knowledge of network topology or the encoding and decoding schemes is neces-

sary. This is accomplished by including the GEV within each packet by prepending each

packet xi with the ith unit vector, so that by multiplication with Gt, GEV is included

within each combination:

Gt ×
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The receiver can decode the received combinations using the GEV, only he must wait to

receive g number of packets. For the receiver to distinguish which packets belong to a

generation, each combination of the same generation must be tagged with a generation
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identifier. In a lossy environment, if a packet is lost, the receiver may not have ’G’ number

of packets for decoding. To combat this situation, redundant combinations are sent to

the receiver so that if he can receive at least G combinations, he can still decode the

generation. This is the form of RLNC with redundant combinations that we will focus

on in Chap. 5. Thus with RLNC there is information redundancy within each packet and

within a generation in the form of redundant combinations.

2.3.2 Introduction to NoC Security

In this section, we give a short introduction to concepts in information security, which

is a part of our investigations in Chapter 5. Keeping information secure has become an

integral and necessary part of our our daily life. Our activities involve using computers

for simple everyday tasks as buying goods online or checking our bank balances online

or using our smart phones to check our emails, keeping track of our health activities etc.

It is only natural that we would want to prevent unauthorized access or modification

to our information. The three fundamental concepts of security are confidentiality, in-

tegrity and availability [And11]. Confidentiality means keeping information secure from

unauthorized access whereas integrity is the ability of preventing data being modified or

even deleted in an undesirable manner. The final requirement of security i.e. availability

refers to the ability to access stored information by authorized users and applications. The

three goals of security can be threatened by attacks. Snooping or eavesdropping threaten

confidentiality while any form of modification, replaying or masquerading threatens the

integrity of data. Denial of service attacks by e.g. by flooding the network with redundant

messages can affect availability by interrupting and slowing down the system. Security

measures must be able to protect data by preventing these attacks.

Encryption Decryption 

Secret 

Key

Plaintext Ciphertext
Original 

plaintext

Figure 2.12: Symmetric key encryption and decryption.

Encryption is the process of encoding information called plain text so that it cannot be

understood by any interceptor and thus provided confidentiality. Decryption is the reverse

process. The encryption and decryption algorithm may involve a shared secret key between

the sender and receiver and is called symmetric encryption, shown in Fig.2.12. Examples

of symmetric ciphers are the DES(Data Encryption Standard) and AES(Advanced En-

cryption Standard) algorithms. Message authentication provided the guarantee of message

integrity i.e. it has not been modified. For this a message authentication code (MAC) is

generated using a symmetric key cryptographic algorithm at the sender and used to tag
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the message. The receiver runs the same cryptographic algorithm and then checks its gen-

erated MAC against the received MAC to ensure that the message has not been modified

by a third party, as depicted in Fig.2.13.

Message MAC

Algorithm

Secret Key

Message

MAC

MAC

Algorithm
MAC

Equal?

Sender Receiver

Figure 2.13: Message authentication by MAC check.

2.4 Conclusion

In this chapter, we have gone through the fundamental concepts of NoC including its

architecture and basic working concepts in order to lay a foundation for our investigations

in the next chapters. In summary we can conclude the following points:

• NoC is a highly scalable and bandwidth efficient network for MPSoCs providing a

solution to the interconnect problem. Topology, routing, fault resilience are some of

the challenges of NoC design.

• Adaptive routing is an important concept for NoC which allows for dynamically

coping with network conditions such as faults and congestion. However, wormhole

switching makes adaptive routing prone to deadlock and so design of adaptive rout-

ing algorithms must be done carefully to avoid deadlock.

• Technology scaling has significantly increased the density of on-chip integrations

and enhanced the performance of MPSoCs but has also increased its susceptibility

to faults. For the NoC, there are different classes of faults according to their dura-

tion: transient, intermittent and permanent. Different fault tolerance techniques are

necessary to deal with each class of fault.

• Network coding is an information redundancy technique to increase robustness and

efficiency of NoC communication.
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Chapter 3

Spatial Redundancy and

Fault-tolerant Routing

3.1 Introduction

In this chapter, we concentrate on permanent failures of NoC components and using spatial

redundancy i.e. usage of redundant components such as extra links and routers to tolerate

these faults, explained in Sec: 2.2.1. According to [Bar64], redundancy level is a measure

of the network connectivity since it leads to a greater path diversity. Baran [Bar64] defines

redundancy as the link-to-node ratio in network of infinite size. The most commonly used

NoC topology is the rectangular 2D mesh NoC and this already provides redundant path

ways for the flit traversal. We add further redundant links along one diagonal direction to

create the hexagonal (hex) NoC [MF16] and along both diagonal directions to create the

octagonal (oct) NoC, as shown in Fig. 3.1. Our goal is find out increased path diversity

for the hex and oct NoCs. Depending on how the redundant links are connected, different

topologies can result, as shown in Fig. 3.2. However, we limit our analysis to the hexagonal

and octagonal NoCs only.

60
0

(a) Mesh topology 

with diagonal link.

(b) Hexagonal 

topology.

(c) Octagonal 

topology.

Figure 3.1: NoC topologies created by addition of diagonal links to the mesh

topology.
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In addition to the redundant links (approximately 50% for the Hex and 100% for the

Oct), adaptive routing must be used in order to by-pass faulty components. Routing in

NoC involves using wormhole switching (described in 2.1.2.1) in which several flits make

up a packet and the first or the header flit determines the path, reserving the channels as

it progresses forward. The remaining flits follow the header in a pipeline manner and the

tail (last) flit releases the channels. The advantage gained is reduced latency as well as

reduced buffer sizes[NM93] but the disadvantage is a greater susceptibility to deadlock.

Thus we must first develop deadlock-free fault-tolerant routing algorithms for the hex and

oct NoC in order to investigate the reliability of these topologies, which are described in

the following sections.However, before proceeding to fault-tolerant routing, we first look

to reconfigurable routing as an initial approach to reconfigure routes around faults in the

NoC as a way to achieve fault resilience.

R=3

R’=3

R=4

R’=4

=

Figure 3.2: Different link redundancies in NoC.

3.2 Reconfigurable routing

3.2.1 Introduction

In this section, we describe a flexible router architecture that allows a central managing

core to access any router configuration register or any router state register. It also allows

to reconfigure these registers as necessary, as for example to program the routing table

of the router, allowing to flexibly change the routing. There could be many reasons for
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requiring to change the NoC communication scheme after design and manufacture. One

example is due to the mapping of applications on to the NoC, which has an effect on

the throughput and latency of the system. The efficient mapping is a challenging task

which has been tackled in many works [MCRG06, HM05]. In some of of these works,

it has also been argued that the same NoC architecture may be used for multiple-use

cases [HM05], which may not be possible to check all at design time. In such cases, it

may happen that the mapping and communication via the NoC with the existing routing

scheme may not be the optimal one. In such a scenario, it is highly advantageous if

the routing of the flits across the NoC can be reconfigured dynamically to better suit

the application traffic scenario. Moreover, with continuous technology scaling and with

new innovative technologies try to tackle the end of Moore’s law [cfa17], the technologies

are getting more error-prone, showing also new types of errors and thus require special

algorithms and architectures to provide stable and reliable systems [RFZJ13]. For this

purpose, we need to include resiliency mechanisms on both sides: the processing and the

communication. While adaptive routing is usually followed in such a faulty NoC scenario,

this may incur hardware overhead if the fault rate is low. Deterministic routing is simple

and less costly and will often provide the most optimal performance. Having routers

with reconfigurable routing, it is possible to flexibly change the routing scheme to avoid

permanent or intermittent faults in the NoC links and routers.

3.2.2 Related Works on reconfigurable router architecture

The concept for reconfigurable NoC for MPSoCs has gained popularity and been inves-

tigated for the advantages of possible reduction of design time and flexible changing of

characteristics with changing applications. Authors in [DPCD09] have presented R2NoC,

a fat-tree based NoC comprised of dynamically reconfigurable routers, which are defined as

partially reconfigurable regions where dynamic communication links are implemented. In

[KdlTR10], a reconfigurable communication approach called DRNoC is presented. Their

work focuses on solutions oriented to reconfigurable systems based on FPGAs and allows

to define a broad set of communication strategies, point to point and point to mulitpoint.

In [CMC14], authors present DyAFNoC (dynamic automatic flexible direction order rout-

ing or FDOR based NoC). They adopt a logic-based implementation of FDOR to automat-

ically adapt the routing of packets to new context topologies. Therein each router receives

a signal to determine which routing mechanism is used (XY or YX) and is based on imple-

mentation of the two non overlapping routing algorithms. Bahrebar et. al. [BS16] present

a routing algorithm based on the Abacus Turn Model, in which healthy parts of a 2D mesh

NoC can be dynamically reconfigured according to the location of faults and congestion in

the network, without the use of virtual channels or routing tables. In [FDC+09], authors

present a highly resilient routing algorithm for 2D mesh and torus NoCs by reconfiguring

the NoC to avoid faulty components. The routers area table-based and consist of entries

for all destinations of the network. The algorithms consits of multiple iterations in which
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routers communicate each other via flags to update entries in the tables to avoid faulty

components. Another work based on updating table entries between routers is presented

in [SZBR07], where the authors present a mechanism to exchange information between

network switches, which is derived from distance-vector routing. During initialization, all

switches build up a routing table of the entire NoC and each switch send information to

neighboring routers containing its own address and the number of hops to destination to

its neighbors. Authors in [FLJ+13], present a buffer-less fault-tolerant router to address

transient and permanent faults in NoC. They also use router tables, which are however,

reduced in size in comparison to the work in [SZBR07]. Also in contrast to [SZBR07],

which require additional packets to update the routing table, the work [FLJ+13] in the

information is transmitted with hard wires. Our approach is different from previous works

in that we design the router not only for programmable routing but also getting access to

and reconfiguring, if necessary other registers in the NoC routers. This allows us to have

an insight into the processes inside a NoC/router implemented on a chip.

3.2.3 System Model

Before we proceed to the details of the reconfigurable router, it is essential to get some

background about the underlying multi-processor programming model that is assumed in

this work. An overview of the programming model is depicted in Figure 3.3. We assume a

central unit (Core Manager), which is responsible for the task scheduling, i.e. distributing

the tasks onto the PEs [AMN+14]. When a task is scheduled for a certain PE, a local

direct memory access (DMA) controller transfers the program and input data from the

global memory into the local PE memory. After the task execution has been finished, the

result is either transferred back to the global memory or remains in the local memory

as input for the next scheduled task to exploit data locality [N+14]. Furthermore, the

result may directly be transferred to a different PE via DMA to realize a pipeline type

of processing. Finally, it shall be possible to share the local memory of adjacent PEs

(memory stealing) to dynamically scale the memory size as required or realize some kind

of shared memory task communication model [H+17]. For this purpose, it is required to

reserve the connecting link as a dedicated resource. This is just one application aspect

where the configurable router, described in Sec. 3.2 comes into play.

Routers in NoC generally use distributed routing, i.e. the decision of routing is taken

in each router along the route from the source to the destination, in contrast to source

routing, in which the entire path is specified at the source. The routing algorithm inside

the router decides the path of the flit from the source to the destination. The routing

algorithm can be deterministic or adaptive and can be implemented as combinational

logic or as decision tables (look-up table or LUT) inside the router [EJP09], in which

an output port is given for each destination from the current router. The advantage of

distributed routing is that it allows for adaptivity in routing according to the network

conditions such as to avoid congestion or to bypass faulty links/routers.
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Figure 3.3: Overview of the underlying programming model

The advantage of using router tables is that they can be changed dynamically during run-

time after design and production. The downside, however, is the problem of scalability.

For larger NoCs, the tables can become very big and therefore consume a lot of area and

power at each router. To prevent this problem, we have router tables that are configured

as region based similar to the approach proposed in [FMLD07]. In our case, for simplicity

the regions are defined for the 8 possible destination directions i.e. to the N, NE, E, SE,

S, SW, W and NE directions. However, this is an assumption on our part and the number

and size of regions can be varied in many ways. Considering a center router, there are 4

possible output ports for the mesh and 6 possible output ports for the hexagonal NoC,

resulting in table sizes of 4 × 8 or 32 bits and 6 × 8 or 48 bits respectively. The tables are

implemented as register arrays. An example of the table for the case of dimension ordered

diagonal-x-y routing 2.1.2 over the hexagonal NoC is shown in Fig. 3.4. As can be seen

here, each output port is used to reach destinations in a specific direction. If, for example,

for a flit arriving at router 10, the destination is to the South East or East of the current

router, the flit will be forwarded to the east output port, OE(Fig. 3.4(b)) .

3.2.4 Reconfigurable Router Architecture

In our reconfigurable router, in addition to the existing link and routing logic, a small

dummy module called the router module has been added. This module allows the flexible

access to any registers inside the router such as the router LUT. The router module has

an ID like any other PE in the NoC and can receive and send flits in response to requests.
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Figure 3.4: Destination regions for 4x4 2D hexagonal NoC and corresponding

router LUT for router 10, showing which output port is used for flits destined

for the different regions.

It receives the reconfiguration flits and makes the corresponding changes to the specified

register of the router. Only the central core manager is allowed to be able to access the

router registers. This is controlled by a special register called the mask register inside

the router module, where the ID of the controlling core is stored. At the boot up of the

chip, the core manager sets this mask_id to its ID. Hence forth, only the core manager

can access the router LUTs for reading or rewriting. This feature is necessary for security
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Figure 3.5: Schematic diagram of the programmable router

reasons so that any module cannot change the router LUTs.

Normal flits of the NoC are used to read or write specific registers of the router via the

router module. Like any other node or module of the NoC, the router module of each

router also has an ID but with the same address as the router itself, so that whenever

the core manager sends a configuration flit to the NoC router, the ID of the target router

module is specified. The payload of the flit also has three fields: the ’mode’, the ‘address’

and the data. Normally, the address field is used to indicate the address of the memory

where a read or write action will be performed. The mode field is used to indicate the

type of flit e.g. whether the flit is a read-request from memory or a write to the specified

address. For flits sent to the router module, the mode field is used to specify whether a

read or write is requested of a certain register in the router. The address field is used

to indicate which register should be read or modified. For example, it is possible to read

or modify the LUT of all the input ports of the router or that of a certain input port.

When a register should be modified such as the router LUT, the value of the LUT in bit

serialized form is sent in the data part of the flit. The data field of the payload has 64

bits and so the maximum routing table size of 48 or 32 bits can be easily fitted into this

field. However, if the size of the routing table is larger than the length of the data field,

it is easily possible to divide it over multiple flits and send them subsequently one after

another.

Examples of flit structures to read and and write a specified LUT of a router are shown

in Fig. 3.6. In ths case, it is the centre router and reconfigurable flit either contains the

new LUT or in read-mode request to read the LUT at certain input port. As response

to the read request, the router module sends the response flit with the requested LUT in
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0x04 0x00 0x00 0x81 0x20 0x18 0x04 0x020x10Mode write: …

address data

Write LUT of North

input port of router

0x04 0x00 0x00 0x00 0x00 0x00 0x00 0x000x00Mode read request: …

Read LUT of North

input port of router

Serialized LUT from Fig. 2 (each hexadecimal

value representing a single table row)

N

0x0
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0
x
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0x4

W 0
x
6Address mapping:

95 88 63 48 0

Note: Address mapping is just a sample

and must be adapted accordingly

Serialized LUT from Fig. 3.4(b), each hexadecimal

value represents a single column corresponding to

an output port, starting from ON.

0x0

0x0

0x020x040x180x200x400x810x000x00

0x000x000x000x000x000x000x000x00

Mode read

request:

Mode write

posted:

Address mapping:

Figure 3.6: Examples of flits for reading and writing to the router LUT

the data field. In this way, the core manager is able to read or write any or all LUTs of a

router. In addition to the router LUT, the core manager can similarly access registers such

as counters which record the number of flits that have arrived through each input port of

the router. Similarly, the counter registers can also count up the number of flit CRC fails

for a certain input port. Thus, via reading these register values, the core manager can

determine the link usages of links of the NoC or the number of packet losses due transient

errors in the NoC.

3.2.4.1 Synthesis results

Our routers were tested in Cadence simulator where the core manage successfully recon-

figures the router LUTs. As also mentioned, the router was integrated into a 7-router

hexagonal NoC, fabricated in Globalfoundries 28 nm SLP CMOS technology shown in

schematic diagram (Fig.3.7(a)) with die photo (Fig.3.7(b)) and presented in [H+17].

Tests on the router have confirmed the router programmability function. The reconfig-

urability function has also been successfully implemented into the routers of the MPSoC

Kachel, to be taped out in May 2018 and consisting of 4 processing modules as wells as

chip-to-chip links. A 3D off-chip NoC topology connects chips in a tiled chip architecture.

The LUT inside these routers is greater than 64 bits due to the 3D routing function so

that the entire LUT cannot be fitted into the data field of a flit. Thus, it requires a burst
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Figure 3.7: Schematic diagram and die photo of Tomahawk4 MPSoC showing

hexagonal NoC with programmable routers.

transfer of 2 flits to reconfigure the full LUT. A schematic diagram of the off-chip network

of Kachel and the die photo of Kachel MPSoC is shown in Fig. 3.8

The area and achievable frequency results from synthesis of the router, at different loca-

tions of the NoC, is given in Tab. 3.1. Moreover, the component-wise area distribution of

the center router (having 6 links to adjacent routers and 2 further links to the local PE

and the router module respectively) is shown in Fig. 3.9. As can be seen, the additional

are of the reconfigurable logic (including the nocif) in comparison to the basic router logic

is very small (5% of total area when routing logic is 26% of total area). The area of any

router is usually dominated by the input/output fifo buffers. The router link input/output

buffers are 8 flits deep with a flits depth of 160 bits. In this case, the NoC link buffers

and the buffer between the router module and the nocif consumes 69% of the total area.

The routers are able to achieve more than 500 MHz frequency (when synthesized either

with 28nm Global Foundries or with 65nm CMOS TSMC technologies). Thus, showing
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Figure 3.8: 3D mesh off-chip network of Kachel chips with internal NoC

consisting of programmable routers.

that even with the addition of the programmibility logic, the NoC is able to achieve high

frequencies.

Table 3.1: Area and frequency results of the programmable router

Router Area (µm2) Frequency (MHz)

Combinational Register

Center (6+2) 21152.8 30845.8 518

Corner(3+2) 10674.8 18958.7 518
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Figure 3.9: Area distributions of the centre router of a Hex NoC

3.2.5 Application Scenario- Traffic rerouting for fault resilience

and link reservation

The notion of reserving links for communication between PEs is useful in our MPSoC

scenario to access the memory of adjacent PEs, dubbed as ’memory stealing’. As on-chip

memory is always the bottleneck for many applications, memory stealing helps to alleviate

the performance of such applications. Moreover, after design and production, a link may

fail in the MPSoC. Thus, links may become unavailable due to (temporary) reservation

or due to permanent failure, as depicted in Fig. 3.10. In theses, cases to keep the NoC

function, the unavailable links should be by-passed by the traffic. In this example, initially

X-Y routing (Fig. 3.10(a)). When the east output port of router 5 becomes unavailable,

the south output port is used to reach destinations to the East, NorthEast, South and

SouthEast (Fig. 3.10(b)).

In order to demonstrate the benefit of the routing scheme in a generic application scenario,

we chose a more abstract simulation model using Matlab. Therein, we considered a 8×8

mesh NoC with faulty links. We assume that the router has some method implemented

to detect failures in its links and then inform the core manager (located at middle of

the network), which will then change the router LUTs accordingly. All links of the router

connected to the core manager were considered fault-free. By injecting different number of

faults over all possible random locations, we obtained the average successful connectivity

between nodes, denoted as reliability. The opposite of reliability i.e. 1-reliability is the

residual error rate which denotes the percentage of node pairs which were unconnected

due to the link faults.

The results show that at any location of a single unavailable link, with XY routing the NoC

error rate becomes 3%, while with reconfigured routing, it is 0%. Similarly, with 3 (1%)
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unavailable links, the residual error rate of XY routing is 7% whereas with reconfigured

routing, it is 1%, as shown in Fig. 3.11. This clearly shows the advantage of reconfigurable

routing as opposed to XY routing. However, with high rate of faults, it may happen that

the managing core is longer able to reach certain router in order to reconfigure their LUTs

so that in this scenario reliability will fall.

3.3 Fault-tolerant routing in NoC

Fault tolerance of networks to permanently faulty components, both off-chip and on-chip

has been a topic of intense research over the last few years[MDPT12, JTWB09, FDC+09,

PLB+04]. A great portion of these works are based on adaptive routing techniques to

route around faults and many of these are based on the turn model [GN94], which give

a methodology on how to design adaptive routing algorithms for wormhole switched net-

works. In [GN93], fault-tolerant version of the Negative-First Routing algorithm for the

2D mesh is presented and it is shown that the algorithm can tolerant any one faulty

router. Authors in [IY11] extend this work to tolerate any one faulty link or router. An-

other work which considers the turn model approach for 2D meshes is [Wu03], in which

a fault-tolerant and deadlock free routing protocol based on the odd-even turn model is

presented. The faults are contained in a disjointed rectangular sets called faulty blocks

comprising both faulty as well as disabled healthy nodes. Authors in [FFH09] propose

a fault-tolerant routing algorithm which is deadlock-free and able to achieve a higher

throughput with less number of deactivated nodes. All of the above approaches do not

require the use of virtual channels. The approach of sacrificing healthy nodes to route

around fault regions containing both healthy and faulty nodes is considered in many

works, such as in [BC95][F+09].

Another approach to designing fault tolerant routing algorithms considers the use of vir-

tual channels as in [MDPT12][MDP13], where two virtual channels are needed to tolerate

all one and two fault links and all one faulty routers, respectively while keeping the net-

work performance optimal by providing alternate minimal routes for the packet traversal.

Instead of using adaptive routing, authors in [FDC+09] reconfigure the routing algorithm

in the case of link failures. Authors in [FLJ+10] propose an algorithm that reconfigures

the routing table through reinforcement learning and their approach is applicable to any

topology and not dependent on the shape of the fault region. In [LHLM15], authors

present a low-cost fault tolerant routing algorithm for efficient routing path selection us-

ing traffic status of the NoC. Although all of the above mentioned works consider mesh

topology, which is the commonly used NoC topology, other topologies such as the torus

and the hexagonal mesh have also been considered in some works. The hexagonal network

is investigated in works such as [SB13][GZLT06] as the hexagonal network having lower

average hop count is considered to have better performance than the mesh. In [SB13],

authors present a deadlock free adaptive routing algorithm for the hexagonal torus in-
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terconnection network using three virtual channels per physical channel. In [GZLT06],

authors propose a different addressing scheme for the hexagonal network which allows to

adapt the turn model based adaptive routing algorithms for the mesh to the hexagonal

network. A diagonally connected mesh network is presented in [HLB08] with adaptive

quasi-minimal routing algorithm.

In most works, the deadlock freedom verification of the routing algorithm is based on

examining the channel dependency graph (CDG). For deadlock freedom the CDG must

be acyclic as was proved in [Dua93].In [CHKP06], a method is presented for designing

application specific deadlock-free routing algorithms for any topology by using an heuristic

to cut edges in the CDG and thereby preventing cycles. In the following sections, we

propose fault-tolerant deadlock free routing algorithms for the hexagonal and octagonal

NoCs using the turn model, which was not done before. We do not use costly virtual

channels but the addition of virtual channels may bring further advantages in term of

fault tolerance. Unlike the widely analyzed mesh NoC, we expect the application of the

turn model to be have greater complexity in our case since due to the additional directions

which create many possibilities of deadlock. Thus we develop a simple approach to ensure

deadlock freedom of the adaptive routing algorithm, using graph theory.

3.4 Application of the turn model

As explained in chapter 2, section 2.1.2.2, adaptive routing algorithms are prone to dead-

lock due to the usage of wormhole switching and must be designed with care to prevent

deadlock. We use the turn model [GN94] for developing deadlock-free adaptive routing

algorithms as this approach does not require the usage virtual channels. For the forma-

tion of adaptive routing algorithms according to this model, the channels in the network

must be first partitioned into the directions in which they route packets. Deadlock cycles

are created between turns leading to closed cycles and so sufficient turns between these

directions should be avoided to prevent cycle formations. Moreover, these set of turns

should also prevent all possible simple and complex deadlock cycles formed as a result of

combination of turns in clockwise (CW) and counter-clockwise (CCW) directions.

3.4.1 Turn model applied to Hex NoC

In the case of the hex NoC, as shown in Fig. 3.12, there are 3 directions (the x, y and diag

directions in the 2D rectangular system), each pair of which are at least 60 degrees apart.

On closer inspection, it can be seen that the simplest cycles in hexagonal network are

the two basic triangular cycles, as can be seen in Fig. 3.12. Furthermore, many different

bigger deadlock cycles can form by combinations of these 2 basic cycles (Fig. 3.12(b)).

According to the turn model, a turn in the simplest cycle should be prevented so that

deadlock is also prevented in more complex cycles.
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(a) (b)

60
0

60
0

x

y diag

Figure 3.12: Examples of some deadlock cycles forming in the 60 degrees or

hexagonal NoC between the three directions.

To prevent deadlock in e.g. the CW direction, two 60◦ turns (i.e. two turns between

two different pairs of directions) must by prevented as well as the turn formed by the

combination of these two turns, i.e. a 120◦ turn. This is because the two triangles can be

combined in 3 ways (due to the 3 sides of a triangle). Thus by preventing a turn in each

triangle (between different pairs of directions) and another turn from the combination of

these two triangles, deadlock is prevented. Some 180◦ turns can be allowed to increase

adaptivity when deadlock is not created by them.

3.4.1.1 Channel Dependency Matrix

As there are many possibilities of simple and complex cycles forming due to combina-

tions of the cycles in the CW and CCW directions, the process of obtaining the correct

selection of prevented turns can be quite cumbersome for topologies with many different

flit directions. Generally, after the selection of the turns, the channel dependency graph

(CDG) must be examined to determine whether any cycles exist [Dua93]. To simplify the

selection of the right combination of turns, we have devised an approach using matrix

algebra.

After selecting the required number of turns in the CW and CCW directions, the channel

adjacency matrix representation of the CDG, called channel dependency matrix (CDM)

is generated. The entries of the CDM, Aij represents the dependency of a channel i to

channel j, i.e. whether a turn is allowed from channel i to channel j. Aij equals 1 iff i and

j are adjacent and if channel j can be requested immediately after channel i:

Aij =







1, if i and j are adjacent and turn from i to j is allowed

0, otherwise
(3.1)

Then the CDM is checked for cycles by finding its transitive closure (TC), which indicates

the reachability of the nodes. If the TC has 1’s along the diagonal, it indicates that via
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Figure 3.13: The channel dependency matrix, A and the Transitive Closure,

TC for 2 × 2 Mesh NoC with the indicated turns restrictions.

one or more intermediate channels, it is possible to start from a channel and return to that

channel. Thus a cycle of channel dependencies is present indicating a deadlock possibility.

As an example, the CDM and the TC for a 2×2 mesh NoC with a selected set of prevented

turns is shown in Fig. 3.13. With the selection of prevented turns: North-to-East and West-

to-South and the 1800 turns West-to-East and North-to-South, the diagonal of the TC

contains all zeros. Thus, for these prevented turns, the routing algorithm is deadlock free.

However, the size of the NoC must also be taken into consideration. For the hexagonal

NoC, to include all cycles formed from the combination of the two triangles, a minimum

NoC size of 3 × 3 should be used to generate the CDM. NoC sizes beyond this can also

be used, however, it must be taken into account that the time for the TC calculation

increases with the network size.

3.4.1.2 Selecting restricted turns for deadlock freedom

When presenting the routing algorithms, we consider the hexagonal NoC as presented

in Fig. 3.1(a) and use the direction names of the x-,y- and diagonal directions, as in a

standard rectangular coordinate system for easier comparison to the mesh topology. We

can summarize the procedure for finding the possible turn restrictions as follows:

• Step1: Initially we want to find the prevented CW turns. Thus, first assume all

turns in CCW direction and all 180◦ turns are disallowed but all CW turns are

allowed, depicted in Fig. 3.14(a).
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N (+Y)

E (+X)

NE (+ diag)

W ( X)

S ( Y)SW ( diag)

Prevented turns:

Step 1: All CW turns

allowed.

Step 2 & 3: Finding set of all

CW disallowed turns e.g W

NE+N E+N NE.

(a) (b)

Figure 3.14: Finding CW restricted turns.

• Step2: Choose a disallowed CW turn between a pair of directions e.g. between x

and diagonal direction i.e. W-NE turn in one of the basic cycles. Choose another

disallowed CW turn between another pair of directions e.g. between x and y direc-

tions i.e. N-E turn in the other basic cycle. The third prevented CW turn is that

between between the remaining two directions i.e y and diagonal direction e.g. in

this case the N-NE turn. Generate the CDM and the TC and if trace(TC)>0, then

this combination of prevented turns will lead to a deadlock.

• Step3: Iterate through other possible CW turns in the first cycle and repeat. The

result is the set of all possible turn combinations for no cycle in the CW direction.

• Step4: Repeat steps 1, 2 and 3 for the CCW direction turns (Fig. 3.15(a)).

• Step5: For all sets of the prevented CW and CCW turns, generate the CDM and

then the TC and select the combinations with no cycles. If the TC has a non-zero

diagonal i.e trace(TC)>0, then this combination of prevented turns will lead to a

deadlock cycle and is thus not valid. This step will reveal any complex cycles existing

between the CW and CCW cycles (Fig. 3.15(b).

• Step6: For all the sets of the valid prevented turns, iterate through all 180◦ turns

and allow as many as possible so that the generated the CDM has no cycles as

shown in Fig. 3.16.
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Step 4: Finding all set of CCW

disallowed turns e.g. N SW+W

S+W SW.

Step 5: Combination of disallowed

CW and CCW turns

e.g W NE+N E+N NE+N SW+W

S+W SW no cycle in CDM.

(a) (b)

Figure 3.15: Finding CCW restricted turns.

Step 5: Unsuitable combination of

restricted CW and CCW turns e.g.

W NE+N E+N NE+N W+N SW+NE

W complex cycle in CDM.

Step 6: Combination of disallowed CW, CCW

and 180
o
turns e.g. W NE+N E+N NE+N

SW+W S+W SW +W E + NS + SWNE no

cycle in CDM.

(a) (b)

Figure 3.16: Finding combination of CW, CCW and 180◦ restricted turns.

Our investigations resulted in 18 possible adaptive routing algorithms, 6 of which are

unique due to symmetry. This can also be calculated intuitively by observing all the turns

as follows: firstly for the CW directions, for a restricted turn in one of the basic cycles

(e.g. between x and diagonal), there are 2 other possibilities for restricted turn in the

other basic triangular cycle (between x and y or between y and diagonal ) so that there

are 2 sets possible of the CW turn restrictions (Fig. 3.17). If we change the first restricted

CW turn, then another 2 × 2 sets of CW turn restrictions are possible. Thus considering

symmetry, there are 2 unique combinations of the CW restricted turns. Similarly, for the

CCW turns, we can find 6 possible sets of turn restrictions. When combining the CW

and CCW turns, complex cycles consisting of both CW and CCW turns can form. As an

example, if we observe Fig. 3.16(a), the complex cycle resulted due to prevented turns
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between the exact same directions but in opposite manner regarding the starting direction

(W-NE and NE-W turns in Fig. 3.16(a)). This condition allowed a complex turn to result

when both these turns could be bypassed due to combining CW and CCW cycles.

60
0

60
0

x

y diag

Figure 3.17: A unique set CW restricted turns.

A set of these algorithms with the corresponding prevented turns set is shown in the

Table 3.2. Here E,W,S,N,NE and SW represents the East, West, South, North, Northeast

and Southwest directions, respectively. The name of the algorithm is based on the set of

directions to which the flit is prevented to turn to e.g. in the E-S First, we see that all

turns to the E and S directions are disallowed. Thus, any flit wanting to travel to these

directions (e.g. E, NE or SE or S or SW etc.) must first travel first to the E or S and then

turn to the next directions. Otherwise, if the flit starts in the N, NE, S, or SW direction

, it can cannot afterward turn towards the E and S as all of these turns are forbidden.

Table 3.2: Prevented turns for adaptive routing algorithms in the hex NoC.

Prevented turns

Name of Algorithm CW CCW

x/diag y/diag x/y x/diag y/diag x/y

E,S First NE-to-E NE-to-S N-to-E SW-to-E SW-to-S W-to-S

E,S, SW First NE-to-E NE-to-S N-to-E W-to-SW N-to-SW W-to-S

N,NE Last NE-to-E NE-to-S N-to-E NE-to-W N-to-SW N-to-W

S,SW First E-to-SW NE-to-S E-to-S W-to-SW N-to-SW N-to-W

W,S,SW First E-to-SW NE-to-S E-to-S NE-to-W N-to-SW N-to-W

E,NE Last E-to-SW NE-to-S E-to-S NE-to-W NE-to-N E-to-N

Two of the set of algorithms from the 6 adaptive routing algorithms provide at least

three alternate paths for flit transmission, via three output-port directions and reaching

via three input-port directions. Therefore these algorithms should be able to tolerate 2

faulty routers, if 3 disjoint paths exist so that if up to 2 faults block 2 paths, then the

remaining can be used to reach the destination. Of these algorithms, we will concentrate
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on the "W-S-SW First" algorithm (highlighted in blue) for fault-tolerant design and for

performance evaluation. In later sections, we compare the performance of this algorithm

to existing similar fault-tolerant routing algorithm for the rectangular mesh NoC.

3.4.2 Turn model applied to Oct NoC

The 2D oct NoC, shown in Fig.3.1, has twice the number of links as the 2D mesh, which is

a considerable overhead considering that the links have input buffers which contribute to

the main area and power overhead of the router. Moreover, the size of the crossbar inside

the router increases quadratically with the number of links. However, we still investigate

oct since its performacne may be worth the overhead in situations of high error rates.

Using the procedure described in Sec. 3.4.1.2, we are able to find the prevented turns for

the octagonal NoC. There are four directions of flit travel in the oct NoC- the x-, the y- and

the two diagonal directions. As a result, between the pairs of directions there are 6 possible

cycles (x/y, x/diagonal1, x/diagonal2, y/diagonal1, y/diagonal2, diagonal1/diagonal2), so

that at least 6 turns should be prevented in both the CW and CCW directions. Some

of the possible turns and the resulting deadlock cycles forming are shown in Fig. 3.18.

Using again the method of the transitive closure of the CDM, we can find the necessary

combination of turn preventions to achieve deadlock freedom. The results of this analysis

yields 24 different possible adaptive routing algorithms, 6 of which are unique due to

symmetry. The names of a unique set of these algorithms with the corresponding restricted

turns are given in Table 3.3. As can be observed, two of these algorithms i.e. the NW-

W-SW-S First (go adaptively first in the NW, W, SW and S directions and then the

remaining 4 directions- N, NE,E and SE to reach the destination) and the W-SW-S-SE

Last algorithms will provide 4 alternate paths to the destination.We choose the NW-

W-SW-S First and design the fault-tolerant version of this algorithm and compare the

performance of this algorithm to the Negative-First algorithms for the mesh and hex

NoCs.

N (+Y)

E (+X)

NE (+ diag 1)

W (-X)

S (-Y)SW (- diag 1)

NW (+ diag 1)

SE (- diag 2)

Figure 3.18: Examples of some deadlock cycles forming in the octagonal

NoC between the four directions.
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Table 3.3: Prevented turns for adaptive routing algorithms in the Oct NoC.

Algorithm Prevented turns

x/diag1 y/diag1 x/y x/diag2 y/diag2 diag1/diag2

NE,E,N Last
E-to-SW NE-to-S E-to-S E-to-SE N-to-SE NE-to-SE

NE-to-W N-to-SW N-to-W E-to-NW N-to-NW NE-to-NW

W,SW,S,SE First
E-to-SW NE-to-S E-to-S E-to-SE N-to-SE NE-to-SE

NE-to-W N-to-SW N-to-W NW-to-W NW-to-S NW-to-SW

S,SW,SE First
E-to-SW NE-to-S E-to-S E-to-SE N-to-SE NE-to-SE

W-to-SW N-to-SW W-to-S W-to-SE NW-to-S NW-to-SW

NE,E,SE Last
E-to-SW NE-to-S E-to-S SE-to-W SE-to-S SE-to-SW

NE-to-W NE-to-N E-to-N E-to-NW SE-to-N NE-to-NW

S,SW,W,NW First
E-to-SW NE-to-S E-to-S SE-to-W SE-to-S SE-to-SW

NE-to-W N-to-SW N-to-W E-to-NW N-to-NW NE-to-NW

W,SW,S First
E-to-SW NE-to-S E-to-S SE-to-W SE-to-S SE-to-SW

NE-to-W N-to-SW N-to-W N-to-WS NW-to-W NW-to-NW

3.5 Fault Tolerant Routing Algorithm

Designing adaptive routing algorithms is challenging since care must be taken to avoid

deadlock and livelock, while trying to make efficient use of the path diversity. In these

algorithms, the routing decision is taken based on the network conditions such as network

congestion or faults. The difference between traffic-aware and fault-tolerant adaptive al-

gorithms is that in case of the latter, non-minimal paths may be taken to increase path

diversity and thus fault-tolerance. In the fault-tolerant W-SW-S First algorithm for the

hex NoC, the flits should be routed adaptively first in the South, SouthWest or West

directions (if necessary) and then adaptively in the North, NorthEast and East direc-

tions to reach the destination. This algorithm is also called Negative First Fault-tolerant

(HexNegFirstFT) routing algorithm, as W, SW and S are the negative x, diagonal and y

directions respectively for the hexagonal NoC and all turns from the positive directions

to the negative directions are prevented. The Negative-First Fault-tolerant routing algo-

rithm for the mesh was presented in [GN93] and was shown to be able to tolerate all cases

of 1 faulty router, as it can provide 2 disjoint routes from a source to a destination node.

The turns prevented in the HexNegFirstFT algorithm are the following: (CW) E-to-SW

(600), NE-to-S (600), E-to-S (1200) and (CCW) N-to-SW (600), NE-to-W (600), N-to-W

(1200). In addition the following 1800 turns are disallowed: E-to-W , NE-to-SW and N-

to-S. Initially only local knowledge of faults is assumed, i.e. a router knows only which

of its immediate neighbors are faulty. However, as we will see later, in the case when the

destination is to the NE of the current router, then local knowledge is not sufficient to

have 2 router-fault tolerance. Although in this section, we describe the HexNegFirstFT

algorithm, the E-S-SW algorithm also provides 3 alternate paths to the destination and

is therefore also 2 router fault tolerant.
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The algorithm is designed in such a way that whenever more than one output port is

available towards a destination, the output port which will be selected is the one which

leads to the highest number of choices for the next hop, in order to increase fault-tolerance.

Accordingly, when the destination is to the W, S or SW of the current node, the output

ports in the W, S or SW directions are chosen adaptively (according to having non-faulty

router in the corresponding direction), to reach the destination. When the destination is

to the N or E or NE of the current node, the flit should be first forwarded in the negative

direction, i.e. in the W, SW or S directions, adaptively, to reach a position from which

3 disjoint paths toward the destination are available. Then the positive directions, i.e.

the N, NE or E directions are selected adaptively towards the destination. Since, it is

possible for all source-destination pairs to begin in 3 possible directions and also to reach

the destination via 3 ports, the routing algorithm can tolerate any 2 router faults.

3.5.1 Destinations to the NE

The pseudo-code for destinations to the NorthEast of the source is given in Algorithm

1. Essentially, when the destination is to the NE of the current node, it is possible to

go in three directions, i.e. N or E or NE or even in the negative directions, but only

if the previous direction of travel was not already in a positive direction. For a source-

destination pair, it is first important to determine the number of hops to the destination

from the current router (since the decision is taken again at each router) in the x- and

y-directions, denoted by xoffset and by yoffset. If the xoffset > 1 and yoffset > 1, the three

positive directions, N, NE or E directions are taken adaptively. The output port direction

which leads to the higher path diversity and which does not lead to a faulty router is

selected, as can be seen in Algorithm1. If xoffset = yoffset as in Fig. 3.19(a), NE output

port is preferred since this is the shortest path. If the NE router is faulty, then either

the E or N port can be selected, as both lead to the destination in equal number of hops

(Fig. 3.19(b)).

However, at this point, with only local knowledge of faults, it is not possible to ensure

reaching the destination, as seen in Fig. 3.19(b), where if E output port had been selected,

destination would not have been reachable. Because of this, the router requires the fault

knowledge of the neighbor which is 2 hops away in the E-NE or alternatively in the N-NE

direction. With this knowledge, the router is able to find a path even in the presence

of two faulty routers. This problem occurs only when the destination to the NE of the

current node and xoffset = yoffset = 2. The flit has exactly 3 paths toward the destination

and if the NE is faulty, the other two paths are completely independent of each other.

The same situation for the SW is not such a critical point since there the movements are

in the negative direction so that, even if a path leads to a dead end, the flit can still reach

the destination by going around the fault, as shown in Fig 3.22(a).
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Algorithm 1 HexNegFirstFT: Destination to NE
Xoffset = Xtarget − Xcurrent, Yoffset = Ytarget − Ycurrent

if Xoffset > 1 & Yoffset > 1 & Xoffset 6= Yoffset then

if Xoffset > Yoffset then

if neighbour(E direction) is notfaulty then

Select East

else if neighbour(NE direction) is notfaulty then

Select NorthEast

else if neighbour(N direction) is notfaulty then

Select North

else

Drop F lit

end if

else if Xoffset < Yoffset then

if neighbour(N direction) is notfaulty then

Select North

else if neighbour(NE direction) is notfaulty then

Select NorthEast

else if neighbour(E direction) is notfaulty then

Select East

else

Drop F lit

end if

end if

else if Xoffset > 1 & Yoffset == 1 then

if neighbour(S direction) is notfaulty then

Select South

else if neighbour(E direction) is notfaulty then

Select East

else if neighbour(NE direction) is notfaulty then

Select NorthEast

else

Drop F lit

end if

else if Xoffset == 1 & Yoffset > 1 then

if neighbour(W direction) is notfaulty then

Select W est

else if neighbour(N direction) is notfaulty then

Select North

else if neighbour(NE direction) is notfaulty then

Select NorthEast

else

Drop F lit

end if

else if Xoffset = Yoffset then

if neighbour(NE direction) is notfaulty then

Select NorthEast

else if neighbour(E direction) is notfaulty then

Select East

else if neighbour(N direction) is notfaulty then

Select North

else

Drop F lit

end if

end if

3.5.1.1 Destinations to the N or E

The complete routing algorithm is given in Table 3.4. When the destination is to the East

or North, the output ports to the E or N, respectively should not be taken since the flit
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(b)

S

X X

D

(a)

S

D

S

X

D

(c)

D Destination X Faulty RouterS Source

Route to the destination Possible alternate routes

in presence of fault.

Figure 3.19: Paths to the destination at NE of the source.

Table 3.4: Hex Fault Tolerant Negative-First Routing algorithm

Incoming flit direction

Dest N E S W local

NE NE,N,E* NE,N,E* NE,N,E* NE,N,E* W/S**,

NE,N,E*

E E E S,SW,E - S,SW,E

N N N - W,SW,N W,SW,N

NW - - W,SW,S W,SW,S W,SW,S

SE - - S,SW,W S,SW,W S,SW,W

S - - S,SW,W S,SW,W S,SW,W

W - - W,SW,S W,SW,S W,SW,S

SW - - SW,W,S SW,W,S SW,W,S
** Xoffset = 1/Yoffset = 1

*Select the output port that leads to highest path diversity.

starts out in a positive direction, it is not allowed to move into a negative direction when

a faulty router is encountered. Instead, here first 2 hops in the negative direction i.e. in

the W or S or SW are taken, so as to bring the destination to the North East of the

current router. At this position, with Xoffset = 2 or Yoffset = 2 respectively and there

are 3 disjoint paths to the destination. Then the rules in Algorithm 1 are followed to the

destination. Some examples with different locations of faulty routers are shown in Fig. 3.20

and Fig. 3.21. As in these cases, the path taken to the destination is a non-minimal one,

there is some loss of performance. However, due to the diagonal link, the average path
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length is still lower in comparison to mesh with the Negative First fault tolerant routing

algorithm.

S

DS

(a) No fault.

S
X

DS

(b) One fault.

S
X

DS

X

(c) Two faults.

X Faulty RouterD DestinationS Source

Figure 3.20: Destinations to the East of the source.
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Figure 3.21: Destinations to the North of the source.

3.5.1.2 Destinations in other directions

When the destination is to the SW of the source, if the SW router is faulty, either the W

or S can be chosen as here there are more than 1 path towards the destination in each

direction, as shown in Fig. 3.22. Since the flit already starts out in a negative direction

(W,S or SW), the routing path is more flexible here. However, similar to the NE case,

again the output direction is chosen so that the current and destination router is not in

one line. In this case, knowledge of neighbor routers’ fault condition is sufficient. However,

greater knowledge of non-neighbor faults would reduce the path length as can be seen in

Fig. 3.22(a).
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Figure 3.22: Alternate paths to the destination at SW of the source.

3.5.1.3 Destinations along the South or West Edge

When the path is along the West or South edge of the NoC, and a faulty router blocks

the path to the destination, then some hops are taken around the fault to bypass it, as

can be seen in Fig. 3.23. Although, in such cases, some forbidden turns are taken (such as

E-to-S turn in Fig. 3.23(a) and such as N-to-W turn in Fig. 3.23(b)), deadlock does not

happen since the cycle of dependencies cannot form through a faulty node at the edge.

SX

DD

S

X
S

D

S X D

(a) Disallowed turn: East to South,

allowed here

(b) Disallowed turn: North to West,

allowed here

Figure 3.23: Routing along the west or south Edge.

3.6 Performance Evaluation

To evaluate the performance of the fault-tolerant routing algorithm, the hexagonal and

octagonal NoC topology with the Negative First fault tolerant routing scheme was im-

plemented in a cycle accurate simulator [WF08], based on a C++/SystemC simulation

model. We also implemented the Negative First fault tolerant routing algorithm for the
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mesh NoC, in order to compare its performance to the Hex and Oct. We evaluated the

performance in terms of average network latency (in cycles) and the flit acceptance rate

(flits/cycle/node) including the saturation point with varying flit injection rates. We fur-

ther evaluated the fault resilience of the network to different numbers of router faults,

measured by the average ratio of successfully delivered flits (to the destination) to the

total number of injected flits into the network:

Fault resilience =
Total number of flits received successfully

Total number of flits injected into the network
(3.2)

Another measure is the error rate , which is related to the total number of flits that were

dropped due to all paths being blocked:

Error rate =
Total number of flits dropped

Total number of flits injected into the network
(3.3)

The faulty routers are modeled as permanently defective units. Each router is aware of

the fault status of its connected neighbour routers. As discussed earlier in Sec. 3.5, in the

hexagonal NoC, each router is also aware of the fault of the neighbor two hops away in the

E-NE direction (shown in Fig. 3.19(b)). We assumed uniform random traffic pattern i.e.

all nodes generate packets with equal probability and with uniform random distribution.

Moreover, we assumed nodes connected to faulty routers do not generate any packets and

no messages are destined for these nodes. We evaluated the throughput performance with

routers having input buffers with buffer depth of 8 flits, while the packet size is kept at 5

flits.

3.6.1 Latency Evaluation

To understand the saturation rates in the two topologies, let us consider that when min-

imal paths exist to the destination e.g. for destinations to the W or S of the source, each

fault encountered increases the path length by 2 hops for the mesh whereas it is increased

by 1 hop for the hex NoC. Thus, in comparison to the 2D mesh the performance of the

hexagonal mesh is always higher in terms of average latency and fault-tolerance. For the

latency evaluations, the simulations were run for an average of 200, 000 cycles and the

number of faulty routers were varied from 0 to 2. The location of faults were chosen

randomly and over all possible combinations. The results shown in Figure 3.24 show the

average latency (averaged over all source-destination pairs) versus the flit acceptance rate.

From the figures, it can be seen that as the hexagonal topology provides shorter paths

with the adaptive routing algorithm (due to the diagonal link), the average path length

is shorter and therefore the average path latency is lower than that for the mesh at the

same flit acceptance rate. As a result, the hexagonal NoC has a higher flit acceptance

rate before the network saturates. With 0 faults, the 8×8 mesh NoC has an average path

length of 6.92 hops, while the same sized hex has an average path length of 5.48 hops,

which is approximately 21% less.
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Figure 3.24: Latency versus flit acceptance rate for 8 × 8 NoC with uniform

traffic.

3.6.2 Fault Tolerance Evaluation

The results for 8 × 8 NoC for the three topologies are depicted in Fig. 3.25 and Fig. 3.26.

The location of the faulty routers were randomly selected over 1000 iterations. The results

show that while the mesh has 100% fault reliability at any position of 1 faulty router, the

hex and oct NoC has 100% reliability to any position of 2 and 3 faulty routers respectively.

Note, however, for the hex NoC the two corner routers (upper left and bottom right) have

only two input or output ports and therefore cannot be two-router fault tolerant. We do

not consider these two nodes in our calculation, as they are not part of the true hexagonal

NoC. Similarly the 4 corner routers are not considered for the Oct NoC. With increasing

number of faults, the error rate of the mesh increases significanlty while it does so more

gradually for the hex and oct. In particular, with 6 faulty routers, oct NoC has an error

rate of 0.11% while that of the hex and mesh NoCs are 11× and 63.7× higher respectively.

We also investigated the fault reliability for higher number of faults for the hex, oct and

mesh NoCs, compared in Fig. 3.26, where we can see that the octNoC has 70% higher

fault resilience than the mesh and 21% higher fault resilience than the hex NoC. We also

compared the reliability of different sizes of NoC to determine the effect of network size

on fault tolerance. The results for 6 × 6, 8 × 8 and 10 × 10 sized NoCs are depicted in

Fig. 3.27. For the investigated NoCs, by comparing the fault tolerance at 30% ratio of

faulty routers, we found that the advantage of hex NoC compared to mesh increases with

network size and for the 10 × 10 NoC, it is 53.6% more fault resilient than the mesh when

there are 30% faults in the network.

The variation of the fault resilience for increasing network sizes, for the same ratio of

faults is illustrated in Fig. 3.28. As can be seen, for the same percentage of faults, the
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Figure 3.25: Comparison of fault resilience of 8 × 8 mesh and Hex and Oct

NoCs for different numbers of faulty routers.
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Figure 3.26: Comparison of fault resilience of 8 × 8 mesh and Hex and Oct

NoCs with higher number of faults.

smaller size NoC has a higher fault tolerance than the larger sized NoC e.g. with 25%

faulty routers, the 6 × 6 network has a resilience of 88.6% while 8 × 8 and 10 × 10 NoCs

have a resilience of approximately 83% and 77% respectively. This is due to the fact that

for the same percentage of faulty routers, the bigger network has a greater number of

faulty routers and also has a longer average path length. As a result, while traversing

through the network, flits have a higher probability of encountering a faulty router in the

larger network. This is analysed further in chapter 4 (sec.4.6).
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Figure 3.27: Fault resilience comparison for different NoC sizes.
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3.7 Summary

In this chapter we investigated spatial redundancy for NoC resulting in the hex and oct

topologies. We can summarize the following points:

• In addition to extra links, we must use efficient deadlock-free adaptive routing al-

gorithms to cope with permanent failure in NoC.

• To avoid deadlock, we apply the turn model to the hex and oct NoCs. To simplify

the process of appropriate turn selections, we propose and use matrix algebra of the

CDM to determine the combination of turns in the CW and CCW directions.

• The hex NoC and oct NoC are able to tolerate any position of two and three faulty

routers, respectively whereas the mesh can tolerate only one faulty router.

• As network size increases, there is a higher relative improvement of fault tolerance

of the hex and oct in comparison to the mesh.
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Chapter 4

Analytic Assessment of

Fault-tolerant Routing

4.1 Introduction

The general approach for analyzing the performance of adaptive routing algorithms for

NoC is by lengthy cycle-accurate simulations, as done by us in the previous chapter

(Chapter 3). Usually done for hundreds of thousands of cycles (depending on the network

size), this can be very time consuming especially for large networks. To overcome this,

in this chapter we propose an approach to evaluate analytically the network resilience

with fault-tolerant Negative-First adaptive routing algorithm for the mesh and hexagonal

NoCs. The analytic approach determines whether a path connects a source-destination

pair as provided by the algorithm, in the presence of any number of random router faults.

An analytic approach is very useful as we have more flexibility for the design space ex-

ploration concerning NoC reliability, for different topologies or routing algorithms or with

large sized NoCs. Even when we have an already existing simulator, the implementation

of different routing algorithms or topologies can also take some effort. Moreover, using

the analytic approach we can also explore specific situations such as e.g. whether faults in

a certain of the NoC (e.g. along the border) have greater effect 4.6 on the fault tolerance.

4.2 Related Works

Most investigations of fault-tolerant routing for NoC, such as [IY11][FFH09] are based

on cycle-accurate simulations. Due to the challenges of accurately modeling adaptive

routing algorithms, there are fewer works in this category. An analytic model was given

in [VMS08] to evaluate the reliability of XY and XY-YX mesh NoC based on the average

path length calculation.The authors also propose extensions of their analysis to adaptive

routing algorithms such as the west-first routing algorithm. A fault-tolerance analysis of

51
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different NoC architectures was presented in [LLP07] based on reliabilities of the different

components such as the routers and NoC interfaces (NI). All combinations of different

number of inoperable routers and NIs were investigated and the overall system reliability

was obtained by summing up the reliabilities of all the combinations. With simple source-

based routing, it was found that network structures built from simple 3-port routers

provided better fault tolerance than those based on more complex multi-port routers.

Refan et.al.[RAS+08] determine NoC reliability for application specific traffic with XY

routing, when considering router failures. The path reliability for a source-destination pair

is obtained by considering the product of the reliabilities of all routers in the path. The

dependence of Through-silicon-via (TSV) failures on 3-D NoC reliability has been explored

by analytic method in [KYEB15]. There the authors modeled the TSV characteristics as a

time-invariant failure probability and quantified the relationship between NoC reliability

and TSV failure. Thus, very few SOTA works have attempted to assess analytically the

reliability of fault-tolerant routing algorithms and even the few works were based on

limited assumptions of faults. Our approach (presented in [MF17]) is quite flexible in that

it can be applied to any algorithm based on the turn model, regardless of the topology

and is not limited to a fixed number of faults .

4.3 Adaptive routing and turn model

The adaptive routing algorithms whose reliability are assessed analytically in this chapter

are based on the turn model, which was explained in details in Sec. 2.1.2.2. The algorithms

have been introduced in Chapter 3.

For the mesh, a total of four turns in the CW direction or in the CCW direction contribute

to cycles, so that one turn must be prevented in CW and CCW directions to prevent

deadlock. Accordingly, three different adaptive routing algorithms are possible for the

mesh 2.1.2.2. Of these we concentrate on the Negative-First routing algorithm [GN94] in

which any turn from the positive to the negative directions are prevented i.e any turn

from north or east directions to the west or south directions. A fault tolerant version of

this routing algorithm was presented in [GN93] and is described briefly in Table 4.1, which

shows the possible directions for a flit depending on its initial direction of travel as well as

the direction of its intended destination. If we take the first row as an example, the entries

show the output directions for a destination to the NE (relative to the current router). For

such a case, the resulting direction is always to the North or East, however, between the

two possibilities, the chosen direction should not bring the current and destination along

one line (in the vertical or horizontal direction) for as long as possible. The algorithm

considers router faults only and is modeled with our analytic approach in the following

section 4.5. It should be noted that for both the mesh and hex, we consider the algorithm

with a certain level of non-minimality although further non-minimal versions are possible.

Application of the turn model to the the hexagonal NoC, created by addition of diagonal
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Table 4.1: Fault tolerant Negative-First Routing algorithm [GN93]

Incoming flit direction

Destination N E S W local

NE N,E* N,E* N,E* N,E* N,E*

E E E S,E - S,E

N N N - W,N W,N

NW - - W,S W,S W,S

SE - - S,W S,W S,W

S - - S,W S,W S,W

W - - W,S W,S W,S

SW - - W,S W,S W,S
*Select so that source and destination are not in one line

links in the mesh NoC produces similar fault-tolerant algorithms, as described in the

chapter3 and given in Table 3.4.

4.4 System Model and Matrix Algebra

4.4.1 Connectivity matrix

Graph theory is a very useful tool for description and property evaluation of networks.

In general, a network consisting of N vertices or nodes can be represented by a graph

G = (V, E), where V is the set of vertices (v1, v2, ..., vN) and E is the set of edges

connecting the vertices. If the connections between the nodes are directed, the graph is

called a directed one. The adjacency matrix is an N ×N matrix A = (dij) in which dij = 1

if there is an edge connecting vertices vi and vj, otherwise this value is 0. Powers of the

adjacency matrix gives the number of available paths between pairs of nodes. Thus, as

given in [B+93], the ij-th entry of A2 gives the number of paths from vi to vj using 2 hops:

(A2)ij =
N∑

k=1

Aik · Akj. (4.1)

Continuing with higher powers of A, (A+A2 +A3)ij would give the total number of paths

from vi to vj using one, two or three edges or hops. Similarly, the following infinite series

can be used for the presence of any path connectivity between any node pair, using any

number of hops:

Aconn = A + A2 + ... + An + An+1 + .... (4.2)

The matrix Aconn is referred to as the node connectivity matrix. Aconn, as given above,

cannot be used to give the connectivity of a wormhole switched network such as the NoC,
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since it does not take into account the turns restricted for deadlock prevention. Instead we

consider the channel adjacency matrix also called the channel dependency matrix(CDM),

which was introduced in Sec. 3.4.1.1. The CDM for 2 × 2 mesh NoC with Negative-First

routing was depicted in Fig. 3.13, and is also presented here for reference. Please note that

in the following discussions, A represents the CDM (and not the node adjacency matrix)

and Aconn represents the channel connectivity matrix, consisting of the summation of the

powers of A.
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Figure 4.1: The channel dependency matrix (CDM), A for 2 × 2 Mesh NoC

with Negative-First routing.

In Fig.4.2, the same CDM is shown when a fault occurs on one of the link e.g. c8. In such

a scenario, all dependencies to and from this link are made equal to 0 in the CDM.
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Figure 4.2: CDM with for 2 × 2 Mesh NoC with Negative-First routing and

a permanently faulty link.

4.4.2 CDM Algebra with adaptive routing

Considering the CDM, An
conn gives the number of paths from a channel ci to channel cj via

n + 1 channels taking into consideration the restrictions for avoiding deadlock. It should

be noted that A2 would mean the number of paths using 3 channels or hops and similarly

An refers to n + 1 hops. To get the number of paths from a node or router to another

node, the entries of the matrix from all the output channels of the source node to all the
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input channels of the destination router have to be considered in the calculation. A small

example for a 4 × 4 mesh NoC is given in Fig. 4.3.

A4 =
oN

oE

oW

iS iE iW iN

0 0 0 0

0 0 0 0

0 3 0 3

iS iE iW iN

oN

oE

oW

A2 =
0 1 0 1

0 0 0 1

0 0 0 0

iE

1 2 3

5 6 7

iN

9 10 11

oW

oE

4

8

12

13 14 15 16

oN

iS

iW

Input ports of 

destination router 

Output ports of 

source router 

A+A2+A3+...= A2+A4 =
oN

oE

oW

iS iE iW iN

0 1 0 1

0 0 0 1

0 3 0 3

Minimal routes to 

the destination

Non-minimal route 

to the destination

Figure 4.3: Powers of the CDM, A and the channel connectivity matrix,

Aconn with Negative First routing.

Since the entire CDM is too large (being of size 48 × 48), only a portion of A2 having the

corresponding output and input ports of the source and destination routers respectively

are shown. Here the source is node 14 and destination is node 7. The output and input

channels with their directions are shown. Here, we do not show A since for this source-

destination pair, with a minimal distance of 3 hops, the entries of A between the output

of the source and input channels of destination would be 0. As the destination is to the

North-East of the source, both the east (oE) and north (oN) output ports can be used

adaptively to reach destination using minimal paths. Alternatively the west port (oW )

could also be used, but with a higher number of hops. If oE is taken, only 1 path exists
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whereas using oN there is greater path diversity as two alternate paths exist. Similarly

using the oW , greater path diversity is present but with higher number of hops.

If a router is permanently faulty, then all the dependencies from and to the output and

input channels respectively of the faulty router are made equal to zero. As an example,

if the router 11 fails completely, then A(o,:)=0 and A(:,i)=0, where o and i are the

group of output and input ports of the faulty router respectively. The effect on the path

connectivity of node 14 to node 7 can be seen in Fig. 4.4, where node 7 is reachable only

via iE.
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Figure 4.4: Effect of faulty router on the channel connectivity Matrix, Aconn.

4.4.3 Proof of fault tolerance via CDM Algebra

In graph theory, network connectivity is measured by its invulnerability to deletions (edges

or nodes/routers) i.e. how many nodes or edges can fail without cutting off communication.
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In 1927, Menger showed that the connectivity of a graph is related to the number of

disjoint (or non-overlapping) paths joining distinct vertices in the graph: A graph G is

k-connected if and only if every pair of vertices are joined by k pairwise internally disjoint

paths.

If we look at Fig.4.5, between s and t, we have

• G1: 1 vertex disjoint path

• G2: 2 vertex disjoint paths

• G3: 3 vertex disjoint paths

• G4: 4 vertex disjoint paths

s

t

G1

s t

G3

s

t

G4

t

s

G2

Figure 4.5: Concept of disjoint paths.

By taking powers of the channel dependency matrix i.e. CDM, we can obtain how many

paths exist between the ’s’ and ’t’. Consider a 4x4 hex NoC as shown in Fig.4.6. Between

nodes, s and t if we consider paths of length 3 hops, 4 hops and 5 hops, corresponding to

A2, A3 and A4, respectively, we obtain:

A2 =










I1 I2 I3 I4

O1 0 0 0 0

O2 0 1 0 0

O3 0 1 1 0

O4 0 0 0 0










A3 =










I1 I2 I3 I4

O1 0 1 0 0

O2 0 0 0 0

O3 0 1 0 1

O4 0 1 2 0










A4 =










I1 I2 I3 I4

O1 0 0 0 0

O2 0 0 0 0

O3 0 0 0 0

O4 0 6 3 3









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Figure 4.6: Disjoint paths between s=9 and t=8.

We can see that with 4 and 5 hops, there are 3 possible output ports via which the flit

can leave the source and 3 possible input ports (I2, I3, I4) via which it can reach the

destination. Starting with O3 or O4, there are paths leading to the destination via input

ports I2, I3 and I4. To determine if the paths shown in A3 and A4 are node-disjoint, we can

remove nodes surrounding t (the most critical nodes). The aim is to determine whether

s and t still remains connected. If we delete node 11 i.e., remove all the dependencies to

and from the links of node 11 from A and then calculate A2, A3 and A4, we obtain:

A2 =










I1 I2 I3 I4

O1 0 0 0 0

O2 0 1 0 0

O3 0 1 0 0

O4 0 0 0 0










A3 =










I1 I2 I3 I4

O1 0 1 0 0

O2 0 0 0 0
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








A4 =









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O1 0 0 0 0
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O3 0 0 0 0
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








We now observe that, there is now only 1 surviving path via O3 to I1, which tells us

that some of the paths from O3 to the destination had common nodes and therefore were

not node disjoint. Similarly, starting from O4, there are still at least 2 possible ways to

reach the destination via ports I2 and I4. Note that this also tells us that, O4 provides

the most path diversity (although at the cost of increased hop count) to the destination.

When designing the fault-tolerant routing algorithm, the goal is always to choose the path

with the highest path diversity so that packets have the greatest chance of reaching the

destination.Thus, for this case, O4 would be the first choice, then O3 if O4 is unavailable

due to fault and the final choice is O2

If we were to observe another set of node pairs, e.g s=14 and d=8 in Fig.4.7, and look at

the powers of the CDM:
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Figure 4.7: Disjoint paths between s=14 and t=8.

A =







I1 I2 I3 I4

O1 0 0 0 0

O2 0 0 1 0

O3 0 0 0 0







A3 =







I1 I2 I3 I4

O1 0 1 1 0

O2 0 1 0 1

O3 0 0 1 1







Since, taking O2 involves a single hop (as seen in A), this should be the first

choice. If, however, router 11 were to be permanently faulty, then we obtain: A =







I1 I2 I3 I4

O1 0 0 0 0

O2 0 0 0 0

O3 0 0 0 0







A2 =







I1 I2 I3 I4

O1 0 1 0 0

O2 0 0 0 0

O3 0 0 0 1







A3 =







I1 I2 I3 I4

O1 0 1 0 0

O2 0 0 0 0

O3 0 0 0 1







A2 and A3 shows us that there are exactly 2 different paths of 2 hops leading from O1

to I2 and from O3 to I4. Since both paths involve an exclusive path, either one must be

chosen. Thus, in order to be able to tolerate another fault in its path, the source must

have further knowledge of neighbor fault status beyond its immediate neighbors. This was

assumed to be the router in E-NE direction (i.e. router 12 in Fig.4.7) in the algorithm

presented in Chapter 3, Algorithm 1.

4.5 Analytic Model for NoC Routing Connectivity

Analytically modeling node connectivity when using a particular routing algorithm in

the presence of unlimited faults in the NoC is a challenging task due to the complexity
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of adaptive routing. Even when a physical path may exist, as allowed by the deadlock

freedom constraint, whether a flit will actually reach the destination will depend upon

whether the routing algorithm is able to find this path. NoC routers do not have a global

view of the faults in the network. To keep the overhead to a minimum, a router usually

has knowledge of faults of only the adjacent connected neighbor routers. As a result, in

the presence of multiple faults and with distributed routing, it is not always possible to

calculate the connectivity directly using the channel adjacency matrix.

Table 4.2: Overview of symbols used in analytic model

s Source node

d Destination node

q Intermediate node

oH Output port of source node in H

direction

it Input ports of router t

Aconn Channel connectivity

matrix=
∑

i Ai

∆x x-distance between source and

destination

∆y y-distance between source and

destination

∆q distance between source and inter-

mediate node ’q’

fH Fault condition of output port in

H direction

Pu,v Path connectivity from node u to

node v

For this reason, we break down the reliability assessment in two parts, first by determining

whether the source node is connected to an intermediate node (called ’q’ in the following).

If this intermediate node is connected to the destination, then the source under consider-

ation is also connected to the destination. The location of the intermediate node depends

upon the routing algorithm. For certain destination directions e.g those to the E, N and

for some destinations to the NE, we can directly determine the connectivity, as shown in

Fig. 4.8. For destinations to NW, SE, S, W and SW, we have to consider the intermediate

node approach. This is because, e.g. to go to the NW, a flit should go first in the W or S

direction until the destination is to the N of current router and then follows the rules for

N-routing. Closer s-d pairs are calculated first and then farther s-d pairs. Consequently,

the calculation time taken by the analytic approach will increase with the network size.

However, it is still significantly less than that with simulation. Moreover, although we
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consider the negative-first routing algorithm only, other turn model algorithms can be

similarly modeled by this approach. A short overview of the parameter symbols used in

the analytic model is given in Table 4.2.

4.5.1 Mesh Negative first fault-tolerant routing algo-

rithm [GN93]

Destination to the NE of source

In this case, routing is done along the N and E adaptively towards the destination. If

∆x = 1 or ∆y = 1 (as shown in Fig. 4.8 (a),(b)), we can directly calculate the node

connectivity from the connectivity matrix, Aconn by summing over the matrix entries

(b) NE : x=1

(d) NE : x> y

(e) E

(a) NE : y=1

  
  

 

  
  

 
  

  
 

(f) E : S-edge

Destination, d

Source, s 

Possible intermediate 

router, q

Faulty router

(c) NE : x= y

                                   q

Alternate routes to the destination
Route blocked by a faulty router.

Prohibited turn

Figure 4.8: Routing to the NE.
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from oN and oE to the input ports, id:

Ps,d =
∑

id

∑

t=oN ,oE

Aconnt, id. (4.3)

If ∆x = ∆y, the E port is the preferred output port to the destination. If the E port is

faulty (fE), then the N port is used. If ∆x = ∆y ≤ 3:

Ps,d =
∑

id

AconnoE, id + fE ·
∑

id

AconnoN , id. (4.4)

When ∆x = ∆y > 3 (Fig.4.8(c)), if the E port is non-faulty then the first node to the

East-North that is reachable from s is the intermediate node q. For this condition, i.e. to

reach q, which is ∆ q hops away from s, we should have A∆q−1(oE, iq) > 0, since A∆q−1

refers to A∆q hops (explained in Sec.4.4.1). If E-port is faulty, then the N-port is selected:

Ps,d =
∑

id

AconnoE, iq · Pq,d + fE ·
∑

iq

AconnoN , iq · Pq,d. (4.5)

This equation is also applicable to when ∆x > ∆y 6= 1 (Fig. 4.8(d)). Here, the flit moves

first to the E until ∆x = ∆y, then the rules for this situation is followed. Thus q is

the farthest node that can be reached (A∆q−1(oE, iq) > 0) in the E direction without

encountering a fault until ∆x = ∆y. If E port is faulty, then the first node in the North

East direction to be reached is q. If ∆x < ∆y instead, then N direction is the preferred

direction.

Destination to the E or N of source

For destinations to E, if s and d are not along the south edge, then a routing to the S is

done and then rules of NE-routing are followed (Fig. 4.8(e)), involving a total of ∆x + 2

hops. If S-port is faulty, then E-port is used to reach the destination in ∆x hops. Thus,

the reachability of d can be determined by:

Ps,d =
∑

id

A∆x+1
oS ,id

+ fS ·
∑

id

A∆x−1
oE ,id

. (4.6)

If s and d are along the south edge and a faulty router blocks the path, then the flit

is routed one hop perpendicular to the edge (Fig. 4.8(f)) to reach the destination using

∆x + 2 hops. Although, a restricted turn (E-to-S) is taken, no deadlock occurs as the

cycle through a faulty edge router cannot be completed. The reachability of d is given by:

Ps,dS−edge =
∑

id

A∆x−1oE, id + fE ·
∑

id

A∆x+1oN , id. (4.7)

Similarly for destinations to the N, the following expressions are applicable:

Ps,d =
∑

id

A∆y+1
oW ,id

+ fW ·
∑

id

A∆y−1
oN ,id

. (4.8)
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Ps,dW −edge =
∑

id

A∆y−1oN , id + fN ·
∑

id

A∆y+1oE, id. (4.9)

Destination to the S or W or NW or SE or SW of source

For destinations in these directions, the first moves are always in the negative direction

(to the W or S), so that there is more flexibility in selecting an output port. For example

if we consider destination to the South, first the S port is selected and if this is faulty,

then the W port is selected, as shown in Fig. 4.9(a). Thus, if S port is non-faulty, ’q’ is the

south-most router that is possible for the flit to reach (A∆q−1(oS, iq) > 0) along the line

from the source to the destination. From there the calculation of a path to the destination

is then done:

Ps,d =
∑

id

AconnoS, iq · Pq,d + fS ·
∑

iq

AconnoW , iq · Pq,d. (4.10)

A similar equation is used for destinations directly to the W. If the destination is to the

NW Fig.4.9(b), then the flit is routed first to the west or south until the destination is

directly to the N of the current router. From here the routing rules for the N are followed.

Here, the intermediate router is the closest router in the west or south-west that can be

reached:

Ps,d =
∑

id

AconnoW , iq · Pq,d + fW ·
∑

iq

AconnoS, iq · Pq,d. (4.11)

For the destinations to the SE or SW, similar equations are used.

(a) S (b) NW

Figure 4.9: Routing to the S or NW.
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(a) x= y (b) x> y

Figure 4.10: Routing to the NE in Hex NoC.

4.5.2 Hex Negative first fault-tolerant routing algorithm

For the hexagonal NoC has 3 directions in the positive direction (E,NE and N) and in the

negative directions (W,SW and S). As a result, there are 3 possible directions for reaching

a destination. The routing algorithm is given in Table 3.4.

Destination to the NE

For destinations to NE, ∆x = ∆y (shown in Fig.4.10(a)), the first choice for routing the

flit is to the NE and then to the E or N.

If ∆x = ∆y ≤ 3, then

Ps,d =
∑

id

∑

t=oNE ,oE ,oN

Aconnt, id. (4.12)

When ∆x = ∆y > 3, if A∆x−1
oNE ,id

< 0, then the last node in NE to be reached is q. If the

NE router is faulty, E port is taken and the first node to the E-NE that is reachable from

s (i.e.A∆q−1
oE ,iq

> 0) is the intermediate node q. If E-port is faulty, the N-port is selected:

Ps,d =
∑

iq

AconnoNE, iq · Pq,d + fNE ·
∑

iq

AconnoE, iq · Pq,d + fNE · fE ·
∑

iq

AconnoN , iq · Pq,d.

(4.13)

When, ∆x > ∆y > 1, then the first choice is to the E until ∆x = ∆y, after which the

rules for ∆x = ∆y is followed. Thus, the intermediate node q is the furthest node that

can be reached in the E direction until ∆x = ∆y. If the E router is faulty, then the next

choice is NE and the q is the furthest router in the NE-E direction that can be reached,

as shown in Fig.4.10(b). If NE router is also faulty, the intermediate node will be the

furthest router in the N-NE direction.
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Ps,d =
∑

iq

AconnoE, iq · Pq,d + fE ·
∑

iq

AconnoNE, iq · Pq,d + fNE · fE ·
∑

iq

AconnoN , iq · Pq,d.

(4.14)

For ∆x < ∆y, a similar equation is used, except that the first choice is to the N, then to

NE and then to the E.

4.5.3 Performance Evaluation

For comparing the result of the analytic approach, we carried out simulations for over

100, 000 to 200, 000 cycles in a cycle accurate simulator [WF08] (C/C++ based). Fault-

tolerant negative-first routing algorithm was implemented for both the mesh and hexag-

onal NoC. The traffic considered was uniform random. Permanent router faults were

injected into the NoC at random locations over 10, 000 iterations. Fault-resilience was

determined as the average ratio of the number of successfully received flits to the total

number of injected flits. Similarly, using the analytic model the network fault-resilience

i.e. the average node connectivity was calculated over 10, 000 iterations of random fault

locations and compared to the simulation results. Fig.4.11 shows the fault-resilience vs.

the percentage of faults for different NoC sizes of 6 × 6, 8 × 8, and 10 × 10 were simulated

using both the cycle-accurate simulator and the model. As can be seen, the model results

match closely that of the simulation. The model is able to calculate the fault-resilience

with error of about 1%.

0 0.1 0.2 0.3 0.4 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of faulty routers

F
a

u
lt
 r

e
s
ili

e
n

c
e

 

 

6x6 mesh: simulation

6x6 mesh: analytic model

8x8 mesh: simulation

8x8 mesh: analytic model

10x10 mesh: simulation

10x10 mesh: analytic model

Figure 4.11: Results of fault resilience vs. percentage faulty routers for mesh

NoC in comparison to cycle-accurate simulation.
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Similar curves were plotted for the hexagonal NoC with negative-first fault tolerant rout-

ing. The results, depicted in Fig.4.12 illustrate again the accuracy of the analytic approach.
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6x6: Simulation results

6x6: Analytic model results

8x8: Simulation results
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10x10: Simulation results

10x10: Analytic model results

Figure 4.12: Results of fault resilience vs. percentage faulty routers for Hex

NoC in comparison to cycle-accurate simulation.

The duration of the cycle-accurate simulations became excessively long as the network

size increased. For the 10 × 10 network, the analytic approach was 70× faster than the

simulator. As a result, it was significantly faster to use the analytic approach for the

reliability assessment. However, the speed of the analytic model is still dependent on

the size of the NoC i.e. O(N), where N is the number of nodes. Nevertheless, it is still

significantly faster than the simulations so that we can still determine the fault tolerance

with reasonable speed.

To obtain an idea of the reliability of NoCs with large number of cores, we determined

the fault-resilience using the analytic model for a network of 256 cores, for both mesh and

hex topology. The results shown in Fig.4.13, show that for 15% faulty routers, the hex

NoC with a fault resilience of 0.877 is 29% more resilient than the mesh NoC.

The results show that as the NoC size increases, the fault resilience quickly becomes a

critical even at lower fault rates. Thus, instead of having very large 2D NoCs it may be

more efficient to have clustered NoCs, as investigated in [WPG10] or even 3D NoCs.

4.6 Analysis of border effect

It was observed in Fig. 4.11 and in Fig.4.12 that the as the size of the network increases,

the network resilience decreases for the same percentage of faulty routers. This is the
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Figure 4.13: Comparison of fault resilience of 16 × 16 mesh and hex NoC.

consequence of the higher average path length in the bigger network, which increases the

probability of encountering a fault. Another reason could be due to the number of routers

along the edges of the mesh or hex NoC, so that as the size of the NoC increases the ratio

of center to border routers increases (0.47 for 6×6 hex to 0.65 for 10×10 hex). Since these

edge routers have lower number of links than the center routers, if these become faulty,

lower number of links are made faulty. As a result, fewer paths are affected. To analyze

whether the effect of the border nodes was dominant in the reduction of NoC resilience

for bigger NoC sizes, we used the analytic model for calculating the fault resilience of

8 × 8 and 10 × 10 hex NoCs, excluding any faults along the edges of the NoC. Results for

10,000 random fault locations were averaged and are depicted in Fig.4.14.
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Figure 4.14: Fault resilience excluding faults along the border.
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In this case, at 20% router faults, the 8×8 NoC (which has a lower ratio of center routers)

has a 4.17% higher fault tolerance than the 10×10 NoC. If we look at Fig.4.12, we see that

at 20% faults, the 8 × 8 NoC has 4.14% higher reliability than the 10 × 10 NoC. Thus, we

see that the effect of inner network node faults on the difference of resilience between the

NoC sizes is actually negligent. It is rather the effect of increasing average path length:

6.636 for 10 × 10 NoC and 5.480 for 8 × 8 NoC. The bigger NoC has a greater average

path length, which makes it more prone for a flit to encounter faults along its path. We

see this in more details in Fig.4.15. Here, we consider a 8 × 8 mesh NoC and look at a

scenario of two faulty routers affecting two different source-destination pairs (both in the

NE direction), namely the pairs (S-D1) and (S-D2) having path lengths of 6 hops and 8

hops respectively. Of all possible locations of two faulty routers, we highlight those that

will result in the flit failing to reach the destination. The location of these faulty router

positions can be easily determined from path connectivity using CDM approach. Since

the source and destination are considered to be fault-free, then there are
(

62
2

)

different

possibilities of 2 faulty routers. Of these, for S-D1 pair there are 6 pairs of faulty routers

or a probability of 6/
(

62
2

)

that the flit will fail to reach from S. Similarly, for S-D2 pair,

there are such 8 pairs of faulty routers or a probability of 8/
(

62
2

)

of failure. The results

support the observation that with increasing path length, there is a higher probability of

encountering faults and thus decreasing fault resilience.
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Figure 4.15: Relation between path length and fault resilience in mesh NoC.

Similarly, for the hex NoC we can compare the fault resilience of two source-destination

pairs, S-D1 and S-D2 as shown in Fig. 4.16. As the hex NoC can tolerate all two-router

faults, we look at a scenario of three faults affecting a 8 × 8 hex NoC. For S-D1 pair, with

a minimal path length of 3 hops, there are 5 such fault combinations whereas for S-D2

pair with a minimal path length of 4 hops, there are 6 such fault combinations. Thus,

the probability of the flit failing to reach the destination is 5/
(

60
3

)

and 6/
(

60
3

)

for S-D1
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Figure 4.16: Relation between path length and fault resilience in hex NoC.

and for S-D2 respectively. Note that for the hex NoC, we do not include the top-left and

down-right corner routers in the calculation, as they are not part of the true hexagonal

NoC.

Now that we have observed the effect of path length on the fault resilience for a specific

sized NoC having a certain number of faults, we further analyze the effect of path length

for different NoC sizes with the same ratio of faults. Let us consider mesh NoCs of size

4 × 4 and 5 × 5 having 12.5% of faulty routers, i.e. 2 and 3 faulty routers for the smaller

and larger NoC respectively. For the smaller NoC, for S-D pair of path length 4 hops,

the probability of the flit not reaching the destination is given by 4/
(

14
2

)

or 4.44% and

for a S-D pair with path length of 6 hops, the failure probability is 6/
(

14
2

)

or 6.59%. For

the 5 × 5 NoC with 3 faulty routers, for S-D pairs of length 4 and 5 hops, the failure

probability is 82/
(

23
3

)

or 4.63% and 126/
(

23
3

)

or 7.11%. Thus, for the same ratio of faults,

the bigger NoC will have a lower fault resilience due to greater average path length as

well as a greater probability to encounter faults.

4.7 Summary

In this chapter, we proposed an approach based on CDM algebra for analytically determin-

ing the fault resilience of a fault-tolerant routing algorithm. We presented and validated

the model for the fault-tolerant negative first routing algorithms for both the mesh and

hexagonal NoCs. Although, we did not present the model for the oct NoC, the model can

easily be extended to this case since the approach is very flexible. Moreover, any other

adaptive routing algorithm (based on the turn model) can also be easily modeled. We

presented cycle-accurate simulations to compare the accuracy of the modelwhich, is able

to estimate the network fault resilience with an estimation error of approximately 1%. Our

approach is significantly faster than cycle-accurate simulations, making it very useful for

analyzing the reliability of larger network sizes. The investigations for larger NoCs (4.13),

showed that fault resilience can become a serious problem for larger NoCs. The speed of

the analytic approach is dependent on the network size since we need to first calculate the
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path reliability for closer node pairs and then use it in the calculation of path reliability

for node pairs which are further apart. However, by parallezing the calculations for the

closer node pairs, we can speed up the calculations. Moreover, with the analytic approach

we can flexibly investigate specific case scenarios as in Sec 4.6, where the effect of faults

the NoC border was analyzed.



Chapter 5

Temporal and Information

Redundancy

5.1 Introduction

In this chapter we concentrate on achieving soft error fault tolerance by means of temporal

redundancy techniques i.e. retransmissions of corrupted or lost packets [RFZJ13] and by

transmission of redundant information. Retransmission, also known as Automatic Repeat

Request (ARQ) has been used widely in telecommunication networks for error control and

has also been investigated widely for NoC architectures [MTV+05][PNJ+06]. This can be

implemented on a hop-by-hop basis (H2H) i.e. the detection and retransmission of flits

happening at every hop or at each router. In contrast it can also be implemented on a

end-to-end (E2E) basis between the source and destination nodes, as shown in Fig.2.9.

In this work, we concentrate on and evaluate only E2E retransmissions to avoid excessive

overheads of storing flits at each router, required for retransmission.

Assuming a large NoC with high flit loss probability, ARQ mechanisms are not sufficient

anymore. Long path latencies along with a large number of retransmissions lead to a big

drop in NoC communication performance. A promising solution for this dilemma might be

provided by network coding [ACLY00], which has been introduced in Sec. 2.3. Network

coding (NC) allows to increase throughput, energy efficiency, and robustness of data

transmission. These benefits are achieved by the key concept of network coding to compute

and send linear combinations of data packets. In view of the challenging interconnection

problem for future many-core systems, the use of network coding for communication

within NoCs seems to be promising. In recent years, some authors have already studied

the applicability of network coding for NoCs. Indrusiak investigated the feasibility of

network coding by means of the well-known butterfly-network for a multicast scenario

with two receivers [Ind11]. He suggested algorithms for finding butterfly arrangements

on a 2D mesh and a heuristic for the evaluation of the established butterfly. Further

algorithms for the mapping of a butterfly network to a 2D mesh were suggested in [SRG12].

71
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Duong-Ba et al. introduced a possible implementation of a network-coded NoC [DBNC11].

They suggested a router architecture and an appropriate flit structure. Vonbun et al.

investigated theoretical bounds in terms of hop count improvements of network coded

NoCs in comparison to classical dimension-routing NoCs [VWF+13].

Overall, these studies indicate that network coding can improve the efficiency of com-

munication within NoCs. However, the existing results consider 2D mesh networks of

rather small dimensions (up to 12 × 12 mesh). Further, they focus mainly on multicast

communication based on the butterfly structure. Although various coding schemes have

been applied to NoC [BD05][YA12] many of these incur overheads in terms of area and

power[MTV+05][FLJ+13]. We developed an analytical model for flexible evaluation of the

network coded transmission which are verified by means of simulations[MYF+15]. The

simulations are based on the implementations of the Student project work [Yan15]. Fur-

ther, we investigated the threat of active attacks from Hardware Trojans in NoC, which

is introduced and explained in details in in Sec. 5.3.

5.2 Network Coding in NoC

We focus on network coding for unicast transmissions. As network coding scheme, we

assume RLNC implemented according to [CWJ03], introduced in Sec. 5.2.2.3. Figure 5.1

illustrates the benefit of a network coded unicast transmission in a NoC with flit loss. In-

stead of sending an initial transmission, waiting for an ARQ and sending a retransmission,

additional redundant flits computed as linear combinations from the current generation

are directly sent to overcome flit loss (up to a certain level). Opposed to the uncoded case,

network coding has the advantage that in case of flit loss, if sufficient flits are received for

decoding, no ARQ needs to be sent.

 TransmissionSender Receiver

Information Redundancy

Flit loss

Uncoded

flits

Coded flits

Decoded

 flits

Figure 5.1: Information redundancy in NoC via network coding.
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5.2.1 System Model

Traffic and Routing: A spatial uniform traffic distribution with a constant injection

probability per module (i.e. Poisson arrival) is assumed. This generic traffic pattern is

commonly used for NoC performance evaluation and enables a good comparison with

other works. A dimension-ordered, deterministic XY routing is applied.

Coding: Uncoded and RLNC coded transmissions are considered and compared in the

following. In case of RLNC, a certain number G (generation size) of subsequent flits is

composed as a frame (generation). Out of these G flits, C linear combinations are gener-

ated at the sender. With a sufficient symbol size, it can be assumed that all combinations

are linear independent. Thus, it is sufficient that any G out of the C generated combina-

tions arrive at the receiver to be able to decode the original flits. The RLNC code rate R

is given as

R :=
G

C
. (5.1)

Thus, a lower code rate indicates a higher level of redundancy.

Failure model: A certain number of N error-prone routers is randomly selected in

advance. Each of these routers has a constant probability f (flit loss probability) to drop

a flit instead of forwarding it to the subsequent router .

ARQ: If a flit loss is recognized at the receiver, an ARQ is sent back to the source to

request a retransmission. For the uncoded case, this flit loss is recognized due to missing

flitIDs, since flit numbering between a certain source destination pair are continuous. For

the network coded case, all flits of generation are sent consecutively and should be received

at the destination immediately one cycle after another. If there is a flit missing and the

generation is still incomplete, then an ARQ is sent. For the simulations, investigations

revealed that a wait of 8 cycles between consequent flits was optimum. If after this time

no new combination is received, an ARQ is sent for a flit of this generation. In the

uncoded case, multiple flits might be requested at once. No positive acknowledges are

generated for saving bandwidth, which is very important for NoC. The maximum number

of retransmission trials is limited and in the following investigations, we assume only

1 retransmission is allowed. However, this is only an assumption on our part for our

investigations and the number of ARQs can also be increased to greater than 1.

Retransmission Buffer: Before encoding, copies of the flits are saved in a circular

buffer of the sender, so that retransmissions can be generated after receiving ARQs.

Since old flits can be overwritten by new flits, the buffer size determines the number of

retransmissions that can be generated and thus affects latency and residual error rate.

In the simulations a relatively large buffer size was chosen to avoid to effect of flit loss

due to buffer overwriting. For practical realizations, the retransmission buffer must be

dimensioned carefully. On the one hand, a large buffer allows multiple retransmission
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trials over long distance paths. On the other hand, the buffer size can affect the chip

area of the NoC significantly. For the network coded case, the flits of a generation are

sent immediately one after another in consecutive cycles and recognition of loss happens

immediately if the generation cannot be decoded . If we assume the buffer depth to be Nb,

then with our assumed flit injection rate of 0.2 flits/node/cycle and with uniform random

communication, each flit will stay in the buffer for 5 ∗ Nb cycles on average. After this,

the new incoming flit will overwrite this flit. If we assume a source-destination pair with

a difference of ∆ h hops and each hop requires 2 cycles, then the ARQ will reach the

original source after a total time of 4 · ∆h + 8. For our assumed NoC size of 8 × 8, the

furthest nodes are 15 hops apart. For this node pair, if then the original flit is still to be

found in the retransmission buffer:

5 · Nb ≥ 60 + 8 (5.2)

Thus, a retransmission buffer of depth 14 flits is sufficient.

For the uncoded case, if ’t’ consecutive flits are lost, then an ARQ is sent by the receiver

when the next flit arrives and the receiver realizes that there is a discontinuity of flit IDs

between the last two received flits. Since there are potentially 63 potential destinations in

a 8 × 8 NoC, the time between 2 consecutive flits to the same receiver is 63
0.2

or 315 cycles,

so that the ARQ is sent 315 · (t + 1) + 2 · ∆h after the first flit (which is lost) is sent. This

ARQ will reach the sender (if it is not lost) after 315 · (t + 1) + 4 · ∆h cycles after the

first flit was sent. Assuming, the sender has separate buffers for each target destination,

each flit stays in the buffer for 315 · Nb cycles. If successful retransmission is to occur, the

original flit should be in the buffer for these many cycles, i.e.:

5 · Nb ≥ 315 · (t + 1) + 4 · ∆h (5.3)

For the sender-receiver pair separated by 15 hops (∆h), if 2 consecutive flits are to be lost

and still remain in the retransmission buffer when the ARQ reaches the sender, Nb ≥ 201

i.e. 201 flits deep. For the case of 3, 4 or 5 consecutive flits lost, the retransmission should

have a minimum size of 264, 327, or 390 flits, which is quite large. It should be noted this

size of buffer has been calculated considering the farthest apart s-d pair. Table 5.1 gives

the values of the different sizes of buffers needed with different numbers of consecutive

flits lost (t) and with different hops of distance (∆ h).

5.2.2 Performance evaluation

For the evaluations, the following four metrics were chosen as they are well suited for

comparison and offer a good overview of different performance aspects in error-prone

NoC:
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Table 5.1: Retransmission buffer depth at sender with uncoded transmission

for receivers at different path lengths.

Nb

∆h t=2 t=3 t=4 t=5

5 209 272 335 398

6 213 276 339 402

7 217 280 343 406

8 221 284 347 410

9 225 288 351 414

10 229 292 355 418

Gross traffic or Network load, A: The gross traffic rate is the average number

of flits per router and per cycle accepted by the network and represents the network load.

Let Nflits be the total number of flits that are transmitted during the simulation run time,

TS the send time of the first flit, TR the receive time of the last flit and M the total

number of active modules. Then the network load can be given as follows

A :=
Nflits

(TR − TS) · M
. (5.4)

Without ARQ and retransmission, and under the assumption that the network is not

saturated, the network load is equal to injection rate.

Information rate I: The information rate represents the proportion of information

flits and the total number of transmitted flits including redundant flits, ARQ flits (Narq)

and retransmissions (Nretr):

I :=
R · (Nflits − Narq − Nretr)

Nflits

. (5.5)

Latency ℓ: The end-to-end path latency is the average time (in clock cycles) that a flit

needs to travel from a sender to a receiver. For coded transmissions, it is equal to the

number of cycles between sending the first flit of a generation and receiving the Gth flit

of that generation.

Residual error probability ǫ: The residual error probability is the proportion of

flits which could not be received after the maximum allowed number of retransmission

trials.

5.2.2.1 Analytic Model for Evaluating RLNC Performance

As the size of the network increases to accommodate thousands of cores on a chip, cycle

accurate simulators require a prohibitive length of time to provide results. In this respect,
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analytic models become useful as they are faster and more flexible, provided that they can

accurately model the system. Moreover, analytic models also provide an insight into the

system which helps to explain the system behavior. In the current NoC setup without and

with network coding, the four network performance parameters are evaluated by means

of an analytic model that is introduced in the following. The common parameter symbols

used in the model in addition to those introduced before are given in Tab. 5.7.

Table 5.2: Overview of model parameter symbols

s Source module

d Destination module

λx,y Flit injection rate from x to

y

λ′
x,y Total flit injection rate from

x to y including ARQs and

retransmission

Nx,y Number of defect routers in

the XY route from x to y

fx,y Total flit loss probability

from x to y

ǫ Average residual error prob-

ability

ℓx,y Path latency from x to y

ℓ′
x,y Total Path latency from x to

y after retransmission

ℓ Average path latency over

all source-destination pairs

In the presence of the faulty routers with a certain flit loss probability f , the total flit

loss probability fs,d between a source and destination pair depends on how many faulty

routers (Ns,d) are present in this path from s to d:

fs,d = 1 − (1 − f)Ns,d . (5.6)

The total flit loss probability is used in the calculation of the different network metrics

for the uncoded and RLNC coded cases, as explained in the following sections.



5.2 Network Coding in NoC 77

5.2.2.2 Uncoded Network (UC)

Gross traffic or Network load: The injection and thus network load of the net-

work increases with ARQ and retransmission. As explained in sections 5.2.1, an error is

recognized and an ARQ is triggered whenever there is a discontinuity in flit IDs of the

received flits. The total injection rate λ′
s,d is composed of the rate of the issued ARQs,

λarq_s,d and the rate of the retransmitted flits, λretr_s,d in addition to the regular injection:

λ′
s,d = λs,d + λarq_s,d + λretr_s,d. (5.7)

When computing λarq_s,d and λretr_s,d, it has to be noted that an error is detected at the

receiver d when 1 or more (e.g. t) consecutive flits from s to d are lost (with probability

f t
s,d) with the successive flit being received successfully (with probability f ′

s,d = 1 − fs,d).

Since only a single ARQ is issued for all t consecutively lost flits, the rate of injection due

to ARQs is proportional to 1
t
. Thus, λ′

arq_s,d is given by

λarq_s,d = λd,s · (1 − fd,s) ·
∞∑

t=1

f t
d,s

t
(5.8)

Using the Maclauren series

ln(1 − x) = −(x +
x2

2
+

x3

3
+

x4

4
+

x5

5
+ · · · ) (5.9)

in Eq.5.8 we obtain

λarq_s,d = λd,s · (1 − fd,s) · ln
1

1 − fd,s

= λd,s · f ′
d,s · ln

1

f ′
d,s

.
(5.10)

The total probability of a retransmission is given by the probability 1 or more consecutive

flits are lost but then the successive flit is received(f ′
s,d ·

∑∞
t=1 f t

s,d) × the probability the

ARQ successfully reaches s (f ′
d,s). When the ARQ is successful, then all missing flits are

retransmitted, so that the rate of retransmission λretr_s,d is given by

λretr_s,d = λs,d · f ′
s,d · f ′

d,s ·
∞∑

t=1

f t
s,d

= λs,d · f ′
s,d · f ′

d,s · (
1

1 − fs,d

− 1)

= λs,d · f ′
d,s · fs,d.

(5.11)

Putting Eqs. 5.8 and 5.11 in Eq. 5.7 and taking the average over all modules, the network

load is computed as follows:
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A =
1

M
·

M∑

s=1

M∑

d=1
d6=s

λ′
s,d. (5.12)

Information rate: Using the above mentioned injection rates and putting them in

Eq. 5.5 with code rate R = 1, the information rate I is obtained as follows:

I =
M(M − 1)

∑M
s=1

∑M
d=1
d6=s

(1 + f ′
d,s · ln 1

f ′

d,s

+ f ′
d,s · fs,d)

. (5.13)

Latency: In the absence of faulty routers, the path latency ℓs,d is composed of the

NoC interface injection and ejection delays and the total router transport delays. With

retransmissions, the path latency now increases by the round trip delay, ℓRs,d (= 2·ℓs,d+2)

needed by ARQ and the retransmission to travel to and back from s. As the ARQ and

retransmission must be first stored in a buffer and transmitted 1 cycle later, there is an

additional delay of 2 cycles. Also included is the delay ∆ (= 1
λs,d

) between consecutively

injected flits for the same source-destination pair, as the ARQ is triggered only with the

receipt of the next flit. Thus, the total path latency is obtained as shown in Eq. 5.14

by considering that t consecutive flits are lost before the next flit is received successfully

with probability f t
s,d · f ′

s,d. Moreover, the retransmission was received successfully with

probability f ′
d,s · f ′

s,d:

ℓ′
s,d = ℓs,d · f ′

s,d +
∞∑

t=1

(∆ · t + ℓRs,d + ℓs,d) · f t
s,d · f ′

s,d

2
· f ′

d,s

= ℓs,d · f ′
s,d + [∆ + f ′

s,d · (ℓRs,d + ℓs,d)] · fs,d · f ′
d,s.

(5.14)

Using the following series summations:

∞∑

k=0

xk =
1

1 − x
. (5.15)

∞∑

k=0

kxk =
x

(1 − x)2
. (5.16)

in Eqn.5.14, we get:

ℓ′
s,d = ℓs,d · f ′

s,d + [∆ + f ′
s,d · (ℓRs,d + ℓs,d)] · fs,d · f ′

d,s. (5.17)

The average path latency is obtained by

ℓ =
1

M(M − 1)

M∑

s=1

M∑

d=1
d6=s

ℓ′
s,d. (5.18)
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Residual Error Probability: The residual error probability is obtained by consider-

ing that even with retransmission, the flit fails to reach the destination because either the

ARQ or the retransmission was lost. The average residual error probability of the system

is given by:

ǫ =
1

M(M − 1)

M∑

s=1

M∑

d=1
d6=s

fs,d · (1 − f ′
d,s · f ′

s,d). (5.19)

Using the above set of equations, we are able to analytically deduce the NoC performance

parameters for the UC case. Next, we describe and deduce the equations for calculating

these parameters for the RLNC case.

5.2.2.3 RLNC coded Network (NC)

For the RLNC case, an error occurs if less than G flits of a generation are received. In this

case, decoding of this generation is not possible. The error is recognized if at least one

flit of the generation was received. The error probability is obtained using the binomial

distribution, as in[PF14]:

fNCs,d =
G−1∑

i=1

(

C

i

)

f ′
s,d

i
fC−i

s,d . (5.20)

Network load: The total injection rate per module is again composed of ARQs and

retransmissions in addition to the regular injection rate λs,d. Since only one ARQ and

retransmission is sent per C combined flits of a generation, a factor 1
C

has to be included

in Eq. 5.41:

λ′
NCs,d = λs,d +

λd,s

C
· fNCd,s +

λs,d

C
· fNCs,d · f ′

d,s, (5.21)

ANC =
1

M

M∑

s=1

M∑

d=1
d6=s

λ′
NCs,d. (5.22)

Information Rate: Similar to the uncoded case, the information rate is obtained by

INC =
M(M − 1) · R

∑M
s=1

∑M
d=1
d6=s

(1 + fNCd,s

C
+ fNCs,d

C
· f ′

d,s)
. (5.23)

Latency: In the absence of faulty routers, the sender first collects G flits of a generation,

and then after computing C combinations, transmits them one after another. At the

receiver, the combinations are collected and after the arrival of G flits, the flits are decoded

and forwarded to the receiver module. Including theses delays in addition to buffering

delays at the sender and the receiver, the path latency ℓNCs,d is obtained. With ARQ and
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retransmission, the total latency now includes the round-trip delay, ℓRs,d. The total and

average latencies are given by Eqs. 5.24 and 5.25, respectively:

ℓ′
NCs,d = ℓNCs,d ·

C∑

i=G

(

C

i

)

f ′
s,d

i
fC−i

s,d + (ℓNCs,d + ℓRs,d)

·

(

C

G − 1

)

(f ′
s,d)G−1

fs,d
C−(G−1) · f ′

d,s · f ′
s,d, (5.24)

ℓNC =
1

M(M − 1)

M∑

s=1

M∑

d=1
d6=s

ℓ′
NCs,d. (5.25)

Residual Error Probability: As for the uncoded case, the residual error probability

with retransmission increases with loss of the ARQ or the retransmitted flit. If G − 2 or

less flits are received, decoding is not possible even with retransmission and so an error

is also generated:

ǫNC =
1

M(M − 1)

M∑

s=1

M∑

d=1
d6=s

[
G−2∑

i=0

(

C

i

)

(1 − fs,d)ifs,d
C−i

+

(

C

G − 1

)

(f ′
s,d)G−1

fs,d
C−(G−1) · (1 − f ′

s,d · f ′
d,s)

]

. (5.26)

5.2.3 Results and discussion

Evaluation parameters: In the simulations as well as in the model, an 8x8 2D mesh

topology is studied. On average, 0.2 flits per router and per cycle are injected to the

network (injection rate λ). However, the amount of effectively transmitted information

λeff is influenced by the code rate R, due to the injection of redundant flits:

λeff := λ · R. (5.27)

The following code rates are simulated: 2/2, 2/3, 2/4, and 3/4. We denote these cases

as G2C2, G2C3, G2C4, and G3C4. The uncoded unicast (UC) serves as reference. Eight

error-prone routers are randomly selected. For one simulation run, the flit loss probability

f of all error-prone routers was set to a constant value. For every identified flit loss, at

most one ARQ and one retransmission can be sent. For the NC case, at most one ARQ

and retransmission is allowed per generation. Table 5.3 gives an overview of the simulation

parameters.

The evaluation was repeated over 1000 iterations for different fault locations both by

the analytic model and the simulation and the results averaged to remove the effect of

any particular fault location. The averaged results obtained from the analytic model are

shown in Fig.5.2. The maximum estimation error of the model relative to the simulation

results are given in Tab. 5.4.
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Table 5.3: Overview of simulation parameters.

Topology 2D mesh of size 8 × 8

Arbitration Round-robin

Input buffers Size: 4

Injection Rate λ = 0.2

Code Rates R = G/C with [2/2, 2/3,

2/4, 3/4, UC]

Error-Prone Routers 8 (randomly selected)

Flit loss probability f = 0.01 · i, i = 0, 1, . . . , 20

Max. # ARQ 1

Simulation run time 50k cycles

Table 5.4: Maximum Estimation Error of Analytic Model with iterations

over 1000 random fault locations

UC (%) G2C4(%) G2C3(%) G3C4(%) G2C2(%)

A 1.25 0.34 0.05 0.47 0.49

I 1.22 0.34 0.22 0.75 0.19

ℓ 4.3 0.65 2.93 5.26 6.5

ǫ 0.6 1.4 0.6 0.75 0.57

The latency estimation by the model had a maximum error of 6.5% for the G2C2 case. For

the other cases, the estimation error was equal to or less than 5%. All results have shown

the same trend compared to the simulation results, thus validating the accuracy of the

model. The prominent advantage is the fraction of time taken for the estimation by the

analytic model: the model is approximately 450 times faster than the cycle-accurate simu-

lations, allowing flexible design space exploration of different NoC sizes and/or topologies.

Latency: As it can be seen in Fig. 5.2(c), the main advantage of RLNC comes from its

latency reduction in error-prone NoC. In the considered simulation scenario with eight

error-prone routers, RLNC becomes already worthwhile for flit loss probabilities of > 3%.

It could be shown that a latency reduction of up to 59% is possible (for 20% flit loss,

comparing the UC and G2C3/G2C4 curves).

Network load: As well as for the latency, RLNC also shows clear benefits concerning the

added load on the network (Fig. 5.2(a)). The lower the code rate, the more advantageous

RLNC becomes compared to the UC transmissions. This is due to the included redundant
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Figure 5.2: Analytic model results for 8x8 2D mesh with randomly located

eight error-prone routers over 1000 iterations of different locations. The plots

depict the effect of the flit loss in the routers resulting in ARQs and retrans-

missions on the average network load, residual error rate, latency and the ratio

useful information transmitted.

flits so that in the case of flit loss during transmission, fewer ARQs and retransmissions

are needed than the UC case. With respect to the network load, we could also observe

a moderate reduction of the network load of up to 15% compared to the UC traffic case

(for 20% flit loss probability).

Information rate: The information overhead of network coding i.e. the information

redundancy is observed in the plots of the information rate in Fig. 5.2(b). Due to the

additional redundant flits (i.e. the generated random linear combinations) the information

part is reduced significantly. However, analyzing the curves more closely, it can be seen

that the margin between UC traffic and RLNC traffic becomes smaller for higher error

probability. Under the zero flit loss condition, a factor of two is observed comparing the
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UC and G2C4 curves. The gap is reduced to a factor of 1.7 at 20% flit loss.

Residual error probability: From the results of the average residual error probability,

ǫ in Fig.5.2(d), it is observed that RLNC shows clear advantages over UC. The average

residual error was reduced by up to 65% at a 20% flit loss probability. However, ǫ increases

with fewer redundant combinations. Comparing the UC and NC cases, G2C3 and G2C4

provides lower error rates in the range of the flit loss probability observed, while G3C4

fares worse than UC as the flit loss probability increases. G2C2, which has no redundancy

always has a higher error rate than UC since both of the 2 combinations sent by the sender

must be received at the receiver in order to decode the generation. If only one is received

and the ARQ or retransmission also fails, then the generation cannot be decoded. This

shows us the drawback of using network coding without redundancy.

Let us take a closer look to the comparison of the residual error probability of G2C3

and UC. We assume that on average the number of defective routers (Ns,d) in the path

between s and d are equal i.e. fs,d = fd,s = f1 , so that the ratio of the residual error rates

of the NC and UC schemes is given by:

ǫUCs,d

ǫG2C3s,d

=
fs,d(fs,d + fd,s − fs,d · fd,s)

f 2
s,d + 3fs,d

2(1 − fs,d)(fs,d + fd,s − fs,d · fd,s)

=
f1(2f1 − f1

2)

f1
2 + 3f1(1 − f1)(2f1 − f1

2)

=
2 − f1

f1 + 3(1 − f1)(2f1 − f1
2)

(5.28)

This ratio is plotted in Fig.5.3(a), for f increasing from 0 to 0.3, with different numbers of

faulty routers (Ns,d=Nd,s=1,2,3). The plot shows us that with increasing number of faults,

ǫG2C3s,d
can exceed ǫUCs,d

e.g. for Ns,d = 3 at f = 0.16 (at which point the ratio becomes

less than 1). This happens because at higher error rates, sufficient combinations are not

received for decoding the generation so that the whole generation is actually considered

lost, even if some combinations are received.

For our evaluations in Gig. 5.2, the 8 × 8 mesh NoC has an average path length of 6.33

hops so that the average number of faulty routers along this path is less than 1. Thus in

the flit loss probability range of f = 0 : 0.2, we do not see G2C3 having worse error rates

than the UC case. If we were to plot the same comparison of residual error probability of

UC to G3C4 (given in Fig.5.3(b)), we can see that G3C4 already has a higher residual

error rate for Ns,d = 2 at f = 0.09. We can conclude that if the ratio of defective routers

is increased or the average path length is increased (e.g. for a larger NoC investigated in

Sec. 5.2.4.2), we will see that even G2C3 will not have sufficient redundancy to outperform

UC scheme.
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Figure 5.3: Variation of ratio of residual error probability of UC and G2C3

and of UC and G3C4 with increasing flit loss probability.

5.2.4 Applications of the analytic model

The benefit of using an analytic model is seen when evaluating large networks or even

different topologies requiring with very small effort.

5.2.4.1 Evaluation of 2D hexagonal and octagonal NoC

Firstly, using the analytic model a 8x8 hex and oct NoC was evaluated for 8 defect errors,

located at different random locations over 1000 iterations. The relative improvements in

the network performance in the residual error probability and the latency of the hex and

oct over the mesh are shown in are presented in Fig.5.4. We do not show the relative

improvements for the network load or the information rate, as these improvements are

relatively small.



5.2 Network Coding in NoC 85

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Flit loss probability

10

12

14

16

18

20

22

24

26

28

30

R
e

la
ti
v
e

 i
m

p
ro

v
e

m
e

n
t 

o
f 

e
rr

o
r 

ra
te

 (
%

)

UC

G2C2

G3C4

G2C3

G2C4

(a) Improvement of residual error rate of 2D hex
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(b) Improvement of latency of 2D hex over 2D mesh.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Flit loss probability

30

35

40

45

50

55

60

R
e

la
ti
v
e

 i
m

p
ro

v
e

m
e

n
t 

o
f 

e
rr

o
r 

ra
te

 (
%

)

UC

G2C2

G3C4

G2C3

G2C4
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(d) Improvement of latency of 2D oct over 2D mesh.

Figure 5.4: Relative improvements of performance for 8 × 8 2D hex and 2D

oct over the 2D mesh, obtained from analytic model results for the hex and

oct NoCs.

Deterministic dimension-ordered routing is assumed in the hexagonal NoC (diagonal-X-

Y) and octagonal NoC (diagonal1-diagonal2-X-Y) similar to that in mesh. As can be

observed, hex and oct NoCs fare better in performance than the 2D mesh because of their

average lower path length. For 8 × 8 network size, hex and oct NoCs have a average path

length of 5.54 hops and 4.69 hops in comparison to that of 6.33 hops for the mesh. As a

result, the probability of encountering a defect router is lower in the hex than in the mesh

(Eqn. 5.6). For residual error probability, the greatest improvement is for G2C4 case in

which 2D oct and 2D hex have an average 54% and 25.7% lower error rate compared to

that of the 2D mesh. For latency, the greatest improvement is for UC case in which 2D

oct and 2D hex have an average 25% and 12% lower latency compared to that of the 2D

mesh.



86 5 Temporal and Information Redundancy

5.2.4.2 Evaluation of large NoC

When larger NoCs are to be investigated, in this case having 1024 cores, the advantage

of the analytic model is significant. Such an evaluation using cycle accurate simulator

would take days if not weeks. The large network was evaluated for the RLNC and UC

case, having 128 error-prone routers, i.e., the same proportion as for the 8x8 NoC over

5000 different random locations. The results are shown in Fig. 5.5. It can be observed that
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Figure 5.5: Analytic model results for 32x32 2D mesh with 128 error-prone

routers.

with increasing flit loss the high latencies of UC make it impractical for use in NOC. By

using RLNC, compared to the UC case the latency can be reduced by 95% (at 20% flit

loss, comparing the UC and RLNC curves). It has to be noted that a larger NoC has a

higher average path length (approximately 22.33 hops) and as a result the probability of

encountering a faulty router is greater. Thus the average error probability is higher for the

large network. For the UC case, with retransmission the residual error rate is 10% higher

at 3% flit loss (comparing 32x32 to 8x8 NoC). For RLNC with higher code rates (G2C2,

G3C4), one retransmission per generation is not sufficient to complete the generation



5.3 NoC Security 87

which makes decoding impossible and results in a higher residual error rate compared to

UC. G2C3 does better in terms of residual error probability but only up to 13% flit loss

compared to UC. For G2C4, the residual error probability is 25% less compared to UC

(at 20% flit loss). When comparing the network load, RLNC performs better than UC,

with a 27% lower network load for G2C4 (at 20% flit loss).

As large networks have higher residual error probabilities, RLNC can provide greater

resilience but with a higher redundancy such as G2C4. In terms of network load and

latency, which are two very important parameters for NoC, RLNC performs better than

UC. As noted before in section 5.2.3, the advantage of RLNC comes at the price of reduced

information rate. However, the gap in information rate between RLNC and UC becomes

smaller at higher error probability. For the 32x32 NoC, when comparing UC and G2C4,

a factor of 2 at zero flit loss is reduced to a factor of 1.46 at 20% flit loss. This indicates

that due to the great number of ARQs and retransmissions, UC case will have a high

amount of traffic composed of flits other than useful information flits.

5.2.5 Summary

From the above analysis, we can conclude that RLNC is a flexible approach for resilient

and low-latency transmissions. In summary

• RLNC comprises a linear combination of data flits of a generation at the sender. As

the global encoding vector (GEV) is already included in the generated combinations,

the receiver can easily decode the received generation provided it receives enough

flits of the generation.

• RLNC is advantageous over UC in terms of lower residual error rate and average

network latency. Due to its inherent redundancy, RLNC can even reduce network

load at high error rates.

• At very high error rates RLNC may have a higher error rate than UC if sufficient

redundant combinations are not generated. By varying the code rate, we can adapt

the flit redundancy to appropriately suit the error conditions.

• Using the analytic model, we can flexibly explore the design space with regard to

different number of faults, different sizes or topology of the NoC, even with different

routing schemes.

5.3 NoC Security

A brief introduction to information security is given in Sec. 2.3.2 and the work of

this section is presented in [MFW+18]. The growing complexity of MPSoCs causes
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the design process to increasingly rely on the integration of components from third

parties, potentially also from untrusted sources [SWS+15]. Even tools used for design

and development may be compromised, and hence pose a tangible threat to MPSoCs.

Such threats can be realized by inserting hardware Trojans (HT), as reported, e.g.,

in [ED05, ACR14, SWS+15, FY15, BK16]. Designing NoCs, it hence becomes vital to

ensure not only reliability to errors, but increasingly also security. In this section we de-

scribe the concept of NoC communication threatened by active attacks within the NoC.

One major attack vector for MPSoCs is the incorporation of HTs (e.g. [AK08, JKM09]).

Considering HTs, an adversarial router may directly drop or alter the forwarded traffic,

thus threatening the availability or integrity of the communication. With local or remote

access to the device, the adversary may also eavesdrop on the communication. As attacks

on the confidentiality additionally require a hidden channel to the attacker, we consider

achieving availability and integrity of communication the more pressing goals. Particu-

larly, we focus on active attackers who may modify or drop flits transmitted in the NoC.

5.3.1 Security in MPSoCs

Ancajas et al. reported on the problem of HTs in NoCs and presented the initial foundation

of mitigation strategies: scramble lower layer data, certify packets, and implement process

migration to obfuscate the destination applications [ACR14]. The suggested methods

aim at preventing an attacker to trigger an HT and an eavesdropping NoC component

is disabled from identifying logical data streams. Setumadhavan et al. [SWS+15] also

aim to prevent the activation of HTs by preventing their trigger events. However, the

suggested measures require a significant overhead and, hence, influence the performance

of the system.

Another strategy to reduce the potential risks implied by HTs is to detect and eliminate

them. One direction is to focus on the design process, e.g., by conducting static analysis for

backdoor during the design/build process and applying security orientated development

procedures [KLM+04, SWS+15]. Frey and Yu [FY15] focus on detecting HTs at runtime

by means of finite state machine controllers that supervises the component’s execution

path. The drawback of the proposed solution is the implied computation and storage

overhead. In [FY16], they subsequently designed a system for detecting HTs which change

the flits, especially control information like type and destination. The countermeasures

are integrated into the router, implying overhead for each router.

However, HTs are an attack vector that cannot be mitigated completely. Therefore, other

strategies aim to diminish the exposed risk by securing the communication during at-

tacks. For example, Boraten and Kodi [BK16] propose the use of algebraic manipulation

detection codes for the detection of modifications of flits. The authors claim a minimal

performance impact of 1% compared to NoCs. But they provide no security measure.

Kapoor et al. proposed to protect the communication by means of authenticated encryp-
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tion [KRAT13]. However, the chosen cryptographic primitive, AES-128 in GCM mode, is

heavy-weight regarding efficiency and area overhead and is therefore an infeasible solution

for NoCs [ED05].

The presented security measures all target the objectives of integrity and confidentiality,

but neglect availability. In the seldom works considering all three objectives, then in

turn efficiency and area considerations are neglected. Hence, our proposed solution aims

at increasing integrity and availability under the constraints of restricted size and tight

latency requirements [MFW+18].

5.3.2 System and Attacker Model

Within this work, we use a spatial uniform traffic distribution with a constant injec-

tion rate per module. Further, we assume retransmission buffers in the NoCIF (to store

transmitted flits) are of sufficient size to prevent flit loss (Sect. 5.3.5).

The flit structure assumed in this work is shown in Fig. 5.6, which is very similar to the

flit structure of chip Tomahawk 4 (T4) [H+17], die photo of which was given in Fig.3.7(b).

The data width of the payload is 64 bits, according to the memory interface size inside

the PE. In addition to the T4 flit, to be able to refer to a flit in case of a retransmission, a

24-bit flit identifier for the uncoded case (corresponding to generation identifier of network

coded transmission, Sec. 5.3.3) is included. The 64-bit data field, the flit identifier, the

mode (4 bit) that specifies the flit type, and an address (32 bit) for memory accesses

constitute the payload of a flit. The header of a flit contains x and y coordinates of source

and target module as well as a bit for indicating burst mode (reserved for future work).

To support a 2D mesh of up to 16 × 16 modules, we assume 4 bits for each coordinate.

Thus, the length of a flit is 141 bits. For the RLNC case according to [CWJ03], the

unit vector must be prepended to the data part in order to have the GEV included in the

combination produced after linear combination of the flits of the generations, as described

in Sec. 5.2.2.3. Thus the GEV further increases the size of the flit, described further in

Sec. 5.3.3.
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Figure 5.6: Flit structure for coded and uncoded case with different fields in

the header and payload (GEV field is absent in UC case).
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We assume that routers may be corrupted while PEs and NoCIFs are assumed to be

trustworthy. A corrupted router may modify a flit with a certain modification probability

pm or drop it with a drop probability pd. Security measures are placed in the NoCIF that

is assumed to be trustworthy.

5.3.3 Communication Model

We consider two approaches: uncoded (UC) and network coded (NC) transmission ac-

cording to [CWJ03]. In our case, network coding is applied to flits. We use a generation

size of G = 2 in order to achieve average latencies comparable to an uncoded transmission

[MYF+15]. For each generation, the sender computes C linear combinations(Sec. 5.2.2.3).

Data to be sent is split into packets xi = (xi,1, xi,2, . . . , xi,n) ∈ F
n
q with q = 2m. Each packet

is prepended with a unit vector (βi,1, βi,2, ..., βi,G) ∈ F
G
q with βi,j=i = 1 and βi,j 6=i = 0.

Altogether, we considered three communication scenarios:

UC: uncoded transmission,

G2C3: network coded transmission with G = 2, C = 3,

G2C4: network coded transmission with G = 2, C = 4.

Hence, a generation always consists of two flits f1, f2 composed of the information bits xi

as well as the prepended unit vector:




f1

f2



 =




β1,1 β1,2 x1,1 x1,2 · · · x1,n

β2,1 β2,2 x2,1 x2,2 · · · x2,n



 (5.29)

The sender computes linear combinations by selecting at random encoding coefficients

αi,j ∈ Fq, i = 1, 2, . . . , C; j = 1, 2 for the computation of linear combinations ck, k =

1, 2, . . . , C. For example, the computation of the combinations for G2C3 is given by:







c1

c2

c3







=







α1,1 α1,2

α2,1 α2,2

α3,1 α3,2







∗

(

f1

f2

)

(5.30)

The receiver needs G = 2 linear independent combinations ci, cj to be able to decode by
multiplying the matrix of these two combined flits with the inverse of the 2 × 2 matrix A

of their corresponding encoding coefficients:

(

f1

f2

)

=

(

αi,1 αi,2

αj,1 αj,2

)−1

∗

(

ci

cj

)

(5.31)
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Invertibility of matrix of encoding coefficients, A ensures invertibility of the matrix of

combined flits and depends both on the size of the A (given by G) and on the size of the

finite field q [PF17]. For a 2 × 2 matrix A, the field GF(24) already provides an inverting

probability of 0.93384 which is sufficient, especially under the consideration that only the

sender randomly selects encoding coefficients. Hence, we assume a symbol size of 4 bits

for the randomly selected encoding coefficients and the data symbols so that the total size

of the GEV included in the flit payload is 8 bits, resulting in a flit size of 149 bits for the

RLNC (in comparison to 141 bits for the UC case).

The gid should be unique "within the system" to prevent an injection of a formerly inter-

cepted flit into a transmission or a replay attack. In such a case, the receiver would not

be able to decode the current generation since the injected flit does not belong to this

generation. With an assumed gid size of 24 bits, a total of 224 different combinations for

the same meta data field (all fields of the flit apart from the data), which we consider

sufficient for our investigations.

5.3.4 Concept for Authentication

As explained in Sec. 2.3.2, Message authentication codes or MACs are suitable when we

are considering only authentication of flits. Authentication aims at preventing undetected

modifications of transmitted information. Since we wish to protect the entire flit and not

only the data, the MAC is generated for the entire flit. AES is a popular algorithm for

the generation of MACs, however, it is not suited to NoC because it requires 1,032 cycles

per block encryption [E+07]. As a promising algorithm for authentication in NoCs, we

selected mCrypton [LK06] that needs only 13 cycles per block encryption and has an area

of 2,681 gate equivalents (GEs) only [E+07].

The MAC is generated by the sender and inserted into the flit to be transmitted. Upon

receiving the flit, the receiver validates the authenticity of the flit by again generating

the MAC and comparing it to the received MAC. If a modification is detected (and there

are not sufficient verified flits of the generation in NC case), an ARQ is sent requesting a

retransmission. In case of NC, we can have 2 possibilities for authentication: (1) authen-

tication of original flits, or (2) authentication of linear combinations. The first approach

allows to compute only a single MAC for a whole generation. There is a low commu-

nication overhead if there are no modifications. However, the receiver cannot check the

validity of flits before decoding and in case of a modification, retransmission of the whole

generation is necessary since the receiver cannot find out which of the flits was modified.

Hence, we focus on the second approach where the receiver does not start decoding before

a successful verification of the received combinations.The size of the MAC depends on

the block size of the underlying cipher; mCrypton has a block size of 64 bits and thus the

resulting MAC is also 64 bits, which is exactly the size of the data field in our flit 5.6. The

crypto modules are stored in the NoCIF and the sender and receiver side of each NoCIF
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share the crypto modules.

We can consider 2 ways in which the MAC should be transmitted with the flit:

Since

• Solution 1 (S1): send the MAC in a separate flit, or

• Solution 2 (S2): include both data and MAC in a flit.

5.3.4.1 S1: Send the MAC in a Separate Flit

In this scenario, for each transmitted data of 64 bits there will be 2 flits which will be

transmitted: one containing the original data and the other containing the MAC in the

data field. These are called the data and MAC flits respectively. Thus, for the UC case

there are always 2 flits (Data and MAC) belonging together and transmitted consecu-

tively. For NC, the sender first computes C linear combinations from G flits. Afterward,

he computes a MAC for each combination so that there are 2 · C flits which are sent

consecutively. If the receiver gets a data flit, he can immediately start with the computa-

tion of the MAC. After finishing, he can compare the generated MAC to the MAC inside

the corresponding MAC flit. After a successful verification of at least G combined flits,

decoding can start.

If the receiver recognizes a loss, a ARQ is issued. In case of UC, the receiver starts a timer

when he receives a data flit. If there is a time-out, he issues an ARQ. If the receiver gets

first a MAC flit, he can directly issue an ARQ since the order of flits is not changed during

transmission. In case of NC, the receiver starts a timer when a flit of a generation arrives.

If verification fails, the receiver issues an ARQ for both data and MAC flit since he cannot

decide which of these two flits was modified. The sender buffers data and MAC flits so that

it is not necessary to compute the MAC again. For NC, it is not necessary to issue an ARQ

immediately. For example, if 2 of 4 received combinations failed verification, decoding is

possible if the remaining 2 combinations are unmodified. After successful verification and,

in case of NC, decoding, the flits are delivered to the PE.

Input for the computation of the MAC is the whole data flit of 141 bits or 149 bits.

Given the block length of 64 bits, there are three input blocks for mCrypton. Hence, the

computation of the MAC implies a delay of 3 ·13 = 39 cycles for both sender and receiver.

Thus there must be sufficient number of crypto modules in each NoCIF in the NoC so

that with the assumed flit injection rate, there is no loss due to queue overflow of flits

awaiting MAC generation (Sect. 5.3.6.2).

5.3.4.2 S2: Include Data and MAC in One Flit

In S2, the MAC is included within the data field of the payload. However, we do not want

to increase the size of the flit and hence, we consider as an alternative the use of a simple
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Authentication Code [Sim91] that requires two key bits for the authentication of a single

message bit (Tab. 5.5). If an attacker observes a flit with message bits and MAC bits,

two keys remain possible for each message bit so that he can guess only with probability

0.5 the correct key bits and undetectably modify the data bit. For authentication of x

message bits, we can simply use a stream of 2x key bits. Hence, if we use 32 bits of the

data field for the actual data and 32 bits for the MAC bits, we need 64 key bits.

Table 5.5: Example for the authentication of one bit.

key bits 00 01 10 11

message bit
0 0 0 1 1

1 0 1 0 1

The receiver must be able to generate the same key bits for each flit as the sender,

even if previous flits are lost. Hence, the key bits are generated pseudo randomly by

encrypting the meta data of a flit. Firstly, the data received in each NoCIF is split into

2 parts of 32 bits. In case of UC, the size of the input for the block cipher is 77 bits

(header+mode+flitID+address+data), i.e., there are two input blocks for the mCrypton.

For NC, there is an input of 85 bits including the GEV, i.e., there are also two input

blocks. Encryption of two blocks with mCrypton requires 2 · 13 = 26 cycles. The resulting

block of 64 bits provide the required pseudo random key bits. Using these key bits and

the original data field, the MAC is computed by a simple look up in the small table with

negligible effort.

In case of NC, the sender must first compute C linear combinations from the 2 split data

parts. After that, he computes the pseudo random key bits for each combination and

then the MACC, and, finally, sends the resulting flits to the receiver. The receiver can

immediately start with the verification when a flit arrives. Since the sender splits a data

block into two flits, the receiver needs both flits in case of UC to successfully deliver the

64-bit data block to the module. In case of NC, the sender needs G correct flits to be able

to decode them to 2 flits that deliver the 64-bit data block.

For the recognition of loss, timers are used as well. If the receiver recognizes a modification,

he also issues an ARQ but in contrast to S1, only a retransmission of one flit is necessary.

5.3.5 Evaluation

5.3.5.1 Parameters and Performance Metrics

Parameters and their respective value ranges are summarized in Table 5.6. The flit genera-

tion rate has to be adapted wrt. the used communication scheme to achieve the mentioned

injection rate in order to be able to compare the different schemes. With our assumed ef-

fective flit injection rate of 0.2 flits/node/cycle, for UC, the desired network injection rate
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needs to be halved i.e it is 0.2 flits/node/cycle(since in both S1 and S2 cases one original

data flit results in two transmitted flits by data splitting or due to data+MAC). For NC,

this rate needs to be further divided by the number of combinations. The resulting flit

creation rates are 0.067 for G2C3 and 0.05 for G2C4.

Table 5.6: Overview of simulation parameters.

Topology 2D mesh of size 8 × 8

Routing Deterministic, dimension-

ordered XY

Arbitration Round-robin

Injection rate λ = 0.2

Communication model S1/{UC,G2C3,G2C4},

S2/{UC,G2C3,G2C4}

Rogue routers 8 (randomly selected)

Modification probability pm = 0.005 · i, i =

0, 1, . . . , 20

Drop probability pd = 0.005 · i, i =

0, 1, . . . , 20

Simulation run time 50000 cycles

The maximum number of retransmissions (and therefore ARQs) is limited to 1 with

respect to the logical transmission unit. For UC, one unit is a pair of flits (either a pair

of data+MAC flit or a pair of combined data/MAC flits); for NC, one unit is a single

generation. As in Sec.5.2, we assumed a single retransmission to limit the network load

and to simplify the error control mechanism.We assume correct transmission between

routers. Finally, it was assumed that ARQs are prone to dropping attacks, but not to

modification. At present, ARQs are not authenticated. This originates from the fact, that

the current authentication scheme only targets the transmission of data flit.

The performance metrics, Network load or gross traffic (A), Information rate (I) and

Residual error probability (ǫ), as explained in Sec.5.2.2 were considered in the evaluations.

5.3.6 Simulation

To evaluate the performance of the proposed authentication schemes, the solutions were

simulated by a cycle-accurate C++ framework for NoCs [WF08]. The existing framework

was extended with the functionality of network coding and cryptographic primitives.

The values of pm and pd were kept equal for single runs. To simplify matters, we will

refer to their sum as attack probability. To eliminate the influence of attacker positions,
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results for each point were calculated by averaging outcomes of 1000 simulation runs with

randomly selected positions of the 8 rogue routers.
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(c) Residual error probability

Figure 5.7: Simulation results for 8x8 2D mesh with 8 attacking routers. The

plots depict the effect of the flit drop or modification in the attacking routers

(resulting in ARQs and retransmissions) on the average network load, residual

error rate and the ratio of useful information transmitted.

Fig. 5.7 presents results of the simulation runs. For an attack rate of 0.0, the network load

equals the network injection rate of 0.2 (Fig. 5.7(a)). With increasing attack probability,

losses and modifications occur. The resulting ARQs and retransmissions imply an increase

of the network load. UC schemes induce significantly more transmissions. Since there is

no redundancy, each modification or loss of a flit implies an ARQ and a retransmission.

The robustness of the NC schemes is clearly visible – the higher the redundancy, the lower

the network load. Fig. 5.7(a) also shows that S1 performs worse than S2: S1 requires a

retransmission of both flits, since the receiver cannot decide whether data or MAC flit

was corrupted.

Fig. 5.7(b) depicts the information rate with respect to the attack probability. With an

attack probability of 0.0, the information rate is determined only by the given communi-
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cation schemes. With increasing attack rates and thus greater ARQs and retransmission,

I decreases. The relative differences between S1 and S2 once more depict the different

robustness of the schemes.

Fig. 5.7(c) presents the residual error probability. Here we again see NC schemes benefit

from the redundancy. S2 achieves best results. For the highest attack rate, S2/G2C4

provides the lowest error probability of ≈ 1.36%. S1 requires two successful retransmission

in case of an ARQ. Although S1/G2C3 starts with a lower residual error than the UC

schemes, its error probability increases faster and becomes greater than the UC schemes

at 11% and 17% attack probability. The results for S1/G2C4 show that an increased

redundancy can effectively counteract this increased error growth. Nevertheless,

Table 5.7: Analytic model parameter symbols

M Total number of modules or nodes

λx,y Flit injection rate from x to y

λ′

x,y
Total flit injection rate from x to y including

ARQs and retransmission

Nx,y Total number of rogue routers in the XY route

from x to y

dx,y Total flit drop probability from x to y

d′

x,y
Probability of no drop from x to y

mx,y Total flit modification probability from x to y

m′

x,y
Probability of no modification from x to y

5.3.6.1 Analytical Model

In this section we describe an analytic model for calculating the performance parameters

without resorting to lengthy simulations. A short overview of further parameters used in

the analytic model is given in Tab. 5.7. In our assumed schemes, the total flit loss or

modification probability between a source-destination pair is determined by the number

of rogue routers encountered in the XY route between them, as given in the following.

dx,y = 1 − (1 − pd)Nx,y . (5.32)

mx,y = 1 − (1 − pm)Nx,y . (5.33)

The probability of no drop (1 − dx,y) or no modification (1 − mx,y) are denoted by d′
x,y

and m′
x,y, respectively. When an ARQ is sent for a missing flit or modified flit (in S2

scheme), for the retransmitted to reach the receiver successfully, the ARQ should not be
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lost or the retransmission should not be lost or modified. The expression below denotes

the probability of such a situation:

Rx,y = 1 − d′
y,xd′

x,ym′
x,y. (5.34)

For S1 scheme (MAC and data sent in separate flits), when the MAC verification fails, it

is not possible to know whether the data or MAC flit was modified. Therefore, the ARQ

sent asks for the retransmission of both the data and the MAC flit. In such a situation,

for the retransmission to successfully reach the receiver, the ARQ must be successful and

both the retransmitted data and MAC flits must reach the receiver without modification,

as denoted in the following expression:

Qx,y = 1 − d′
y,xd′

x,y

2
m′

x,y

2
. (5.35)

We first start with S1 scheme, i.e. transmission of MAC in a separate flit than the data

flit.

S1: Network Coded Transmission

In NC scheme, ‘G’ pairs of data and corresponding MAC flits need to be received cor-

rectly in order to successfully decode the generation. Otherwise, there is an error which

would require a retransmission. Based on this assumption, the performance parameters

are calculated in the following.

Residual Error Probability: When evaluating the residual error rate, we have to

consider different cases of flit losses or modifications. Let us go through this step by step.

If we consider the case of G2C3, 3 pairs of flits will be transmitted, and at least 2 verified

pairs or 2G flits must be successfully received at the receiver. Here, a residual error occurs

in the following cases:

• in total less than 2G-1 flits received and the rest are lost. Here, even a retransmission

will not help since only 1 retransmission is allowed and this is not sufficient for

decoding (even if the retransmission were successful and the flits were not modified):

ǫ0x,y =
∑2G−2

i=0

(
2C

i

)

d′
x,y

idx,y
2C−i

• 2G-1 flits received (d′
x,y

2g−1dx,y
2c−2g+1), including one pair (

(
C

1

)(
2C−2

1

)

) but the

ARQ/retransmission fails (with probability Rx,y) or one or more of the received

flits were modified. If the received flits are of different pairs (
(

2C

2G−1

)

−
(

C

1

)(
2C−2

1

)

),

then the retransmission does not help:

ǫ1x,y = d′
x,y

2G−1
dx,y

2C−2G+1 ·

[(

C

1

)(

2C − 2

1

)

·

(

m′
x,y

2G−1
· Rx,y + 1 − m′

x,y

2G−1

)

+

(

2C

2G − 1

)

−

(

C

1

)(

2C − 2

1

)]

(5.36)
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• 2G flits were received but not G pairs (
(

2C

2G

)

−
(

C

G

)

) and the ARQ /retransmission

fails. When ‘G’ (
(

C

G

)

) pairs are received, if the modified flits are restricted to one

pair (
(

G

1

)

), an ARQ will be sent for the pair of data and MAC flit. A residual error

happens due to failure of ARQ/retransmissions. However, if flits of different pairs

are modified, then ARQ does not help, since only one ARQ is allowed.

ǫ2x,y = d′
x,y

2G
dx,y

2C−2G

︸ ︷︷ ︸

e2xy

·

[(

C

G

){(

2G

1

)

m′
x,ym′

x,y

2G−1
·Qx,y+m′

x,y

2
mx,y

2G−2·

((

G

1

)

·Qx,y

+

(

2G

2

)

−

(

G

1

))

+
2G∑

k=3

m′
x,y

k
mx,y

2G−k

}

+

(

2C

2G

)

−

(

C

G

)]

(5.37)

• more than 2G flits received i.e 2 or 3 pairs of data/MAC flits, but due to modification

and failure of ARQ/retransmission, the generation cannot be decoded.

ǫ3x,y = d′
x,y

2G+1
dx,y

2C−2G−1

︸ ︷︷ ︸

e3xy

·

[(

2G

1

)

m′
x,ym′

x,y

2G−1
· Qx,y

+ m′
x,y

2
mx,y

2G−2 ·

((

G

1

)

· Qx,y +

(

2G

2

)

−

(

G

1

))

+
2G∑

k=3

mx,y
km′

x,y

2G−k

]

(5.38)

ǫ4x,y =

e4xy
︷ ︸︸ ︷

d′
x,y

c
·

[

mx,y
2m′

x,y

2C−2
·

(

C

1

)(

2

1

)(

2

1

)

· Qx,y + mx,y
3m′

x,y

2C−3
·

{(

C

1

)(

2C − 2

1

)

Qx,y +

(

2C

3

)

−

(

C

1

)(

2C − 2

1

)}

+ mx,y
4m′

x,y

2C−4
·

((

C

1

)

Qx,y

+

(

2C

2

)

−

(

C

1

))

+
2C∑

k=5

mx,y
km′

x,y

2C−k

]

(5.39)

The average residual error probability is given by :

ǫ =
1

M(M − 1)

M∑

s=1

M∑

d=1
d6=s

·(ǫ0x,y + ǫ1x,y + ǫ2x,y + ǫ3x,y + ǫ4x,y). (5.40)

Network load: The network load, λ′
x,y is a sum of the normally injected flits (λx,y)

and the ARQs (λarq_x,y) and retransmissions (λretr_x,y), which are directly related to the

error cases from above. A factor ( 1
2C

) is included in the injection rates of the ARQs and

retransmissions, since only 1 ARQ or retransmission is allowed per C pairs of combined

flits. Similarly, the retransmission rate for the modified flit includes a factor of 2× since

the pair must be retransmitted for the modified flit.

λ′
x,y = λx,y + λarq_x,y + λretr_x,y. (5.41)
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λarq_x,y =
λy,x

2C
·

[
2G−1∑

k=1

d′
y,x

k
dy,x

2C−k + e2yx ·

{(

C

G

)

(1 − m′
y,x

2G) +

(

2C

2G

)

−

(

C

G

)}

+

e3yx · (1 − m′
y,x

2G) + e4yx ·

{
2C∑

k=2G+1

my,x
km′

y,x

2C−k +

(

2C

2G − 1

)

m′
y,x

2G−1
m′

y,x

2C−2G+1+

(

C

1

)(

2

1

)(

2

1

)

m′
y,x

2
m′

y,x

2C−2

}]

(5.42)

Provided that the ARQ was not lost (d′
y,x), retransmission of the required flit(s) will take

place.

λretr_x,y = d′
y,x·

λx,y

2C
·

[
2G−1∑

k=1

d′
x,y

k
dx,y

2C−2G+1+e2xy ·2·

{(

C

G

)

(1−m′
x,y

2G)+

(

2C

2G

)

−

(

C

G

)}

+

e3xy · 2 · (1 − m′
x,y

2G) + e4xy · 2 ·

{
2C∑

k=2G+1

mx,y
km′

y,x

2C−k +

(

2C

2G − 1

)

m′
x,y

2G−1
m′

x,y

2C−2G+1+

(

c

1

)(

2

1

)(

2

1

)

m′
x,y

2
m′

x,y

2C−2

}]

(5.43)

Taking the average over all modules, the network load is computed as follows:

A =
1

M
·

M∑

x=1

M∑

y=1
y 6=x

λ′
x,y. (5.44)

Information Rate: The information rate is determined by the ratio of the actual data

flits transmitted (without redundancy) to the total number of flits transmitted. Since for

each data flit, a flit containing the MAC must also be transmitted, a factor of 1
2

is included

in the calculation of the information rate. The same equation also applies to the uncoded

case.

INC =
R

2
·

∑M
x=1

∑M
y=1
y 6=x

λx,y

∑M
x=1

∑M
y=1
y 6=x

λ′
x,y

. (5.45)

S1: Uncoded Transmission Residual Error Probability: Here, for each data-

MAC pair, error results when both flits are lost or when one unmodified flit is received

and the ARQ/retransmission for the lost flit fails. If the single received flit is modified,

then error will result anyway since no further ARQs are allowed. If both flits are received

and MAC verification fails, then error happens when the ARQ/retransmission fails:

ǫ =
1

M(M − 1)

M∑

x=1

M∑

y=1
y 6=x

[

dx,y
2 +

(

2

1

)

dx,yd′
x,y · (m′

x,yRx,y + dx,y) + d′
x,y

2(1 − m′
x,y

2)Qx,y

]

.

(5.46)
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Network load: Similar to the network coded case, the network load is calculated from

the rate of ARQs and retransmissions given by

λarq_x,y =
λy,x

2
·

[(

2

1

)

dy,xd′
x,y + d′

y,x

2(1 − m′
y,x

2)

]

(5.47)

λretr_x,y =
λx,y

2
· d′

y,x

[(

2

1

)

dx,yd′
x,y + 2 · d′

x,y

2(1 − m′
x,y

2)

]

(5.48)

Using the above, the network load and the information rate can be calculated using Eqns.

5.44 and 5.57 respectively. The total flit loss or modification probability between a source-

destination pair is determined by the number of rogue routers encountered in the XY route

between them:

dx,y = 1 − (1 − pd)Nx,y (5.49)

mx,y = 1 − (1 − pm)Nx,y (5.50)

A retransmission fails if the ARQ is lost or the retransmission is lost or modified. The

expression Rx,y denotes this probability:

Rx,y = 1 − d′
y,xd′

x,ym′
x,y. (5.51)

S2:Network Coded Transmission Residual Error Probability: In this scheme,

the MAC is transmitted with each flit. Since we consider only generation sizes of 2, er-

ror happens no flits of a generation are received (dx,y
C) or when with G-1 received flits

(ǫ1x,y =
(

C

G−1

)

d′
x,y

G−1dx,y
C−G+1) received flits and the ARQ is dropped or the retransmis-

sion is dropped or modified (Rx,y). If any one or more of the G-1 received flits are modified,

there is error irrespective of the fate of the ARQretransmission of the lost flit, since no more

ARQs are allowed. If G or more flit are received (ǫ2x,y =
∑C−G

i=0

(
C

G+i

)

d′
x,y

G+idx,y
C−G−i),

there is a residual error when too many flits are modified for the generation to be suc-

cessfully decoded even with retransmission:

p1 =

(

C

G − 1

)

d′
x,y

G−1
dx,y

C−G+1 (5.52)

p2 =
C−G∑

i=0

(

C

G + i

)

d′
x,y

G+i
dx,y

C−G−i (5.53)

ǫ =
1

M(M − 1)

M∑

x=1

M∑

y=1
y 6=x

[

dx,y
C + p1 · (m′

x,y

G−1
· Rx,y + 1 − m′

x,y

G−1)

+ p2 ·

{(

G + i

1

)

m′
x,ymx,y

G+i−1 · Rx,y +
G+i∑

k=2

(

G + i

k

)

m′
x,y

k
mx,y

G+i−k

}]

(5.54)
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Network load: The gross traffic at each router, λ′
x,y is a sum of the normally injected

flits (λx,y) and the ARQs (λarq_x,y) and retransmissions (λretr_x,y), which are directly

related to the error cases from above. The network load A is computed by averaging λ′
x,y

over all modules. The rates of ARQ and retransmission are given by:

λarq_x,y =
λy,x

C
·

[

p1yx + p2yx ·
G+i∑

k=1

(

G + i

k

)

m′
y,x

k
my,x

G+i−k

]

(5.55)

λretr_x,y = d′
y,x · λarq_y,x (5.56)

Information Rate: Due to the splitting over two flits, a factor of 1
2

needs to be included

for the computation of the information rate:

INC =
G/C

2
·

∑M
x=1

∑M
y=1
y 6=x

λx,y

∑M
x=1

∑M
y=1
y 6=x

λ′
x,y

. (5.57)

Uncoded Transmission: The expressions for the residual error probability and network

load and information rates are very similar to that in the coded case. The main difference

is that, when a flit is modified, the ARQ asks for the retransmission of this flit only:

ǫ =
1

M(M − 1)

M∑

x=1

M∑

y=1
y 6=x

dx,y
2 +

(

2

1

)

dx,yd′
x,y · (m′

x,yRx,y + mx,y) + d′
x,y

2(

(

2

1

)

m′
x,ymx,yRx,y + mx,y

2)

(5.58)

λarq_x,y =
λy,x

2
·

[(

2

1

)

dy,xd′
x,y + d′

y,x

2(1 − m′
y,x

2)

]

(5.59)

The analytical model was applied to the same scenarios as the simulation. The difference

between the model and simulation results for all the estimated parameters were all less

than 5% except for of S1 G2C4, where the residual error rate values had a difference of

average of 7% (Tab. 5.8).

Table 5.8: Relative error between analytical model and simulation.

S1 S2

UC G2C3 G2C4 UC G2C3 G2C4

Error probability 2.8% 5% 7% 1% 1.5% 1%

Information rate < 1% < 1% < 1% < 1% < 1% < 1%

Network load < 1% < 1% < 1% < 1% < 1% < 1%
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5.3.6.2 Area Overhead

In this section, we estimate the overhead of the authentication schemes as well as that due

to network coding. The area overhead of the solutions is given in Tab. 5.9. The main area

overhead results from the mCrypton modules[LK06] used to generate the MACs. MACs

must be generated for both flits incoming from and outgoing to the NoC, requiring 39 and

26 cycles for each flit, according to S1 and S2. The crypto modules are shared between

sender and receiver side of the NI, with flits queuing up to get access to the modules. Given

the flit injection rate of 0.2 flits/node/cycle, the total average rate of flits queuing up for

MAC generation is 0.4 flits/node/cycle for S2 and 0.2 flits/node/cycle for S1. According

to [Kle75], the flit queuing rate, λq should be lower than the processing rate of the crypto

modules, µ (1/39 or 1/26) to prevent buffer overflow and long queuing delays. For the case

of m parallel servers (in this case crypto modules), the queue utilization rate, ρ = λq

m·µ
.

Aiming to have zero queuing delay, we estimated a total number of 18 crypto modules

necessary, so that ρ = 0.5778 for S2 and 0.4333 for S1. Since the solutions protect the

communication of the complete MPSoC, it is justified to compute the area overhead for

the total area of an MPSoC. Considering, e.g., the state-of-the-art MPSoC in [H+17] with

a total area of 24.43 M GEs and 10 NoCIFs, the area overhead is only ≈ 1.98%.

Table 5.9: Overview of area overhead.

Unit Area per NI

Crypto modules 18 × 2681 = 48258 GEs

Retransmission buffer (depth=10) 19 × 10 = 190 bytes

LUTs (for network coding) 7080 GEs (G2C3) or 16992

GEs (G2C4)

Another factor contributing to the area overhead is the retransmission buffers in the NI.

Flits of a generation are transmitted consecutively, so that they should arrive at the re-

ceiver one cycle after the other since congestion delay is almost absent due to the low

injection rate. An ARQ is sent when there is a gap greater than 8 cycles between consecu-

tive flits of a generation. Assuming a retransmission buffer size of Nb flits, each flit will be

in the buffer for 5 ·Nb cycles before it is overwritten (injection rate of 0.2 flits/node/cycle).

Considering the farthest apart node pair (separated by 15 hops, 2 cycles/hop), the ARQ

will reach the sender after a round trip delay of 60 + 8 cycles which should be less than

5 · Nb. Thus, with Nb=
68
5

or ∼14, the original flit can be found. Modification of a flit is

detected after 26 or 39 cycles after receiving the flit and then an ARQ is sent so that

Nb ∼18 or 20 flits deep. Thus, a very small sized retransmission buffer is needed at each

NI. In our reference MPSoC, the highest inter-module distance is 3 hops, so that an even

smaller retransmission buffer of depth 10 flits is needed in order to recover the original

flit when the ARQ reaches the sender.
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Network coding implies further area overhead due to the matrix multiplications

(Sec. 5.3.3) in the GF domain. To reduce complexity, we propose to use look-up

tables (LUTs) storing all possible product values over GF(24). The LUT was imple-

mented in Verilog HDL and synthesized in 65nm CMOS technology and found to have

an area of 118 GEs. For generating one combination for S1, 36 table look ups are needed

along with the addition (or XOR in GF). S2 requires only 20 look ups. Therefore, to

create all the combinations in parallel in one cycle we need a maximum of 144 LUTs (for

S1/G2C4) in each NI. Comparing to our reference MPSoC, this is an overhead of 0.7%

only. For the decoding of the generation, we need the inverse of a 2 × 2 matrix containing

the coding coefficients, which can be easily achieved using the determinant method. Since

fewer multiplications are required for decoding, we do not need more LUTs.

5.3.6.3 Summary

Concerning NoC security, we presented and evaluated authentication schemes which pro-

tect the communication in a NoC against active attackers. In summary

• This protection consists of a combination of creating MACs and applying network

coding for increased efficiency and robustness. The use of mCrypton as lightweight

cryptographic primitive allows for an efficient solution.

• Computation and verification of a MAC requires 26 or 39 cycles for sender and

receiver; the overall area overhead is 2.7% in comparison to the total area of a

state-of-the-art MPSoC.

• The scheme of including MAC and data in one flit significantly outperforms the

scheme of sending the data and MAC in separate flits. The redundancy of net-

work coding reduces significantly the residual error rates but also results in lower

information rate.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Motivation

The aggressive scaling of transistor gates into the deep sub-micron has led to the evolution

of multi-processor systems on chip massively increasing the on-chip processing power. The

design of the communication backbone of such MPSoCs is a challenging task and must take

into consideration parameters such as topology, routing, latency and fault resilience. Fault

resilience has become an important factor for investigation since the trend to deep sub-

micron has introduced permanent and transient faults in the NoC components. Adding

redundant components or doing repeating executions is the general approach to fault

tolerance and the type of redundancy used depends on the class of fault being dealt with.

To investigate fault resilience of NoCs, we not only investigate application of resilience

approaches but generate analytic models for these in order to delve deeper into the process.

This gives us a deeper insight into the matter and allows to flexibly investigate different

scenarios such as different topologies, routing schemes or varying sizes of the network

without having to resort to time costly cycle-accurate simulations.

Contributions of the dissertation

• Investigation of adaptive routing for the hexagonal and octagonal NoCs, obtained by

addition of redundant links in one and both diagonal directions, respectively to the

2D rectangular mesh NoC. The fault-tolerant routing algorithms were based on the

turn model and involves determining the correct combination of prevented turns (in

packet traversal) to avoid the formation of deadlock. Correct selection of these turns

is a complicated process with the effort increasing with the different possibilities of

deadlock cycles. An approach based on the algebraic manipulations of the channel

dependency matrix (CDM) allows to determine the possible combinations of these

prevented turns and thus allows the formation of adaptive routing algorithms much
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simpler. Moreover, the method is very general and can be used for any topology

with turn model based adaptive routing.

• Fault-adaptive routing algorithms are by nature complex, since the packet route

changes continuously subject to the fault locations and thus, especially difficult to

model analytically. We presented an approach to analytically assess the network

fault resilience based on further matrix algebra of the CDM. The approach was val-

idated against cycle accurate simulations for the negative first fault tolerant routing

algorithms for the mesh and hexagonal NoCs, for networks of varying sizes and was

shown to be highly accurate. Since the approach is much faster than cycle-accurate

simulations, it allowed us to investigate fault resilience of larger sized NoCs. Fur-

ther, we were able to investigate analytically scenarios such as the effect of network

border faults or the effect of path length on the fault tolerance using this approach.

• When the NoC is affected by transient faults lasting a few cycles at a time, this

may cause flits to be lost e.g in the router. Generally, the approach for tolerance in

this respect is to either retransmit the lost flit or send redundant flit in advance to

compensate for the loss. We modeled analytically this scenario to compare the NoC

performance with ARQ and retransmission against random linear network coding,

where a linear combination of flits is sent from the sender and then decoded at

the receiver. The results showed that network coding is a promising approach to

deal with transient/ intermittent faults in the NoC. The analytic model is highly

accurate and significantly faster than the simulations, which allowed the flexible

investigation of different sizes and topologies of NoC.

• Security is an crucial emerging issue for MPSoCs, since the design and development

of the heterogeneous MPSoCs involves many parties and therefore the possibility

of malign hardware Trojans insertion at any sage of the development process. We

investigate such a scenario where certain rogue routers were assumed capable to

drop or modify NoC flits. To authenticate the flits, a message authentication code

was included in the flit and the flit was retransmitted if a modification was de-

termined. Moreover, network coding was assumed to protect against the dropping

and modification of flits. The investigation in cycle-accurate simulations revealed

the advantage of network coding over the uncoded scenario. A fast and accurate

analytic model was further developed for flexible investigation.

6.2 Future Research Directions

• In addition to analytic assessment of the fault resilience for the fault-tolerant routing

algorithms, it would be useful to be able to determine analytically the effect of

adaptive routing on latency and throughput. This may be achieved by extending
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models developed in earlier investigations of design space exploration using queuing

theoretic models [FÖFF13].

• Investigation of adaptive code rate selection mechanisms for resilient NoC with

transient/intermittent failures or for secure NoC.

• Investigation of reliability/security in wireless NoC (i.e. wireless inter-chip or even

intra-chip links).

• Investigation of different attack models for NoC security.

• We have investigated within this thesis best-effort traffic only. It would be interesting

to analyze the effect of best effort and guaranteed service together.
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