7 research outputs found

    Efficient integrity checks for join queries in the cloud

    Get PDF
    Cloud computing is receiving massive interest from users and companies for its convenient support of scalable access to data and services. The variety and diversification of offers by cloud providers allow users to selectively adopt storage and computational services as they best suit their needs, including cost saving considerations. In such an open context, security remains a major concern, as confidentiality and integrity of data and queries over them can be at risk. In this paper, we present efficient techniques to verify the integrity of join queries computed by potentially untrusted cloud providers, while also protecting data and computation confidentiality. Our techniques support joins among multiple data sources and introduce a limited overhead in query computation, enabling also economical savings, as the ability to assess integrity increases the spectrum of offers that can be considered for performing the computation. Formal analysis and experimental evaluations confirm the effectiveness and efficiency of our solutions

    A consensus-based approach for selecting cloud plans

    Get PDF
    An important problem when moving an application to the cloud consists in selecting the most suitable cloud plan (among those available from cloud providers) for the application deployment, with the goal of finding the best match between application requirements and plan characteristics. If a user wishes to move multiple applications at the same time, this task can be complicated by the fact that different applications might have different (and possibly contrasting) requirements. In this paper, we propose an approach enabling users to select a cloud plan that best balances the satisfaction of the requirements of multiple applications. Our solution operates by first ranking the available plans for each application (matching plan characteristics and application requirements) and then by selecting, through a consensus-based process, the one that is considered more acceptable by all applications

    An Authorization Model for Multi-Provider Queries

    Get PDF
    We present a novel approach for the specification and enforcement of authorizations that enables controlled data sharing for collaborative queries in the cloud. Data authorities can establish authorizations regulating access to their data distinguishing three visibility levels (no visibility, encrypted visibility, and plaintext visibility). Authorizations are enforced in the query execution by possibly restricting operation assignments to other parties and by adjusting visibility of data on-the-fly. Our approach enables users and data authorities to fully enjoy the benefits and economic savings of the competitive open cloud market, while maintaining control over data

    The 6G Architecture Landscape:European Perspective

    Get PDF

    A manifesto for future generation cloud computing: research directions for the next decade

    Get PDF
    The Cloud computing paradigm has revolutionised the computer science horizon during the past decade and has enabled the emergence of computing as the fifth utility. It has captured significant attention of academia, industries, and government bodies. Now, it has emerged as the backbone of modern economy by offering subscription-based services anytime, anywhere following a pay-as-you-go model. This has instigated (1) shorter establishment times for start-ups, (2) creation of scalable global enterprise applications, (3) better cost-to-value associativity for scientific and high performance computing applications, and (4) different invocation/execution models for pervasive and ubiquitous applications. The recent technological developments and paradigms such as serverless computing, software-defined networking, Internet of Things, and processing at network edge are creating new opportunities for Cloud computing. However, they are also posing several new challenges and creating the need for new approaches and research strategies, as well as the re-evaluation of the models that were developed to address issues such as scalability, elasticity, reliability, security, sustainability, and application models. The proposed manifesto addresses them by identifying the major open challenges in Cloud computing, emerging trends, and impact areas. It then offers research directions for the next decade, thus helping in the realisation of Future Generation Cloud Computing
    corecore