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Università degli Studi di Milano

sabrina.decapitani@unimi.it

Sara Foresti
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ABSTRACT

We present a novel approach for the specification and en-
forcement of authorizations that enables controlled data
sharing for collaborative queries in the cloud. Data author-
ities can establish authorizations regulating access to their
data distinguishing three visibility levels (no visibility, en-
crypted visibility, and plaintext visibility). Authorizations
are enforced in the query execution by possibly restricting
operation assignments to other parties and by adjusting vis-
ibility of data on-the-fly. Our approach enables users and
data authorities to fully enjoy the benefits and economic
savings of the competitive open cloud market, while main-
taining control over data.
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1. INTRODUCTION
Today’s ICT scenarios are seeing an ever-growing explo-

sion of data collection, sharing, and collaborative process-
ing, as well as an ever-increasing need to efficiently per-
form extensive data analysis tasks over data produced and
controlled by different parties (e.g., in medical or genomic
data applications). The evolution of technology, and es-
pecially of the cloud computing paradigm, well responds
to such demands and needs, offering a variety of storage
and computation providers with different costs and perfor-
mance guarantees. Multi-provider applications can leverage
the richness and diversity of the cloud market by involving
different parties depending on specific needs and economic
convenience. Users and companies can then enjoy clear so-
cial and economic benefits in terms of convenient, scalable,
and elastic availability of services. At the same time, how-
ever, data could be sensitive, proprietary, or simply subject
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to access restrictions that can affect the possibility of rely-
ing on external cloud providers for their management and
processing [23]. Restricting processing within the premises
of each individual data authority (i.e., the entity controlling
the data) or at the user side, security concerns over data
exposure can hinder the ability to fully benefit from the rich
and diverse offer of the cloud market, and represent a sig-
nificant barrier towards the evolution of the market and the
related economic growth.

In this paper, we address this problem and propose a novel
approach enabling collaborative and distributed query exe-
cution with the controlled involvement of cloud providers
that might be not fully trusted to access the data con-
tent. Our goal is twofold: first, to allow data authorities to
make their data available for possible collaborative process-
ing, while maintaining control over them; second, to allow
users accessing such data to leverage the rich and diverse
offer of the cloud market, by relying on cloud providers for
performing queries over such data.

The core of our proposal is a simple, yet flexible, autho-
rization model that enjoys the great advantage of simplic-
ity of specification and management. Each data authority
can establish authorizations regulating the release to other
subjects (i.e., users, providers, and other data authorities)
of data under its control. Authorizations are specified by
each authority independently (no cross-domain authoriza-
tion or collaborative administration is required) and selec-
tively grant visibility on the data to other subjects. Vis-
ibility can be granted either plaintext or encrypted. Sub-
jects authorized for encrypted visibility over some data can
perform computations (e.g., evaluate conditions or perform
joins) over the data without accessing the actual data val-
ues. Leveraging the availability of solutions that support
operations on encrypted data (e.g., CryptDB [19] and the
SEEED framework over the SAP Hana DBMS [12]), this fea-
ture increases the spectrum of potential providers to which
operations within a query can be assigned. Query execu-
tion can then selectively involve, in the different steps of the
computation, different data authorities and cloud providers
as deemed desirable for economic or performance reasons.
Authorizations imposed by data authorities are enforced by
applying encryption/decryption on-the-fly as needed to dis-
able/enable data visibility as demanded by authorizations
and operation requirements. Authorization enforcement will
entail controlling not only direct data access, or release, but
also accounting for information implicitly conveyed as a re-
sult of a computation.
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Running example. For concreteness, but without loss of
generality, we frame our work in the context of relational
database systems. We consider queries of the general form
“select from where group by having” that can include
joins among distinct relations under control of different data
authorities. Execution of queries is performed according to
a query plan established by the query optimizer. The query
plan is represented as a tree T(N) whose leaves are base re-
lations and whose non-leaf nodes are operations to be exe-
cuted to perform the query. We assume the query plan to be
produced with classical optimization criteria and, in partic-
ular, we assume that projections are pushed down to avoid
retrieving data that are not of interest for the query. Graph-
ically, we represent a leaf node as a square box that contains
(the projection of) a source relation. We refer to leaf nodes
as base relations. In this paper, we consider as a running
example two data authorities: a hospital H, storing relation
Hosp(S,B,D,T), reporting SSN, Birth, Disease, and Treat-
ment of hospitalized patients; and an insurance company I
storing relation Ins(C,P), reporting for each Customer the
insurance Premium. We assume a user U and three cloud
providers X, Y, Z offering computational power. Our run-
ning example considers the execution, on behalf of user U,
of query “select T, avg(P) from Hosp join Ins on S=C
where D=‘stroke’ group by T having avg(P)>100” re-
trieving, for each treatment given to patients hospitalized
for stroke, the average insurance premium (if greater than
USD100). Figure 1(a) illustrates a query plan for our query.

Outline. The remainder of this paper is organized as fol-
lows. Section 2 presents our authorization model. Section 3
describes the concept of relation profile, capturing the infor-
mative content of a relation. Section 4 shows how protection
requirements stated by authorizations must be considered
to ensure that data are properly protected in query execu-
tion. Section 5 describes the use of on-the-fly encryption
and decryption for protecting data in a computation, based
on the assignment of query operations to subjects. Sec-
tion 6 shows how to compute and distribute assignments.
Section 7 presents the economic benefits of our solution.
Section 8 discusses related work. Finally, Section 9 con-
cludes the paper. The proofs of theorems can be found at
http://spdp.di.unimi.it/dfjlps-vldb2018.pdf.

2. AUTHORIZATION MODEL
We assume a simple, yet expressive, authorization model

in which each data authority specifies authorizations regu-
lating the release of its data. Authorizations are defined at
the fine-grained level of attribute specifying, for every at-
tribute, whether a subject (i.e., a user, a data authority, or
a provider) can have:

• plaintext visibility : the subject has complete visibility
on the values of the attribute;

• encrypted visibility : the subject cannot view the plain-
text values of the attribute, but can view an encrypted
version of them;

• no visibility : the subject cannot view the values of the
attribute at all (neither plaintext nor encrypted).

While plaintext and no visibility do not require explana-
tion, since they correspond to traditional ways of regulating
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(a) Query plan (b) Authorizations

Figure 1: An example of a query plan (a) and of
authorizations on relations Hosp and Ins (b)

access, the encrypted visibility, which represents a charac-
teristic and strength of our proposal, deserves some clarifica-
tion. The reason behind the consideration of the encrypted
visibility is to provide a subject with the ability to oper-
ate on an attribute for performing joins with other relations
or for evaluating conditions on encrypted values (supported
by the kind of encryption used), while not releasing to the
subject the actual values of the attribute. In the authoriza-
tion model we do not distinguish among different encryp-
tion schemes, so to leave the model simple and the approach
flexible. In fact, expressing the encryption scheme in the au-
thorizations would introduce considerable complexity in the
specifications, without providing an actual advantage in the
end. As the experience of null values shows (the introduction
of multiple null values in SQL-92 was quickly deprecated), it
is important to maintain specifications simple and intuitive.
The distinction among encryption schemes will be made by
the query optimizer in the generation of the query plan, de-
pending also on the operations that are to be executed on
the encrypted data (Section 6).

Consistently with standard security practice, we assume a
“closed” policy for the specification of authorizations, mean-
ing that only accesses explicitly authorized are allowed (i.e.,
‘no visibility’ does not need to be specified, as it applies
whenever the other two do not). Authorizations are then
defined as follows.

Definition 2.1 (Authorization). Let R be a relation
and S be a set of subjects. An authorization is a rule of
the form [P,E]→S, where P⊆R and E⊆R are subsets of
attributes in R such that P∩E=∅, and S∈S ∪{any}.

Authorization [P,E]→S states that subject S can view
attributes P in plaintext and attributes E encrypted. Sets
P and E are required to be disjoint. However, we note that
an authorization that permits a subject S to access an at-
tribute a in plaintext also allows S to access the encrypted
version of the attribute. We assume that, for each relation,
a subject can hold at most one authorization (the consider-
ation of multiple authorizations would not increase expres-
sivity). Since the set of subjects who might be involved in a
query, and for whom release of data may be requested, may
not be completely known a priori, a default authorization



can be specified, which applies to all subjects for which no
explicit authorization already exists for the interested rela-
tion. This is accommodated by the consideration of value
‘any’ as subject of the authorization.

We expect users to have authorizations that include plain-
text attributes only, since users need to be able to access
the queries’ responses and manage keys for attributes en-
crypted in the computation. The data authority storing a
relation can be expected to hold an authorization for ac-
cessing its content in plaintext (i.e., S storing R(a1, . . . , an)
is authorized for [{a1, . . . , an}, ]→S). Providers and other
data authorities may instead have authorizations that also
include encrypted attributes, allowing them to operate on
these attributes without disclosing their plaintext values.
Figure 1(b) illustrates an example of authorizations for our
running example. For simplicity, in the figure and in the
remainder of this paper, we denote a set of attributes sim-
ply with the sequence of the attributes composing it, omit-
ting the curly brackets and commas (e.g., SBDT stands for
{S,B,D,T}).

3. RELATION CONTENT MODEL
To determine whether the release of a relation to a subject

should be accepted according to authorizations, we intro-
duce the concept of relation profile capturing the informa-
tive content of a base or derived (i.e., computed by a query)
relation. In the following, we first illustrate how attributes
that do not belong to a relation schema can influence the
definition of its profile, and then formally define relation
profiles.

3.1 Implicit and equivalent attributes
A relation resulting from a computation can convey infor-

mation on attributes not explicitly appearing in its schema.
This may happen due to the evaluation of a selection condi-
tion, of a grouping operation, or of a user defined function
(udf) on attributes that are then removed from the relation
schema through a projection. As a simple example, the re-
lation resulting from “select A from R where B=‘10’”,
while containing only A in its schema, indirectly leaks infor-
mation on the values of attribute B as well, and should there-
fore not be visible to subjects not authorized to see both A
and B. A similar observation holds for the relation result-
ing from “select A from R1 join R2 on A=B” which,
while including only attribute A in its schema, conveys also
information on B, as A and B satisfy the equality predi-
cate (hence, granting visibility on A implies leaking also B).
Capturing the informative content of a relation R (result-
ing from a computation) requires then to take into account
such indirect information leakage and relationships among
attributes, which we characterize through the concepts of
implicit and equivalent attributes.

Implicit attributes. Implicit attributes are attributes not
necessarily appearing in a relation schema but that have
been taken into account in the computation of the relation.
Basically, implicit attributes for a relation R are all those
attributes that appear in a selection condition or grouping
operation in the (sub-)query producing R. The information
indirectly conveyed differs depending on the selection condi-
tion considered. For instance, a selection condition ‘B=10’
leaks the fact that all the tuples in the result have value of B
equal to 10, disclosing B precisely even if it is not explicitly

visible in the relation. A selection condition ‘B>10’ leaks
instead the fact that the tuples appearing in the relation
have a value for B greater than 10, but without leaking B’s
actual values. The evaluation of a group by clause over B
is similar to the evaluation of equality condition ‘B=value’,
where value may be unknown. Consistently with the fact
that we operate at the schema level, we do not distinguish
among the degrees of leakage and assume an attribute to be
implicitly visible in a relation (i.e., indirectly exposed) if the
attribute was taken into account – in some way – in the com-
putation of the relation. The concept of implicit visibility
applies to both plaintext and encrypted attributes.

Equivalent attributes. Equivalence among attributes
captures the fact that some attributes have been connected
in a computation (i.e., some conditions among them have
been applied) and therefore visibility of one attribute indi-
rectly leaks the other(s). Like for implicit attributes, the
degree of such a leakage can depend on the condition en-
forced. For instance, condition ‘A=B’ implies precise leak-
age of the values of B from the visibility of A, while condition
‘A>B’ entails a partial leakage, as a subject viewing A can
only infer the fact that B has a value lower than the one
visible for A. Again, we do not consider different degrees of
leakage (which would introduce considerable complexity and
fuzziness in the approach, with limited advantages in the en-
forcement of authorizations), but simply capture such a con-
nection between the attributes, considering them as equiv-
alent from the point of view of authorization enforcement
(as visibility of one entails visibility of the other). Given
a relation R, we say that two attributes are equivalent if
the (sub-)query producing R involves a condition compar-
ing them. The equivalence relationship is symmetric and
transitive. Different sets of equivalent attributes can exist
for a given relation. The equivalence relationship can ap-
ply to both explicit as well as implicit attributes, and to
plaintext as well as encrypted attributes.

3.2 Relation profile
We are now ready to define the profile of a relation, cap-

turing the informative content carried by the relation in
terms of attributes explicitly as well as implicitly visible and
taking into account information conveyed by equivalent at-
tributes. In the following, we refer to attributes explicitly
visible in a relation as visible attributes, and to those im-
plicitly leaked as implicit . In addition, attributes can be
plaintext or encrypted .

Definition 3.1 (Relation Profile). Let R be a re-
lation. The profile of R is a 5-tuple of the form
[Rvp, Rve, Rip, Rie, R≃] where: Rvp and Rve are the visible
attributes appearing in R’s schema in plaintext (Rvp) or en-
crypted (Rve) form; Rip and Rie are the implicit attributes
conveyed by R, in plaintext (Rip) or encrypted (Rie) form;
and R≃ is a disjoint-set data structure representing the clo-
sure of the equivalence relationship implied by attributes con-
nected in R’s computation.

The profile of a base relation has all the elements but Rvp

empty since it is assumed accessible in plaintext and does
not carry any implicit content or equivalence relationship.
(Note that plaintext accessibility of a relation does not imply
that it is stored in plaintext but only that it is accessible in
plaintext by the data authority.) Formally, the profile of a
base relation R(a1, . . . , an) is then [{a1, . . . , an}, , , , ].



General formula Example
P
r
o
je
c
ti
o
n

πA

v:Rvp
∩ARve

∩A

i:Rip Rie

≃:R≃

R

v:Rvp Rve

i:Rip Rie

≃:R≃

v: B P

i: D

≃: SC

R1

πBP

v: BDTP

i: D

≃: SC

S
e
le
c
t
io
n

σaopx

v:Rvp Rve

i:Rip∪(Rvp∩{a})Rie∪(Rve∩{a})

≃:R≃

R

σai opaj

v:Rvp Rve

i:Rip Rie

≃:R≃∪{ai, aj}

R

v:Rvp Rve

i:Rip Rie

≃:R≃

v:Rvp Rve

i:Rip Rie

≃:R≃

v: BDTP

i: D

≃: SC

σD=′stroke′

v: BDTP

i:

≃: SC

v: SCTP

i: D

≃: SC

σS=C

v: SCTP

i: D

≃:

R1

R1

C
a
r
te
si
a
n
p
r
o
d
u
c
t

v:R
vp
l

∪R
vp
r R

ve
l
∪R

ve
r

i:R
ip
l
∪R

ip
r R

ie
l
∪R

ie
r

≃:R
≃

l
∪R

≃

r

Rl Rr

×

v:R
vp
r R

ve
r

i:R
ip
r R

ie
r

≃:R
≃

r

v:R
vp
l

R
ve
l

i:R
ip
l

R
ie
l

≃:R
≃

l

v: SCBP

i: D T

≃: SC

v: SCP

i:

≃: SC

v: B

i: DT

≃:

R1 R2

×

J
o
in

v:R
vp
l ∪R

vp
r Rve

l ∪Rve
r

i:R
ip
l ∪R

ip
r Rie

l ∪Rie
r

≃:R≃

l ∪R
≃

r ∪{ai, aj}

⊲⊳ai opaj

Rl Rr

v:R
vp
r Rve

r

i:R
ip
r Rie

r

≃:R≃

r

v:R
vp
l Rve

l

i:R
ip
l Rie

l

≃:R≃

l

v: DCB

i: P

≃: SCD

v: C

i: P

≃: SC

v: DB

i:

≃:

⊲⊳D=C

R1 R2

G
r
o
u
p
b
y

γA,f(a)

v:Rvp∩(A∪{a}) Rve∩(A∪{a})

i:Rip∪(Rvp∩A)Rie∪(Rve∩A)

≃:R≃

R

v:Rvp Rve

i:Rip Rie

≃:R≃

γT,avg(P)

v: T P

i: DT

≃: SC

v: DTPSC

i: D

≃: SC

R1

U
d
f

µA,a

v:Rvp \ (A \ {a})Rve \ (A \ {a})

i:Rip Rie

≃:R≃∪A

R

v:Rvp Rve

i:Rip Rie

≃:R≃

µSB,S

v: SC T

i: D

≃: SBC

v: SBCT

i: D

≃: SC

R1

E
n
c
r
y
p
ti
o
n A

v:Rvp\ARve∪A

i:Rip Rie

≃:R≃

R

R

v:Rvp Rve

i:Rip Rie

≃:R≃

v: SBT

i: D

≃:

T

R1

R1

v: SBT

i: D

≃:

D
e
c
r
y
p
ti
o
n

A

v:Rvp∪ARve\A

i:Rip Rie

≃:R≃

R

v:Rvp Rve

i:Rip Rie

≃:R≃

T

v: SBT

i: D

≃:

R1

v: SBT

i: D

≃:

Figure 2: Graphical representation of the pro-
files resulting from relational, udf, and encryp-
tion/decryption operations

The profile of the relation resulting from a query depends
on the profile of the operand relations and on the operators
involved in its computation. Every operator only operates
on visible attributes (i.e., attributes in Rvp and Rve, which
belong to the schema of the operand relation R), but it may
affect also implicit attributes in the profile of the resulting
relation. In the following, we illustrate the profile result-
ing from the application of projection, selection, cartesian
product, join, group-by, and udf operators as well as en-
crypt/decrypt operators. In the treatment, with a slight
abuse of notation, we will use symbol ∪ to denote the in-
sertion of the equivalence relationship among a set A of at-
tributes into R≃. In other words, R≃∪A adds A to R≃ if
no set in R≃ intersects A, it merges all the sets intersecting
A as well as A in a single set in R≃, otherwise. R≃

i ∪R≃
j

implies inserting into R≃
i all the equivalence sets in R≃

j (or,
equivalently, vice versa).

Graphically, we represent the profile of a relation as a tag
attached to the relation’s node (or the node of the opera-
tor producing it in case of a derived relation), with three
components: v (visible attributes Rvp and Rve), i (implicit
attributes Rip and Rie) and ≃ (sets of equivalent attributes
R≃). Within visible and implicit attributes, we distinguish
the encrypted ones (i.e., Rve and Rie) by representing them
on a gray background. We represent an encryption opera-
tion as a gray box, containing the attributes to be encrypted,
on top of the operand relation. We represent a decryption
operation as a white box containing the attributes to be de-
crypted, below the node representing the operator for which
the relation on which decryption works is operand. Figure 2
illustrates the graphical representation of the profiles result-
ing from the operations, reporting, for each operator, the
general formula (on the left) and an example (on the right).

Projection (π). It returns a subset of the attributes in
the schema of its operand. The profile of the resulting re-
lation simply contains, in the visible attributes, only those
attributes that have been projected. The implicit attributes
and equivalence sets are the same as the ones of the operand.

Selection (σ). It returns a subset of the tuples of its
operand, based on the evaluation of a condition on visible
attributes. Since selection does not have any effect on the
schema of the operand relation, the result has the same visi-
ble attributes as the operand. The other components of the
profile depend on the kind of condition to be evaluated. For
conditions of the form ‘a op x’, with x a value, attribute
a is added to the implicit attributes (either encrypted or
plaintext, consistently with how a is visible in the operand).
For conditions of the form ‘ai op aj ’, equivalence {ai, aj} is
added to the equivalence set. Note that attributes ai and
aj must be either both plaintext visible or both encrypted
visible for the evaluation of condition ‘ai op aj ’.

Cartesian product (×). It returns the cartesian prod-
uct of two operand relations Rl and Rr, that is, all possible
combinations of their tuples. The plaintext/encrypted at-
tributes visible or implicit in the resulting relation and the
sets of equivalent attributes are then simply the union of the
corresponding sets in the profiles of the operands.

Join (⊲⊳). It returns a relation that contains the concate-
nation of the tuples of the operands Rl and Rr that sat-
isfy a join condition C, which is a Boolean formula of basic
conditions of the form ‘ai op aj ’. It is then equivalent to a



selection operating on the cartesian product of the operands
(i.e., σC(Rl×Rr)). The profile of the result reflects then the
information conveyed by both these operators. Also in this
case, for each pair {ai,aj} of attributes appearing together
in a condition in C, ai and aj must be both plaintext or
both encrypted for the evaluation of the join condition.

Group by (γ). It groups the operand relation by a given
set of (plaintext or encrypted) attributes A, then evaluat-
ing an aggregate function f on an attribute a. For sim-
plicity, we consider the attribute resulting from f(a) with
the same name as a.1 The profile of the resulting relation
contains, in the visible attributes, only those attributes on
which the grouping (A) and aggregate function (a) oper-
ate (when f(a) is count(∗), only attributes in A are main-
tained). Attributes appearing in the grouping function (A)
are added to the implicit attributes (to capture the possible
information leakage from their grouping).

User defined function (µ). It performs a time-consuming
procedural computation (e.g., machine learning and data an-
alytics [6]) over the operand relation, elaborating the values
of a set A of attributes (all plaintext or encrypted) in its
schema. We assume a general udf operator with a set of
attributes (A) as input and an attribute (a) as result. For
simplicity, we assume the attribute in output to have the
same name as one of the attributes in input.1 The profile of
the resulting relation has, as visible attributes, the attribute
returned as output together with the visible attributes of
the operand on which the udf does not operate. The im-
plicit attributes are the same as the ones in the operand.
The equivalence relationship is obtained from the one in the
operand by adding the set of attributes to which the udf
operates. This reflects the fact that the attribute in output
depends on all the attributes on which the udf has operated.

Encryption. It changes a relation by encrypting some of its
plaintext attributes. The result has the same profile as the
operand, apart from the fact that the attributes on which
encryption is applied are moved from visible plaintext to
visible encrypted.

Decryption. It changes a relation by decrypting some of its
encrypted attributes. The result has the same profile as the
operand, apart from the fact that the attributes on which
decryption is applied are moved from visible encrypted to
visible plaintext.

Figure 3 illustrates the profiles associated with the rela-
tions resulting from the different operations of our running
example. Each node has, on its left, the user and a set of
providers (we will elaborate on this in the next section).
Also, note that there are no encryption/decryption opera-
tions, as they do not appear in the original query plan; we
will illustrate how and why the query plan is extended with
them in Section 5. In the following, given a query plan, we
use the term node to denote one of its components (base
relation or an operation) and the term relation to denote
either a base relation or the result of an operation (repre-
sented by an internal node). Given a node nx, representing
an operation, Rx denotes the relation resulting from it.

As stated, profiles allow us to capture the informative
content of a relation resulting from a computation (which

1This simplification does not introduce limitations, since our
model can be easily extended to support renaming.
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Figure 3: Query plan with profiles and authorized
assignees

depends on the different computation steps). The following
theorem proves that in a query plan: i) attributes appearing
in the profile of the relation resulting from an operation will
survive in the profiles of relations resulting from subsequent
operations (i.e., they can move from one component to an-
other, but they cannot be removed from the profile), and
ii) equivalence sets can only increase going up in the query
plan (i.e., when an attribute is inserted into an equivalence
set, it cannot be removed from it).

Theorem 3.1. Let T(N) be a query plan. ∀nx, ny ∈ N

s.t. ny is a descendant of nx:

i) (Rvp
y ∪Rve

y ∪Rip
y ∪Rie

y ∪{A | A ∈ R≃
y }) ⊆ (Rvp

x ∪Rve
x ∪

Rip
x ∪Rie

x ∪ {A | A ∈ R≃
x })

ii) ∀A ∈ R≃
y : ∃A′ ∈ R≃

x , A ⊆ A′.

4. AUTHORIZED VISIBILITY AND AS

SIGNMENT
The definition of relation profile (Definition 3.1) allows us

to capture the informative content carried by a relation, and
therefore to regulate query execution ensuring obedience to
authorizations. Such regulations concern both visibility of
relations as well as execution of operations in the query plan.
Since a computation might involve different base relations,
different authorization sets (and authorities) might be in-
volved in the control for the release of a derived relation.
We will elaborate on this in Section 6. In this section, for
simplicity, we assume an overall view of the authorizations
and we use notation PS (ES , resp.) as a short-hand for the
abstract concept summarizing the attributes that subject S
is authorized to access in plaintext (encrypted, resp.) form.
In other words, PS = {a∈P | [P,E]→S} and ES = {a∈E |
[P,E]→S}. Figure 4 shows the authorizations for our run-
ning example and the corresponding overall views for the
different subjects.

The following definition captures the authorization con-
trol on a relation (based on its profile) to determine whether
releasing it to a subject obeys authorizations, taking into ac-
count also information leakage caused by implicit attributes
and equivalence relationships.

Definition 4.1 (Authorized Relation). Let R be a
relation with profile [Rvp, Rve, Rip, Rie, R≃]. A subject S is
authorized for R iff:



Authorizations Authorized attributes

Subject Hosp(S,B,D,T) Ins(C,P) Plaintext Encrypted

H [SBDT, ]→H [C,P]→H PH=SBDTC EH=P

I [B,SDT]→I [CP, ]→I PI=BCP EI=SDT

U [SDT, ]→U [CP, ]→U PU=SDTCP EU=

X [DT,S]→X [ ,CP]→X PX=DT EX=SCP

Y [BDT,S]→Y [P,C]→Y PY=BDTP EY=SC

Z [ST,D]→Z [C,P]→Z PZ= STC EZ=DP

any [DT, ]→any [ ,P]→any Pany=DT Eany=P

Figure 4: Authorizations and corresponding overall
views for the subjects of our running example

1. Rvp∪Rip ⊆ PS (authorized for plaintext);
2. Rve∪Rie ⊆ PS∪ES (authorized for encrypted);
3. ∀A∈R≃, A⊆PS or A⊆ES (uniform visibility).

According to Definition 4.1, a subject S is authorized to
access a relation R iff the following three conditions hold:
1) S is authorized to access in plaintext all the (visible or
implicit) attributes represented in plaintext in R; 2) S is
authorized to access in plaintext or in encrypted form all
the (visible or implicit) attributes represented in encrypted
form in R; 3) S is authorized to access in the same form
(either plaintext or encrypted) all the equivalent attributes,
that is, attributes that appear together in an equivalence set
in R≃ (uniform visibility).

Conditions 1 and 2 correspond to a simple enforcement
of authorizations, taking into account both the visible and
implicit attributes. Also, condition 2 considers the fact that
subjects authorized for plaintext visibility over an attribute
can also have encrypted visibility over the same (since the
encrypted representation conveys less information than the
plaintext one). Condition 3 enforces control on indirect in-
formation leakage caused by equivalence relationships estab-
lished in query computation, to prevent unauthorized ex-
posure of information. It requires the subject to have the
authorizations for the attributes in equivalence sets, since
the relation implicitly carries information about them. In
other words, since they leave a trace in the computation re-
sult, all attributes in equivalence sets are always treated as
implicit attributes. It also imposes that, within each equiv-
alence set, the authorizations be the same (either plaintext
or encrypted) for all attributes in the set. In fact, equiv-
alence relationships in a profile express the fact that some
attributes have been related in a computation (e.g., an equi-
join operation) and therefore visibility of one attribute in an
equivalence set leaks information on the other attributes in
the same set. Imposing uniform visibility allows us to ac-
count for such inference channels, blocking them when not
consistent with the authorizations. Note that uniform vis-
ibility must be satisfied for all attributes in an equivalence
set, regardless of whether they actually belong to the rela-
tional schema (i.e., they are visible).

Example 4.1. Consider the authorizations in Figure 4
and a relation R with profile [P,BSC, , , {SC}]:

• Y is authorized for R;
• H is not authorized for R (condition 1, attribute P);
• U is not authorized for R (condition 2, attribute B);
• I is not authorized for R (condition 3, attributes SC).

Note that the enforcement of uniform visibility entails a
possibly counter-intuitive result: a subject could be not au-
thorized for a relation due to its plaintext visibility over

some attributes, while another subject that, on these at-
tributes, has only encrypted visibility could be authorized.
For instance, with reference to Example 4.1, I is not autho-
rized for R because it has plaintext visibility over C and
encrypted visibility over S (and the equivalence between C
and S could leak S to I), while Y is authorized for R since
it has only encrypted visibility over C and S, and therefore
cannot draw any inference from R.

Definition 4.1 regulates if a subject can be authorized for
a relation, based on its authorizations and on the relation
profile. Another aspect involved in the enforcement of au-
thorizations in our context concerns regulating the assign-
ment of operations within a query plan to authorized sub-
jects. An operation of the query plan, corresponding to a
non-leaf node in the tree, operates on one or two operand
relations, and produces a relation as output. A subject can
be considered authorized for the execution of an operation
if and only if it is authorized for all the relations involved:
the operand(s) as well as the result. The authorized visibil-
ity for the operand(s) is needed since otherwise the subject
could not access them. The authorized visibility for the re-
sult enforces the control over the information entailed by
the execution of the operation itself. This is captured by
the following definition.

Definition 4.2 (Authorized Assignee). Let T(N)

be a query plan, n∈N be a non-leaf node, nl and nr∈N be its
children (if any) producing relations Rl and Rr, and S be a
set of subjects. Subject S∈S is an authorized assignee of n
over Rl and Rr iff S is authorized for Rl, for Rr, and for
the relation produced by n, according to Def. 4.1. Function
λ : N → S is said to be an authorized assignment function
for T(N)iff ∀n ∈ N, λ(n) is an authorized assignee of n.

Subjects appearing on the left-hand side of each node in
Figure 3 are authorized assignees for the node. Leaf nodes
do not have any assignee since they remain with the data
authority holding the interested base relation.

5. EXTENDED PLANS AND ENCRYP

TION/DECRYPTION
Given a query plan, our goal is to produce an autho-

rized assignment of operations to subjects. While the def-
initions in Section 4 accounted for the possible presence
of encrypted attributes, the original query plan, including
only operations requested by the query computation, does
not include any encryption/decryption operation. Encryp-
tion and decryption operations are inserted on-the-fly by
our approach to adjust visibility of attributes as required
by operation requirements or authorizations. Encryption
protects attributes so to permit the assignment of opera-
tions to subjects that could not be considered otherwise.
Decryption permits accessing plaintext values of encrypted
attributes when needed in the computation. For instance,
assume that, for the query plan in Figure 3, all operations
but the final selection (σavg(P)>100) could be performed on
encrypted values. If all attributes were encrypted at their
source (and avg(P) decrypted only for the last operation),
more subjects could be considered for executing operations
in the query. Figure 5 illustrates the query plan in Figure 3
extended to consider such encryption and decryption oper-
ations, reporting on the left-hand side of each node the sub-
jects that could now be considered for the execution of the
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Figure 5: An extended query plan

node’s operation. The specific encryption scheme to apply
for the encryption of different attributes is decided by the
query optimizer in the analysis of the query plan, depend-
ing on the kind of operations to be supported over such at-
tributes. For instance, deterministic symmetric encryption
can be used to efficiently and securely support evaluation of
equality conditions in joins and selections.

A query plan T′ that is obtained by inserting encryption
and decryption operations into another query plan T is called
an extended query plan for T and is defined as follows.

Definition 5.1 (Extended Query Plan). Let T(N)

be a query plan. A query plan T′(N) is an extended query
plan for T iff T′ is T enriched with some encryption and de-
cryption operations.

As said, encrypting attributes enables the consideration,
for the assignment of an operation, of subjects not otherwise
authorized for the execution of the operation. However, the
encryption needed to make assignments authorized eventu-
ally depends on the actual subjects to which operations are
assigned (e.g., P would need to be encrypted for assigning
the execution of the join to X but could remain in plaintext
if the join is assigned to Y). There are basically two opposite
approaches that can be followed in the insertion of encryp-
tion/decryption operations in the query plan, corresponding
to maximizing or minimizing visibility of attributes. Max-
imizing visibility corresponds to always leave visibility of
data in the clear, applying encryption only when strictly
needed for protecting attributes visibility from the subject
executing a specific operation. Minimizing visibility corre-
sponds to always apply encryption by default, decrypting at-
tributes only as needed for operation execution. Each of the
two extremes has some pros and cons. Maximizing visibil-
ity by default can avoid unnecessary encryption/decryption
operations and allows for operating as much as possible on
plaintext data, but could reduce the number of subjects to
which an operation can be assigned. For instance, suppose
that attribute D is not encrypted for the execution of the
selection operation (σD=′stroke′ ), since such an operation is
assigned to H, which can see D in plaintext. Then, provider
Z cannot be considered for the join since it does not have
the authorization for plaintext visibility of D. In fact, en-
crypting D only for the join would not protect it from the

possible leakage caused by the prior evaluation of the con-
dition (as a matter of fact, D would remain in the implicit
plaintext component of the profile of all relations computed
after the selection over plaintext attribute D). Maximizing
visibility of attributes at a given step may then rule out
the consideration of possible subjects in subsequent steps
of the query plan. Minimizing visibility, while not affect-
ing the choice of subjects for subsequent operations in the
query plan, could result in more encryption/decryption op-
erations than needed. For instance, encrypting D before the
execution of the selection operation may eventually result
unnecessary, if Z were not the best choice for the join any-
way, implying an overhead for query execution (encryption
and possible less efficient evaluation of the condition) which
could have been avoided.

To avoid predetermining one of the possible scenarios
above, we adopt a more flexible approach by first determin-
ing the candidate subjects for operations, and then injecting
encryption and decryption operations only as needed, de-
pending on the decided assignment of operations to subjects.
The query optimizer can then decide assignments of oper-
ations based on costs and performance aspects. Of course,
assignment of operations to subjects must be bounded by
the authorizations and the operation requirements, which
can limit the application of encryption (as some operations
need to access some attributes in plaintext for execution).
As for authorizations, for example, while it is desirable for
the execution of the join operation to possibly consider X
(since S and C could be encrypted for that), it does not
make sense to consider I since, as already noted, its non-
uniform visibility over S and C (it is authorized to view
C in plaintext but S only in encrypted form) rules it out
from consideration (condition 3 of Definition 4.1). With re-
spect to operation requirements, an attribute should not be
encrypted if the operation to be executed on it requires ac-
cessing the attribute’s plaintext values. For instance, if the
encryption scheme available for P does not support range
conditions, the possibility of encrypting avg(P) for assigning
the last selection operation should be excluded. For oper-
ations that are not supported by cryptographic techniques
(not existing or not available to the application), we assume
the optimizer to specify the need for maintaining data in
plaintext for execution of the operation. For each node we
then have a set Ap of attributes that are needed in plaintext.

To define the potential candidates for an operation, we
then first need to characterize the operation requirements,
which may limit the application of encryption. We cap-
ture this by defining the minimal visibility needed over an
operand to allow the evaluation of an operator. For instance,
in our running example, we assume that the execution of the
last selection in the query plan needs to view avg(P) in plain-
text, while all other attributes can be encrypted. Intuitively,
the minimum required view over an operand for the execu-
tion of an operation is the operand relation where all the
(visible) attributes, but those that need to be in plaintext
for operation execution, are encrypted, as formally captured
by the following definition.

Definition 5.2 (Minimum Required View). Let
T(N) be a query plan, n∈N be a non-leaf node, ny be one
of its children, producing relation Ry, and Ap be the set of
attributes of Ry that must be in plaintext for the execution
of n. The minimum required view over ny for the execution
of n is relation Ry=decrypt(Ap,encrypt(R

vp
y \Ap, Ry)).
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Figure 6: Minimum required views and assignment
candidates

In the definition above and in the following,
encrypt(A,R) denotes the encryption of attributes A
in R and decrypt(A,R) denotes the decryption of at-
tributes A in R. Figure 6 illustrates (in dotted boxes on
the arcs from the operands to the operations) the profiles
of the minimum required views for our running example.
The profiles associated with nodes are those that result
assuming as operands such minimum required views. For
instance, the minimum required view over Ins for the
execution of the join has all attributes (CP) visible and
encrypted.

Minimum required views allow us to take into account the
visibility requirements for operation execution: only sub-
jects authorized for the minimum required views can be
candidates for the assignment (since for them the operands
could be protected with encryption without affecting opera-
tion execution). This is captured by the following definition.

Definition 5.3 (Assignment Candidates). Let
T(N) be a query plan, n∈N be a non-leaf node, nl,nr∈N
be its children (if any), and S be a set of subjects. A
subject S∈S is a candidate for the execution of n iff S
is an authorized assignee of n over Rl and Rr according
to Def. 4.2. Candidate assignment function Λ : N → 2S

associates with each n ∈ N the set of candidates for the
execution of n.

Figure 6 illustrates assignment candidates for the opera-
tions of our running example.

The set of candidates along a query plan enjoys a nice
monotonic behavior. The set of candidates of n’s ances-
tors is a subset of the set of n’s candidates. This applies
to any node representing an operation that does not need
to operate on plaintext attributes or that, doing so, leaves
an implicit trace of such attributes (i.e., causes them to be
included in the implicit attributes of the result’s profile). In
fact, all such attributes will also remain implicit plaintext
in the profile of the minimum required view of any node nx

ancestor of n, and therefore, by definition, any candidate for
nx is certainly also a candidate for n. This is formalized by
the following theorem.

Theorem 5.1. Let T(N) be a query plan, n∈N be a non-
leaf node nl,nr∈N be its non-leaf children, if any. R

vp
l ∪Rvp

r ⊆
Rip =⇒ Λ(nx) ⊆ Λ(n), ∀nx ancestor of n.

This monotonic behavior can be easily observed in Fig-
ure 6, where the set of candidates for each node decreases
going up in the query plan.

The set of candidates for a node are all and only those
subjects that can be made authorized assignees (Defini-
tion 4.2), assuming to extend the query plan with encryp-
tion/decryption operations, as stated by the following theo-
rem.

Theorem 5.2. Let T(N) be a query plan, and Λ be a
candidate assignment function for it:

i) ∀T′, λ, and n ∈ N, if T′ is an extended query plan for T
and λ is an authorized assignment for T′, then λ(n) ∈
Λ(n).

ii) ∀λ, if ∀n ∈ N, λ(n) ∈ Λ(n), then there exists an ex-
tended query plan T′ for T such that λ is an authorized
assignment for T′.

In other words: i) any assignment that can be made au-
thorized by inserting some encryption and decryption oper-
ations is included in Λ, and ii) any assignment included in
Λ can be made authorized by inserting some encryption and
decryption operations.

Given a query plan T and a possible assignment λ of op-
erations taken from the potential candidates Λ, there are
different ways in which encryption and decryption could be
inserted to make λ authorized. For instance, enforcing all
encryptions corresponding to the minimum required views
(as in Figure 6) could work. However, it is desirable to aim
to avoid the use of encryption if not needed for protection
and therefore to produce a plan that encrypts only those
attributes that need to be encrypted for obeying authoriza-
tions (and later decrypts them if needed for the execution of
an operation). This is captured by the following definition.

Definition 5.4 (Minimally Extended Query Plan).
Let T(N) be a query plan, Λ be a candidate assignment
function for it, and λ be a function λ : N → S such that,
∀n ∈ N : λ(n) ∈ Λ(n). A minimally extended authorized
query plan for T is an extended query plan T′ obtained by
possibly complementing each node n ∈ N with decryption and
encryption operations to precede and follow, respectively,
n’s operator execution as follows:

i) decrypt(Ap∩Rve
l , Rl), decrypt(Ap∩Rve

r , Rr) with Ap

the set of attributes needed in plaintext for the execu-
tion of n, and Rl and Rr the operands of n;

ii) encrypt((ESo
∩Rvp)∪A, R), with no the parent of n

and So = λ(no) its assignee, and A = (Rip
o ∩ Rvp) ∩

(
⋃

x ESx
) with nx an ancestor of n and λ(nx) = Sx its

assignee.

A minimally extended authorized query plan: i) decrypts
attributes for an operation n when they appear encrypted in
an operand but need to be accessed in plaintext for execut-
ing the operation; ii) encrypts attributes after an operation
n when the next operation no (to which n is operand) either
is to be executed by a subject that cannot access these at-
tributes in plaintext or causes these attributes to be added
to the set of implicit attributes (Rip

o ) and some subjects
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Figure 7: Minimally extended authorized query plans and authorized attributes for the plan in Figure 1

to which subsequent operations are assigned cannot access
them in plaintext. The reason for encrypting attributes that
are added to the implicit component by the next operation
is that not doing so would cause indirect leakage of plain-
text information on the attributes, which would invalidate
assignment of subsequent operations.

Figures 7(a-b) illustrate two minimally extended autho-
rized query plans for our running example assuming oper-
ations allocated to the subject indicated on the left-hand
side of each node. For convenience of the reader, sets P
and E of each subject (copied from Figure 4) are repeated
in Figure 7(c). In the plan in Figure 7(a): S, C, and P
are encrypted before being passed to X, since X cannot ac-
cess them in plaintext. In the plan in Figure 7(b), P is
encrypted before being passed to Z, since Z cannot access
it in plaintext, while D is encrypted before executing the
selection (i.e., the condition on D will have to be dispatched
formulated on encrypted values) so not to leave an implicit
plaintext trace in the computation given that Z, executing
subsequent steps, cannot access D in plaintext.2 In both
plans, avg(P) is decrypted before the execution of the final
selection that needs to access plaintext values. Encryption
and decryption operations are assigned to the same subjects
as the nodes they complement. Indeed, the subject autho-
rized for a node is also clearly authorized for the preceding
decryption (of attributes that are needed in plaintext for the
operation) and for the following encryption (of attributes
available in plaintext).

A minimally extended query plan: i) makes the given
assignment authorized, and ii) does so by encrypting a min-
imal set of attributes, as stated by the following theorem.

Theorem 5.3. Let T(N) be a query plan, λ be an as-
signment function s.t. ∀n ∈ N, λ(n) ∈ Λ(n), and T′ be a
minimally extended authorized query plan for T according
to Def. 5.4:

i) λ is an authorized assignment for T′ (Def. 4.2);
ii) any other extended query plan of T (Def. 5.1) for which

λ is an authorized assignment involves in encryption
operations a superset of the attributes encrypted in T′.

2Note that this does not necessarily imply the evaluation of
the condition in encrypted form. Since H is the authority
over D and it knows the encryption key (it encrypts D itself),
H can operate on plaintext values and encrypt D afterwards.

6. COMPUTING AND DISTRIBUTING AS

SIGNMENTS
The results of the previous section prove that, for any

operation in the query plan, only subjects in the opera-
tion’s candidate set need to be considered (Theorem 5.2,
i). Also, any of them would do since any assignment taken
from the candidate set can be made authorized by inserting
proper encryption and decryption operations (Theorem 5.2,
ii). This means that the query optimizer can work with
classical cost and performance considerations and choose for
the execution of an operation the subject, in the operation’s
candidate set, that is considered preferable. Note that de-
termining the set of candidates for each operation does not
require evaluating all subjects and their authorizations. In
fact, the candidates of a node may naturally limit the can-
didates of its ancestors (Theorem 5.1).

Query operation assignment entails, besides assigning op-
erations to candidates, also establishing and distributing
keys for attributes that need to be encrypted/decrypted in
the query plan execution. The only constraint on key estab-
lishment is that attributes involved in some conditions com-
paring them in encrypted form need to be encrypted with
the same key. To ensure this, we simply require attributes
appearing together in an equivalence set to be encrypted
with the same key (even if they are encrypted after they
have been compared, using the same key would not provide
any leakage as they are indeed equivalent). As per Theo-
rem 3.1, it is sufficient to look at the equivalence sets in the
profile of the root to determine which attributes should be
encrypted with the same key. We then define the keys to be
established for a query plan execution as follows.

Definition 6.1 (Query Plan Keys). Let T(N) be a
minimally extended authorized query plan, nT be its root,
and Ak be the set of attributes involved in encryption op-
erations. Let A = {{Ak ∩ Aj} | Aj ∈ R≃

T } ∪ {{a} | a ∈
Ak, ∄Aj ∈ R≃

T , a ∈ Aj}. The set KT of keys for T is KT =
{kA|A ∈ A}, with kA an encryption key.

In the definition, the family of sets A clusters attributes
to be encrypted based on the equivalence sets in the root
profile (attributes appearing together in an equivalence set
belong to the same set in A, while attributes not belonging



to any equivalence set appear as singletons). The key asso-
ciated with an attribute (or set thereof) will be distributed
only to the subjects in charge for its (their) encryption and
(possible) decryption. Since such subjects are authorized
for the encryption/decryption operation (i.e., they are au-
thorized for plaintext visibility of the attributes to be en-
crypted/decrypted in the operand relation), key distribu-
tion obeys authorizations. For instance, for the query plan
in Figure 7(a), A = {SC,P}, resulting in kSC distributed to
H and I, and kP distributed to I and Y. For the query plan
in Figure 7(b), A = {D,P}, resulting in kD distributed to H,
and kP distributed to I and Y.

Query operation assignments can then be performed by
the query optimizer, as follows:

1. perform a post-order visit of the query plan identifying
candidates for each operation (Λ, Definition 5.3);

2. establish an assignment (λ ∈ Λ) for each operation
using classical approaches [15];

3. perform a post-order visit of the query plan extending
the plan with encryption and decryption operations
(Definition 5.4);

4. establish keys for the query plan execution (Defini-
tion 6.1);

5. dispatch sub-queries to subjects, including, in the com-
munication to each subject, the keys that the subject
needs to perform encryption/decryption operations.

The sequence of steps above assumes encryption
and decryption to have negligible impact on query
costs/performance (e.g., if AES is used). When this is not
the case (e.g., if an OPE scheme is used), Steps 2 and 3 have
to be combined (as we did in our tool, see Section 7), extend-
ing traditional optimizers to take encryption and decryption
operations into proper consideration for the analysis of query
costs and/or performance.

As stated in Section 2, our authorization model does not
distinguish among different kinds of encryption. The query
optimizer can choose to apply different encryption schemes
(e.g., deterministic or randomized encryption) depending on
the operations to be executed on the encrypted values [10,
22]. We propose to adopt, for each attribute, the scheme
providing highest protection, while supporting the opera-
tions to be executed on the attribute’s encrypted values.
For instance, if for an attribute no operation needs to be ex-
ecuted on encrypted values, randomized encryption is used,
while if equality conditions need to be evaluated, determin-
istic encryption is used. Each attribute can be encrypted
with a different encryption scheme and with a different key,
the only constraint is that attributes that are involved to-
gether in some operations (i.e., attributes that belong to the
same set in the equivalence set of the root’s profile) need to
be encrypted with the same key to enable the execution of
the operations.

The query dispatch operates according to classical ap-
proaches, with the only difference that subjects may be com-
municated keys and they may need to execute, in addition
to operations requested by query computation, also encryp-
tion and decryption operations. We assume each subject
S involved in a query plan to have a private (priS), public
(pubS) key pair. The communication to each subject will

S Receives (reqS) Performs (qS)

select T,decrypt(Pk,kP) as P
Y [[qY,(P,kP)]pri

U
]pubY from JreqXK

where P >100

select T,avg(Pk) as Pk

X [[qX,-]priU ]pubX from JreqHK join JreqIK on Sk=Ck

group by T

select encrypt(S,kSC),D,T
H [[qH,(S,kSC)]priU ]pubH from Hosp

where D=‘stroke’

I [[qI,(C,kSC)(P,kP)]pri
U
]pubI

select encrypt(C,kSC),encrypt(P,kP)
from Ins

Figure 8: Query dispatch for the plan in Figure 7(a)

be signed with the private key of the user and encrypted
with the subject’s public key. Having a sub-query signed
allows the recipient to verify its authenticity and integrity.
Encrypting a sub-query with the public key of the recip-
ient supports confidentiality of the communication. Note
however that the correctness of our approach does not de-
pend on the simple protection of the communication. As a
matter of fact, the definition of profiles does not make any
assumption on the confidentiality of the query, which could
potentially be known (of course with conditions operating
on encrypted values when demanded by encryption opera-
tions in the plan). Figure 8 illustrates the query dispatch
for the plan in Figure 7(a). The plan starts with the re-
quest from U to Y (reqY), which will call the sub-query at
X (reqX), which in turn will call the sub-queries at H (reqH)
and I (reqI).

Note that our approach relies on the correct enforcement
of authorizations throughout the query plan. Since the defi-
nition of the query plan is outside the control of the involved
data authorities, the query optimizer has to be trusted for
such an enforcement. Each data authority will perform a
control at its side, before releasing the data to a third party,
to check that the user is authorized for the released data.
In fact, a user requesting query execution is required to be
authorized to access all data that are input to the query,
which correspond to the base relations. The user is then
trusted to involve other authorized subjects.

We close this section with an observation on authorization
enforcement. In the description of our approach, for sim-
plicity, we have assumed the control of the authorizations
holding for a given subject simply as a check against the set
PS (ES , resp.) summarizing the attributes that subject S
is authorized to access plaintext (in encrypted form, resp.).
While the realization of such a control directly against a
global repository storing PS and ES , for all subjects, can be
possible, in real applications we can expect authorizations
over the different relations to be stored in a distributed man-
ner, like the relations are, and remain under the control of
the respective data authorities. This distributed storage and
management of authorizations is completely in line with our
approach. As a matter of fact, a major advantage of the
consideration of authorizations holding only on specific re-
lations (no cross-relations/cross-authority authorizations) is
that it simplifies authorizations specification and manage-
ment and makes our solution completely independent from
the approach adopted for storing and managing authoriza-
tions. For instance, a data authority can: i) publish its
access control policy (which would then result publicly vis-
ible), or ii) respond to explicit authorization requests. The



first approach can facilitate access to the policy, but en-
tails its complete exposure. The second approach has in-
stead the advantage of maintaining the whole policy con-
fidential, providing only the responses to individual autho-
rization checks. Our proposal is independent of the specific
approach adopted and can work with both of them.

7. ECONOMIC BENEFITS
Given a query plan T(N) for a query q, there might exist

a number of assignments (and of minimally extended plans)
that satisfy all the authorizations. Among these plans, the
user can choose the one optimizing a parameter of her in-
terest such as cost or performance. In particular, we expect
the economic cost to be the driving factor in the choice of
the assignment of operations to candidates as long as perfor-
mance remains above a given threshold. In our experiments,
we then aimed to determine an assignment that minimizes
the economic cost of query evaluation, which can possibly
be combined with a threshold on the maximum performance
overhead admitted for the evaluation of the query. We as-
sume that the cost Cq of executing a query q is computed
as Cq =

∑
n∈N

Cn
cpu + Cn

io + Cn
net io, with N the nodes in the

query plan, and Cn
cpu, C

n
io, C

n
net io the cost, in USD, of cpu

processing (time multiplied by cost per minute), local i/o
(size of processed data multiplied by the unit cost of data
access), and network i/o (size of transmitted data multiplied
by the cost of network data transfer), respectively, for the
execution of the operation at node n. This is in line with
the price lists of cloud providers, which charge users based
on their use of cpu time, local i/o, and network i/o. In the
query processing domain, we expect the cpu processing and
the network i/o to be the most significant cost components.

To evaluate the economic benefits of our approach in dis-
tributed query execution, we implemented it as a Java-based
tool and performed a series of experiments using TPC-H
(1 GB configuration), as it is the reference benchmark for
testing solutions through complex queries. We note that
although the 22 TPC-H queries do not use any udf, the con-
sideration of udf in the queries can only further improve the
economic benefits already visible over TPC-H. In fact, udfs
are typically computationally-intensive, and therefore for
queries including them the dominating cost factor is the cpu
processing for evaluating the udfs. Delegating such compu-
tation to external advantageous providers enables a saving
largely above the costs it adds for data transmission. The
ability provided by our approach to delegate such computa-
tion to providers with the lowest cost among those trusted
to access (in plaintext or encrypted form) the involved data
can then bring considerable advantages since even small re-
ductions in price lead to a reduction in the economic costs
associated with the execution of these queries.

Our tool receives in input a database schema, a query
plan, a description of the network configuration, and the
authorizations. It provides as output the assignment of op-
erators in the query plan to subjects, introducing the en-
cryption and decryption steps needed to satisfy the autho-
rizations. Input query plans are those produced by the
PostgreSQL optimizer. The mapping from relational al-
gebra operators (considered in our model) to the physical
PostgreSQL operators was immediate, as every PostgreSQL
operator has a natural correspondence to relational algebra
operators.

Our implementation is based on a dynamic programming
strategy to explore the possible assignments of candidates
to operators in the query plan to identify the solution with
minimum cost. We set the cost values input to the experi-
ments for cloud providers based on the listings of the most
common cloud providers on the market (e.g., Amazon S3,
Google Compute Engine). We considered, as it is to be
expected in the scenarios that motivate this research, a rel-
atively high cost for the direct involvement of the user and
of data authorities, which are 10 times and 3 times, respec-
tively, the cpu processing cost of cloud providers. The es-
timate for the data authorities was based on price lists of
government-backed organizations in Italy. The estimates of
the size of the processed data and the processing time for the
relational operators were those returned by the PostgreSQL
optimizer. The tool assumed the adoption of four possible
encryption techniques (randomized symmetric encryption;
deterministic symmetric encryption; Pallier crypto-system;
and an OPE scheme) and estimated the cost for their exe-
cution based on common benchmarks (AES has been used
for the two variants of symmetric encryption, with essen-
tially identical cost), represented in terms of computational
effort. Our implementation also considered the increase in
size that may derive from the application of encryption. The
network configuration assumed the authorities controlling
the data and the cloud providers to be connected by high-
bandwidth (10Gbps) connections; the client was assumed
to be connected to both with a lower-bandwidth (100Mbps)
connection.

We considered the execution of the 22 TPC-H queries dis-
tributing the 8 TPC-H tables between two authorities and
considering then the following three scenarios for the autho-
rizations.

UA authorizations permit access to different base relations
only to the user (issuing the query).

UAPenc cloud providers are authorized to access in en-
crypted form all the attributes of all the base relations.

UAPmix modifies the previous scenario with authoriza-
tions allowing cloud providers to access in plaintext
half of the attributes that were previously only acces-
sible in encrypted form.

Figure 9 illustrates the comparison of the different eco-
nomic costs for the 22 TPC-H queries. Given the hetero-
geneity of the different queries and their cost, we report
the cost in a normalized form considering, for each query,
a unitary cost for UA (reported by the dotted line in the
figure). As expected, compared with a base scenario (UA)
where only the expensive user and data authorities can per-
form computations, the involvement of providers (UAPenc,
UAPmix) enables significant savings. As a matter of fact,
enabling involvement of other parties in the computation al-
lows users to fully enjoy the economic benefit of the open
cloud market. Among the scenarios including providers in
the computation, UAPmix clearly enjoys the most savings
as plaintext visibility enables providers to execute all op-
erations without the cost of encryption or the restrictions
that derive from the access policy. Figure 10 illustrates the
cumulative cost for the same queries illustrated in Figure 9.
The results obtained show that involving providers in the
processing of encrypted data (UAPenc scenario) provides a
saving of 54.2% compared to the base UA scenario. The
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Figure 9: Economic cost of evaluating individual
queries considering different authorization scenarios
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Figure 10: Total economic cost of evaluating queries
considering different authorization scenarios

saving further increases (71.3%) with the loosening of the
policy (UAPmix scenario). We note that the saving is
expected to be high when the difference in the prices of
cloud providers is significant. Indeed, our approach permits
to partially delegate operations running on encrypted data
to cloud providers with economically convenient price lists,
even if they are not trusted to access plaintext data. These
benefits become even more evident in domains where only
specific cloud providers can be adopted for the management
of specific kinds of data (e.g., medical data) since they typ-
ically have higher price lists than the cloud providers oper-
ating in the open cloud market.

8. RELATED WORK
The problem of managing queries in distributed scenar-

ios has been extensively studied, but traditional solutions
(e.g., [15, 17]) as well as modern approaches that consider
big data analytics (e.g., [2, 20]) do not take into considera-
tion access restrictions. In the relational database context,
access restrictions can be supported by views (e.g., [7, 13,
21]), access patterns (e.g., [4]), or data masking (e.g., [16]).
Such proposals however do not consider encryption.

Work closest to ours has addressed the problem of protect-
ing data confidentiality in distributed computations (e.g., [8,
18, 24]). In [24] the authors present an approach to col-
laboratively execute queries on data subject to access re-
strictions, considering different join evaluation strategies.
In [8] the authors provide a solution for restricting access
and sharing of distributed data, which supports the explicit
consideration of join paths in the authorizations. The pro-
posal in [18] aims to protect computations in hybrid clouds,
preventing flows of sensitive information to the public cloud.
These works confirm the relevance of the problem, but focus
on different aspects. In particular, [24] considers only data
explicitly exchanged among providers and do not take into
consideration implicit information disclosure. While pro-
viding a more expressive authorization model, the approach
in [8] requires collaborative specification of authorizations.
None of the proposals considers the possibility of protect-
ing data with encryption. Our proposal takes then a novel
approach supporting different visibility levels over data and
flexibly injecting encryption on-the-fly to protect data and
enable the controlled involvement of cloud providers in the
query computation. In [11] the authors address a comple-
mentary problem allowing users to specify confidentiality
requirements in query evaluation to protect the objective of
their queries to some providers.

Several works (e.g., [1, 14, 19, 22]) have investigated the
use and support of encryption for the protection of data in
storage or query execution. Other approaches (e.g., [3, 5])
proposed solutions for using secure multiparty computation
in query evaluation, to keep both the input operands and
the result secret to the party in charge of query evaluation.
Specific works (e.g., [9]) have designed techniques to verify
the integrity of query results computed by potentially un-
trusted providers. All these solutions are complementary
to our proposal, which aims to leverage the availability of
solutions supporting operation execution on encrypted data
for enforcing authorizations and enabling the controlled in-
volvement of providers in query execution.

9. CONCLUSIONS
We leverage the availability of emerging solutions sup-

porting computation over encrypted data to provide a novel
flexible approach enabling controlled query execution in the
cloud. Our approach allows independent data authorities to
make their data available for access and collaborative query
execution, and enables users to execute queries over such
data with selective and controlled involvement of external
cloud providers. A main advantage of our approach is the
flexibility in the assignment of query operations to providers,
with on-the-fly insertion of encryption and decryption to ad-
just visibility of data as dictated by the authorizations. Our
work leaves room for extensions, such as the consideration
of scenarios where source relations are not stored at the cor-
responding data authority, but (possibly in encrypted form)
at a third party.
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[14] H. Hacigümüs, B. Iyer, S. Mehrotra, and C. Li.
Executing SQL over encrypted data in the
database-service-provider model. In Proc. of
SIGMOD, pages 216–227, Madison, WI, June 2002.

[15] D. Kossmann. The state of the art in distributed
query processing. ACM CSUR, 32(4):422–469, 2000.

[16] M. M. Kwakye and K. Barker. Privacy-preservation in
the integration and querying of multidimensional data
models. In Proc of PST, pages 255–263, Auckland,
New Zealand, December 2016.

[17] A. Y. Levy, D. Srivastava, and T. Kirk. Data model
and query evaluation in global information systems.
JIIS, 5(2):121–143, 1995.

[18] K. Y. Oktay, M. Kantarcioglu, and S. Mehrotra.
Secure and efficient query processing over hybrid
clouds. In Proc. of ICDE, pages 733–744, San Diego,
CA, April 2017.

[19] R. Popa, C. Redfield, N. Zeldovich, and
H. Balakrishnan. CryptDB: Protecting confidentiality
with encrypted query processing. In Proc. of SOSP,
pages 85–100, Cascais, Portugal, October 2011.

[20] A. Rheinländer, U. Leser, and G. Graefe.
Optimization of complex dataflows with user-defined
functions. ACM CSUR, 50(3):38:1–38:39, 2017.

[21] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy.
Extending query rewriting techniques for fine-grained
access control. In Proc. of SIGMOD, pages 551–562,
Paris, France, June 2004.

[22] S. Tu, M. Kaashoek, S. Madden, and N. Zeldovich.
Processing analytical queries over encrypted data.
PVLDB, 6(5):289–300, 2013.

[23] J. Vaidya. Privacy in the context of digital
government. In Proc. of DG.O, pages 302–303, College
Park, MD, June 2012.

[24] Q. Zeng, M. Zhao, P. Liu, P. Yadav, S. Calo, and
J. Lobo. Enforcement of autonomous authorizations in
collaborative distributed query evaluation. IEEE
TKDE, 27(4):979–992, 2015.


