290 research outputs found

    Modelling and analysis of crosstalk in scaled CMOS interconnects

    Get PDF
    The development of a general coupled RLC interconnect model for simulating scaled bus structures m VLSI is presented. Several different methods for extracting submicron resistance, inductance and capacitance parameters are documented. Realistic scaling dimensions for deep submicron design rules are derived and used within the model. Deep submicron HSPICE device models are derived through the use of constant-voltage scaling theory on existing 0.75µm and 1.0µm models to create accurate interconnect bus drivers. This complete model is then used to analyse crosstalk noise and delay effects on multiple scaling levels to determine the dependence of crosstalk on scaling level. Using this data, layout techniques and processing methods are suggested to reduce crosstalk in system

    Characterisation of crosstalk defects in submicron CMOS VLSI interconnects

    Get PDF
    The main problem addressed in this research work is a crosstalk defect, which is defined as an unexpected signal change due to the coupling between signals or power lines. Here its characteristic under 3 proposed models is investigated to find whether such a noise could lead to real logic faults in IC systems. As a result, mathematical analysis for various bus systems was established, with 3 main factors found to determine the amount of crosstalk: i) how the input buffers are sized; ii) the physical arrangements of the tracks; and iii) the number of switching tracks involved. Minimum sizes of the width and separation lead to the highest crosstalk while increasing in the length does not contribute much variation. Higher level of crosstalk is also found in higher metal layers due mainly to the reduced capacitance to the substrate. The crosstalk is at its maximum when the track concerned is the middle track of a bus connected to a weak buffer while the other signal lines are switching. From this information, the worse-case analysis for various bus configurations is proposed for 0.7, 0.5 and 0.35 µ CMOS technologies. For most of conventional logic circuits, a crosstalk as large as about a half of the supply voltage is required if a fault is to occur. For the buffer circuits the level of crosstalk required depends very much on the transition voltage, which is in turn controlled by the sizing of its n and p MOS transistors forming the buffer. It is concluded that in general case if crosstalk can be kept to be no larger that 30% of the supply voltage the circuit can be said to be very reliable and virtually free from crosstalk fault. Finally test structures are suggested so that real measurements can be made to verify the simulation result

    3D modeling and integration of current and future interconnect technologies

    Get PDF
    Title from PDF of title page viewed June 21, 2021Dissertation advisor: Masud H. ChowdhuryVitaIncludes bibliographical references (pages 133-138)Thesis (Ph.D.)--School of Computing and Engineering and Department of Physics and Astronomy. University of Missouri--Kansas City, 2021To ensure maximum circuit reliability it is very important to estimate the circuit performance and signal integrity in the circuit design phase. A full phase simulation for performance estimation of a large-scale circuit not only require a massive computational resource but also need a lot of time to produce acceptable results. The estimation of performance/signal integrity of sub-nanometer circuits mostly depends on the interconnect capacitance. So, an accurate model for interconnect capacitance can be used in the circuit CAD (computer-aided design) tools for circuit performance estimation before circuit fabrication which reduces the computational resource requirement as well as the time constraints. We propose a new capacitance models for interconnect lines in multilevel interconnect structures by geometrically modeling the electrical flux lines of the interconnect lines. Closed-form equations have been derived analytically for ground and coupling capacitance. First, the capacitance model for a single line is developed, and then the new model is used to derive expressions for the capacitance of a line surrounded by neighboring lines in the same and the adjacent layers above and below. These expressions are simple, and the calculated results are within 10% of Ansys Q3D extracted values. Through silicon via (TSV) is one of the key components of the emerging 3D ICs. However, increasing number of TSVs in smaller silicon area leads to some severe negative impacts on the performance of the 3D IC. Growing signal integrity issues in TSVs is one of the major challenges of 3D integration. In this paper, different materials for the cores of the vias and the interposers are investigated to find the best possible combination that can reduce crosstalk and other losses like return loss and insertion loss in the TSVs. We have explored glass and silicon as interposer materials. The simulation results indicate that glass is the best option as interposer material although silicon interposer has some distinct advantages. For via cores three materials - copper (Cu), tungsten (W) and Cu-W bimetal are considered. From the analysis it can concluded that W would be better for high frequency applications due to lower transmission coefficient. Cu offers higher conductivity, but it has larger thermal expansion coefficient mismatch with silicon. The performance of Cu-W bimetal via would be in between Cu and W. However, W has a thermal expansion coefficient close to silicon. Therefore, bimetal Cu-W based TSV with W as the outer layer would be a suitable option for high frequency 3D IC. Here, we performed the analysis in terms of return loss, transmission coefficient and crosstalk in the vias. Signal speed in current digital systems depends mainly on the delay of interconnects. To overcome this delay problem and keep up with Moore’s law, 3D integrated circuit (vertical integration of multiple dies) with through-silicon via (TSV) has been introduced to ensure much smaller interconnect lengths, and lower delay and power consumption compared to conventional 2D IC technology. Like 2D circuit, the estimation of 3D circuit performance depends on different electrical parameters (capacitance, resistance, inductance) of the TSV. So, accurate modeling of the electrical parameters of the TSV is essential for the design and analysis of 3D ICs. We propose a set of new models to estimate the capacitance, resistance, and inductance of a Cu-filled TSV. The proposed analytical models are derived from the physical shape and the size of the TSV. The modeling approach is comprehensive and includes both the cylindrical and tapered TSVs as well as the bumps. On-chip integration of inductors has always been very challenging. However, for sub- 14nm on-chip applications, large area overhead imposed by the on-chip capacitors and inductors has become a more severe concern. To overcome this issue and ensure power integrity, a novel 3D Through-Silicon-Via (TSV) based inductor design is presented. The proposed TSV based inductor has the potential to achieve both high density and high performance. A new design of a Voltage Controlled Oscillator (VCO) utilizing the TSV based inductor is also presented. The implementation of the VCO is intended to study the feasibility, performance, and real-world application of the proposed TSV based inductor.Introduction -- Background of capacitance modeling of on-chip interconnect -- Accurate modeling of interconnect capacitance in multilevel interconnect structures for sub 22nm technology -- Analysis of different materials and structures for through silicon via and through glass via in 3D integrated circuits -- Impacts of different shapes of through-silicon-via core on 3D IC performance -- Accurate electrical modeling of cu-filled through-silicon-via (TSV) -- Design and characterize TSV based inductor for high frequency voltage-controlled oscillator design -- Conclusion and future wor

    Carbon nanotubes as interconnect for next generation network on chip

    Get PDF
    Multi-core processors provide better performance when compared with their single-core equivalent. Recently, Networks-on-Chip (NoC) have emerged as a communication methodology for multi core chips. Network-on-Chip uses packet based communication for establishing a communication path between multiple cores connected via interconnects. Clock frequency, energy consumption and chip size are largely determined by these interconnects. According to the International Technology Roadmap for Semiconductors (ITRS), in the next five years up to 80% of microprocessor power will be consumed by interconnects. In the sub 100nm scaling range, interconnect behavior limits the performance and correctness of VLSI systems. The performance of copper interconnects tend to get reduced in the sub 100nm range and hence we need to examine other interconnect options. Single Wall Carbon Nanotubes exhibit better performance in sub 100nm processing technology due to their very large current carrying capacity and large electron mean free paths. This work suggests using Single Wall Carbon Nanotubes (SWCNT) as interconnects for Networks-on-Chip as they consume less energy and gives more throughput and bandwidth when compared with traditional Copper wires
    corecore