389 research outputs found

    Efficient Image Processing Via Compressive Sensing Of Integrate-And-Fire Neuronal Network Dynamics

    Get PDF
    Integrate-and-fire (I&F) neuronal networks are ubiquitous in diverse image processing applications, including image segmentation and visual perception. While conventional I&F network image processing requires the number of nodes composing the network to be equal to the number of image pixels driving the network, we determine whether I&F dynamics can accurately transmit image information when there are significantly fewer nodes than network input-signal components. Although compressive sensing (CS) theory facilitates the recovery of images using very few samples through linear signal processing, it does not address whether similar signal recovery techniques facilitate reconstructions through measurement of the nonlinear dynamics of an I&F network. In this paper, we present a new framework for recovering sparse inputs of nonlinear neuronal networks via compressive sensing. By recovering both one-dimensional inputs and two-dimensional images, resembling natural stimuli, we demonstrate that input information can be well-preserved through nonlinear I&F network dynamics even when the number of network-output measurements is significantly smaller than the number of input-signal components. This work suggests an important extension of CS theory potentially useful in improving the processing of medical or natural images through I&F network dynamics and understanding the transmission of stimulus information across the visual system

    A Computational Study Of The Role Of Spatial Receptive Field Structure In Processing Natural And Non-Natural Scenes

    Get PDF
    The center-surround receptive field structure, ubiquitous in the visual system, is hypothesized to be evolutionarily advantageous in image processing tasks. We address the potential functional benefits and shortcomings of spatial localization and center-surround antagonism in the context of an integrate-and-fire neuronal network model with image-based forcing. Utilizing the sparsity of natural scenes, we derive a compressive-sensing framework for input image reconstruction utilizing evoked neuronal firing rates. We investigate how the accuracy of input encoding depends on the receptive field architecture, and demonstrate that spatial localization in visual stimulus sampling facilitates marked improvements in natural scene processing beyond uniformly-random excitatory connectivity. However, for specific classes of images, we show that spatial localization inherent in physiological receptive fields combined with information loss through nonlinear neuronal network dynamics may underlie common optical illusions, giving a novel explanation for their manifestation. In the context of signal processing, we expect this work may suggest new sampling protocols useful for extending conventional compressive sensing theory

    Neuromorphic Engineering Editors' Pick 2021

    Get PDF
    This collection showcases well-received spontaneous articles from the past couple of years, which have been specially handpicked by our Chief Editors, Profs. André van Schaik and Bernabé Linares-Barranco. The work presented here highlights the broad diversity of research performed across the section and aims to put a spotlight on the main areas of interest. All research presented here displays strong advances in theory, experiment, and methodology with applications to compelling problems. This collection aims to further support Frontiers’ strong community by recognizing highly deserving authors

    A Survey on Reservoir Computing and its Interdisciplinary Applications Beyond Traditional Machine Learning

    Full text link
    Reservoir computing (RC), first applied to temporal signal processing, is a recurrent neural network in which neurons are randomly connected. Once initialized, the connection strengths remain unchanged. Such a simple structure turns RC into a non-linear dynamical system that maps low-dimensional inputs into a high-dimensional space. The model's rich dynamics, linear separability, and memory capacity then enable a simple linear readout to generate adequate responses for various applications. RC spans areas far beyond machine learning, since it has been shown that the complex dynamics can be realized in various physical hardware implementations and biological devices. This yields greater flexibility and shorter computation time. Moreover, the neuronal responses triggered by the model's dynamics shed light on understanding brain mechanisms that also exploit similar dynamical processes. While the literature on RC is vast and fragmented, here we conduct a unified review of RC's recent developments from machine learning to physics, biology, and neuroscience. We first review the early RC models, and then survey the state-of-the-art models and their applications. We further introduce studies on modeling the brain's mechanisms by RC. Finally, we offer new perspectives on RC development, including reservoir design, coding frameworks unification, physical RC implementations, and interaction between RC, cognitive neuroscience and evolution.Comment: 51 pages, 19 figures, IEEE Acces

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Event-driven Vision and Control for UAVs on a Neuromorphic Chip

    Full text link
    Event-based vision sensors achieve up to three orders of magnitude better speed vs. power consumption trade off in high-speed control of UAVs compared to conventional image sensors. Event-based cameras produce a sparse stream of events that can be processed more efficiently and with a lower latency than images, enabling ultra-fast vision-driven control. Here, we explore how an event-based vision algorithm can be implemented as a spiking neuronal network on a neuromorphic chip and used in a drone controller. We show how seamless integration of event-based perception on chip leads to even faster control rates and lower latency. In addition, we demonstrate how online adaptation of the SNN controller can be realised using on-chip learning. Our spiking neuronal network on chip is the first example of a neuromorphic vision-based controller on chip solving a high-speed UAV control task. The excellent scalability of processing in neuromorphic hardware opens the possibility to solve more challenging visual tasks in the future and integrate visual perception in fast control loops
    corecore