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Abstract

Integrate-and-fire (I&F) neuronal networks are ubiquitous in diverse image
processing applications, including image segmentation and visual perception.
While conventional I&F network image processing requires the number of
nodes composing the network to be equal to the number of image pixels
driving the network, we determine whether I&F dynamics can accurately
transmit image information when there are significantly fewer nodes than
network input-signal components. Although compressive sensing (CS) the-
ory facilitates the recovery of images using very few samples through lin-
ear signal processing, it does not address whether similar signal recovery
techniques facilitate reconstructions through measurement of the nonlinear
dynamics of an I&F network. In this paper, we present a new framework
for recovering sparse inputs of nonlinear neuronal networks via compressive
sensing. By recovering both one-dimensional inputs and two-dimensional
images, resembling natural stimuli, we demonstrate that input information
can be well-preserved through nonlinear I&F network dynamics even when
the number of network-output measurements is significantly smaller than the
number of input-signal components. This work suggests an important exten-
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sion of CS theory potentially useful in improving the processing of medical
or natural images through I&F network dynamics and understanding the
transmission of stimulus information across the visual system.

Keywords:

Compressive sensing; Neuronal networks; Signal processing; Nonlinear
Dynamics

1. Introduction

The recent emergence of compressive sensing (CS) has in many ways
transformed the field of signal processing, giving rise to a multitude of the-
oretical extensions and practical applications [1–6]. Especially ubiquitous in
improving the accuracy of detailed signal reconstructions and formulating
effective sampling schemes, applications of CS have emerged in diverse disci-
plines, including physics, biology, and image science [7–12]. According to CS
theory, signals that have few dominant components in an appropriate domain
can be reconstructed from a relatively small number of non-uniformly-spaced
samples, yielding a sampling rate significantly lower than suggested by con-
ventional signal processing theory [3]. The current theory of CS has mainly
provided a framework for linear signal processing.

In this work, we discuss a new direction for compressive sensing that
generalizes its application to signal processing in nonlinear integrate-and-fire
(I&F) neuronal network dynamics [13–16]. Integrate-and-fire models have
proven useful in studying a diverse array of natural phenomena, including
earthquake activity [17], insect communication [18, 19], and neuronal dynam-
ics [20–22]. With regard to image processing in particular, I&F networks are
applicable to a variety of image segmentation problems, involving the group-
ing of image pixels by common features, such as gray-scale, color, or texture
[23–25]. Similarly, I&F networks have also been applied in edge detection,
feature recognition, and image denoising [26–32]. A common characteristic of
these I&F network applications in image processing is that the same number
of nodes compose the network as pixels in the input image, such that each
node in the network is driven by a unique pixel.

Since images, such as visual stimuli and medical scans, are typically sparse
in some domain [33], is it possible for CS theory to facilitate more efficient im-
age processing through I&F network dynamics by utilizing fewer nodes than
pixels? To answer this question, we determine whether input signal informa-
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tion is well-preserved through the activity of a pulse-coupled I&F neuronal
network with significantly more input components than nodes. While CS
theory often makes it possible to recover the input into a static linear sys-
tem with only few output measurements, the problem of recovering the same
input signal in nonlinear dynamical systems, such as neuronal networks, is
more complicated. We resolve this difficulty by deriving a linear input-output
relationship embedded in I&F network dynamics, which is applicable to CS
analysis. First, we demonstrate that we can use probabilistic arguments to
derive an approximate nonlinear input-output mapping for such a network.
Then, we derive a linearization for this nonlinear mapping, and illustrate the
robustness of this approximation. Using this linearization and the set of out-
put measurements, we establish a methodology for reconstructing network
inputs via CS. A schematic model of this recovery process is given in Fig. 1.

Considering both one-dimensional and two-dimensional inputs of various
sizes, analogous to natural stimuli, we obtain accurate and recognizable re-
constructions using our novel recovery process. Our work establishes that
I&F neuronal dynamics can indeed successfully encode input images even
for networks in which the number of nodes is an order of magnitude smaller
than the number of input components. Comparing signal reconstructions us-
ing network dynamics and static CS with the same number of random mea-
surements as nodes in the corresponding I&F network, we observe a similar
level of accuracy and conclude that signal information is comparably well-
preserved through network dynamics, giving insight into the conservation of
stimulus information across sensory networks.

The organization of the paper is as follows. In Section 2.1, we briefly
introduce and summarize the basic aspects of compressive sensing theory. In
Section 2.2, we describe the I&F network model that we will subsequently
consider and then derive in Section 2.3 the network mapping of system input
to output. Next, in Section 2.4, we derive the linearization to which we then
apply CS theory and describe the CS algorithm we will use to reconstruct
the system input from a sequence of network output measurements. We
reconstruct several input signals in Section 3 and compare these dynamical-
system input reconstructions to corresponding static signal reconstructions
using the same number of measurements as network nodes. Finally, in Section
4, we discuss the ramifications of this work and possible directions for future
research.
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Figure 1: Schematic model of recovery process. A relatively large n-component signal
is injected into a dynamical network for which we measure the response of m nodes,
where m ≪ n. Based on these measurements, we reconstruct the original input signal
using compressive sensing signal recovery based on a linear map intrinsic to the network
dynamics.

2. Methods

2.1. Compressive Sensing

The Shannon-Nyquist theorem [34], underlying the sampling and com-
pression of most current audio and visual signals, asserts that the sampling
rate of a given signal depends on its bandwidth, W . According to the theo-
rem, signals must be sampled at a rate of at least 2W to guarantee successful
reconstruction. In contrast, compressive sensing provides a simple alterna-
tive means for both efficiently sampling a broad class of signals and later
reconstructing them with a high degree of accuracy. Using only the number
of non-zero frequency components instead of the full range of frequencies to
determine minimal sampling rates, compressive sensing demonstrates that it
is possible to reconstruct signals with far fewer measurements than previously
believed [1–3].

One of the main observations of CS theory is that since most signal com-
ponents within a sufficiently large bandwidth frequently vanish in an appro-
priate domain, the sampling rate predicted by the Shannon-Nyquist theorem
is typically too large. Such signals are considered sparse, since few of their
components are non-zero. A signal with n components is defined as k-sparse,
with k ≪ n, when at least one of its transforms into an appropriate space
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has at most k components whose magnitude exceeds a small threshold [1, 3].
For example, many commonly used signals, including both sound waves and
images, are sparse in several domains [33]. For these signals, coordinate trans-
formations, such as the Fourier, discrete cosine, and wavelet transforms, all
typically yield sparse signal representations [35–37]. If an n-vector signal is
k-sparse, then it is reasonable to expect that, since all data is contained in k
components, then the number of measurements necessary to determine the
signal should be determined by k. Using this reasoning, optimally recon-
structing a large signal from relatively few samples amounts to choosing the
reconstruction with the most zero entries since such a signal is considered
most compressible [2]. Remarkably, as long as the signal is sparse in at least
one domain, the CS theory is applicable.

This signal recovery problem can be cast into the form of an underdeter-
mined linear system. Suppose one seeks to recover an n-component signal, x,
using only m measurements, where m ≪ n. In this case, one samples x with
an m × n measurement matrix, R, yielding m-component measured signal,
b. In the case that x is sparse, this problem is identical to solving the linear
system

Rx = b. (1)

If m < n, there exists an infinity of x’s one can choose from in selecting a
viable reconstruction. In selecting the solution that best approximates the
true sampled signal while using a minimal number of samples, a naive ap-
proach would be to choose the sparsest x. This is equivalent to minimizing
the ℓ0 norm of x, which gives the number of non-zero entries of the signal.
However, solving such an optimization problem for a large linear system is
typically NP-hard and in most cases too computationally expensive. Assum-
ing that x is sufficiently sparse, compressive sensing theory demonstrates that

minimizing |x|ℓ1 =

n
∑

i=1

|xi| yields a reconstruction equivalent to finding the

sparsest x for a broad class of measurement matrices [2, 38]. This specific ℓ1
minimization problem is identical to the widely studied linear programming
problem

minimize y1 + · · ·+ yn (2a)

given − yi ≤ xi ≤ yi, i = 1, . . . , n, (2b)
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under constraint (1). Problems of this type can be efficiently solved through
a variety of algorithms, including least angle regression (LARS), least abso-
lute shrinkage and selection operator (LASSO), Polytope Faces Pursuit, and
homotopy methods [39, 40].

It is important to remark that if the measured signal is not sparse in the
sampled domain, but is instead sparse under a transform, T , then a similar
linear system

φx̂ = b, (3)

where φ = RT−1 and x̂ = Tx should instead be considered. By solving (3)
for x̂, the solution in the non-sparse domain, x = T−1x̂, can be computed
subsequently.

With this framework, to complete the signal reconstruction procedure
using CS, we need only select how best to sample the signal. Compressive
sensing theory demonstrates that measurement matrices, R, which demon-
strate mutual incoherence and the restricted isometry property (RIP) yield
successful reconstructions with near certainty [2, 6, 38]. Intuitively, such
matrices have uncorrelated columns and approximately preserve the size of
sparse signals. More specifically, coherence gives a measure of correlation be-
tween entries of R and is defined as M(R) = max{

∣

∣RT
i Rj

∣

∣ : i 6= j}, such that
R = [R1 . . . Rn] with ||Ri||2 = 1, for all i = 1 . . . n. Matrix R is considered
mutually incoherent if M(R) is sufficiently small. In Ref. [41], for example,
it is shown that if |x|ℓ0 < (

√
2−0.5)/M(R) for a sparse x that solves (1), then

the ℓ0 and ℓ1 norms are equivalent. Similarly, R satisfies the RIP property if
(1− δk)||x||22 ≤ ||Rx||22 ≤ (1+ δk)||x||22 for all k-sparse x and some δk ∈ (0, 1).

A large class of matrices exhibits these properties, most notably several
types of random matrices with independent identically distributed elements.
For example, matrices with either independent identically distributed Gaus-
sian entries with mean 0 and variance 1/n, or Bernoulli distributed entries of
value ±1/

√
n have both been shown to yield successful reconstructions with

high probability [1, 2]. In practice, experimentally verifying the success of a
CS reconstruction is often the simplest approach to ascertaining the validity
of a given measurement matrix.

2.2. Network Model

Using a pulse-coupled I&F network model and the theory of CS, we
present a new framework through which network dynamics can be used to
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recover network inputs with significantly more components than nodes com-
posing the network. We note that our methodology is quite general and
may also be applicable to other classes of networks, which we will discuss
further in Section 2.3. The network model we consider is composed of two
layers, an input layer and a processing layer. For ease of discussion, we de-
scribe this network in the terminology of a neuronal network, in which each
node is considered to be a neuron. In the framework of neuroscience, this
model roughly represents sensory receptors (input layer) and processing neu-
rons (output processing layer), respectively. We model the network input
layer by a vector with components determined by the input characteristics,
corresponding to a sequence of post-synaptic currents in the setting of a neu-
ronal network. Each input current is transmitted downstream to a number
of processing neurons, whose voltage (output) dynamics are described by a
current-based, integrate-and-fire (I&F) model [13–15, 20, 21, 42].

According to our network model, the membrane-potential dynamics of
the ith processing neuron is governed by the differential equation

τ
dvi
dt

= −(vi − VR) + f
n

∑

j=1

Bijpj +
S

NA

m
∑

k=1

k 6=i

Aik

∑

l

δ(t− τkl), (4)

evolving from the reset potential VR until it reaches the threshold potential
VT . At the lth time this occurs, τil, we say that this neuron has fired (or
spiked), reset vi to VR, and inject the currents (S/NA)δ(t − τil) into all the
other processing neurons post-connected to (neighboring) it, with δ(·) being
the Dirac delta function. The jth neuron is considered to be post-connected to
the ith neuron if Aji 6= 0. Moreover, τ is the membrane-potential time-scale,
n and m are the numbers of the input and processing neurons respectively,
p = (p1, . . . , pn) are the signal strengths transmitted by the input neurons,
B = (Bij) and A = (Aij) are connection matrices between the input and
processing neurons and between processing neuron pairs respectively, f and
S are the respective overall strengths of those connections, and NA is the
number of connections between pairs of processing neurons.

The architecture of our network model can be described with a graph-
theoretic structure. Similar network models involving sets of time-evolving
agents have been used in a number of applications [13, 43–53]. In describing
network connectivity, we say that the jth neuron, or node, is post-connected
to (neighboring) the ith neuron if a directed edge connects the ith neuron
to the jth neuron and therefore Aji 6= 0. When the ith neuron fires, the jth
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neuron will thus receive a voltage jump of size AjiS/NA.
Motivated by the random sampling strategy typical in CS theory, we

assume that every processing neuron samples the input signal randomly,
and also that processing neurons are connected to each other randomly.
Therefore, we take the elements of the connectivity matrices A and B to
be Bernoulli-distributed with respective non-zero values 1 and 1/NB, where
NB is the number of connections between input and processing neurons found
in B. Specifically, in our model Aij = 1 with probability 0.05 and Bij = 1/NB

with probability 0.001, reflecting the commonly observed sparse connectivity
in local cortical circuits and sensory systems [54–56]. From an engineer-
ing standpoint, this assumption may instead reflect the use of only a small
amount of data per signal recovery. Nevertheless, we remark that a broad
class of matrices with independent identically distributed elements may also
be appropriate for alternative applications. Likewise, in formulating a more
general or different network model, the processing neurons need not even be
connected to one another, and may rather respond to the input signal inde-
pendently. To examine whether efficient CS reconstructions are still feasible
utilizing nonlinear network dynamics, we choose the numbers n of the input
components and m of the output neurons to be such that n ≫ m. Using
this network framework, we demonstrate how the measured output of only
the m nodes can be used to recover an n-component input. In the following
analysis, we first consider the network input, p, to be a one-dimensional wave
and later consider a two-dimensional grey-scale image.

We simulate this model using an event-driven algorithm in which we
analytically solve for neuronal voltages and spike times, choosing the dimen-
sionless potential values VR = 0 and VT = 1, n = 104, m = 103, S = 1, and
f = 1 for numerical simulations unless stated otherwise [57, 58]. Consistent
with realistic neuronal simulations, we choose time-scale τ = 20ms [59–61],
and a total simulation time of tf = 200ms, which is of the same order as
human reaction-time for visual stimuli [62, 63].

2.3. Coarse-Graining

To determine whether input signals are well transmitted and preserved
through network dynamics, we perform a coarse-graining procedure using
probabilistic arguments to obtain a mapping between network input and
output. Typically the underlying assumption of coarse-graining is that one
can approximate network dynamics by forming groups of nodes with sta-
tistically averaged input responses in each group [64, 65]. Here, we do not
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make this assumption, but instead use similar ideas to derive an analytical
expression for the firing rates of individual processing neurons described by
an m-vector, µ.

In carrying out our coarse-graining, we consider a statistical ensemble of
nearly identical networks of processing neurons, differing only in initial volt-
ages, vj(t = 0), and consequently input currents, Ij , for j = 1, ..., m. For each
realization of the network in the ensemble, the jth neuron is injected with a
new independent spike train of pulses transmitted by pre-connected neurons
in addition to an input current, f

∑n
j=1Bijpj , for i = 1, ..., m. Since these

spike trains correspond to firing events received within the network of pro-
cessing neurons, the input rate, rj , is equal to the rate at which the jth neuron
in the network receives spikes from neurons pre-connected to it. Moreover,
for each realization of the network in the ensemble, the connectivity matrices
A and B are initially generated with each containing independent identically
distributed Bernoulli entries and remain the same throughout each realiza-
tion.

We further assume that the network undergoes a large number of firing
events, of which each only evokes a small voltage jump to post-connected
neurons. In other words, we make the assumption of high spike frequency
and small spike magnitude, µj → ∞ and S/NA → 0, respectively. Under
this assumption, the total network input to each processing neuron, say the
ith,

S

NA

m
∑

k=1

k 6=i

Aik

∑

l

δ(t− τkl),

becomes approximately a Poisson spike train [66]. As a consequence of this
assumption, we find that, statistically, the effect of the network drive becomes
the same as that of an approximately mean drive from pre-connected neurons,

S

NA

m
∑

k=1

k 6=i

Aikµk. (5)

Replacing the last term on the right hand side of (4) by (5), we obtain the
membrane-potential solution
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vi(t) =vi(t0)e
−(t−t0)/τ +

(

1− e−(t−t0)/τ
)

×






VR + f

n
∑

j=1

Bijpj +
S

NA

m
∑

k=1

k 6=i

Aikµk






. (6)

Letting v(t0) = VR and v(t0 + 1/µi) = VT , where µi is the firing rate of the
ith neuron, and dividing by the factor 1− e−1/τµi , we obtain the mapping

n
∑

j=1

fBijpj =
VT − VR

1− e−1/τµi

− S

NA

m
∑

k=1

k 6=i

Aikµk, (7)

which holds for each individual processing neuron in the network. It is im-
portant to remark that for other network models, similar arguments may
also apply, assuming it is possible to quantify the time-averaged output of
each node and also derive an approximation of the mean interactions be-
tween nodes. For more general models with additional output variables or
more complex nonlinear node interactions, the coarse-graining methodology
presented in Refs. [64, 65] may also be applicable in obtaining a network
input-output mapping.

2.4. Network Input-Output Relationship

While (7) does indeed give us an input-output relationship that we can
use to reconstruct the input signal using output firing rates of the processing
neurons, it is nonlinear with respect to µ and may also be nonlinear with
respect to p for more general network models. In our particular case, once µ
is computed from simulation of I&F network dynamics, the right-hand side
of (7) is completely determined, giving an underdetermined linear system in
network input, p. We remark that while linearization is not necessary for
this particular I&F network model since (7) is linear with respect to p, for
more general and complex models, one may have to perform linearization in
order to apply CS theory. Therefore, we also consider the linearization of (7)
for the problem of input image recovery.

To successfully encode the input signals transmitted by the input neurons,
we assume the primary drive for the processing neurons in the network is the
large external input, Bp. In this case, the network will be in a high-firing-
rate dynamical regime. Therefore, we perform Taylor expansion with respect

10



to the small parameter 1/(µj) and up to the leading order O(1/(µj)
2), we

obtain

f
n

∑

j=1

Bijpj = τµj(VT − VR) +
(VT − VR)

2
− S

NA

m
∑

k=1

k 6=i

Aikµk. (8)

With respect to the entire network of processing neurons, rewriting (8), we
obtain them-dimensional linear system approximation for all firing rates over
the entire processing neuron network

fBp =

(

τµ +
L

2

)

(VT − VR)−
S

NA

Aµ, (9)

where L denotes an m-vector of ones.
While the linearization given by (9) is only valid if the network input is

sufficiently large, using our explicit solution for external drive strength in (7),
we can easily verify the regime of validity for this linearization. In Fig. 2 (a),
we plot the network gain curves, which give the network-averaged firing rate
as a function of the input signal strength. We compare the computed firing
rates using direct full-model simulation, given by (4), to the theoretically
computed firing rates predicted with both the nonlinear map given by (7)
and the linearization in (9). For sufficiently large input-signal strengths, we
observe close agreement between the network-averaged firing rates computed
using the simulated full-model and both the non-linear and linear input-
output mappings, yielding a large dynamical regime in which the theoretical
approximations are valid.

2.5. Firing Rate Recovery

While our ultimate goal is to use the linear mapping in (9) to reconstruct
the network input signal using the network output firing rates, it is important
to note the simpler problem of computing network output as a function of the
input signal can also be solved with this linearization. Given knowledge of the
input signal, p, as well as the network architecture prescribed by connectivity
matrices A and B, this is a problem of solving the following linear system

(

τ(VT − VR)I −
S

NA

A

)

µ = fBp− L(VT − VR)

2
(10)

for the unknown m-vector µ, where I is the m×m identity matrix. Since the
linear system is m×m in this case, a unique solution can be computed using
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standard numerical linear algebra solution techniques. We remark that since
the entries of the matrix given by SA/(NAτ(VT − VR)) are small relative
to the order-unity diagonal entries of I, the problem will not be singular.
Hence, in the regime of validity of our linearization, we expect our theoretical
prediction of µ to closely match the results of numerical simulation of the
network model (4). In Fig. 2 (b), we plot the individual processing neuron
firing rates, µj, measured from both numerical simulation and solution of
(10). For comparison, we also include the firing rates obtained by solving
nonlinear system (7) for µ using iteration with respect to fixed-points [67].
We observe that even on the fine scale of individual processing-neuron output,
all three approaches yield nearly identical results for a large range of f .

2.6. Compressive Sensing Network Input Signal Recovery

With our linearization defined in (9), we now seek to recover an input signal,
p, using only the output firing rates of the processing neurons measured
through numerical simulation, µ, and the network architecture, as encoded
by the connectivity matrices A and B. To apply compressive sensing in
recovering a sparse representation of a two-dimensional p, we consider the
vectorization of the two-dimensional discrete cosine transform of the input
signal matrix, p̂ = (p̂1, . . . , p̂n) = (D⊗D)p, where p is vectorized, ⊗ denotes
the n× n Kronecker product

D ⊗D =







D11D · · · D1
√
nD

...
. . .

...
D√

n1D · · · D√
n
√
nD






,

D is the
√
n × √

n, one-dimensional discrete cosine transform matrix with
entries

Dij = (D−1)Tij = ω(i) cos

(

(i− 1)(2j − 1)π

2
√
n

)

,

ω(1) = (1/n)1/4, and ω(i 6= 1) = (4/n)1/4. In solving the related problem of
recovering p̂, the linear model we consider is
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Figure 2: Closeness of the firing rates produced by the I&F model and firing-rate mapping
for each processing neuron in the network. The input signal used is the 100 × 100 pixel
representation of the image presented in Fig. 5 (i). (a) Dependence of the network-
averaged firing rate on the input signal strength, f , computed using direct simulation of
the I&F model (4) (red), the nonlinear input signal approximation given by (7) (green),
and the linearization in (9) (blue) (b) Comparison of individual processing neuron firing
rates using the same color scheme as in (a). Comparing the network-averaged firing rates
for each case when f = 1, we observe that there is particularly close agreement between
the firing rates of individual neurons, with many overlapping points.

f

n
∑

j=1

Bij(D ⊗D)−1
ij p̂j =

(

τµi +
1

2

)

(VT − VR)

− S

NA

m
∑

k=1

k 6=i

Aikµk. (11)
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Applying the CS theory discussed in Section 2.1, since the discrete cosine
transform of the stimulus, p̂, is sparse, recovering p̂ is reduced to minimiz-
ing the sum

∑n
j=1 |p̂j| under the constraint (11). Solving this minimization

problem is equivalent to solving the L1 optimization problem (2) under the
constraint (11) where xi = p̂i. We solve this optimization problem with a
greedy algorithm known as the Orthogonal Matching Pursuit [39]. Once p̂
is recovered, we finally invert the two-dimensional discrete cosine transform
and the vectorization to obtain the input signal p. Note that once the in-
put image recovery problem is posed in the form of (11), the optimization
problem becomes solvable with the one-dimensional CS techniques discussed
in Section 2.1. In the case of a one-dimensional input signal, we need only
consider the one-dimensional discrete cosine transform of p rather than the
vectorized two-dimensional analogue, with the remaining details of the re-
construction unchanged. We summarize the input signal recovery process for
two-dimensional input images processed through I&F network dynamics in
the following algorithm.

Compressive Sensing Input Image Recovery Algorithm

1. Simulate the model network according to (4) and record firing rates µ
of processing neurons.

2. Solve the optimization problem (2) under the constraint (11) such that
xi = p̂i, where p̂i is the two-dimensional discrete cosine transform of
the input-image pixel matrix.

3. Compute the reconstructed input signal p = (D ⊗D)p̂ from recovered
sparse representation p̂, and invert the vectorization of the recovered
signal to obtain the image pixel matrix.

3. Results

3.1. One-Dimensional Input Signal Recovery

To demonstrate the robustness of this CS signal recovery procedure, we
apply our methodology using both one-dimensional and two-dimensional in-
put signals. In both cases we consider networks with a 10 : 1 ratio between
input neurons and processing neurons, yielding a factor of 10 reduction in
the number of output samples. Later, we will compare our results when the
reduction factor is reduced and also when the input signal size is increased.
We first consider a one-dimensional input signal of the form
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Table 1: One-Dimensional Input Signal Parameters

Parameter Value

a0 3000
a1 600
f1 0.5
a2 600
f2 2
a3 600
f3 4
a4 0.06
f4 20

pcont(x) = a0 +
∑

i

ai cos(fix) (12)

where x is the spatial location of the input, determined by the index of a
given input neuron, ai is the amplitude of constituent wave-form i, and fi
is the corresponding frequency of the wave. The parameters of the signal
are listed in Table 1, and chosen such that the signal contains several low-
frequency, moderate-amplitude terms and one noise-like, high-frequency, low-
amplitude term. This composition is chosen such that the signal is sparse in
the frequency domain, yet mimics a portion of the noise realistically present
in many radio-wave or sound-wave signals.

To determine the above spatially oscillatory signal injected into any given
processing neuron in the network, we discretize the input such that pj =
pcont(

j
1000

). The input signal therefore consists of uniformly spaced samples
of the original continuous signal on the x interval [0, 10]. Injecting this signal
into our model network for t = 200ms, we plot in Fig. 3 the original input
signal along with the corresponding network CS reconstruction using (9). We
observe close agreement, with the various compressive sensing reconstructions
clearly clustered around the injected signal. The reconstructions from the
network output closely follow the shape of the input signal, with a relatively
small scatter around the solution as a consequence of information that cannot
be readily revealed through compressive sensing of network dynamics, which
we investigate further in the following analysis.

Using the same sampling scheme as in the network-dynamics CS recovery
via (9), we plot for comparison the static CS signal reconstruction and also
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Figure 3: Reconstruction of one-dimensional input signal. Comparison of the original one-
dimensional input signal (blue), defined by (12), to several reconstructions: network CS
reconstructions using (9) (red) and (7) (yellow), static CS reconstruction (green), and two
alternative reconstructions, obtained by solving (9) directly using Gaussian elimination
(black and cyan). The reconstruction errors, defined by (13), for the network CS recon-
struction using Eqs. (9) and (7) are 0.1015 and 0.0671 respectively. The corresponding
error for the static CS reconstruction is 0.0004. Each simulated network is composed of
n = 10000 input neurons and m = 1000 processing neurons. We choose the connection
probability of A to be 0.05 and B to be 0.001.

the corresponding network-dynamics CS reconstruction using (7) in Fig. 3.
In the absence of network dynamics, we observe an improvement in recon-
struction quality. Likewise, we find that the network-dynamics CS recon-
struction using (7) yields a level of accuracy intermediate between the static
and (9) reconstructions. Since (9) is a further linear approximation of (7)
in the high-spike-frequency dynamical regime, it is reasonable to expect that
some reconstruction accuracy will be lost. However, in Section 3.2, we ob-
serve that for more complex two-dimensional signals, the difference between
the three reconstructions is much less pronounced, making the (9) network-
dynamics CS reconstruction particularly useful for more realistic signal re-
constructions. While some signal information appears not readily recovered
through our particular compressive sensing of I&F network dynamics, with
more accurate input-output mappings, it may be possible to improve the
quality of signal reconstructions. For this reason, an interesting area for
future study would be to investigate the existence of more exact network
input-output mappings applicable to network CS signal recovery.
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Comparing the frequency-domain representations of these reconstruc-
tions, we can more clearly understand their underlying differences and var-
ious levels of accuracy. In Fig. 4 (a)-(c), we plot the absolute value of the
one-dimensional discrete Fourier transform of the original input signal and
reconstructions using static CS, and network-dynamics CS corresponding to
(7) and (9), respectively. For the most dominant frequencies, the three re-
constructions are nearly identical to the original input. However, to reconcile
for any minor discrepancies between the actual input signal and the output
processed through network dynamics, the network-dynamics CS reconstruc-
tions introduce several additional low-amplitude, high-frequency components
in order to satisfy constraint (11). We see that linearization (9) introduces
several more such high-frequency components than nonlinear mapping (7), as
can be observed for frequencies greater than 1, suggesting that more accurate
mappings indeed have the potential to capture higher-order input signal infor-
mation. Overall, we note that the general distribution of the high-amplitude,
low-frequency components for the reconstructions is quite similar, yielding
comparable corresponding input-signal reconstructions in the original non-
sparse domain evidenced by Fig. 3. In fact, the proportion of dominant
frequency components, with amplitude greater than 0.1, is nearly the same
for all three reconstructions. Thus, both the static and network-dynamics CS
recoveries can reveal similarly sparse and similarly accurate approximations
of the original input signal.

While the compressive sensing solution appears to choose the reconstruc-
tion that best traces the input signal, we contrast that solutions to (9), which
do not take into account any constraints on signal sparsity, do not resemble
the injected input. We consider a combination of a particular solution to
(9) and randomly chosen elements of the null space of connection matrix B,
which defines the left-hand side of (9). Plotting two such naive solutions in
Fig. 3, we observe that they clearly lack the coherent structure of the CS
solution and are on average not even of the same order of magnitude as the
actual input signal. To quantitatively assess the accuracy of the reconstruc-
tion, we measure the relative reconstruction error defined by

Error = ‖p− precon‖/‖p‖, (13)

where the Euclidean norm is defined ‖p‖ =
√
∑n

i=1 p
2
i and precon is the re-

constructed input signal. In the case of the CS solution, the relative re-
construction error is approximately 10%, whereas the naive alternative re-
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Figure 4: Frequency domain comparison. (a) Frequency domain representation of the
static CS reconstruction (blue). (b) Frequency domain representation of the network-
dynamics CS reconstruction using the nonlinear mapping given by (7) (blue). (c) Fre-
quency domain representation of the network-dynamics CS reconstruction using the lin-
earization given by (9) (blue). In each case, the absolute value of the discrete Fourier
transform is displayed, using the one-dimensional input signal defined by (12). We plot
each representation for frequencies less than 10 to zoom into the structure of the dominant
frequencies. In each panel, we plot for comparison the frequency domain representation
of the original signal (dashed red). The proportion of dominant frequency components,
with amplitude greater than 0.1, for the static, (7), and (9) CS reconstructions are 0.0130,
0.0113, and 0.0147, respectively. Each simulated network is composed of n = 10000 input
neurons and m = 1000 processing neurons. We choose the connection probability of A to
be 0.05 and B to be 0.001.
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constructions yield relative errors of more than 100%. Hence, information
appears well-preserved through the network dynamics, allowing a recogniz-
able reconstruction even in the case where there is a factor of 10 less output
measurements than input components.

3.2. Two-Dimensional Input Signal Recovery

We now consider CS reconstructions for four images differing in complex-
ity, spatial patterning, and size. All four input images have a grey-scale pixel
matrix representation with components taking on integer values indicating
the light intensity of the signal at a given spatial location. The first two
images are of size 100 × 100 pixels, and the last two are of size 200 × 200
pixels.

Figure 5 compares the original input image and the corresponding network-
dynamics CS reconstruction using (9) for each case over a time-scale of
tf = 200ms. The first three images are listed in order of increasing com-
plexity: a single disk, sequence of triangles, and a cameraman. The final
image is an MRI brain scan of a patient with normal pressure hydrocephalus.
In each case, we find that the network-dynamics CS reconstruction captures
all spatial features very well with only minor perturbations in the grey-scale
values of some individual pixels. The network-dynamics CS reconstruction
appears to have more pronounced errors near edges or sharp transitions in
pixel values, for which specific low-amplitude, high-frequency components of
the image may have been lost through dynamics. For comparison, we also
plot the corresponding static CS reconstruction using an identical sampling
rate. While the static reconstructions do yield a smaller error, we find that
qualitatively the dynamic and static CS reconstructions yield quite compa-
rable results. The error for each reconstruction is listed in the caption of Fig.
5, demonstrating a comparable order of reconstruction accuracy for every
image.

It is important to remark that, as in the case of compressive sensing ap-
plied to static images, better reconstructions are achievable in the context
of larger images and those with more sparsity. The increase in pixel num-
bers allows for the reconstruction of finer-scale variations in grey-scale values,
as in the case of the cameraman image. Likewise, using more output sam-
ples greatly increases the reconstruction accuracy. In Fig. 5, we also plot
the corresponding network-dynamics CS reconstruction using an alternative
reduction factor of 5, achieving markedly improved reconstructions. By in-
creasing the number of measured nodes, we indeed observe levels of accuracy
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Figure 5: Reconstruction of two-dimensional input images. (a), (e), (i), (m):
original input images; (b), (f), (j), (n): reconstructions using static CS with er-
rors 0.0945, 0.1111, 0.1497, 0.2081 respectively; (c),(g),(k), (o): reconstructions using
network-dynamics CS and a 10 : 1 input neuron to processing neuron ratio with er-
rors 0.1385, 0.1692, 0.2617, respectively; (d),(h),(l), (p): reconstructions using network-
dynamics CS and a smaller 5 : 1 input neuron to processing neuron ratio with errors
0.1254, 0.1345, 0.1739, 0.2422 respectively. We choose the connection probability of A to
be 0.05 and B to be 0.001. Images (a) and (e) are of size 100× 100 pixels and images (i)
and (m) are of size 200× 200 pixels.

comparable to the static CS reconstruction. While in this particular work we
use the two-dimensional discrete cosine transform to obtain relatively sparse
image representations, we note that for some signals alternative transforma-
tions may yield even higher quality CS reconstructions. Nevertheless, the
theory presented in Section 2 is generalizable to other sparse representations
and may be adapted to recover other classes of signals.

Overall, we see that the quality of the static and network-dynamics CS
reconstructions are more comparable in the realistic two-dimensional image
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case than for the simpler one-dimensional signal discussed in Section 3.1.
This suggests that for more complex signals, with more dominant and varied
frequency-components, the network-dynamics and static CS reconstructions
may converge towards the same signal reconstruction for some input signals.
Most likely, the frequency components for more complex signals missed by
the network-dynamics CS reconstruction but captured by the static CS re-
covery do not contribute as heavily to the overall features in the signal, and
therefore they do not significantly alter the reconstruction quality. Simi-
larly, we comment that the reconstruction quality corresponding to the (7)
network-dynamics CS reconstruction is nearly identical to that of lineariza-
tion (9) since the significant modes are nearly equally captured by the two
input-output mappings. We therefore conclude that even for highly-detailed
input signals measured using a very small number of output samples, the
network-dynamics CS reconstruction is quite robust and naturally general-
izes conventional static compressive sensing.

4. Discussion

Since the discovery of compressive sensing theory, the field of signal pro-
cessing has been revolutionized and rapidly expanded. In this work, we
have presented a new extension of CS to the recovery of signals driving I&F
neuronal network dynamics. While CS is typically applied to static linear
systems, biological network dynamics are generally nonlinear and inherently
non-static. Despite this, for a class of I&F networks with pulse-coupled
nonlinear dynamics, we derived a linear map between an unknown network
input with a large number of components and the measured output processed
through a relatively small number of nodes. Then, we presented a detailed
framework for reconstructing the network input, applying CS theory to the
measured network dynamics and derived linear input-output relation. Fi-
nally, we used our methodology to recover diverse input signals, yielding
rather accurate reconstructions in each case. Comparing static CS recov-
ery of sampled signals to the reconstruction of the same signals processed
through I&F network dynamics, we demonstrated that input information is
well-preserved through realistic network dynamics even when such networks
have significantly fewer nodes than input signal components.

This connection between CS and network dynamics suggests a new direc-
tion for both biological and signal processing research. While we present a
formal derivation of the network linear input-output map for one particular
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class of I&F networks, we have yet to make a similar argument for more
general network dynamics. Likewise, akin to conventional CS analysis [1, 3],
it would be interesting to analytically determine the probability of successful
signal recovery via network-dynamics CS. In addition, it would be informa-
tive to investigate the characteristics of network dynamics that best encode
input signal information. We expect that by using input sampling techniques
common in visual systems, such as receptive field structure, improved recon-
struction of network inputs may be possible in our framework [68, 69].

It is important to note that network-dynamics CS can be applied to ex-
perimentally observed physical networks in addition to numerically simulated
networks. For example, the underlying linear structure of a real-world net-
work could be recovered via first-order Wiener kernel analysis, upon which
CS theory could then be applied to the measured network output [70, 71].
With respect to image segmentation in particular, we expect that since im-
age information is well-preserved through I&F network dynamics utilizing
far fewer nodes than image pixels, it may not be necessary to use a 1 : 1 ratio
of nodes to pixels as typically done in image processing. Instead, it may
be possible to use CS theory to dramatically reduce the number of nodes
necessary for successful segmentation or improve the quality of more general
image-processing.
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[17] A. Corral, C. J. Pérez, A. Dı́az-Guilera, A. Arenas, Self-organized criti-
cality and synchronization in a lattice model of integrate-and-fire oscil-
lators., Phys Rev Lett 74 (1) (1995) 118–121.

[18] R. Mirollo, S. Strogatz, Synchronization of Pulse-Coupled Biological
Oscillators, SIAM Journal on Applied Mathematics 50 (6) (1990) 1645–
1662.

[19] J. Buck, Synchronous Rhythmic Flashing of Fireflies. II., The Quarterly
Review of Biology 63 (3) (1988) 265–289.

[20] D. Cai, A. Rangan, D. McLaughlin, Architectural and synaptic mecha-
nisms underlying coherent spontaneous activity in V1, Proc. Nat’l Acad.
Sci (USA) 102 (2005) 5868–5873.

[21] A. V. Rangan, D. Cai, D. W. McLaughlin, Modeling the spatiotempo-
ral cortical activity associated with the line-motion illusion in primary
visual cortex, Proc. Natl. Acad. Sci. USA 102 (52) (2005) 18793–18800.

[22] V. J. Barranca, D. C. Johnson, J. L. Moyher, J. P. Sauppe, M. S.
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