1,406 research outputs found

    Perceptually Motivated Wavelet Packet Transform for Bioacoustic Signal Enhancement

    Get PDF
    A significant and often unavoidable problem in bioacoustic signal processing is the presence of background noise due to an adverse recording environment. This paper proposes a new bioacoustic signal enhancement technique which can be used on a wide range of species. The technique is based on a perceptually scaled wavelet packet decomposition using a species-specific Greenwood scale function. Spectral estimation techniques, similar to those used for human speech enhancement, are used for estimation of clean signal wavelet coefficients under an additive noise model. The new approach is compared to several other techniques, including basic bandpass filtering as well as classical speech enhancement methods such as spectral subtraction, Wiener filtering, and Ephraim–Malah filtering. Vocalizations recorded from several species are used for evaluation, including the ortolan bunting (Emberiza hortulana), rhesus monkey (Macaca mulatta), and humpback whale (Megaptera novaeanglia), with both additive white Gaussian noise and environment recording noise added across a range of signal-to-noise ratios (SNRs). Results, measured by both SNR and segmental SNR of the enhanced wave forms, indicate that the proposed method outperforms other approaches for a wide range of noise conditions

    Group-Sparse Signal Denoising: Non-Convex Regularization, Convex Optimization

    Full text link
    Convex optimization with sparsity-promoting convex regularization is a standard approach for estimating sparse signals in noise. In order to promote sparsity more strongly than convex regularization, it is also standard practice to employ non-convex optimization. In this paper, we take a third approach. We utilize a non-convex regularization term chosen such that the total cost function (consisting of data consistency and regularization terms) is convex. Therefore, sparsity is more strongly promoted than in the standard convex formulation, but without sacrificing the attractive aspects of convex optimization (unique minimum, robust algorithms, etc.). We use this idea to improve the recently developed 'overlapping group shrinkage' (OGS) algorithm for the denoising of group-sparse signals. The algorithm is applied to the problem of speech enhancement with favorable results in terms of both SNR and perceptual quality.Comment: 14 pages, 11 figure

    Speech enhancement by perceptual adaptive wavelet de-noising

    Get PDF
    This thesis work summarizes and compares the existing wavelet de-noising methods. Most popular methods of wavelet transform, adaptive thresholding, and musical noise suppression have been analyzed theoretically and evaluated through Matlab simulation. Based on the above work, a new speech enhancement system using adaptive wavelet de-noising is proposed. Each step of the standard wavelet thresholding is improved by optimized adaptive algorithms. The Quantile based adaptive noise estimate and the posteriori SNR based threshold adjuster are compensatory to each other. The combination of them integrates the advantages of these two approaches and balances the effects of noise removal and speech preservation. In order to improve the final perceptual quality, an innovative musical noise analysis and smoothing algorithm and a Teager Energy Operator based silent segment smoothing module are also introduced into the system. The experimental results have demonstrated the capability of the proposed system in both stationary and non-stationary noise environments

    Offline and real time noise reduction in speech signals using the discrete wavelet packet decomposition

    Get PDF
    This thesis describes the development of an offline and real time wavelet based speech enhancement system to process speech corrupted with various amounts of white Gaussian noise and other different noise types

    A New Wavelet Denoising Method for Noise Threshold

    Get PDF
    A new method is used wavelet 1-D experimental signal for denoising. It is provided the optimal adaptive threshold of sub-band based on input signals. The new method: 1) use a new method with low complexity that calculates thresholds; 2) use threshold for each sub-bands; 3) divide three sub-band with range of human hearing and range of the hearing tests are often displayed in the form of an audiogram; 4) use a new denoising algorithm depends on attribute of signal for wavelet coefficients; 5) applies denoising to the detail coefficients. The new method called Adaptive Thresholding with Mean for hybrid Denoising method of hard and soft function (ATMDe) and applied to hearing loss and it is found that it increases the signal-to-noise ratio by more than 114 % and decreases the mean-square-error (MSE). The result of new method with SNR and MSE is higher than standard denoising methods. Hence, the new method was found that has good performance and adaptive threshold value is better than other methods.This study is proposed a new adaptive threshold based on noisy speech for each sub-bands with low complex and it is suitability for range of human hearing and range of hearing test. A new method is used wavelet 1-D experimental signal for denoising. It provided the optimal adaptive threshold of three sub-band with applies to the detail coefficients. The speech enhancement is used of threshoding on the adpated wavelet coefficients, and the results are compared a variety of noisy speech and four well-known benchmark signals. The results, measured objectively by Signal-to-Noise ratio (SNR) and Mean Square Error (MSE), are given for additive white Gaussian noise as well as two different types of noisy environment. The new method called Adaptive Thresholding with Mean for hybrid Denoising method of hard and soft function (ATMDe) and applied to hearing loss and it is found that it increases the signal-to-noise ratio by more than 114% and decreases the mean-square-error (MSE). The result of new method with SNR and MSE is higher than standard denoising methods. Hence, the new method was found that has good performance and adaptive threshold value is better than other methods

    Wavelet speech enhancement based on time-scale adaptation

    Get PDF
    Abstract : We propose a new speech enhancement method based on time and scale adaptation of wavelet thresholds. The time dependency is introduced by approximating the Teager Energy of the wavelet coefficients, while the scale dependency is introduced by extending the principle of level dependent threshold to Wavelet Packet Thresholding. This technique does not require an explicit estimation of the noise level or of the apriori knowledge of the SNR, as is usually needed in most of the popular enhancement methods. Performance of the proposed method is evaluated on speech recorded in real conditions (plane, sawmill, tank, subway, babble, car, exhibition hall, restaurant, street, airport, and train station) and artificially added noise. MELscale decomposition based on wavelet packets is also compared to the common wavelet packet scale. Comparison in terms of Signal-to-Noise Ratio (SNR) is reported for time adaptation and time-scale adaptation thresholding of the wavelet coefficients thresholding. Visual inspection of spectrograms and listening experiments are also used to support the results. Hidden Markov Models Speech recognition experiments are conducted on the AURORA–2 database and show that the proposed method improves the speech recognition rates for low SNRs

    Speech Signal Enhancement through Adaptive Wavelet Thresholding

    Get PDF
    This paper demonstrates the application of the Bionic Wavelet Transform (BWT), an adaptive wavelet transform derived from a non-linear auditory model of the cochlea, to the task of speech signal enhancement. Results, measured objectively by Signal-to-Noise ratio (SNR) and Segmental SNR (SSNR) and subjectively by Mean Opinion Score (MOS), are given for additive white Gaussian noise as well as four different types of realistic noise environments. Enhancement is accomplished through the use of thresholding on the adapted BWT coefficients, and the results are compared to a variety of speech enhancement techniques, including Ephraim Malah filtering, iterative Wiener filtering, and spectral subtraction, as well as to wavelet denoising based on a perceptually scaled wavelet packet transform decomposition. Overall results indicate that SNR and SSNR improvements for the proposed approach are comparable to those of the Ephraim Malah filter, with BWT enhancement giving the best results of all methods for the noisiest (−10 db and −5 db input SNR) conditions. Subjective measurements using MOS surveys across a variety of 0 db SNR noise conditions indicate enhancement quality competitive with but still lower than results for Ephraim Malah filtering and iterative Wiener filtering, but higher than the perceptually scaled wavelet method
    • …
    corecore