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Abstract 
This paper demonstrates the application of the Bionic Wavelet Transform (BWT), an adaptive wavelet transform 
derived from a non-linear auditory model of the cochlea, to the task of speech signal enhancement. Results, 
measured objectively by Signal-to-Noise ratio (SNR) and Segmental SNR (SSNR) and subjectively by Mean 
Opinion Score (MOS), are given for additive white Gaussian noise as well as four different types of realistic noise 
environments. Enhancement is accomplished through the use of thresholding on the adapted BWT coefficients, 

https://doi.org/10.1016/j.specom.2006.12.002
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and the results are compared to a variety of speech enhancement techniques, including Ephraim Malah filtering, 
iterative Wiener filtering, and spectral subtraction, as well as to wavelet denoising based on a perceptually 
scaled wavelet packet transform decomposition. Overall results indicate that SNR and SSNR improvements for 
the proposed approach are comparable to those of the Ephraim Malah filter, with BWT enhancement giving the 
best results of all methods for the noisiest (−10 db and −5 db input SNR) conditions. Subjective measurements 
using MOS surveys across a variety of 0 db SNR noise conditions indicate enhancement quality competitive with 
but still lower than results for Ephraim Malah filtering and iterative Wiener filtering, but higher than the 
perceptually scaled wavelet method. 

Keywords 
Adaptive wavelets, Bionic Wavelet Transform, Speech enhancement, Denoising 

1. Introduction 
Speech enhancement is an important problem within the field of speech and signal processing, with impact on 
many computer-based speech recognition, coding and communication applications. The underlying goal of 
speech enhancement is to improve the quality and intelligibility of the signal, as perceived by human listeners. 
Existing approaches to this task include traditional methods such as spectral subtraction (Boll, 1979, Deller et al., 
2000), Wiener filtering (Deller et al., 2000, Haykin, 1996), and Ephraim Malah filtering (Ephraim and Malah, 
1984). Wavelet-based techniques using coefficient thresholding approaches have also been applied to speech 
enhancement (Donoho, 1995, Guo et al., 2000), and more recently a number of attempts have been made to 
use perceptually motivated wavelet decompositions coupled with various thresholding and estimation methods 
(Bahoura and Rouat, 2001, Chen et al., 2004, Cohen, 2001, Fu and Wan, 2003, Hu and Loizou, 2004, Lu and 
Wang, 2003). 

Recently, the Bionic Wavelet Transform (BWT) (Yao and Zhang, 2001, Yao and Zhang, 2002) has been proposed 
as a method for wavelet decomposition of speech signals. The BWT was originally designed for applications in 
speech coding, with particular emphasis on the possibility of using it for encoding of cochlear implant signals. 
The BWT model, which will be described in more detail in the next section, is based on an auditory model of the 
human cochlea, capturing the non-linearities present in the basilar membrane and translating those into 
adaptive time-scale transformations of the underlying mother wavelet. Motivated by the communicative 
connection between the speech production system and the auditory system, the work presented here uses the 
BWT in combination with existing wavelet denoising techniques to construct a new adaptive wavelet 
thresholding method for speech enhancement, with the idea that the improved representational capability of 
the BWT on speech signals could lead to better separation of signal and noise components within the 
coefficients and therefore better enhancement results. 

In Section 2, we give a detailed overview of wavelet decompositions, wavelet thresholding techniques, and the 
BWT, as well as a brief discussion of the baseline enhancement methods being used for comparison. 
Section 3 introduces the new approach and outlines the experimental method, including the experiments, the 
data set, the noise models, and the evaluation metrics. Results of these experiments are presented and 
discussed in Section 4, followed by overall conclusions in Section 5. 

2. Background 
2.1. Wavelet analysis (Debnath, 2002; Jaffard et al., 2001; Walnut, 2002) 
The Continuous Wavelet Transform (CWT) of a signal x(t) is given by 



(1) 𝑋𝑋CWT(𝑎𝑎,𝜏𝜏) = <𝑥𝑥(𝑡𝑡),𝜑𝜑𝑎𝑎,𝜏𝜏(𝑡𝑡)> = 1
√𝑎𝑎
∫ 𝑥𝑥(𝑡𝑡)𝜑𝜑∗ �𝑡𝑡−𝜏𝜏

𝑎𝑎
�d𝑡𝑡, 

where τ and a represent the time shift and scale variables, respectively, and φ(·) is the mother wavelet chosen 
for the transform. Given that this mother wavelet satisfies a basic admissibility criteria (Daubechies, 1992), the 
inverse transform also exists. The idea of the wavelet originated with the Gabor Transform (Gabor, 1946), a 
windowed Fourier Transform designed such that the duration of the time localization window varied with 
frequency. A wavelet representation offers advantages over traditional Fourier analysis in that the time support 
of the wavelet used to perform the correlation in Eq. (1) varies as a function of scale, so that the analysis 
window length matches with the frequency of interest, trading off time and frequency resolution. 

The time τ and scale a variables of the CWT can be discretized and in many cases still provide for complete 
representation of the underlying signal, provided that the mother wavelet meets certain requirements. This may 
be viewed as a type of multiresolution analysis, where at each scale the signal is represented at a different level 
of detail. In the case where the discretization of the time and scale variables is dyadic in nature, so 
that a = 2m and τ = n2m, an efficient implementation may be obtained through the use of a Quadrature Mirror 
Filter (QMF) decomposition at each level, where matching low-pass and high-pass filterbank coefficients 
characterize the convolution with the mother wavelet, and downsampling by 2 at each level equates to the 
doubling of the time interval according to scale. This multiresolution filter bank implementation is referred to as 
a Discrete Wavelet Transform (DWT), and exists provided that the family of wavelets generated by dyadic scaling 
and translation forms an orthonormal basis set. The BWT used in the current work is based on the Morlet 
mother wavelet, for which a direct DWT representation is not possible, so a CWT coupled with fast numerical 
integration techniques is used instead to generate a set of discretized wavelet coefficients. 

A further generalization of the DWT is the Wavelet Packet Transform (WPT), also based on a filter bank 
decomposition approach. In this case the filtering process is iterated on both high and low frequency 
components, rather than continuing only on low frequency terms as with a standard dyadic DWT. A comparison 
between a DWT and a WPT is shown in Fig. 1. 

 
Fig. 1. A Discrete Wavelet Transform (left) and full Wavelet Packet Transform (right), represented as filterbank 
decompositions, with the left and right branches at each node representing a matched pair of low-pass and 
high-pass wavelet filters followed by downsampling. 
 

The depth of the Wavelet Packet Tree shown in Fig. 1 can be varied over the available frequency range, resulting 
in configurable filterbank decomposition. This idea has been used to create customized Wavelet Packet 
Transforms where the filterbanks match a perceptual auditory scale, such as the Bark scale, for use in speech 
representation, coding, and enhancement (Bahoura and Rouat, 2001, Chen et al., 2004, Cohen, 2001, Fu and 
Wan, 2003, Hu and Loizou, 2004, Lu and Wang, 2003). The use of bark-scale WPT for enhancement has so far 
indicated a small but significant gain in overall enhancement quality due to this perceptual specialization. This 
perceptual WPT, using auditory critical band scaling following Cohen’s work (Cohen, 2001) as shown in Fig. 2, is 
implemented in this work as a reference method for comparison to the new technique. 



 
Fig. 2. Perceptually scaled Wavelet Packet Transformation, with leaf-node center frequencies following an 
approximately critical-band scaling. 
 

The degree to which a particular set of wavelet coefficients form a useful or compact representation of a signal 
is a function of how well the mother wavelet matches with the underlying signal characteristics, as well as the 
times and scales selected. For application to signal enhancement, often referred to in the literature as wavelet 
denoising, the coefficient magnitudes are reduced after comparison to a threshold, as described in more detail 
in the following section. With a good choice of representation, this thresholding will remove noise while 
maintaining signal properties. 

To address the fact that many types of signals have substantial non-stationarity and may not be well-
represented by a single fixed set of parameters, it is possible to make the wavelet transform adaptive, such that 
characteristics of the transform change over time as a function of the underlying signal characteristics. There are 
several possible approaches to adaptive wavelet enhancement, including adaptation of the wavelet basis, 
adaptation of the wavelet packet configuration, direct adaptation of the time and scale variables, or adaptation 
of the thresholds or thresholding algorithms used. Of these, the most common approach is to use a time-varying 
threshold or gain function based on an a priori energy or SNR measure (Bahoura and Rouat, 2001, Chen et al., 
2004, Cohen, 2001, Fu and Wan, 2003, Hu and Loizou, 2004, Lu and Wang, 2003). 

The BWT decomposition used here is both perceptually scaled and adaptive. The initial perceptual aspect of the 
transform comes from the logarithmic spacing of the baseline scale variables, which are designed to match 
basilar-membrane spacing. Two adaptation factors then control the time-support used at each scale, based on a 
non-linear perceptual model of the auditory system, as described in detail in the following section. 

2.2. Bionic Wavelet Transform 
The BWT was introduced in (Yao, 2001, Yao and Zhang, 2001) as an adaptive wavelet transform designed 
specifically to model the human auditory system. The basis for this transform is the Giguere–Woodland non-
linear transmission line model of the auditory system (Giguere, 1993, Giguere and Woodland, 1994), an active-
feedback electro-acoustic model incorporating the auditory canal, middle ear, and cochlea. The model yields 
estimates of the time-varying acoustic compliance and resistance along the displaced basilar membrane, as a 
function of the physiological acoustic mass, cochlear frequency-position mapping, and feedback factors 
representing the active mechanisms of the outer hair cells. The net result can be viewed as a method for 
estimating the time-varying quality factor Qeq of the cochlear filter banks as a function of the input sound 
waveform. See Giguere and Woodland, 1994, Zheng et al., 1999, Yao and Zhang, 2001 for complete details on 
the elements of this model. 

The adaptive nature of the BWT is captured by a time-varying linear factor T(a, τ) that represents the scaling of 
the cochlear filter bank quality factor Qeq at each scale over time. Incorporating this directly into the scale factor 
of a Morlet wavelet, we have: 

(2) 𝑋𝑋BWT(𝑎𝑎,𝜏𝜏) = 1
𝑇𝑇(𝑎𝑎,𝜏𝜏)√𝑎𝑎

∫ 𝑥𝑥(𝑡𝑡)𝜑𝜑
˜ ∗ � 𝑡𝑡−𝜏𝜏

𝑇𝑇(𝑎𝑎,𝜏𝜏)𝑎𝑎
� e−j𝜔𝜔0�

𝑡𝑡−𝜏𝜏
𝑎𝑎 �d𝑡𝑡, 



where 

(3) 𝜑𝜑
˜

(𝑡𝑡) = e−�
𝑡𝑡
𝑇𝑇0
�
2

 

is the amplitude envelope of the Morlet wavelet, T0 is the initial time-support and ω0 is the base fundamental 
frequency of the unscaled mother wavelet, here taken as ω0 = 15,165.4 Hz for the human auditory system, per 
Yao and Zhang’s original work (Yao and Zhang, 2001). The discretization of the scale variable a is accomplished 
using pre-determined logarithmic spacing across the desired frequency range, so that the center frequency at 
each scale is given by the formula ωm = ω0/(1.1623)m, m = 0, 1, 2, … For this implementation, based on Yao and 
Zhang’s original work for cochlear implant coding (Yao and Zhang, 2002), coefficients at 22 scales, m = 7, … ,28, 
are calculated using numerical integration of the continuous wavelet transform. These 22 scales correspond to 
center frequencies logarithmically spaced from 225 Hz to 5300 Hz. (Although the scales used here match those 
from Yao and Zhang’s original work, empirical variation of the number of scales and frequency placement 
showed minimal effect on the overall enhancement results.) 

The BWT adaptation factor T(a, τ) for each scale and time is computed using the update equation: 

(4) 𝑇𝑇(𝑎𝑎,𝜏𝜏 + Δ𝜏𝜏) = 1

�1−𝐺𝐺1
𝐶𝐶s

𝐶𝐶s+|𝑋𝑋BWT(𝑎𝑎,𝜏𝜏)|��1+𝐺𝐺2�
∂
∂𝜏𝜏𝑋𝑋BWT(𝑎𝑎,𝜏𝜏)��

, 

where G1 is the active gain factor representing the outer hair cell active resistance function, G2 is the active gain 
factor representing the time-varying compliance of the Basilar membrane, and Cs = 0.8 is a constant 
representing non-linear saturation effects in the cochlear model (Yao and Zhang, 2001). In practice, the partial 
derivative of Eq. (4) is approximated using the first difference of the previous points of the BWT at that scale. 

From Eq. (2), it can be seen that the adaptation factor T(a, τ) affects the duration of the amplitude envelope of 
the wavelet, but does not affect the frequency of the associated complex exponential. Thus, one useful way to 
think of the BWT is as a mechanism for adapting the time support of the underlying wavelet according to the 
quality factor Qeq of the corresponding cochlear filter model at each scale. The key parameters T0, G1, and G2 will 
be discussed in detail in Sections 4.1 T, 4.2 G. 

It can be shown (Yao and Zhang, 2002) that the resulting BWT coefficients XBWT(a, τ) can be calculated as a 
product of the original WT coefficients XWT(a, τ) and a multiplying constant K(a, τ) which is a function of the 
adaptation factor T(a, τ). For the Morlet wavelet, this adaptive multiplying factor can be expressed as 

(5) 
𝑋𝑋BWT(𝑎𝑎,𝜏𝜏) = 𝐾𝐾(𝑎𝑎,𝜏𝜏)𝑋𝑋WT(𝑎𝑎,𝜏𝜏),

𝐾𝐾(𝑎𝑎,𝜏𝜏) = √𝜋𝜋
𝐶𝐶

𝑇𝑇0
�1+𝑇𝑇2(𝑎𝑎,𝜏𝜏)

,  

where C is a normalizing constant computed from the integral of the squared mother wavelet. This 
representation yields an efficient computational method for computing BWT coefficients directly from the 
original WT coefficients without needing to perform the numerical integration of Eq. (2) at each time and scale. 

There are several key differences between the discretized CWT using the Morlet wavelet, used for the BWT, and 
a filterbank-based WPT using an orthonormal wavelet such as the Daubechies family, as used for the 
comparative baseline method. One is that the WPT is perfectly reconstructable, whereas the discretized CWT is 
an approximation whose exactness depends on the number and placement of frequency bands selected. 
Another difference, related to this idea, is that the Morlet mother wavelet consists of a single frequency with an 
exponentially decaying time support, whereas the frequency support of the orthonormal wavelet families used 
for DWTs and WPTs covers a broader bandwidth. The Morlet wavelet is thus more “frequency focused” along 



each scale, which is what permits the direct adaptation of the time support with minimal impact on the 
frequency support, the central mechanism of the BWT adaptation. 

2.3. Wavelet denoising 
If an observed signal includes measurement error or ambient noise, the result is an additive signal model given 
by 

(6) 𝒚𝒚 = 𝒙𝒙 + 𝒏𝒏, 

where y is the noisy signal, x is the original clean signal, and n is the additive noise component. It can easily be 
seen from Eq. (1) above that the wavelet coefficients are also additive, so that Y = X + N, where the matrix 
notation represents the set of coefficients across the selected times and scales. Given a well-matched wavelet 
representation, noise characteristics will tend to be characterized across time and scale by smaller coefficients 
while signal energy will be concentrated in larger coefficients. This offers the possibility of using thresholding to 
separate the signal from the noise. There are a wide variety of basic thresholding approaches (Antoniadis and 
Oppenheim, 1995, Donoho, 1995), including: 

• Hard thresholding, where all coefficients below a predefined threshold value are set to zero. 
• Soft thresholding, where in addition the remaining coefficients are linearly reduced in value. 
• Non-linear thresholding, where a smooth function is used to map the original coefficients to a new set, 

avoiding abrupt value changes. 

Illustrations of hard, soft, and non-linear thresholding operations are shown in Fig. 3. For any of these 
approaches, the threshold parameter may be either a fixed value or a level-dependent value that is a function of 
the wavelet decomposition level. One of the key elements for successful wavelet denoising is the selection of 
the threshold. Optimization approaches for determining this value have been well-studied. Two of the most 
common methods are universal thresholding and Stein’s unbiased risk estimator (SURE) (Donoho, 1995), 
typically implemented with a soft-thresholding function. 

 
Fig. 3. Threshold mapping functions. 
 

Universal thresholding uses the threshold value 

(7) 𝑇𝑇 = 𝜎𝜎
ˆ
�2log𝑁𝑁, 

where 𝜎𝜎
ˆ
 is an estimate of the noise variance and N compensates for signal length. The variance 𝜎𝜎

ˆ
 is typically 

obtained using the median absolute deviation (MAD) measure with respect to time, 𝜎𝜎
ˆ

= MAD(𝑋𝑋DWT(𝑛𝑛,𝑚𝑚))/
0.6745, evaluated at a specific scale level m. 

The SURE method (Donoho, 1995, Donoho and Johnstone, 1995, Johnstone and Silverman, 1997) uses the value 



(8) 𝑇𝑇 = argmin
0⩽𝑇𝑇⩽𝜎𝜎

ˆ
�2log𝑁𝑁

�𝜎𝜎
ˆ 2𝑁𝑁 + � �min(𝑥𝑥[𝑛𝑛],𝑇𝑇2) − 2𝜎𝜎

ˆ 2𝐼𝐼(|𝑥𝑥[𝑛𝑛]| ⩽ 𝑇𝑇)�
𝑁𝑁

𝑛𝑛=1
� , 

where x[n] is the time-domain input signal and I is an indicator function. Note that the range over which the 
SURE threshold is considered is based on a maximum value equal to the universal threshold, so that the SURE 
threshold is always less than the universal threshold. 

Thresholding can be done universally across all wavelet decomposition levels, referred to as level-independent 
thresholding, or else the threshold level can be varied at each level, level-dependent thresholding. In this case, 
the above formulas still apply, but with a level dependent threshold Tm calculated at each level using a scale-

dependent variance estimate 𝜎𝜎
ˆ
𝑚𝑚 = MAD(𝑋𝑋DWT(𝑛𝑛,𝑚𝑚))/0.6745. 

Other thresholding approaches include minimax thresholding (Donoho, 1995), which sets a universal threshold 
independent of any signal information (and is therefore good primarily for completely unknown conditions), and 
heuristic SURE (Donoho, 1995), which uses a significance test to decide between the universal threshold and the 
SURE threshold. 

The speech enhancement experiments presented here use the SURE method, with a level-independent soft-
threshold. Empirical evaluations across the different thresholding selection methods for this task showed only 
minor variation in results, with slight performance benefit using the SURE approach on speech enhancement 
tasks compared to the universal and heuristic SURE methods. 

2.4. Comparative baseline methods 
To evaluate the effectiveness of using this new BWT-based method for enhancement of speech signals, we 
compare it to other standard approaches on this task. This includes comparing to the spectral subtraction, 
Wiener filtering, and Ephraim Malah filtering methods, all common approaches within this area. In addition, we 
also compare to a perceptually scaled WPT denoising implementation. In this section some background on these 
existing enhancement methods is provided. 

Spectral subtraction (Boll, 1979, Deller et al., 2000) is a straightforward technique based on literal subtraction of 
the Fourier Transform (FT) magnitude components of the estimated noise spectrum from the signal spectrum, 
on a frame by frame basis. Noise components are typically estimated from regions of the signal where there is 
no speech present, and phase characteristics are taken directly from the noisy FT. The resulting enhancement 
equation is given by 

(9) 𝒙𝒙
ˆ

= IFFT ��|𝑌𝑌(𝜔𝜔)|2 − |𝑁𝑁(𝜔𝜔)|2∠𝑌𝑌(𝜔𝜔)� . 

Wiener filtering (Deller et al., 2000, Haykin, 1996) is accomplished by using the signal and noise spectral 
characteristics to estimate the optimal noise reduction filter, given by 

(10) 𝐻𝐻 = 𝑆𝑆𝑥𝑥(𝜔𝜔)
𝑆𝑆𝑥𝑥(𝜔𝜔)−𝑆𝑆𝑛𝑛(𝜔𝜔)

, 

where Sx(ω) and Sn(ω) are the true power spectral densities of the clean signal and noise. As with spectral 
subtraction, the noise spectrum is typically estimated from regions of the signal where there is no speech 
present. However since there is no direct way to get an estimate of the speech spectrum, this is usually 
accomplished via an iterative procedure where Sx(ω) is initialized using the noisy signal spectrum. In each 
iteration H is estimated via Eq. (10), after which the filter is applied and an improved estimate of the signal is 
used to determine a better clean signal spectrum estimate Sx(ω). This process is repeated until convergence, 
usually just a few iterations. 



The Ephraim Malah filter approach (Ephraim and Malah, 1984) is based on deriving a minimum mean square 

estimator (MMSE) for the clean speech spectral amplitudes 𝑋𝑋
ˆ
𝑘𝑘 = 𝐴𝐴

ˆ
𝑘𝑘ej𝜃𝜃𝑘𝑘  (Ephraim and Malah, 1984) or log 

spectral amplitudes (LSA) (Ephraim and Malah, 1985) given a complex Gaussian random variable model for the 
Fourier Transform coefficients of both the clean speech and the noise, assuming independence across frequency 
bins. The LSA estimator gives somewhat better enhancement results, using the derived estimation formula for 
the clean signal Fourier transform coefficient in each frequency bin given by 

(11) 𝐴𝐴
ˆ
𝑘𝑘 = 𝜉𝜉𝑘𝑘

1+𝜉𝜉𝑘𝑘
e�

1
2 ∫  ∞

𝜈𝜈𝑘𝑘
e−𝑡𝑡

𝑡𝑡 d𝑡𝑡�𝑅𝑅𝑘𝑘, 

(12) 𝜉𝜉𝑘𝑘 = 𝜆𝜆𝑥𝑥(𝑘𝑘)
𝜆𝜆𝑛𝑛(𝑘𝑘)

,𝜈𝜈𝑘𝑘 = 𝜉𝜉𝑘𝑘
1+𝜉𝜉𝑘𝑘

𝛾𝛾𝑘𝑘,𝛾𝛾𝑘𝑘 = 𝑅𝑅𝑘𝑘
2

𝜆𝜆𝑛𝑛(𝑘𝑘)
, 

where Rk is the noisy speech Fourier transform magnitude in the kth frequency bin, and λn(k) and λx(k) are the 
average noise and signal powers in each bin. Noise power λn(k) is typically estimated from initial silence regions 
in the waveform, while λx(k) is a moving average of spectrally subtracted noisy spectra �𝑅𝑅𝑘𝑘2 − 𝜆𝜆𝑛𝑛(𝑘𝑘)�. Improved 
results are obtained when the a priori SNR ξk is estimated directly and includes smoothing to implicitly adjust for 
speech presence probability, such as via the well-known “decision-directed method”. The overall result is an 
algorithm which adaptively tracks and adjusts estimates of both noise and signal amplitudes, and uses these 
estimates to adjust the degree of enhancement, which has significant impact on reducing artifacts often present 
in spectral subtraction and Wiener filtering. In this work, we use the standard Ephraim Malah implementation 
based on the LSA algorithm and decision-directed a priori SNR estimation (Ephraim and Malah, 1985). 

For comparison to another wavelet-based approach, we have implemented a level 6 perceptually scaled WPT, 
following the critical-band filter bank arrangement used in (Cohen, 2001). The result is a 21-band decomposition 
that approximates the spacing of the auditory bark scale, very similar to the spacing used for our BWT 
technique. A Daubechies-5 mother wavelet is used for the decomposition, and thresholding is accomplished 
with the same level independent SURE approach used for the BWT. 

In all four baseline methods, as well as the new approach being tested, an initial segment of the waveforms, 
which contains no speech, is used to estimate the noise levels. For the spectral subtraction and Wiener filtering 
method, this consists of power spectral estimation using the Fourier transform, while for the Ephraim Malah 
filter this determines initial λn(k) and λx(k) values. For the wavelet methods this segment is used to re-scale the 
signal so to provide an estimated unity noise variance, matching the assumption used in the SURE threshold 
selection algorithm. 

3. Experimental method 
The enhancement method presented here is based on applying a wavelet thresholding technique to BWT 
coefficients. A block diagram of the overall approach is shown in Fig. 4. 



 
Fig. 4. Block diagram of the new BWT enhancement algorithm. 
 

Continuous wavelet coefficients are computed using discrete convolutions at each of the 22 scales based 
directly on Eq. (1), with a 16 kHz sampling rate, the same rate as the speech data used for the experiments. 
Eqs. (4), (5) are used to calculate the K factor representing the time-support adaptation of the continuous 
wavelet coefficients. The selection of the T0, G1, and G2 parameters for these equations is discussed in detail in 
Sections 4.1 T, 4.2 G. To ensure stability of the overall signal variance for comparison to the threshold, 
the K factor term is shifted to a mean value of unity (variance/range are not adjusted). Thresholding is applied 
using the SURE thresholding method discussed in Section 2.3. Signal reconstruction is accomplished through 
another discrete convolution at each scale, followed by a weighted summation across the scales. 

3.1. Data sets and noise characteristics 
Ten utterances taken from the TIMIT Acoustic-Phonetic Continuous Speech Corpus (Garofolo et al., 1993) were 
used to evaluate the new algorithm. The sampling rate of the data is 16 kHz, and each sentence used has at least 
100 ms of silence at the beginning of the utterance that can be used to estimate noise statistics for the 
comparative methods. 

Two sets of additive noise experiments were implemented on this data. In the first, white Gaussian noise was 
added to the sentences at SNR levels of −10, −5, 0, +5, and +10 dB. In the second, specific noise characteristics 
including F-16 cockpit noise, Volvo car interior noise, ambient pink noise, and babble noise (multiple talkers), 
was added at a 0 dB SNR level to evaluate how well the methods work with non-white and relatively non-
stationary noise sources. 

Signal-to-noise ratio (SNR) and segmental signal-to-noise ratio (SSNR) (Deller et al., 2000) are used as objective 
measurement criteria for both sets of experiments. SSNR is computed by calculating the SNR on a frame-by-
frame basis over the signal and averaging theses values, and has been shown to have a higher correlation with 
perceived quality than does a direct SNR metric. The formula for SSNR is 

(13) SSNR = 1
𝑀𝑀
∑ 10log10𝑀𝑀−1
𝑗𝑗=0 �� 𝑥𝑥2(𝑛𝑛)

[𝑥𝑥(𝑛𝑛)−𝑥𝑥
ˆ
(𝑛𝑛)]2

𝑁𝑁(𝑗𝑗+1)

𝑛𝑛=𝑁𝑁𝑗𝑗+1

� , 



where M is the number of frames, each of length N, and x(n) and 𝑥𝑥
ˆ
(𝑛𝑛) are the original and enhanced signals, 

respectively. SNR is computed using the inner term shown in the above equation summed across the entire 
signal. 

For the non-stationary noise cases, a subjective perceptual measure called Mean Opinion Score (MOS) (Deller et 
al., 2000) was used to augment the objective SNR and SSNR measures for evaluating the perceived quality of the 
enhanced waveforms. MOS is computed by having a group of listeners rate the quality of the speech on a five-
point scale, then averaging the results. For these tests we used a group of 10 listeners in calculating MOS results. 
For all measures, results are averaged across the 10 utterances used as examples, giving a single evaluation 
metric for each method and noise type combination. 

For spectral subtraction, Wiener filtering, and Ephraim Malah filtering, the signal is divided into 25 ms windows 
with 12 ms overlap between frames. Frequency analysis is done using a Hanning window, and noise estimation 
is accomplished using the first three frames of the signal. Coefficient thresholding for both the perceptually 
scaled WPT and the BWT are done using a soft level-independent thresholding function based on the SURE 
technique, as described in Section 2.4. Implementation was done using the Matlab Wavelet toolbox (The 
MathWorks Inc., 2003). 

4. Results 
The implementation of the BWT decomposition depends strongly on three primary parameters: T0, G1, and G2. 
As discussed in Section 2.2, the T0 parameter controls the base time-support of the un-adapted mother wavelet, 
while G1 and G2 control active gain factors representing outer hair cell resistance and Basilar membrane 
compliance, respectively. These parameters have been investigated in detail, and are discussed in Sections 4.1 
T, 4.2 G. Overall results of the enhancement experiments are presented in Section 4.3. 

4.1. T0 effects 
The expression for a standard real Morlet wavelet is 

(14) 𝜑𝜑(𝑡𝑡) = e−𝑡𝑡2/2cos(5𝑡𝑡) 

with frequency ω0 = 5, time support 𝑇𝑇0 = √2, and a net time–frequency product of 𝑇𝑇0𝜔𝜔0 = 5√2 ≈ 7.07. Scaling 
this to the base frequency of 15,165.4 Hz used in the BWT, the effective time support to match the standard 
Morlet would be 𝑇𝑇0 = (5√2)/(2𝜋𝜋(15,165.4)) ≈ .00007421. From this it can be seen that the T0 value of 
0.0005 from Yao and Zhang’s original work (Yao and Zhang, 2001) is about seven times longer than that of a 
standard Morlet wavelet, resulting in several additional cycles in the initial mother wavelet. 

Since the primary adaptation mechanism involves variation of the wavelet time support, the impact of the 
initial T0 value was investigated. This was done by turning off the adaptation mechanism (i.e. G1 = G2 = 0 so 
that T(a, τ) = 1) and investigating the SNR and SSNR resulting from thresholding the discretized CWT coefficients 
directly, for the AWGN noise case with input SNR = 0 db. Results are shown in Fig. 5. 



 
Fig. 5. SNR and SSNR versus T0 for AWGN with initial SNR = 0 db. 
 

It can be seen from the above plots that there is a substantial range across which the overall results are 
consistent, while either extremely long or extremely short time-support values substantially hurt performance. 
In accordance with this result, and because the time support value corresponding to a standard Morlet wavelet 
is in the middle part of the stable range indicated by these results, it was decided to use this standard Morlet 
time-support value rather than one with extended time support, i.e. we selected T0 = .00007421 for use in these 
experiments. 

4.2. G1 and G2 effects 
G1 and G2 are parameters of a non-linear adaptation model, and thus are sensitive to signal amplitude 
characteristics. Each of these factors independently controls the amount of adaptation for a specific component 
of the auditory model, with very small values resulting in almost no adaptation (neither doing harm nor 
providing assistance to the underlying wavelet decomposition) and very large values resulting in saturation 
effects that lead to excessive coefficient fluctuation and poor overall results. This was examined by varying the 
two factors together and plotting the corresponding SNR and SSNR results, again for the AWGN noise case with 
input SNR = 0 db. Results are shown in Fig. 6. 



 
Fig. 6. SNR and SSNR versus G1 and G2 for AWGN with initial SNR = 0 db. 
 

The overall result indicated above is that the SNR and SSNR results of the BWT enhancement algorithm are 
stable over a fairly wide range of parameter values. This would indicate that the exact choice of values is not 
greatly important. For the final implementation and evaluation, we selected values of G1 = 0.6 and G2 = 75, 
which are located at an approximate local maximum near the center portion of the stable region, indicated on 
the axes in Fig. 6. 

4.3. Overall results compared to baseline methods 
4.3.1. AWGN noise condition across range of SNR values 
SNR and SSNR results for the white noise experiments are shown in Fig. 7, Fig. 8. Methods compared include 
Ephraim Malah filtering, iterative Wiener filtering, spectral subtraction, perceptually scaled WPT denoising 
(PWT), and the proposed BWT denoising (BWT), as well as the original noisy SNR and SSNR values for 
referencing degree of improvement. From these figures, the proposed BWT thresholding method and the 
Ephraim Malah filter clearly have the best performance for this noise condition. Each of these gave about 12 db 
improvement at the lower SNRs decreasing to about 8 db improvement at the higher SNRs. For SSNR, the 
improvement ranged from 6 to 9 db at the lower SNRs decreasing to 4–5 db at the higher SNRs. The BWT 
method shows the best SSNR improvement by a substantial margin at the −10 db noise case, obtaining nearly 
3 db better performance than any of the other methods, and is better at the −5 db condition as well. Note that 
the other wavelet-based approach, the PWT method, was a close third behind the Ephraim Malah and BWT 
results, and in fact did slightly better than the Ephraim Malah method in terms of SSNR for the worst noise case. 
At the +5 db and +10 db SNR noise cases, the Ephraim Malah filter shows stronger performance than the other 
methods tested, including the proposed BWT method. 



 
Fig. 7. SNR results for white noise case at −10, −5, 0, +5, and +10 dB SNR levels. 
 

 
Fig. 8. SSNR results for white noise case at −10, −5, 0, +5, and +10 dB SNR levels. 
 

4.3.2. Realistic noise conditions at 0 db SNR 
SNR and SSNR improvement across varying realistic noise conditions at 0 dB SNR are shown in Fig. 9, Fig. 10. 
Here the results are given as net improvement, so that relative effectiveness can be seen for all four noise 
conditions as a function of enhancement method. Ephraim Malah filtering substantially outperforms the other 
methods in nearly all cases. The BWT thresholding approach outperforms the remaining three, but is 
competitive with Ephraim Malah only for the F-16 cockpit noise and pink noise conditions. In a single instance, 
SSNR results for the pink noise condition, the BWT method outperforms Ephraim Malah filtering. One 
interesting observation is that the PWT perceptually scaled wavelet denoising approach does not compare as 
favorably for these realistic noise conditions as it did for the AWGN noise, with results that are closer to that of 
iterative Wiener filtering than to the BWT and Ephraim Malah methods, and demonstrating particularly poor 
performance in the car interior condition. 



 
Fig. 9. SNR comparisons for varying noise conditions at 0 dB SNR. 
 

 
Fig. 10. SSNR comparisons for varying noise conditions at 0 dB SNR. 
 

4.3.3. Mean opinion score results across all test conditions 
Subjective results using Mean Opinion Scores (MOS) for these same conditions are shown in Fig. 11 and Table 1. 
Ten subjects were surveyed and asked to rate the sentences for quality, using a standard MOS scale where 5 
indicates excellent quality and imperceptible distortion and 1 indicates unsatisfactory quality with annoying and 
objectionable distortion. 

 
Fig. 11. MOS comparisons for varying noise conditions at 0 dB SNR. 
 



Table 1. Average MOS by enhancement method 

Method Average MOS 
Ephraim Malah 3.23 
Iterative Wiener filter 3.03 
Bionic wavelet transform (BWT) 2.80 
Perceptual wavelet packet (PWT) 2.41 
Spectral subtraction 2.07 

 

There are several interesting differences between the MOS results and the SSNR results. While the relative MOS 
for Ephraim Malah and BWT methods is in line with the corresponding SSNR values for the most part, both the 
iterative Wiener filter and the perceptually scaled wavelet denoising received much higher ratings than would 
have been suggested by SSNR. The net result is that the iterative Wiener filtering method was second to 
Ephraim Malah in overall opinion score, followed by the BWT and PWT methods. The most likely explanation for 
the differences between SSNR and MOS results (aside from the relatively low sample size of the MOS survey) is 
the presence or absence of short-term artifacts in the enhanced waveforms, which are known to have significant 
impact on perception but have only mild influence on SNR and SSNR values. 

5. Conclusions 
A new method for speech signal enhancement using wavelets has been presented. This method is based on the 
Bionic Wavelet Transform and its incorporated Giguere–Woodland auditory model, resulting in a transform with 
perceptually motivated frequency scaling and adaptive time support at each scale corresponding to a non-linear 
model of the underlying cochlear system. Enhancement results demonstrate performance that is competitive 
with some of the best methods in the signal processing field, including Ephraim Malah filtering. 

Future work on this approach will include the development of time-varying thresholding techniques based on 
tracking the a priori SNR, such as those used in the Ephraim Malah comparative method and in some recent 
perceptual wavelet denoising techniques (Cohen, 2001), as well as continued work in generalizing the BWT itself 
to enhancement and speech intelligibility improvement. Given the strong initial performance of the Bionic 
Wavelet Transform representation, continued work in this direction is expected to lead to additional 
improvement in overall signal enhancement. 
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